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Geodesics in Brownian surfaces (Brownian maps)

Jérémie BETTINELLI†

October 8, 2014

Abstract

We define a class a metric spaces we call Brownian surfaces, arising as the scaling limits of
random maps on general orientable surfaces with a boundary and we study the geodesics from
a uniformly chosen random point. These metric spaces generalize the well-known Brownian map
and our results generalize the properties shown by Le Gall on geodesics in the latter space. We
use a different approach based on two ingredients: we first study typical geodesics and then all
geodesics by an “entrapment” strategy. In particular, we give geometrical characterizations of
some subsets of interest, in terms of geodesics, boundary points and concatenations of geodesics
that are not homotopic to 0.

1 Introduction

The purpose of this work is twofold. We first construct a class of metric spaces we call Brownian
surfaces, which arise as the scaling limit of random discrete maps on general surfaces. They natu-
rally generalize the famous Brownian map [LG13, Mie13], which corresponds to the case where the
surface in question is the sphere.

In a second step, we study all the geodesics starting from a “uniformly” chosen random point
in a fixed Brownian surface. Our method allows to recover the main result of [LG10] and provides
analogous results for general Brownian surfaces. As the topology of the spaces we consider here
is richer than the topology of the sphere, we find new geometrical characterizations in terms of
boundary points and pairs of geodesics whose concatenation forms a loop that is not homotopic
to 0.

Recall that a surface with a boundary is a non empty Hausdorff topological space in which every
point has an open neighborhood homeomorphic to some open subset of R × R+. Its boundary is
the 1-dimensional manifold consisting of the points having a neighborhood homeomorphic to a
neighborhood of (0, 0) in R×R+. Note that, in particular, a surface without boundary is a surface
with a boundary whose boundary is empty. In this work, we will only consider compact con-
nected orientable surfaces with a boundary. By the classification theorem, they are characterized
up to homeomorphisms by two nonnegative integers, the genus g and the number p of connected
components of the boundary. We denote by Σ

∂
g,p the unique (up to homeomorphism) compact

orientable surface of genus g with p boundary components; it can be obtained from the compact

†CNRS & Institut Élie Cartan de Lorraine; jeremie.bettinelli@normalesup.org ; www.normalesup.org/~bettinel.
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Figure 1: Simulation of a uniformly sampled quadrangulation from Q30 000,(100,80) in genus 2. The 2 boundary
components are highlighted. Click on the picture or go to www.normalesup.org/~bettinel in order to zoom or
rotate the map.

orientable surface of genus g by removing p disjoint open disks whose boundaries are pairwise
disjoint circles. See Figure 2.

A map is a cellular embedding of a finite graph (possibly with multiple edges and loops) into a
compact connected orientable surface without boundary, considered up to orientation-preserving
homeomorphisms. Cellular means that the faces of the map (the connected components of the
complement of edges) are open 2-cells, that is, homeomorphic to 2-dimensional open disks. We
will consider in this work maps with a boundary, which means that some distinguished faces of the
map are considered as “holes.” Given such a map, we may remove from every distinguished face
an open disk whose boundary is a circle and obtain a surface with a boundary. It would probably
be more satisfactory to directly define these objects as embedded into a surface with a boundary
in such a way that the distinguished faces are homeomorphic to disks with an open disk removed
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Figure 2: The surface with a boundary Σ
∂
1,3.

and all other faces are 2-cells but the previous definition happens to be more convenient to our
purpose.

The natural problem of scaling limits of random maps has generated many studies in the last
decade. The most natural setting is the following. We consider maps as metric spaces, endowed
with their natural graph metric. We choose uniformly at random a map of “size” n in some class,
rescale the metric by the proper factor, and look at the limit in the sense of the Gromov–Hausdorff
topology [Gro99]. The size considered is often the number of faces of the map. From this point
of view, the most studied class is the class of planar quadrangulations. The pioneering work of
Chassaing and Schaeffer [CS04] revealed that the proper scaling factor in this case is n−1/4. The
problem was first addressed by Marckert and Mokkadem [MM06], who constructed a candidate
limiting space called the Brownian map, and showed the convergence toward it in another sense.
Le Gall [LG07] then showed the relative compactness of this sequence of metric spaces and that any
of its accumulation points was almost surely of Hausdorff dimension 4. It is only recently that the
solution of the problem was completed independently by Miermont [Mie13] and Le Gall [LG13],
who showed that the scaling limit is indeed the Brownian map. This last step, however, is not
mandatory in order to identify the topology of the limit: Le Gall and Paulin [LGP08], and later
Miermont [Mie08], showed that any possible limit is homeomorphic to the 2-dimensional sphere.

This line of reasoning lead the way to several extensions. The first kind of extension is to con-
sider other classes of planar maps. Actually, Le Gall already considered in [LG07] the classes of
κ-angulations, for even κ ≥ 4. In [LG13], he considered the classes of κ-angulations for κ = 3 and
for even κ ≥ 4 as well as the case of Boltzmann distributions on bipartite planar maps, conditioned
on their number of vertices. Another extension is due to Addario-Berry and Albenque [ABA13];
in this work, they consider simple triangulations and simple quadrangulations, that is, triangu-
lations and quadrangulations without loops and multiple edges. Together with Jacob and Mier-
mont [BJM14], we later added the case of maps conditioned on their number of edges, and Abra-
ham [Abr13] considered the case of bipartite maps conditioned on their number of edges. In all
these cases, the limiting space is always the same Brownian map (up to a multiplicative constant):
we say that the Brownian map is universal and we expect it to arise as the scaling limit of a lot
more of natural classes of maps. A peculiar extension is due to Le Gall and Miermont [LGM11]
who consider maps with large faces, forcing the limit to fall out of this universality class: they
obtain so-called stable maps, which are related to stable processes.

Another kind of extension is to consider quadrangulations on a fixed surface that is no longer
the sphere. The case of orientable surfaces of positive genus was the focus of [Bet10, Bet12] and
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the case of the disk was considered in [Bet14]. In both these cases, the last step is still missing at
the moment: the convergence is only known to hold along subsequences. In the present work, we
complete this picture by considering quadrangulations on arbitrary surfaces with a boundary.

The starting point of these problems is a powerful bijective encoding of the maps in the studied
class by simpler objects. In the case of planar quadrangulations, the bijection in question is the so-
called Cori–Vauquelin–Schaeffer bijection [CV81, Sch98, CS04] and the simpler objects are trees
whose vertices carry integer labels satisfying some conditions. In the other cases, variants of this
bijection are used [BDG04, CMS09, PS06, AB13] and the encoding objects usually have a more
intricate combinatorial structure.

At the present time, little is known about the limiting spaces. The principal result about the
metric properties of the Brownian map is due to Le Gall [LG10]. In this reference, Le Gall studies
all the geodesics from a uniformly chosen random point in the Brownian map. In particular, he
shows that, toward a typical point, there is only one such geodesic and that for particular points
there are up to three distinct such geodesics. Moreover, if we consider the unique geodesics to-
ward two typical points, it is shown that they share a common part of positive length. We believe
that Le Gall’s approach could be adapted to our framework of general Brownian surfaces. We also
think that, in the particular case p = 0, the results could be derived from Le Gall’s, by using a con-
tinuous analog to Chapuy’s bijection [Cha10] (see also [Bet12, Section 6] for such an application).
In the present work, however, we choose to use a third approach.

Let ρ•, x1, x2, . . . be fixed uniform points in a Brownian surface. Our strategy relies on the
following facts, which hold almost surely.

(a) There is only one geodesic from ρ• to xi (Proposition 19).

(b) It is possible to “entrap” all the geodesics from ρ• to any given point with geodesics from ρ•

to xi’s. (Section 6).

Combining these facts, we are able to identify all the geodesics starting from ρ•. Fact (a) will be
shown by a technique inspired from [Mie09]. In this reference, a bijection between quadrangula-
tions with q distinguished vertices and maps with q faces is provided. Very roughly speaking, a
proper use of the parameters of this bijection in the particular case q = 2 gives a parametrization
of the geodesics between the two distinguished points. Fact (b) is the core of our approach and
will be explained in more details in the next section, as we need some more notation.

Throughout this work, we fix an integer g ≥ 0 and work in fixed genus g. In order to ease
the reading, we provide page 42 a recapitulation of our most used notation. We will see during
Section 4 that a Brownian surface may be constructed both as a quotient of [0, 1] and as a quotient
of a more complicated underlying structure. As often as possible, r, s, t will denote numbers in
[0, 1], a, b, c will denote points in the underlying structure and x, y, z will denote points in the
Brownian surface.

Acknowledgments. The author warmly thanks Grégory Miermont for interesting discussions
leading to the realization of this work. The author also thanks Curtis McMullen for suggesting
the terminology of Brownian surfaces, as well as an anonymous referee for tediously reading a
previous version of this work and for making numerous improving comments.
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2 Main results

2.1 Brownian surfaces

Let m be a map. We let V (m) denote its set of vertices, E(m) its set of edges, and ~E(m) its set of
half-edges (oriented edges). We say that a face f is incident to a half-edge e (or that e is incident
to f ) if e is included in the boundary of f and is oriented in such a way that f lies to its left. The
number of half-edges incident to a face is called its degree. For any half-edge e, we denote by ē its
reverse, as well as e− and e+ its origin and end. We denote by dm the graph metric on m defined
as follows: for any v, v′ ∈ V (m), the distance dm(v, v

′) is the number of edges of any shortest path
linking v to v′.

For combinatorial reasons, we need to restrict ourselves to bipartite maps: a map is called
bipartite if its vertex set can be partitioned into two subsets such that no edge links two vertices of
the same subset. For p ≥ 0, a quadrangulation with p boundary components is a bipartite map having p
distinguished faces h1, . . . , hp and whose other faces are all of degree 4. The distinguished faces
will be called external faces or holes. The other faces will be called internal faces. For technical
reasons, the maps we consider will always implicitly be rooted, in the sense that they come with a
distinguished half-edge, usually denoted by e∗. The genus of a map is defined as the genus of the
surface into which it is embedded. For n ∈ Z+ and σ = (σ1, . . . , σp) ∈ N

p (with the convention that
N

0 := {∅}), we define the set Qn,σ of all genus g quadrangulations with p boundary components
having n internal faces and such that hi is of degree 2σi, for 1 ≤ i ≤ p. See Figure 3 for an example
and Figure 1 for a computer simulation of a large random quadrangulation.

h1

h2

h3

Figure 3: A quadrangulation from Q19,(4,1,2) in genus 1. The half arrowhead symbolizes the root.

The Gromov–Hausdorff distance between two compact metric spaces (X , δ) and (X ′, δ′) is de-
fined by

dGH

(

(X , δ), (X ′, δ′)
)

:= inf
{

δH
(

ϕ(X ), ϕ′(X ′)
)}

,

where the infimum is taken over all isometric embeddings ϕ : X → X ′′ and ϕ′ : X ′ → X ′′

of X and X ′ into the same metric space (X ′′, δ′′), and δH stands for the usual Hausdorff distance
between compact subsets of X ′′. This defines a metric on the set of isometry classes of compact
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metric spaces ([BBI01, Theorem 7.3.30]), making it a Polish space (this is a simple consequence of
[BBI01, Theorem 7.4.15]).

The following result unifies and generalizes the main results from [LG07, LGP08, Mie08, Bet10,
Bet12, Bet14].

Theorem 1. Let us consider an integer p ≥ 0, positive real numbers σ1
∞, . . . , σp

∞ > 0 and a sequence
σn = (σ1

n, . . . , σ
p
n) ∈ N

p of p-uples such that σi
n/

√
2n → σi

∞, for 1 ≤ i ≤ p. Let qn be uniformly
distributed over Qn,σn

. Then, from any increasing sequence of integers, we may extract a subsequence
(nk)k≥0 such that there exists a random metric space (qσ∞, d

σ
∞) satisfying

(

V (qnk
),

Å

9

8nk

ã1/4

dqnk

)

(d)−−−−→
k→∞

(

qσ∞, d
σ
∞

)

in the sense of the Gromov–Hausdorff topology.
Moreover, regardless of the choice of the sequence of integers, the limiting space (qσ∞, d

σ
∞) is almost

surely homeomorphic to Σ
∂
g,p, has Hausdorff dimension 4, and every of the p connected components of its

boundary has Hausdorff dimension 2.

Remark. The constant (8/9)1/4 is irrelevant in this statement. We chose to let it figure for the
sake of consistency with previous works and because of following definitions. This constant is
inherent to the case of quadrangulations: we believe that the same statement should hold with the
same limiting spaces for other classes of maps embedded in the same surface and satisfying mild
conditions, up to modifying this constant.

In the spherical case ((g, p) = (0, 0)), these results were shown by Le Gall [LG07] and the topol-
ogy was identified by Le Gall and Paulin [LGP08] (and also later by Miermont [Mie08]). Using
two different approaches, Le Gall [LG13] and Miermont [Mie13] later substantially improved this
result by showing that the extraction is not necessary in this case. It is strongly believed that it
is not necessary in the general case either; this is the main focus of the work in progress [BM14].
Theorem 1 in the particular case p = 0, g > 0 can be found in [Bet10, Bet12] and the case p = 1,
g = 0 is treated in [Bet14].

Notice that, although it seems reasonable that the limiting space will have genus at most g and
at most p holes, it is not clear a priori that it will be homeomorphic to Σ

∂
g,p. We could imagine that

some handles “disappear” or that some holes “merge” into a single hole. This does not happen;
loosely speaking, this means that a uniform quadrangulation is sufficiently well spread over the
surface, taking a macroscopic amount of space inbetween the holes and on every handle. Another
noticeable fact is that the boundary of every hole is homeomorphic to a circle whereas, in the
discrete picture, the holes do not in general have a simple curve as a boundary.

We believe that it is possible to extend this result to the case where some σi
∞’s are equal to 0.

More precisely, making the extra hypothesis that the extraction in Theorem 1 is not necessary, we
conjecture the following.

Conjecture 1. Let 0 ≤ p′ ≤ p be integers, let σ1
∞, . . . , σp′

∞ > 0 be positive real numbers and set σp′+1
∞ = 0,

. . . , σp
∞ = 0. Let also σn = (σ1

n, . . . , σ
p
n) ∈ N

p be a sequence of p-uples such that σi
n/

√
2n → σi

∞,
for 1 ≤ i ≤ p and consider a random variable qn uniformly distributed over Qn,σn

. Then, the following
convergence holds in the sense of the Gromov–Hausdorff topology:

(

V (qn),

Å

9

8n

ã1/4

dqn

)

(d)−−−−→
n→∞

(

qσ
′

∞, d
σ′

∞

)

,
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where
(

qσ
′

∞, d
σ′

∞

)

is the limiting space of Theorem 1 corresponding to σ1
∞, . . . , σp′

∞.

We proved this conjecture in [Bet14] in the case g = 0, p′ = 0 and p = 1 (where it is known
[LG13, Mie13] that the extraction is not necessary) and we think that with some substantial work,
our method can be adapted to this framework, provided the uniqueness of the limiting space. We
decided, however, not to pursue this in the present paper as we prefer to concentrate on geodesics
in the limiting spaces.

2.2 Geodesics in Brownian surfaces

We now turn to the geodesics in a fixed Brownian surface. We fix a subsequence (nk)k≥0 along
which the convergence of Theorem 1 holds and we consider the corresponding Brownian surface
(qσ∞, d

σ
∞). Recall that, in a compact metric space (X , δ), a geodesic from a point x ∈ X to a point y ∈

X is a continuous path ℘ : [0, δ(x, y)] → X such that ℘(0) = x, ℘(δ(x, y)) = y and δ(℘(s), ℘(t)) =
|t − s| for every s, t ∈ [0, δ(x, y)]. The space (X , δ) is called a geodesic space if any two points
are connected by at least one geodesic. Because the metric space associated with a map is at dGH-
distance at most 1/2 from a geodesic space and because the Gromov–Hausdorff limit of a sequence
of geodesic spaces is also a geodesic space (see [BBI01, Theorem 7.5.1]), we see from Theorem 1
that any Brownian surface is a geodesic space. Although we do not know how to characterize
all the geodesics in a Brownian surface, we are able to describe all the geodesics starting from a
distinguished point. Before stating our results, we still need to introduce some more notions.

We will see later that the Brownian surface (qσ∞, d
σ
∞) may be constructed as a quotient of an

underlying structure M . This structure consists of a backbone, which roughly captures its homo-
topy type, on which Brownian forests are glued. It generalizes Aldous’s CRT, which is the analog
in the spherical case. The rigorous definition of this object will be given in Section 4.3.2, after some
grounds will have been established. At this stage, we only give an informal description and re-
fer to Figure 4 for a visual support. For the moment, do not pay attention to s, t, s′, t′, and the
corresponding paths Φ on the figure; these elements will be of interest in a short while.

It is also important to know at this point that M comes with a natural distinguished point
noted ρ•. This is the base point for the geodesics we will study. In general, there may exist simple
loops in (qσ∞, d

σ
∞) that are not homotopic to 0. This motivates the following definition. We let

N (ρ•, qσ∞) be the set of points x ∈ qσ∞ for which there exists at least a pair {℘, ℘′} of geodesics
from ρ• to x such that the concatenation of ℘ with the reverse of ℘′ is not homotopic to 0. The
Hausdorff dimension of this set can be computed:

Theorem 2. The set N (ρ•, qσ∞) is a.s. empty if g = 0 and p ∈ {0, 1}; it a.s. has Hausdorff dimension 2
otherwise.

We define the order of a point a ∈ M as the maximal number of connected components of
M \{a} restricted to the neighborhoods of a. Basic properties of Brownian forests show that this
number is a most 3. The backbone B ⊆ M is the set of points a either of order 2 and such that no
connected components of M \{a} are real trees or of order 3 and such that at most one connected
component of M \{a} is a real tree. For instance, note that B = ∅ in the case (g, p) = (0, 0) of the
sphere, as M is a real tree in this case; in fact, this is the only case in which B = ∅. Proposition 17
shows in particular that only points of order 1 can be identified in the quotient, so that it is licit
to define the order of a point in qσ∞ as the order of any of its representatives in M . Note that this
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h1

h2

s

t

s′

t′

ρ•

Φs

Φt

Φs′

Φt′

Figure 4: Description of a Brownian torus with 2 holes. The backbone is the thick green and burgundy structure. It is
shaped like a map with 2 holes and one face but we should think of the edges as having some “length.” Imagine that, on
both sides of the edges, independent Brownian forests are embedded, except inside the 2 holes. In other words, Brownian
CRT’s are grafted according to some Poissonian distribution. The union of these forests and the backbone constitutes the
underlying structure M .

definition a priori depends on M . We denote by ∂qσ∞ the boundary of (qσ∞, d
σ
∞). The following

theorem generalizes the main result of [LG10]:

Theorem 3. The following properties hold almost surely.

(i) For all x ∈ qσ∞, the number of distinct geodesics from ρ• to x is equal to the order of x minus1{x∈∂qσ
∞

}. In particular, this number is typically 1, at most 2 for the boundary points and at most 3
for the interior points.

(ii) The canonical projection of B in qσ∞ is the union of ∂qσ∞ and the set N (ρ•, qσ∞).

(iii) The set of points reachable by 3 distinct geodesics and for which every pair {℘, ℘′} of geodesics is such
that the concatenation of ℘ with the reverse of ℘′ is not homotopic to 0 is finite: its cardinality H is

⋄ equal to 0 if g = 0 and p ∈ {0, 1};

⋄ equal to 4g − 2 if g ≥ 1 and p = 0;

⋄ a random variable whose distribution only depends on g, p and σ (it can even be computed) and
whose support is {0, 1, . . . , 4g + p− 2} otherwise.

(iv) We suppose that p 6= 0 in order to avoid trivialities. The set ∂qσ∞∩N (ρ•, qσ∞) is finite: its cardinality
is equal to 4g + 2p− 2−H .

Let us first informally describe in more details what happens on the example of Figure 4. The
boundary ∂qσ∞ corresponds to the burgundy edges and the set N (ρ•, qσ∞) corresponds to the green
edges. The projection in qσ∞ of the vertices of the 3-face map corresponding to the backbone con-
stitutes a finite set of cardinality 4g + 2p − 2 (by a simple application of the Euler characteristic
formula). Among these points, H are not incident to any hole and 4g + 2p− 2−H are incident to
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some hole (H = 4 on the picture). As the 3-face map of the picture is actually a random variable,
we see that H is also random and the exact distribution can be computed once we know the dis-
tribution of this 3-face map. Moreover, these 4g + 2p − 2 points are precisely the ones described
in (iii) or (iv), depending on whether they belong to ∂qσ∞ or not.

We see that, in particular, our notion of order for a point in qσ∞ only depends on ρ•. It is possible
to define a uniform measure on qσ∞, as the projection of the Lebesgue measure on [0, 1] (it can also
be seen as the limit in some sense of the uniform measure on V (qn)). Typical in (i) means that, if a
point is distributed according to this measure, the number for this point is a.s. 1. We can also show
that ρ• is uniformly distributed over qσ∞ and the “invariance under uniform rerooting” property
(see [LG10, Section 8] for precise statements in the spherical case, which can easily be extended to
general Brownian surfaces) yields a similar result if we replace ρ• with another uniformly chosen
random point. Another important fact to notice is that the distribution of H does not depend on
the subsequence (nk)k≥0. This reinforces the conjecture that the extraction in Theorem 1 is actually
not necessary.

Using basic properties of M , we can classify the points of qσ∞ as follows. The set of points
reachable from ρ• by a unique geodesic a.s. has Hausdorff dimension 4. The set of points reachable
from ρ• by at least two distinct geodesics is a dense subset of qσ∞, which is relatively small (we
can show that its Hausdorff dimension is a.s. 2). An important part of these points moreover
belong to N (ρ•, qσ∞), which is also a set of dimension a.s. 2. Finally, the set of points that can be
reached by three geodesics is countable and only a finite number of these points are such that the
concatenation of any two geodesics is not homotopic to 0.

Note also that, as a random map on a surface is locally planar (at least far from the boundary), it
is to be expected that, in the vicinity of ρ•, every Brownian surface should look alike. In this regard,
it is probable that (i) in the latter vicinity can also be directly derived from Le Gall’s results [LG10]
by an absolute continuity argument.

Let us comment a little more about the idea behind the proof of Theorem 3. It comes from a
complete description of the geodesics from ρ•: we show that, in the language of [LG10], all the
geodesics from ρ• are simple (see Proposition 23). We can picture M as a continuous analog to a
discrete map with 1 internal face and p holes. As for a real tree (which is the analog to a discrete
tree, that is, a map with 1 face in genus 0), we will see that it is possible to define a contour order
around the “internal face” of M . The order of a point a ∈ M is then the number of times a is
visited in this contour order plus 1 if a is incident to a hole (because the holes are not visited). To
each time a is visited in the contour order correspond a simple geodesic. Furthermore, Lemma 25
gives a criterion to decide whether the concatenation of two simple geodesics aiming at the same
point are homotopic to 0 or not, in terms of the visiting times of the corresponding point in M .

Going back to Figure 4, we denote by Φs the simple geodesic corresponding to the time s.
While performing the contour order, at time s, we are visiting some forest (even possibly its floor)
grafted on a half-edge of the 3-face map: we denote this half-edge by ẽs. We consider a point in M

that is visited both at times s and t. Then the criterion of Lemma 25 states that the concatenation
of Φs with the reverse of Φt is homotopic to 0 if and only if ẽs = ẽt. For instance, on the picture of
Figure 4, ẽs 6= ẽt so that Φs and Φt constitute a loop that is not homotopic to 0. On the contrary,
Φs′ and Φt′ constitute a loop that is homotopic to 0. This explains the correspondence between
the sets considered in Theorem 3 and the elements of the 3-face map. Finally, the −1{x∈∂qσ

∞
} in (i)

simply comes from the fact that there are no geodesics inside the holes.
We can now give the intuition of Fact (b) from the introduction. For simplicity, let us suppose

that a is a point of order 1 and let s be the time at which it is visited in the contour order. By
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density, we can find times si and sj as close as wanted to s such that si < s < sj and such that the
corresponding points xi and xj in qσ∞ are from our fixed sequence of uniform points. By Fact (a),
the geodesics from xi and xj to ρ• are necessarily simple geodesics. Using the description of
simple geodesics, we can show that these geodesics have to merge within the vicinity of the point x
corresponding to a in qσ∞. As a result, every geodesic from x to ρ• is “trapped” between these two
geodesics and can only escape through the segment of M connecting the points corresponding
to si and sj . Using fine properties of the labels on M , we show that it is possible to select si and sj
in such a way that the geodesic does not escape through this segment. Hence it has to coincide
with the other two geodesics, at least after they merge.

To complete this presentation, we also recover the same “confluence property” as the one ob-
tained by Le Gall in the spherical case [LG10, Corollary 7.7].

Proposition 4 (Corollary 24). Almost surely, for every ε > 0, there exists η ∈ (0, ε) such that all the
geodesics from ρ• to points outside of the ball of radius ε centered at ρ• share a common initial part of
length η.

To end this section, let us mention that, as observed by Le Gall in the spherical case, our re-
sults share surprising similarities with the results of Myers [Mye36] in the context of differential
geometry, where the surfaces considered posses by far more regularities. In the latter reference, it
is shown that the locus of points reachable from a fixed point by at least two geodesics in a sur-
face without boundary is a linear graph. Moreover, the subtraction of this locus from the surface
yields a unique open 2-cell and the number of distinct geodesics to a point of the locus is equal to
the order of this point in the locus (where the definition of order matches our definition of order
in M ).

2.3 Geodesics in large quadrangulations

Theorem 3 allows us to derive asymptotic results for large quadrangulations. We adapt the pre-
sentation and technique of Le Gall [LG10] to obtain them. Note that, in this section, we do not
restrict our attention to subsequences along which the convergence of Theorem 1 holds.

We define the distance between a path ℘ going successively through the vertices v1, . . . , vk and
a path ℘′ going successively through the vertices v′1, . . . , v′k′ in the same map m by

dpath(℘, ℘
′) = max

i≥0

{

dm(vi∧k, v
′
i∧k′ )

}

.

For ε > 0 and v, v′ ∈ V (qn), we let Geodεn(v, v
′) be the set of paths from v to v′ of length at most

(1 + ε) dqn(v, v
′). For δ > 0, we also let Multεn,δ(v, v

′) be the maximal integer r such that there

exist r paths ℘1, . . . , ℘r ∈ Geodεn(v, v
′) satisfying dpath(℘i, ℘j) ≥ δn1/4 whenever i 6= j.

Let (εn)n be a fixed deterministic sequence of nonnegative real numbers such that εn → 0 as
n → ∞ and, conditionally given qn, let v•n be a uniformly distributed vertex in V (qn). We denote
by ∂V (qn) the set of vertices in V (qn) that are incident to a hole. We start with the translation of (i)
in terms of large discrete maps.

Proposition 5. Let vn denote a uniformly distributed vertex in V (qn), independent from v•n. Then, for
every δ > 0, P

(

Multεnn,δ(v
•
n, vn) = 1

)

→ 1 as n→ ∞.
Moreover, for every δ > 0 and for every sequence (ηn)n of positive numbers such that ηn → 0 as

n→ ∞, P
(

∃v ∈ V (qn) : dqn
(v, ∂V (qn)) ≤ n1/4ηn, Multεnn,δ(v

•
n, v) ≥ 3

)

→ 0 as n→ ∞.

10



Finally, for every δ > 0, P
(

∃v ∈ V (qn) : Multεnn,δ(v
•
n, v) ≥ 4

)

→ 0 as n→ ∞ and

lim
δ→0

lim inf
n→∞

P
(

∃v ∈ V (qn) : Mult0n,δ(v
•
n, v) = 3

)

= 1.

Note that we chose to state the result with geodesics in the displayed equation, instead of
“approximate” geodesics because it is actually stronger. Of course, the weaker result with εn
in place of 0 also holds. The first part of Proposition 5 roughly means that, in a large uniform
quadrangulation, there is essentially a unique macroscopic geodesic from v•n to a uniformly chosen
vertex and this remains true even if we allow some “slack” to the geodesics. The second part states
that the points asymptotically close to the boundary cannot be reached from v•n by more than two
distinct macroscopic geodesics, even if “slack” is allowed. The last part says that asymptotically,
there exist points that can be reached from v•n by three distinct macroscopic geodesics but no points
can be reached by four distinct macroscopic geodesics, even if “slack” is allowed.

We now complete the interpretation. For ε > 0 and v, v′ ∈ V (qn), we let HMultεn(v, v
′) be the

maximal integer r such that there exist r paths ℘1, . . . , ℘r ∈ Geodεn(v, v
′) such that, whenever i 6= j,

the concatenation of ℘i with the reverse of ℘j is not homotopic to 0. Here, homotopic to 0 means
homotopic to 0 in the surface with a boundary corresponding to the map, that is, the surface in
which the map is embedded, with open disks removed from the external faces. Note that, as the
topology is preserved at the limit (handles and holes do not vanish), we can find a (random) δ
small enough such that, for large n, HMultεn(v, v

′) ≤ Multεn,δ(v, v
′). With a little bit of work, this

yields the following statement:

Proposition 6. We have P
(

∃v ∈ V (qn) : HMultεnn (v•n, v) ≥ 4
)

→ 0 as n→ ∞.

In order to give a discrete version of (ii), we need to know that the encoding bijection gives
rise to a particular subset B(qn, v•n) ⊆ V (qn), which is the discrete counterpart of B. For the reader
already familiar with this kind of bijections, it is the 2-core of the encoding object, that is, the set
of vertices remaining after iteratively removing from it all the vertices of degree 1. See the end of
Section 3.1 for a precise definition.

It is not hard to see that all the points v ∈ B(qn, v•n)\∂V (qn) satisfy HMult0n(v
•
n, v) ≥ 2. The

following proposition roughly states that all such points should be close to this set.

Proposition 7. For every δ > 0,

P
(

∃v ∈ V (qn) : dqn
(v,B(qn, v•n)\∂V (qn)) ≥ δn1/4, HMultεnn (v•n, v) ≥ 2

)

−−−−→
n→∞

0.

The following statement means that the vertices v ∈ V (qn) such that HMultεnn (v•n, v) = 3 are
essentially dispatched in small separate “zones” and that the number of these zones is asymptoti-
cally the random variable H .

Proposition 8. Let Aε
n,δ(j) denote the event that there exist j vertices v1, . . . , vj ∈ V (qn) such that

HMultεn(v
•
n, vi) = 3 for 1 ≤ i ≤ j and dqn

(vi, vi′) ≥ δn1/4 whenever i 6= i′. Then

lim
δ→0

lim inf
n→∞

P
(

Aεn
n,δ(j)\Aεn

n,δ(j + 1)
)

= lim
δ→0

lim sup
n→∞

P
(

Aεn
n,δ(j)\Aεn

n,δ(j + 1)
)

= P(H = j),

where H is the random variable defined in (iii).

11



Finally, we have a similar result for the boundary vertices v for which HMultεnn (v•n, v) ≥ 2.

Proposition 9. We suppose that p 6= 0 and we denote by Bε
n,δ(j) the event that there exist j vertices v1,

. . . , vj ∈ ∂V (qn) such that HMultεn(v
•
n, vi) ≥ 2 for 1 ≤ i ≤ j and dqn

(vi, vi′) ≥ δn1/4 whenever i 6= i′.
Then

lim
δ→0

lim inf
n→∞

P
(

Bεn
n,δ(j)\Bεn

n,δ(j + 1)
)

= P(H = 4g + 2p− 2− j)

and the same statement holds if we replace the lim inf with a lim sup.

2.4 Organization of the paper

In Section 3, we explain how to encode quadrangulations by simpler maps. We begin with the
mapping for pointed quadrangulations, which constitutes the starting point of our study and we
then present the two-point mapping, which will be crucially used in Section 5.1. Section 4 is
devoted to scaling limits and the proof of Theorem 1. As it uses the general framework of [Bet10,
Bet12, Bet14], we only sketch it and point to the particularity of the cases considered here. We then
study typical geodesics and show Fact (a) in Section 5 and finally, we study the general geodesics
in Section 6 by the entrapment technique (Fact (b)). This leads to Proposition 23, which identifies
all the geodesics from ρ•. Section 7 is devoted to the remaining proofs.

3 Encoding quadrangulations

Let us now present the bijections allowing to encode quadrangulations carrying one or two dis-
tinguished vertices. Our description is a slight reformulation of the Bouttier–Di Francesco–Guitter
bijection [BDG04] and the Miermont bijection [Mie09]. We refer the reader to these references for
proofs. Throughout this section, n and p denote nonnegative integers and σ = (σ1, . . . , σp) a p-uple
of positive integers.

3.1 Quadrangulations carrying one distinguished vertex

Let q ∈ Qn,σ be a quadrangulation and v• ∈ V (q) one of its vertices. We assign labels to the
vertices of q as follows: for every vertex v ∈ V (q), we set l(v) := dq(v

•, v). Because q is by definition
bipartite, the labels of both ends of any edge differ by exactly 1. As a result, the internal faces can
be of two types: the labels around the face are either d, d + 1, d + 2, d + 1, or d, d + 1, d, d + 1 for
some d. We add a new edge inside every internal face following the convention depicted on the
left part of Figure 5.

A corner is an angular sector delimited by two successive half-edges in the contour of a face.
The vertex located at the end of the first half-edge is called the vertex incident to the corner. If c is a
corner incident to a vertex v, we write l(c) := l(v) with a slight abuse of notation. For each i, we let

c0i , c1i , . . . , c2σ
i−1

i be the corners of hi read in clockwise order, starting at an arbitrary corner (and

we use the convention c2σ
i

i := c0i ). We link together in a cycle the corners cki ’s such that l(ck+1
i ) =

l(cki ) − 1, as shown on the right part of Figure 5. Note that, because l(ck+1
i ) − l(cki ) ∈ {−1,+1},

there are exactly σi such corners.
We then only keep the new edges we added and the vertices in V (q)\{v•}. The object we obtain

is a labeled map m of genus g with p + 1 faces. There is an obvious correspondence between the
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Figure 5: Left. Adding a new edge inside an internal face. Right. Adding σi new edges inside the external face hi. On
this example, σi = 6.

external faces of q and p of the faces of m. Let h1, . . . , hp also denote these faces in m. Note that, by
construction, these faces all have a simple boundary and are of degrees σ1, . . . , σp. Remark also
that v• lies within the remaining face of m, which we denote by f•.

f•

v• v•

q
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h1
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h2

h3
h3

0 01

1

11

1

1

11
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2

2

2

2
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23

3
3 3

3 3

3

3
3 3
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3

3
3 3
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4 44

Figure 6: The construction for a map in Q12,(2,4,1) in the case g = 0.

We root the map m as follows. Let e be the only half-edge among the root of q and its reverse
such that l(e+) = l(e−) + 1, and let f be the face of q that is incident to e. If f is an internal face,
the root of m is the half-edge corresponding to the edge we added in f , directed from e+. If f is
an external face, there are two new half-edges inside f starting from e+; the root of m is the one
incident to f•. See Figure 7.

f f

d d
d+ 1 d+ 1

Figure 7: Rooting the map m. On the picture, the two possible roots for q yielding the same root for m are shown.

For each i, let ~h1i , ~h2i , . . . , ~hσ
i

i be the half-edges incident to hi in m, read in counterclockwise
order around it. The labels of m satisfy the following:
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⋄ for 1 ≤ i ≤ p and 1 ≤ j ≤ σi, we have l(~hj−i )− l(~hj+i ) ≥ −1;

⋄ for any half-edge e ∈ ~E(m) such that neither e nor its reverse ē is incident to an hi, we have
|l(e+)− l(e−)| ≤ 1.

We will consider the labels of m up to an additive constant: we write

[l] := {v ∈ V (m) 7→ l(v) + a : a ∈ Z}

the class of l for this equivalence relation. We say that two faces are adjacent if there exist a half-
edge incident to one and whose reverse is incident to the other. Let M1

n,σ denote the set of genus g

maps having n+ |σ| edges (where we write |σ| := ∑p
i=1 σ

i) and p+ 1 faces denoted by h1, . . . , hp,
f• such that, for all i, hi has a simple boundary, is of degree σi and is not adjacent to any other hj ,
and such that the root is not incident to any hole hj . Note that any edge is forbidden to be incident
to two different holes, but there may exist vertices that are incident to two or more holes. We also
denote by M1

n,σ the set of pairs whose first coordinate lies in M1
n,σ and whose second coordinate

is an equivalence class of labeling functions on the vertices of the map satisfying the two previous
itemized conditions.

Proposition 10. The mapping (q, v•) 7→ (m, [l]) is a two-to-one mapping from the set of quadrangulations
in Qn,σ carrying one distinguished vertex to the set M1

n,σ .

At this point, we may properly define the set B(q, v•) appearing in Section 2.3. Let (m, [l])
denote the map corresponding to (q, v•) by the previous mapping. Then B(q, v•) is the 2-core
of m, that is, the set of vertices of m remaining after iteratively removing from m all its vertices of
degree 1.

3.2 Quadrangulations carrying two distinguished vertices

In the case of doubly-pointed quadrangulations, the construction is very similar. We consider a
quadrangulation q ∈ Qn,σ and v•, v•• ∈ V (q) two of its vertices such that d := dq(v

•, v••) ≥ 2. We
also need an integer λ ∈ {1, 2, . . . , d− 1}. We assign labels to the vertices of q in a similar fashion
as in the last section but we now take into account the extra vertex v••: we define

l(v) := min
(

dq(v
•, v), dq(v

••, v) + 2λ− d
)

, v ∈ V (q). (1)

A simple way to picture this function is to imagine water flowing through the edges of q at rate 1,
starting from two sources: one located at the vertex v• opened at time 0 and one located at the
vertex v•• opened at time 2λ− d.

We then follow rigorously the same procedure as in last section, and we obtain a class of labeled
maps (m, [l]) lying in M2

n,σ , which is defined exactly as M1
n,σ , with the exception that the map now

has p+ 2 faces h1, . . . , hp, f•, f•• instead of p+ 1. It turns out that v• and v•• do not belong to the
same face of m and we let f• be the face containing v• and f•• be the one containing v••. We also
define the analog M2

n,σ of M1
n,σ with p+ 2 faces. Let us emphasize at this point that, because the

holes have a simple boundary and are not adjacent with one another, every edge of m is incident
to at least one of the faces f• or f••.

14
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Figure 8: On this example, d = 3 and λ = 1. It can be checked for example that the vertices corresponding in q to the
three vertices labeled 1 on the interface between f• and f•• are at distance 1 from v• and at distance 2 from v••.

Proposition 11. This construction provides a two-to-one mapping from

{

(

q, (v•, v••), λ
)

: q ∈ Qn,σ, (v
•, v••) ∈ V (q)2

∣

∣ dq(v
•, v••) ≥ 2, 1 ≤ λ ≤ dq(v

•, v••)− 1
}

to M2
n,σ .

Remark. In [Mie09], Miermont considers what he calls delay vectors. In the particular case of 2-
pointed quadrangulations, it is more natural to use the integer λ instead. The construction we
give here corresponds to the delay vector [0, 2λ−d] with his notation. It can moreover be observed
that, if u is any of the vertices where the water from the two sources meet for the first time, then
λ = dq(v

•, u) and d − λ = dq(v
••, u). In some sense, the integer λ parametrizes the geodesics

between v• and v••. This observation will be the key point of the proof of Proposition 19.

3.3 Reverse mappings

In both cases, the reverse mapping uses the same procedure. We describe it briefly in this section.
Let (m, [l]) be in either M1

n,σ or M2
n,σ . First, we add inside f• a new vertex v• with label

l(v•) := min
u∈f•

l(u)− 1,

where the notation u ∈ f means that u belongs to the boundary of f . Following the counterclock-
wise order around f•, we draw arcs linking every corner to the first subsequent corner that has a
strictly smaller label. If no such corners exist, which means that the corner we are visiting has a
label that is minimal on f•, we draw the arc from the corner to the extra vertex v•. It is possible
to draw these arcs in such a way that they do not cross each other or the edges of m. In the case
where (m, [l]) ∈ M2

n,σ , we follow the same procedure for f••: we add a vertex v•• inside it with
label l(v••) := minu∈f•• l(u)− 1 and we draw arcs in the same way.

When removing the edges of m, we are left with a quadrangulation q. Each hole hi naturally
corresponds to an external face of q, which we also denote by hi. The root of q is defined as the arc
drawn from the corner preceding the root of m, oriented in one direction or the other.
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If (m, [l]) ∈ M1
n,σ , its two pre-images are the pairs (q, v•), where q is rooted in the two possible

ways. If (m, [l]) ∈ M2
n,σ , its two pre-images are

(

q, (v•, v••), λ
)

where λ :=
1

2

(

l(v••)− l(v•) + dq(v
•, v••)

)

,

with the two possible rootings of q.

Lemma 12. In the case of the two-point mapping, the following holds:

(i) if v ∈ f•, then l(v) − l(v•) = dq(v
•, v) and l(v) − l(v••) ≤ dq(v

••, v);

(ii) if v ∈ f••, then l(v) − l(v•) ≤ dq(v
•, v) and l(v) − l(v••) = dq(v

••, v);

(iii) if v ∈ f••, then dq(v
•, v) ≥ λ, if v ∈ f•, then dq(v

••, v) ≥ dq(v
••, v•)− λ, and

λ = min
v∈f•∩f••

dq(v
•, v) = min

v∈f•∩f••

l(v) − min
v∈f•

l(v) + 1.

Proof. (i) and (ii). By (1), for any vertex v, we have l(v) − l(v•) ≤ dq(v
•, v) and l(v) − l(v••) ≤

dq(v
••, v) (note that the representative of [l] appearing in (1) is the one vanishing at v•). Moreover,

if v ∈ f•, the successive arcs drawn from v to v• form a path in q of length l(v) − l(v•), so that
dq(v

•, v) ≤ l(v) − l(v•). This gives (i) and (ii) is proven in a similar fashion.
(iii). Let us fix v ∈ f••. By the triangle inequality and (ii),

dq(v
•, v••) ≤ dq(v

•, v) + l(v)− l(v••) ≤ 2dq(v
•, v) + l(v•)− l(v••).

The first part of the statement follows and the second part is obtained by the same argument.
Finally, if v ∈ f• ∩ f•• is on a geodesic linking v• to v••, all the previous inequalities are equalities
and dq(v

•, v) = λ. The first equality follows and the second is obtained thanks to (i). Note also
that the condition of non adjacency of the holes makes it clear that f• ∩ f•• 6= ∅. �

3.4 Further decomposition

A labeled map (m, [l]) from M1
n,σ or M2

n,σ can be decomposed into simpler objects: a scheme, which
in some sense accounts for the homotopy type of m, and a collection of forests indexed by some
half-edges of the scheme. The labeling function naturally gives rise to labels on the vertices of
these forests as well as to bridges recording the labels on the cycles of the map m.

Remark 1. The case (m, [l]) ∈ M1
n,∅ in genus 0 is somehow degenerate. Indeed, in this case, m

is merely a plane tree and cannot be further decomposed in our sense. Until further notice, we
suppose that we are not in this case.

Remark 2. Up to a slight difference caused by the root, a scheme is sometimes called kernel in
graph theory. We chose to stick with the terminology of scheme, which seems more common in
the context of maps.
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3.4.1 Decomposition of the map

Let us first focus on the map m and keep the labels for later. We refer to Figure 11 for visual
support. We iteratively remove from m all its vertices of degree 1 that are not extremities of its
root e∗. The set of vertices remaining at this point is called the floor of m. Among these vertices,
some are called nodes: all vertices of degree 3 or more are nodes and,

⋄ if e−∗ is of degree 1, then e−∗ is a node;

⋄ if e+∗ is of degree 1, then e+∗ is a node;

⋄ if neither e−∗ nor e+∗ has degree 1, then e−∗ is a node.

On this map, the vertices that are not nodes are of degree 2 and are arranged into chains joining
nodes. We define the map s by replacing each of these chains by a single edge. The root of s is
defined as the edge replacing the chain that contains e∗, oriented in the same direction as e∗. The
map s is a scheme in the following sense.

Definition 1. A scheme of type (p, 1) is a genus g map with p+ 1 faces denoted by h1, . . . , hp, f•, whose
root is not incident to any hj , and that satisfies the following conditions. For all i, hi has a simple boundary
and is not adjacent to any hj . There may only be one vertex with degree 1 or 2: if it has degree 1, then it is
an extremity of the root; if it has degree 2, then it is the origin of the root.

A scheme of type (p, 2) is a genus g map with p+ 2 faces denoted by h1, . . . , hp, f•, f•• and satisfying
the same conditions.

Remark. A more conventional definition would be to forbid vertices of degree less than 2. Our
choice of “keeping the root present” in the scheme is done for combinatorial reasons. It is only
in Section 7 that we will need to get rid of this “root,” which does not play any geometrical part.
Compare the definition of the backbone B(q, v•) used in the geometrical statements of Section 2.3
with the definition of the floor used for combinatorial purposes.

Let Sp,1 and Sp,2 be the finite sets of schemes of type (p, 1) and (p, 2). For example, in genus
g = 0, the set S1,1 contains the three maps represented on Figure 9.

h1h1h1

f•f•f•

Figure 9: The three elements of S1,1 in genus g = 0.

We will use the following formalism for forests.

Definition 2. A forest of length ξ ≥ 1 and mass m ≥ 0 is an ordered family of ξ trees (which can be
defined as planar one-faced maps) with total number of edges equal to m. Let Fm

ξ denote the set of these
forests.
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It will be convenient to systematically add a ξ + 1-th tree to a forest of Fm
ξ consisting of one

single vertex. The floor of a forest is the set of the root vertices of its trees, with the extra vertex-tree
included. In the drawings, we will also add extra edges linking the elements of the floor (as on
Figure 11).

The half-edges of the scheme s are of several different types. Let ~Hi(s) be the set of half-edges

incident to the hole hi and let ~F (s) be the set of half-edges that are not incident to any holes. We

break the set ~F (s) into two subsets: let ~I(s) := {e ∈ ~F (s) : ē ∈ ~F (s)} and ~B(s) := {e ∈ ~F (s) :

ē /∈ ~F (s)}. See Figure 10. The letter I stands for “internal half-edges” and B stands for “boundary
half-edges.”

h1

h2

f•

f••

~H1

~H2

~I

~B

Figure 10: Notation for the different types of half-edges of a scheme. The set ~F (s) is the union of ~B(s) and ~I(s).

Every half-edge e ∈ ~F (s) naturally corresponds to a forest fe defined as follows. Let f ∈
{f•, f••} be the face incident to e and let e′ ∈ ~F (s) be the half-edge preceding e in the contour
order of f . By definition, the half-edges e and e′ correspond to chains of half-edges in m: let ê
and ê′ be the last half-edges of these chains. The forest fe corresponds to the set of half-edges in m

visited between ê′ and ê (ê′ excluded, ê included) in the contour order of f . See Figure 11.

For e ∈ ~F (s), we denote by ξe ≥ 1 and me ≥ 0 the length and mass of the forest fe: fe ∈ Fme

ξe .

Proposition 13. For q ∈ {1, 2}, the above decomposition provides a bijection between the set Mq
n,σ and

the set of all pairs
(

s, (fe)e∈~F (s)

)

where s ∈ Sp,q and such that there exist a collection of positive integers (ξe)e∈ ~E(s) and a collection of

nonnegative integers (me)e∈~F (s) satisfying the following:

⋄ for all e ∈ ~F (s), fe ∈ Fme

ξe ;

⋄ for all e ∈ ~E(s), ξē = ξe;

⋄ for 0 ≤ i ≤ p,
∑

e∈ ~Hi(s)
ξe = σi;

⋄ ∑

e∈~F (s)m
e + 1

2

∑

e∈ ~E(s) ξ
e = n+ |σ|.
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3.4.2 Decomposition of the labeled map

Let us now turn to the labels. The terminology we use here should become clear in a moment.

Definition 3. We call interior bridge of length ξ ≥ 1 from a ∈ Z to b ∈ Z a sequence of integers
(b(0), . . . , b(ξ)) such that b(0) = a, b(ξ) = b and, for all 0 ≤ i ≤ ξ−1, we have b(i+1)−b(i) ∈ {−1, 0, 1}.
We write Iξ(a, b) the set of these interior bridges.

We call boundary bridge of length ξ ≥ 1 from a ∈ Z to b ∈ Z a sequence (b(0), . . . , b(ξ)) of integers
such that b(0) = a, b(ξ) = b and, for all 0 ≤ i ≤ ξ − 1, we have b(i+ 1)− b(i) ≥ −1. We write Bξ(a, b)
the set of these boundary bridges.

Definition 4. A labeled forest is a pair (f, ℓ) where f is a forest and ℓ : V (f) → Z is a function satisfying
the following:

⋄ for all u lying in the floor of f, ℓ(u) = 0;

⋄ if u and v are linked by an edge, then |ℓ(u)− ℓ(v)| ≤ 1.

We denote by Fm
ξ the set of labeled forests of length ξ and mass m.

There is a trivial one-to-one correspondence between the nodes of m and the vertices of s so
that l naturally gives a canonical labeling of the vertices of s as follows. Let v∗ ∈ V (s) be the origin
of the root in s and let v ∈ V (s). We denote by v′∗ and v′ ∈ V (m) the corresponding nodes in m

and we set lv := l(v′) − l(v′∗). Let e ∈ ~F (s). It naturally corresponds to a chain e1, e2, . . . , eξe of
half-edges in m. We define the bridge

be :=
(

l(e−1 )− l(v′∗), l(e
−
2 )− l(v′∗), . . . , l(e

−
ξe)− l(v′∗), l(e

+
ξe)− l(v′∗)

)

.

The constraints on l show that, if e ∈ ~I(s) then be ∈ Iξe(l
e−, le

+

) and, if e ∈ ~B(s) then be ∈
Bξe(l

e−, le
+

). Moreover, the forest fe from last section naturally inherits from l a labeling function le

defined as follows. Let u ∈ V (fe) and let ρ ∈ V (fe) be the root of the tree to which u belongs. These
vertices correspond to two vertices u′ and ρ′ ∈ V (m). We set le(u) := l(u′)− l(ρ′). See Figure 11.

Proposition 14. For q ∈ {1, 2}, the above decomposition provides a bijection between the set Mq
n,σ and

the set of all triples
(

s, (fe, le)e∈~F (s), (b
e)e∈~F (s)

)

where s ∈ Sp,q and such that there exist a collection of positive integers (ξe)e∈ ~E(s), a collection of nonneg-

ative integers (me)e∈~F (s) and a collection of integers (lv)v∈V (s) satisfying the following:

⋄ for all e ∈ ~F (s), (fe, le) ∈ Fme

ξe ;

⋄ for all e ∈ ~E(s), ξē = ξe;

⋄ lv∗ = 0, where v∗ is the origin of the root of s;

⋄ for all e ∈ ~I(s), be ∈ Iξe(l
e−, le

+

) and bē = (be(ξe), . . . , be(0));

⋄ for all e ∈ ~B(s), be ∈ Bξe(l
e−, le

+

);
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Figure 11: Decomposition of a labeled map from M2
33,(3,4) in genus 0 into a scheme s ∈ S2,2, a collection of labeled

forests (fe, le)
e∈~F (s) and a collection of bridges (be)

e∈~F (s). The bridges have different colors, depending on whether
they are interior bridges or boundary bridges. On the left, the floor and the 6 nodes of m are represented in red and with
thicker outlines.

⋄ for 0 ≤ i ≤ p,
∑

e∈ ~Hi(s)
ξe = σi;

⋄ ∑

e∈~F (s)m
e + 1

2

∑

e∈ ~E(s) ξ
e = n+ |σ|.

Note that the three collections of integers are entirely determined by the triple of scheme,
forests and bridges.

3.4.3 Encoding by real-valued functions

For e ∈ ~F (s), we encode the labeled forest (fe, le) by its so-called contour pair (Ce, Le) defined as
follows. We see fe as a planar one-faced map with 2me + ξe edges (recall that we add a vertex-tree
at the end and join by edges the elements of the floor). First, let fe(0), fe(1), . . . , fe(2me + ξe) be the
vertices of fe read in counterclockwise order around the face, starting at the first corner of the first
tree. The contour function Ce : [0, 2me + ξe] → R+ and the label function Le : [0, 2me + ξe] → R are
defined by

Ce(i) := dfe
(

fe(i), fe(2me + ξe)
)

and Le(i) := le(fe(i)), 0 ≤ i ≤ 2me + ξe,

and linearly interpolated between integer values (see Figure 12).
We also define the function Be : [0, ξe] → R by

Be(i) := be(i), 0 ≤ i ≤ ξe,

and we linearly interpolate it between integer values. We will use the standard notation

X(s) := inf
0≤t≤s

X(t)
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Figure 12: The contour pair of a labeled forest from F20
7 . On the right, the paths are dashed on the intervals corresponding

to edges linking elements of the floor.

for the past infimum of any process X . Remark that the function

s ∈ [0, 2me + ξe] 7→ Le(s) +Be
(

ξe − Ce(s)
)

records the labels up to an additive constant of the part of m that corresponds to fe. This will
become useful in Section 4.3.2.

4 Scaling limit

From now on, we fix an integer p ≥ 0 and a sequence σn = (σ1
n, . . . , σ

p
n) ∈ N

p of p-uples such that

σi
(n) :=

σi
n√
2n

→ σi
∞ ∈ (0,∞), 1 ≤ i ≤ p.

We set σ∞ := (σ1
∞, . . . , σ

p
∞) and σ(n) :=

(

σ1
(n), . . . , σ

p
(n)

)

the rescaled version of σn. Recall also that

the genus g ≥ 0 is fixed. We furthermore suppose in this section that (g, p) 6= (0, 0) as this case
requires special care.

Remark. Throughout this paper, the notation with a parenthesized n will always refer to suit-
ably rescaled objects and the notation with an ∞ symbol will refer to limiting objects, as in the
definitions above.

Let qn be a random variable uniformly distributed over the set Qn,σn
and let v•n ∈ V (qn) be one

of its vertices chosen uniformly at random. Let (mn, [ln]) ∈ M1
n,σn

be the image of (qn, v
•
n) through

the two-to-one mapping of Proposition 10 and let
(

sn, (f
e
n, l

e
n)e∈~F (sn)

, (ben)e∈~F (sn)

)

be the decomposition of (mn, [ln]) appearing in Proposition 14. We let (ξen)e∈ ~E(sn)
, (me

n)e∈~F (sn)

and (lvn)v∈V (sn) be the three collections of integers from Proposition 14. For all e, we also denote
by (Ce

n, L
e
n) the contour pair of (fen, l

e
n) as well as Be

n the interpolation of ben. Finally, we define the
rescaled versions of these objects

me
(n) :=

2me
n + ξen
2n

, ξe(n) :=
ξen√
2n
, lv(n) :=

lvn
(8n/9)1/4

,

Ce
(n) :=

Å

Ce
n(2ns)√
2n

ã

0≤s≤me
(n)

, Le
(n) :=

Å

Le
n(2ns)

(8n/9)1/4

ã

0≤s≤me
(n)

, Be
(n) :=

Ç

Be
n(
√
2n s)

(8n/9)1/4

å

0≤s≤ξe
(n)

.

The goal of this section is to give the limit of the joint distribution of these processes. We first need
to introduce the limiting processes.
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4.1 Brownian bridges, first-passage Brownian bridges, and Brownian snake

We will work on the space K :=
⋃

x∈R+
C([0, x],R), endowed with the metric

dK(f, g) := |ζ(f)− ζ(g)|+ sup
y≥0

∣

∣f
(

y ∧ ζ(f)
)

− g
(

y ∧ ζ(g)
)∣

∣ ,

where ζ(f) denotes the only x such that f ∈ C([0, x],R).
We call Brownian bridge of length ξ from a to b a standard Brownian motion on [0, ξ] started

at a, conditioned on being at b at time ξ (see for example [Bil68, RY99, BCP03, Bet10]). We also
call first-passage Brownian bridge of length length m from a to b < a a standard Brownian motion
on [0,m] started at a, and conditioned on hitting b for the first time at time m. We refer the reader
to [Bet10] for a proper definition of this conditioning, as well as for some convergence results of
the discrete analogs.

The so-called Brownian snake’s head driven by a process X ∈ C([0, x],R) may be defined as the
process (X(s), Z(s))0≤s≤x, where, conditionally given X , the process Z is a centered Gaussian
process with covariance function

cov
(

Z(s), Z(s′)
)

= inf
s∧s≤t≤s∨s′

(

X(t)−X(t)
)

.

We refer to [LG99, DLG02, Bet10] for more details about this process.

4.2 Convergence of the encoding elements

In the limit, we will see that only the schemes that maximize the cardinal of ~E remain.

Definition 5. A scheme is dominant if it has one vertex of degree exactly 1 and if all its other vertices are
of degree exactly 3. Let S⋆

p,1 and S⋆
p,2 denote the sets of dominant schemes of type (p, 1) and (p, 2).

For instance, the two right-most schemes of Figure 9 are the two elements of S⋆
1,1 in genus 0.

Note that the degree 1-vertex in the previous definition is necessarily an extremity of the root
and that the dominant schemes are the ones whose number of edges is maximal (this is a simple
consequence of Euler characteristic formula). Moreover, the condition on the degrees implies that
every vertex of a dominant scheme is incident to at most one hole. In particular, the holes of
a dominant scheme are well “separated” in the sense that their boundaries are pairwise disjoint
simple loops, which are connected by some edges.

The compatibility condition on the previous collections of integers lead us to define, for a
scheme s with root e∗, the set Ts of triples

Ä

(me)e∈~F (s) , (ξ
e)e∈ ~E(s) , (l

v)v∈V (s)

ä

∈ R
~F (s)
+ × R

~E(s)
+ × R

V (s)

such that

⋄ ∑

e∈~F (s)m
e = 1,

⋄ for all e ∈ ~E(s), ξē = ξe,

⋄ for 0 ≤ i ≤ p,
∑

e∈ ~Hi(s)
ξe = σi

∞
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⋄ le
−

∗ = 0.

We define the measure Ls on Ts as follows. For every 1 ≤ i ≤ p, we distinguish a half-edge

~hi ∈ ~Hi(s). We also consider an orientation Ǐ(s) of ~I(s), that is, a subset of ~I(s) containing exactly

one half-edge among {e, ē} for every e ∈ ~I(s). There is then an obvious bijection between a part of

R
~F (s)\{e∗}
+ × R

Ǐ(s)∪
⋃

i
~Hi(s)\{~hi}

+ × R
V (s)\{e−

∗
}

and Ts. The measure Ls is defined as the push-forward of the Lebesgue measure on this part. We
denote by pa the density of a centered Gaussian variable with variance a > 0, as well as −qa its
derivative:

pa(x) :=
1√
2π a

exp

Å

−x
2

2a

ã

and qa(x) =
x

a
pa (x) , x ∈ R.

We let µ be the probability measure on
⋃

s∈S⋆
p,1

{s} × Ts defined, for all measurable function ψ, by

µ(ψ) =
1

Υ

∑

s∈S⋆
p,1

∫

Ts

dLs ψ
(

s,
(

(me) , (ξe) , (lv)
))

∏

e∈~F (s)

qme (ξe)
∏

e∈Ǐ(s)∪ ~B(s)

p(κe)2ξe

Ä

le
+− le

−
ä

,

where

κe :=

®

1 if e ∈ ~I(s∞)√
3 if e ∈ ~B(s∞)

and

Υ =
∑

s∈S⋆
p,1

∫

Ts

dLs

∏

e∈~F (s)

qme (ξe)
∏

e∈Ǐ(s)∪ ~B(s)

p(κe)2ξe

Ä

le
+− le

−
ä

is a normalization constant. The measure µ may also be described in terms of Gaussian Free Fields
on the metric graphs corresponding to the schemes. We refer to the remark before Section 4.2
in [Mie09] for further details about this fact as it will not be used in this work. In fact, the precise
expression of µ will not be needed in what follows; we gave it for self-containment reasons and as
it allows to compute the precise distribution of the random variable H appearing in Theorem 3.

Proposition 15. The random vector

Ä

sn,
(

me
(n)

)

e∈~F (sn)
,
(

ξe(n)
)

e∈ ~E(sn)
,
(

lv(n)
)

v∈V (sn)
,
(

Ce
(n), L

e
(n)

)

e∈~F (sn)
,
(

Be
(n)

)

e∈~F (sn)

ä

converges in distribution toward a random vector

Ä

s∞, (m
e
∞)e∈~F (s∞) , (ξ

e
∞)e∈ ~E(s∞) , (l

v
∞)v∈V (s∞) , (C

e
∞, L

e
∞)e∈~F (s∞) , (B

e
∞)e∈~F (s∞)

ä

whose law is defined as follows:

⋄ the vector
Ä

s∞,
Ä

(me
∞)e∈~F (s∞) , (ξ

e
∞)e∈ ~E(s∞) , (l

v
∞)v∈V (s∞)

ää

is distributed according to the prob-

ability measure µ;

⋄ conditionally given this vector,
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– the processes (Ce
∞, L

e
∞), e ∈ ~F (s∞) and Be

∞, e ∈ Ǐ(s) ∪ ~B(s) are independent,

– the process (Ce
∞, L

e
∞) has the law of a Brownian snake’s head driven by a first-passage Brownian

bridge of length me
∞ from ξe∞ to 0,

– the process Be
∞ has the law of a Brownian bridge of length ξe∞ from le

−

∞ to le
+

∞ , multiplied by the
factor κe,

– the bridges are linked through the relation Bē
∞(s) = Be

∞(ξe∞ − s), 0 ≤ s ≤ ξe∞, whenever

e ∈ ~I(s∞).

The previous proposition is easily obtained by the method provided in [Bet10] (see in particular
Proposition 7 and Section 5, as well as [Bet14, Proposition 7]); we leave the details to the reader.

The factor κe accounts for the fact that the steps of boundary bridges have a larger variance
than the steps of interior bridges. This seemingly harmless factor causes some difficulties for the
technical estimates of [Bet14]. Note also that this proposition is the reason why the factor (8/9)1/4

appears.
Let us emphasize at this stage that the limiting scheme s∞ is a.s. dominant and, as such, pos-

sesses the properties observed after Definition 5.
We obtain a similar statement when performing the two-point mapping instead of the one-

point mapping, up to a bias induced by the factor λ of Section 3.2. We will not need this statement
in full details and will come back to it during Step 2. of the proof of Proposition 19.

From now on, we apply Skorokhod’s representation theorem and assume that the conver-
gence of Proposition 15 holds almost surely. In particular, this entails that sn = s∞ for n large
enough.

4.3 Proof of Theorem 1

The whole proof of Theorem 1 is obtained by adding the arguments of [Bet10, Bet12, Bet14]. The
general strategy is borrowed from [LG07], as well as from [Mie08] for the topology. We will not
treat it here in full details and we refer the interested reader to these references for more informa-
tion. We will only recall the main lines of reasoning and introduce the notions that will become
useful in the next sections. We also exclude the case (g, p) = (0, 0), which is degenerate in some
sense and requires special definitions. This is the original case treated in [LG07, Mie08].

4.3.1 Convergence of the metric space

The first assertion is proved by the method of Le Gall’s pioneering paper [LG07]. Recall that qn is
uniformly distributed over Qn,σn

, that v•n is uniformly distributed over V (qn) and that (mn, [ln]) ∈
M1

n,σn
is the labeled map corresponding to (qn, v

•
n). We arrange the corners of the internal face

of mn according to the contour order, starting from the corner preceding the root: this gives a
natural (non injective) ordering of the vertices of mn, which we write mn(0), . . . , mn(2n+ |σn|) with
a slight abuse of notation. As the vertex set of mn corresponds to V (qn)\{v•n}, this also provides
an ordering qn(0), . . . , qn(2n + |σn|) of the vertices of qn. (The fact that v•n is left out will not be
important when we take the scaling limit.)
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We may equip the set [0, 1] with the pseudo-metric d(n) defined by

d(n)(s, t) :=

Å

9

8n

ã1/4

dqn

(

qn
(

(2n+ |σn|) s
)

, qn
(

(2n+ |σn|) t
)

)

, s, t ∈
ß

0,
1

2n+ |σn|
, . . . , 1

™

,

and by linear interpolation between these values. It is easy to see that the metric space [0, 1]/{d(n)=0}

equipped with the quotient metric is close in the Gromov–Hausdorff sense to the rescaled metric
space corresponding to qn. As the labels of mn represent the distances in qn to the point v•n, it turns
out that it is possible to bound this pseudo-metric by an explicit function of ln, which converges
toward an explicit process, thanks to Proposition 15. This entails that, up to extraction, d(n) con-
verges toward a pseudo-metric dσ∞, the convergence holding jointly with the one of Proposition 15.
We define the equivalence relation associated with it by saying that s ∼ t if dσ∞(s, t) = 0, and we
set qσ∞ := [0, 1]/∼. We also denote by qσ∞(s) the equivalence class of s in qσ∞. We can then show
that this yields the first assertion of Theorem 1.

From now on, we fix a subsequence (nk)k≥0 along which the previous convergence holds
and we let (qσ∞, d

σ
∞) be the corresponding limiting space. Recall also that, by Skorokhod’s rep-

resentation theorem, we assumed that the convergence of Proposition 15 held almost surely.

4.3.2 Seeing the limit as a quotient of a simpler “map”

This is the longest and most difficult step. In some sense, we can view it as the continuous version
of the mapping from Section 3.1. The idea is to construct a continuous counterpart to mn and then
to perform a continuous version of the mapping: because of the scaling, the counterpart of the
arcs added in the discrete mapping is, in the continuous case, identifications of points. The main
ingredients come from [LG07] but we need some extra arguments because of the more intricate
combinatorial structure of the quadrangulations we consider. There are mainly two difficulties of
different nature. The first difficulty arises from the more complex structure of the map mn; we
overcome this difficulty with the arguments of [Bet10, Bet12]. The second technicality is caused
by the boundary and is harder to grasp at first. The fact that the Brownian motions have different
diffusion factors on the boundary edges and on the internal edges of the scheme (the factors κe

from Proposition 15) induces a technical complication; we use the arguments of [Bet14] to treat
this problem.

We now properly define the continuous analog M of mn, which was briefly introduced during
Section 2.2. Roughly speaking, we glue together Brownian forests coded by the Ce

∞’s according to

the scheme structure. Precisely, let e[1], . . . , e[|
~F (s∞)|] be the half-edges of ~F (s∞) arranged according

to the contour order around f•, starting from the root of s∞. For every s ∈ [0, 1), there exists a

unique 1 ≤ k ≤ |~F (s∞)| such that

k−1
∑

i=1

me[i]

∞ ≤ s <
k
∑

i=1

me[i]

∞ .

We let es := e[k] and 〈s〉 := s−∑k−1
i=1 m

e[i]

∞ ∈ [0,mes
∞). By convention, we set e1 = e[1] and 〈1〉 = 0.

We define the relation ≃ on [0, 1] as the coarsest equivalence relation for which s ≃ t if one of the
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following occurs:

es = et and Ces
∞〈s〉 = Ces

∞〈t〉 = inf
[〈s〉∧〈t〉,〈s〉∨〈t〉]

Ces
∞ ; (2a)

es = et, C
es
∞〈s〉 = Ces

∞〈s〉, Cet
∞〈t〉 = Cet

∞〈t〉 and Ces
∞〈s〉 = ξet∞ − Cet

∞〈t〉 ; (2b)

〈s〉 = 〈t〉 = 0 and e−s = e−t (2c)

where we wrote Ces
∞〈s〉 instead of Ces

∞(〈s〉) for short. Equation (2a) identifies numbers coding the
same point in one of the forests, equation (2b) identifies the floors of forests “facing each other”:
the numbers s and t should code floor points (second and third equalities) of forests facing each
other (first equality) and correspond to the same point (fourth equality). Finally, equation (2c)
identifies the nodes. We set M := [0, 1]/≃ and, for s, t ∈ [0, 1], we let M (s) be the equivalence class
of s in the quotient and M ([s, t]) := {M (r) : r ∈ [s, t]}.

The following notions will be used in what follows. They are the continuous counterpart of
previous definitions. We call floor of M the set

fl := M

Ä¶

s : Ces
∞〈s〉 = Ces

∞〈s〉
©ä

.

For a = M (s) ∈ M \fl, let l := inf{t ≤ s : et = es, C
et
∞〈t〉 = Ces

∞〈s〉} and r := sup{t ≥ s : et =
es, C

et
∞〈t〉 = Ces

∞〈s〉}. We set τa := M ([l, r]) and we call tree of M a set of the form τa for any
a ∈ M \fl. We say that [l, r] is the interval coding the tree τa. For a, b in a tree of M , we denote by
[[a, b]] the range of the unique injective path linking a to b. See Figure 13.

a

b

[[a, b]]

τa
h1

h2

fl

Figure 13: On this picture, we can see the floor fl, an example of tree τa, and the set [[a, b]].

Definition 6. The order of a point a ∈ M is the integer

∣

∣{s ∈ [0, 1) : M (s) = a}
∣

∣+ 1{a∈fl,∃s : a=M (s), es∈ ~B(s∞)}.

A point of order 1 is called a leaf.
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Remark. The indicator function in the previous definition accounts for the fact that the boundaries
of the holes are not visited “from the inside” of the holes. This definition differs from the one we
gave in Section 2.2; it is a simple exercise to verify that they are equivalent.

Because the functions Ce
∞ are essentially Brownian motions, it is not hard to see that, a.s., all

the points in M are of order less than 3 and that, if U is uniformly distributed over [0, 1], then
M (U) is a.s. a leaf. Moreover, the floor contains no leaves.

The trivial fact that mn((2n + |σn|) s) = mn((2n + |σn|) t) ⇒ d(n)(s, t) = 0 easily passes to
the limit in the sense that s ≃ t ⇒ s ∼ t (see [Bet12, Lemma 6]). As a result, we may define a
pseudo-metric and an equivalence relation on M , which we still denote by dσ∞ and ∼, by setting
dσ∞

(

M (s),M (t)
)

:= dσ∞(s, t) and declaring M (s) ∼ M (t) if s ∼ t. It allows us to see qσ∞ as a
quotient of M : more precisely, the metric space (qσ∞, d

σ
∞) is isometric to

(

M/∼, d
σ
∞

)

.

We now describe how the points of M are identified in the quotient M/∼. We aim to assign
labels to the points of M . We first define a labeling function on [0, 1] by setting

L(s) := l
e−s
∞ + Les

∞〈s〉+Bes
∞

(

ξes∞ − Ces
∞〈s〉

)

, 0 ≤ s ≤ 1.

The reason for this definition is the observation we made at the end of Section 3.4.3. Note that this
function is continuous.

Lemma 16. The set of points where L reaches its minimum is a.s. a singleton.

We denote by s• the element of this singleton and we call base point the corresponding point
ρ• := qσ∞(s•) in qσ∞. It is the continuous analog to the point v•n. (Recall that this point is linked to
the vertices with minimum label in mn.) As the labels in mn represent the distances to v•n (up to
an additive constant), a simple argument consisting in constructing a discrete approximation in qn
of qσ∞(s) shows that

dσ∞(s, s•) = L(s)− L(s•). (3)

The triangle inequality then entails that s ∼ t implies L(s) = L(t). A fortiori, s ≃ t implies
L(s) = L(t) so that we can view L as a function on M by setting L(M (s)) := L(s). The following
proposition tells which points of M are identified in qσ∞. It is the continuous counterpart of the arc
construction of Section 3.3, roughly stating that points are identified if and only if they have the
same label and all the points located inbetween when following the contour have greater labels.

Proposition 17. Let a = M (s) and b = M (t) be two distinct points in M . Then a ∼ b if and only if a
and b are leaves and

L(a) = L(b) ≥ L(c)

either for all c ∈ M ([s ∨ t, s ∧ t]) or for all c ∈ M ([s ∧ t, 1] ∪ [0, s ∨ t]).

The two different sets appearing at the end come from the fact that there are two possible ways
to follow the contour between a and b: in some sense, one corresponds to linking a to b and the
other one to linking b to a.

The proofs of these lemma and proposition are rather technical and use fine estimates on the
Brownian snake. Happily, as the building blocks of our space are Brownian forests (the pieces

coded by the sets {s < 1 : es = e}), we may use the results of [Bet14] to quickly conclude.

27



Proof of Lemma 16. Every half-edge e ∈ ~F (s∞) corresponds to a Brownian forest. They are not

independent as the forests corresponding to e and ē when e ∈ ~I(s∞) share the same labels on
their floors. However, me may consider these two forests as a single one having a density of trees
multiplied by two. This merely changes the intensity of the Poisson process of the trees. With
this convention, the edges of s∞ correspond to independent forests so that they admit distinct
minimums. The proof of [Bet14, Lemma 11] then allows to conclude that the minimum is reached
only once a.s. �

Proof of Proposition 17. The proof of this proposition is very similar to the proofs in the previously
cited references. We will only give the main idea and refer the reader to these references for more
details. The starting point is the following lemma. An increase point for a function is a point t such
that the function is greater than its value at t on a small interval of the form [t− ε, t] or [t, t+ ε] for
some ε > 0.

Lemma 18. The coding functions s ∈ [0, 1] 7→ Ces
∞〈s〉 and L do not share any increase points.

This lemma is shown thanks to [Bet14, Lemma 12], which states the result for a forest. Beware
that, as explained in the latter reference, the result only holds for values of κe ≤

√
3, which is

the case here. As the pair of functions considered here is a concatenation of pairs of functions for
which the results holds, the result is straightforward. Some care is needed at the extremities of the
intervals; we can show that such points are never increase points for the label process.

The second property we need is a property roughly stating the following. If a and b have the
same label, if there exists a subtree τ rooted at ρ such that infτ L < L(a) < L(ρ) and if, for infinitely
many n’s, there exists a geodesic from an to bn that completely passes through τn, then a 6∼ b. Here,
an, bn and τn designate discrete approximations in mn of a, b and τ . See [Bet14, Lemma 15] for a
rigorous statement. As explained in [Bet14], in order to prove this property in our case, we only
need an analog of [Bet14, Lemma 31], which is easily obtained by decomposing L according to the
half-edges of s∞.

These two properties together allow us to conclude as in [Bet14, Section 4.4]. The idea, coming
from [LG07], can be sketched as follows. The absence of common increase points entails with a
little work that a point a of order at least 2 will be “surrounded” by subtrees arbitrarily close with
a root having a label strictly greater than L(a) and a minimum label strictly smaller than L(a). As
a result, it cannot be identified with any other point by the previous property. We then argue by
contradiction and suppose that a = M (s) and b = M (t) are identified leaves but such that the
property of the statement does not hold. After some work, it follows that on both M ([s ∨ t, s ∧ t])
and M ([s∧ t, 1]∪ [0, s∨ t]) there exists a subtree with properties similar as above and we conclude
that a 6∼ b, which is a contradiction. �

4.3.3 Topology of the limit

We follow the approach of [Mie08] to identify the topology of the limit. The first observation is
that the metric space associated with qn is not far from being homeomorphic to Σ

∂
g,p. Informally,

we fill the internal faces with small cells and the holes with annuli. The rigorous way to proceed is
to consider, for every internal face a copy of the space [0, 1]3\((0, 1)2 × [0, 1)) and for every hole hi
a space (Gi × [0, 1])\(G̊i × [0, 1]) where Gi is a regular 2σi

n-sided polygon with unit length edges
embedded in R

2. We endow these spaces with the intrinsic metric inherited from the Euclidean
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metric, rescaled by (9/8n)1/4. We can then define a surface (with a boundary) by identifying, ac-
cording to the map structure, the boundaries of these spaces and endow it with the quotient metric.
The metric space we obtain is homeomorphic to Σ

∂
g,p and the choice of cells and annuli we made

ensures that, on the set of points corresponding to the vertices of the map, the metric coincides
with the graph metric of the map (in other words, we did not create any shortcuts as it would
have been the case if we simply had glued Euclidean polygons, for instance). As a result, this
surface is at Gromov–Hausdorff distance o(1) from (V (qn), (9/8n)

1/4dqn
). See [Bet14, Section 5.2]

for more details.
The second step is a criterion ensuring that the Gromov–Hausdorff limit of a sequence of metric

spaces all homeomorphic to some surface is also homeomorphic to this surface. This criterion is
called regularity and was introduced by Whyburn [Why35] and later studied by Begle [Beg44]. We
will not go into much detail as the arguments are exactly the same as in [Bet12, Bet14]. The only
difference is that, a priori, the regularity criterion only works for Σ∂

g,0 ([Bet12, Proposition 19]) and

for Σ
∂
0,1 ([Bet14, Proposition 16]). We may adapt it to work for Σ

∂
g,p by noticing that Σ∂

g,p can be

constructed by removing from Σ
∂
g,0 the interior of p disjoint subspaces homeomorphic to Σ

∂
0,1. We

first “fill” the holes (formally by changing (Gi × [0, 1])\(G̊i × [0, 1]) into (Gi × [0, 1])\(G̊i × [0, 1)))
and show a convergence toward a surface homeomorphic to Σ

∂
g,0 thanks to the first theorem. We

then show that the p closed holes (corresponding in the filled surface to Gi × {1}) converge to p
disjoint disks thanks to the second theorem. In a few words, this comes from the fact that the holes
of qn correspond to the holes of mn and, if they were not converging to disjoint disks, in the limit,
we would either have holes “sharing” a vertex in the scheme or we would have points of the floor
of M identified together. Neither of these situations can happen: as observed after Definition 5,
there are no vertices incident to two different holes in a dominant scheme, and Proposition 17
prohibits the latter situation.

4.3.4 Hausdorff dimension of the limit

To compute the Hausdorff dimension of the limit, we use the same method as in [LGM11]. The
idea is roughly the following. To prove that the Hausdorff dimension is less than 4, we use the fact
that the processes Le

∞ of Proposition 15 are almost surely α-Hölder for all α ∈ (0, 1/4), yielding
that the canonical projection from ([0, 1], | · |) to (qσ∞, d

σ
∞) is also α-Hölder for the same values of α.

To prove that it is greater than 4, we show that the size of the balls of diameter δ is of order δ4.
To see this, we first bound from below the distances in terms of label variation along the branches
of M , and then use twice the law of the iterated logarithm: this tells us that, for a fixed s ∈ [0, 1],
the points outside of the set [s − δ4, s + δ4] code points that are at distance at least δ2 from qσ∞(s)
in M , so that their distance from qσ∞(s) is at least δ in the map. See [Bet10, Section 6.4] for a
complete proof.

We now turn to the boundary. Let π : M → qσ∞ be the canonical projection. A straightforward
adaptation of [Bet14, Proposition 21] shows that the boundary of qσ∞ is

∂qσ∞ = π
Ä

M

Ä

{s : es ∈ ~B(s∞)}
ä

∩ fl
ä

. (4)

For every connected component of the boundary, we may use the same method as in [Bet14] to
conclude that its dimension is a.s. equal to 2.
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5 Typical geodesics from the base point

From now on, we work on the set of full probability where L reaches its minimum only once.
Recall that π denotes the canonical projection from M to qσ∞, that s• is the unique point where L

reaches its minimum and that we set ρ• := qσ∞(s•). We also include back the case (g, p) = (0, 0)
from now on. In this case, (mn, [ln]) ∈ M1

n,∅ is a uniform labeled tree and its rescaled contour
pair converges toward the Brownian snake (e, Z) driven by a normalized Brownian excursion.
Thus M is Aldous’s CRT coded by the excursion e and L := Z . Lemma 16 and Proposition 17 also
hold (see [LG07]).

5.1 Uniqueness

Proposition 19. Let S be uniformly distributed over [0, 1] and independent of (qσ∞, d
σ
∞). Then, almost

surely, there is only one geodesic from the base point ρ• to X := qσ∞(S) in qσ∞.

Proof. This was shown in [Mie09] in the slightly different context of Boltzmann maps. We refor-
mulate the ideas to our setting.

It will be sufficient to show that, for any rational numbers 0 < α < β, the event Eα,β that
there exist, for every u ∈ [α, β], at least two different points y and y′ ∈ qσ∞ such that dσ∞(ρ•, y) =
dσ∞(ρ•, y′) = u and dσ∞(ρ•, y) + dσ∞(y,X) = dσ∞(ρ•, y′) + dσ∞(y′, X) = dσ∞(ρ•, X) has probability 0.
For the remaining of the proof, we fix rational numbers 0 < α < β and we consider a random
variable U uniformly distributed over [α, β] and independent of all other variables.

The idea is that the previous points y and y′ correspond to global minimums of the labels on
the interface between the two internal faces of the map obtained by a continuous analog of the
two-point mapping of Section 3.2. As the labels are essentially Brownian, this almost surely never
happens. Let us proceed rigorously.

Step 1. We go back to the discrete picture and start with the construction of a suitable approxima-
tion of X in qn. We want to find a sequence (Sn) of integers such that qn(Sn) is roughly uniformly
distributed over V (qn) and Sn/2n → S, at least along a subsequence. When mn is a tree, this is
quite easy. In the general case, it is a bit trickier; we proceed as follows. Let w be an arbitrarily
chosen point at dqn

-distance 1 from v•n. We claim that we can find a sequence (Sn) of integers such
that Xn := qn(Sn) is uniformly distributed over V (qn)\{v•n, w} and Sn/2n→ S along some subse-
quence. To do so, we will associate with every of these n+ |σn| − p− 2g vertices exactly two unit
length left-open subintervals of [0, 2(n+ |σn| − p− 2g)] as follows. It is possible to remove 2g + p
edges from mn without disconnecting the map; we obtain a plane tree. In the resulting tree, we
bijectively associate with every vertex different from w an edge in such a way that the edge is inci-
dent to the corresponding vertex. Then, in the contour of f•, an edge of mn corresponds to one or
two unit length subintervals of [0, 2n+ |σn|] (one if the edge is incident to a hole, two otherwise).
We suppose that |σn| ≥ p + 2g, which happens for large n, and we associate with every vertex
of mn the corresponding subintervals. We associate with the vertices corresponding to only one
subinterval a second subinterval arbitrarily chosen among the remaining ones. Let k be such that
2(n+|σn|−p−2g)S ∈ (k, k+1]. If the vertex corresponding to (k, k+1] is either mn(k) or mn(k+1),
we set Sn to k or k+1 accordingly. Otherwise, we arbitrarily set Sn such that mn(Sn) corresponds
to (k, k + 1]. With this construction, Xn is clearly uniformly distributed over V (qn)\{v•n, w} as
claimed. Moreover, the probability that we cannot extract a subsequence along which Sn/2n→ S
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is bounded by

P

(

lim inf
n→∞

{

|Sn − 2(n+ |σn| − p− 2g)S| > 1
}

)

≤ lim inf
n→∞

|σn|
2(n+ |σn| − p− 2g)

= 0.

So, up to discarding a zero-probability event, we may suppose that Sn/2n → S along a subse-
quence of (nk)k≥0.

Step 2. We look at the scaling limit of the map obtained by the two-point mapping. We set
λn := ⌊(8n/9)1/4U⌋. If 1 ≤ λn ≤ dqn

(v•n, Xn) − 1, it is licit to define (m••
n , [l

••
n ]) ∈ M2

n,σn
as the

labeled map corresponding to (qn, (v
•
n, Xn), λn) via the two-point mapping of Section 3.2.

We decompose a labeled map (m, [l]) ∈ M2
n,σn

into a scheme and a collection of integers and
continuous functions as in Section 4. We denote by V(n)(m, [l]) the corresponding rescaled vector
(the analog of the one from Proposition 15). By convention, we set V(n)(m

••
n , [l

••
n ]) := 0 when-

ever (m••
n , [l

••
n ]) is not defined (that is, whenever λn /∈ {1, . . . , dqn

(v•n, Xn) − 1}). We compare the
distribution of V(n)(m

••
n , [l

••
n ]) with the distribution of V(n)(Mn, [Ln]), where (Mn, [Ln]) denotes a

random variable uniformly distributed over M2
n,σn

: For any bounded measurable function F such
that F (0) = 0, a straightforward computation yields that

E
[

F
(

V(n)(m
••
n , [l

••
n ])

)]

P
(

λn < dqn
(v•n, Xn)

) =
E
[

F
(

V(n)(Mn, [Ln])
)

∆n

(

V(n)(Mn, [Ln])
)]

E
[

∆n

(

V(n)(Mn, [Ln])
)] ,

where ∆n is defined as follows. For (m, [l]) ∈ M2
n,σn

, the number ∆n(V(n)(m, [l])) is (8n/9)1/4

times the probability that λn equals the λ corresponding to (m, [l]) via the two-point mapping. It
is a simple piecewise linear function of (9/8n)1/4λ, equal to 0 on (−∞, α− (9/8n)1/4]∪ [β,∞) and
equal to 1/(β − α) on [α, β − (9/8n)1/4]. Moreover, by Lemma 12 (iii), (9/8n)1/4(λ − 1) may be
written as a deterministic continuous function Λ of V(n)(m, [l]). The explicit expression of Λ is quite
intricate and will not be needed: loosely speaking, Λ assigns to a vector the minimum of the labels
on the interface between the two faces minus the minimum of the labels inside f•.

Using the same machinery as in Section 4, we obtain that the random vector V(n)(Mn, [Ln])
converges to a random vector V∞ whose precise distribution will not be needed. We easily deduce
that V(n)(m

••
n , [l

••
n ]) converges weakly toward a random vector V••

∞ with distribution

P
(

U > dσ∞(ρ•, X)
)

δ0 + P
(

U < dσ∞(ρ•, X)
)

L,

where L is the probability distribution given by

L(G) = E

ï

G(V∞)
1{α<Λ(V∞)<β}

P(α < Λ(V∞) < β)

ò

(5)

for any measurable function G. In particular, the distribution L is absolutely continuous with
respect to the distribution of V∞ so that every property holding a.s. for V∞ also holds a.s. under L.

Step 3. We now work on the event Eα,β . We denote by y and y′ two different points satisfying the
relations appearing in the definition of Eα,β for u = U and we let t and t′ be such that y = q∞(t)
and y′ = q∞(t′). We construct discrete approximations of y and y′ as follows.

As 0 < U < dσ∞(ρ•, X), we see that (m••
n , [l

••
n ]) is always defined for n large enough. We

denote by f•
n and f••

n its two internal faces corresponding respectively to v•n and Xn. We want to
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construct an approximation yn on the interface f•
n ∩ f••

n . Let zn := qn(⌊2nt⌋). If zn ∈ f•
n ∩ f••

n , then
we set yn := zn. Otherwise, let suppose for now that zn ∈ f••

n . We consider a geodesic from zn
to v•n and we let yn be a point on this geodesic that belongs both to f•

n and f••
n . By construction

and by Lemma 12 (ii), we have λn ≤ dqn
(v•n, yn) ≤ dqn

(v•n, zn). The triangle inequality yields that
dqn

(yn, zn) = o(n1/4) and another application of Lemma 12 gives

0 ≤ l••n (yn)− min
f•

n∩f••

n

l••n = o(n1/4). (6)

Finally, if zn ∈ f•
n, we construct yn in a symmetrical way and obtain the same equations by similar

manipulations.
We also construct the points z′n and y′n by applying the same method to t′ instead of t. As

(9/8n)1/4 dqn
(zn, z

′
n) → dσ∞(y, y′), we also obtain that (9/8n)1/4 dqn

(yn, y
′
n) → dσ∞(y, y′) > 0.

The interface f•
n ∩ f••

n is a “cycle” in the map m••
n . We parametrize this cycle by [0, 1], the

point 0 being for example a node chosen in a deterministic way from the scheme. We denote by
r(n) ∈ [0, 1) and r′(n) ∈ [0, 1) the real numbers corresponding to yn and y′n. Up to further extraction,

we may suppose that r(n) → r and r′(n) → r′. As (9/8n)1/4 dqn
(yn, y

′
n) converges toward a positive

number, we have r 6= r′: This is obtained by the argument we used in Section 4.3.2. In short,
we may construct an equivalence relation from the limiting vector V••

∞ by a construction similar
to the one of Section 4.3.2 and show that two points identified by this relation are also identified
in qσ∞. In other words, because two corners identified in m••

n correspond to the same point in qn,
the Brownian surface qσ∞ may be seen as a quotient of a continuous analog of m••

n . This is very
similar to what we did in Section 4.3.2 so that we leave the details to the reader.

Now, Step 2 implies that the labels on the interface f•
n∩f••

n converge in distribution, once prop-
erly rescaled, toward a concatenation of some functions of V••

∞ (up to an irrelevant time scaling
because of the parametrization by [0, 1]). Let us denote by B••

∞ : [0, 1] → R this limiting function.
Equation (6) yields that B••

∞ (r) = B••
∞ (r′) = minB••

∞ . As, on the event {V••
∞ 6= 0}, the process B••

∞

is, up to the bias (5), a Brownian bridge, this means that we are on an event of probability zero, as
wanted. �

5.2 Simple geodesics

We use in this section the terminology and ideas of [LG10], developed in the spherical case and
readily adaptable to our more general setting. We define simple geodesics and give some elemen-
tary properties. Recall that dσ∞(s•, s) = L(s)− L(s•). For s, t ∈ [0, 1], we set

[s _ t] :=

®

[s, t] if s ≤ t,

[s, 1] ∪ [0, t] if t < s.

Definition 7. The simple geodesic of index s ∈ [0, 1] is the path Φs defined by

Φs(w) := qσ∞

Å

sup

ß

r : inf
[r_s]

L = L(s•) + w

™ã

, 0 ≤ w ≤ dσ∞(s•, s).

It is not very hard to see that Φs is a geodesic from ρ• to qσ∞(s) (see [LG10, Section 4.1] for more
details). If we set t := sup{r : inf [r_s] L = L(s•) + w} then we must have L(t) = inf [t_s] L by
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continuity. Ifw < dσ∞(s•, s), then t 6= s so that t is an increase point of L and, by Lemma 18, M (t) is
a leaf. This entails that Φs only visit images of leaves, except possibly at its end qσ∞(s). Moreover,
if t′ := inf{r : inf [s_r] L = L(s•)+w} then Proposition 17 implies that t ∼ t′. This provides a dual
definition of Φs:

Φs(w) = qσ∞

Å

inf

ß

r : inf
[s_r]

L = L(s•) + w

™ã

, 0 ≤ w ≤ dσ∞(s•, s).

Observe that, if t′′ is such that L(t′′) = inf [t′′_s] L, then t′′ ∼ sup{r : inf [r_s] L = L(s•) +
(L(t′′)− L(s•))}. As a result, the range of Φs is given by

Φs

(

[0, dσ∞(s•, s)]
)

= qσ∞

Åß

t : L(t) = inf
[t_s]

L

™ã

= qσ∞

Åß

t : L(t) = inf
[s_t]

L

™ã

.

Finally, let s ∼ s′ be two distinct numbers. If s 6≃ s′ then, by Proposition 17, we have either
L(s) = L(s′) = inf [s_s′] L or L(s) = L(s′) = inf [s′_s] L; thus Φs = Φs′ . If s ≃ s′ then s and s′

cannot be increase points of L, so that both inf [s_s′] L < L(s) and inf [s′_s] L < L(s). It is easy to
see that Φs(w) = Φs′(w) if and only if w ∈ [0, inf [s_s′ ] L ∨ inf [s′_s] L − L(s•)] ∪ {L(s)− L(s•)}. In
particular, Φs 6= Φs′ .

Let (si)i≥0 be a sequence of i.i.d. random variables uniformly distributed over [0, 1]. We denote
by ai := M (si) and xi := qσ∞(si) the corresponding points in M and qσ∞. By Proposition 19, it is
immediate that almost surely, for all i, Φsi is the only geodesic from ρ• to xi. Note also that, almost
surely, the set {si : i ≥ 0} is a dense subset of [0, 1]. Up to discarding yet another event of zero
probability, we will suppose that both previous properties hold.

In what follows, we will show that it is actually sufficient to know that the geodesics to the xi’s
are simple geodesics in order to conclude that all the geodesics from ρ• are simple geodesics.

6 General geodesics from the base point

6.1 Geodesics from the base point to images of leaves

In this section, we treat the case of the image under π of the set of leaves in M . Let s ∈ [0, 1] be
such that a := M (s) is a leaf. We will show that Φs is the only geodesic from ρ• to x := qσ∞(s)
in qσ∞. There is nothing to prove in the case s = s•, so that we suppose s 6= s•. The first step is to
find points ai and aj before and after a (in the contour of M ), arbitrarily close to a and such that
no geodesics from ρ• to x intersect the set π([[ai, aj ]]). Note that, as a is a leaf, the tree τa is well
defined.

Lemma 20. Let ε > 0 be such that [s− ε, s+ ε] is included in the interval coding τa. There exist i and j
satisfying s− ε < si < s < sj < s+ ε and, for all b ∈ [[ai, aj ]],

dσ∞(ρ•, a) < dσ∞(ρ•, b) + dσ∞(b, a).

Proof. We argue by contradiction and suppose that there exists an ε > 0 such that [s − ε, s + ε] is
included in the interval coding τa, and that for all i and j satisfying s − ε < si < s < sj < s + ε,
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we can find b ∈ [[ai, aj ]] for which dσ∞(ρ•, a) = dσ∞(ρ•, b) + dσ∞(b, a). For 0 ≤ ξ ≤ Ces
∞〈s〉 − Ces

∞〈s〉,
we define

lξ := sup{t ≤ s : Cet
∞〈t〉 = Ces

∞〈s〉 − ξ} and rξ := inf{t ≥ s : Cet
∞〈t〉 = Ces

∞〈s〉 − ξ}

and we set cξ := M (lξ) = M (rξ). See Figure 14. As a is a leaf, there exists ξ0 > 0 such that
s− ε < lξ < s < rξ < s+ ε as soon as ξ ∈ (0, ξ0]. Until further notice, we fix such a ξ.

Let 0 < η < (s − lξ) ∧ (rξ − s) and i, j be such that lξ ≤ si < lξ + η and rξ − η < sj ≤ rξ .
By hypothesis, we can find bη ∈ [[ai, aj]] such that dσ∞(ρ•, a) = dσ∞(ρ•, bη) + dσ∞(bη, a). We can
furthermore find tη ∈ [lξ, si] ∪ [sj , rξ] such that bη := M (tη). As η → 0, tη converges, up to
extraction, either to lξ or to rξ . This implies that dσ∞(cξ, a) = dσ∞(ρ•, a)− dσ∞(ρ•, cξ) = L(a)−L(cξ),
by (3). Moreover, the classical “cactus bound” (see [CLGM13] or [Bet10, Lemma 20] for a similar
statement) states that dσ∞(cξ, a) ≥ L(cξ) + L(a) − 2min[[cξ,a]] L, so that L(cξ) = min[[cξ,a]] L. As a
result, the process ξ ∈ [0, ξ0] 7→ L(cξ) is non-increasing. Basic properties of Brownian snakes show
that this is a contradiction. �

a

bη
cξ

ai aj

lξ rξ

s

si
sj

tη

[[ai, aj]]

ξ

Figure 14: Notation used in the proof of Lemma 20.

We will need to consider sets of the form M ([si, sj]). The following lemma identifies the topo-
logical boundary of the image in qσ∞ of such a set.

Lemma 21. Let τ be a tree of M coded by [l, r] and l ≤ t1 ≤ t2 ≤ r. We set w′ := inf{w : Φt1(w) 6=
Φt2(w)}. Then the topological boundary in qσ∞ of the subset qσ∞([t1, t2]) is

∂
(

qσ∞([t1, t2])
)

= π
(

[[M (t1),M (t2)]]
)

∪ Φt1

(

[w′, dσ∞(s•, t1)]
)

∪Φt2

(

[w′, dσ∞(s•, t2)]
)

.

In other words, the boundary of qσ∞([t1, t2]) is composed of three parts: the image of the set
[[M (t1),M (t2)]] and the ranges of Φt1 and Φt2 after they split. See Figure 15.

Proof. The properties stated during Section 5.2 show that

Φt1

(

[w′, dσ∞(s•, t1)]
)

= qσ∞

Å

{

t ∈ [t1, t2] : L(t) = inf
[t1,t]

L
}

ã

.

Let t ∈ [t1, t2] be such that L(t) = inf [t1,t] L, and let us define t′ := sup{r : inf [r_t1] L =
L(t)}. Then t′ ∼ t, so that qσ∞(t′) = qσ∞(t). (Possibly, t′ = t if t ∈ {t1, t2}.) For all inte-
ger k, we can find a point tk ∈ [t′ − 1/k, t′] such that M (tk) is a leaf not identified with any
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t1

t2

π([[M (t1),M (t2)]])

Φt1

Φt2

Figure 15: Topological boundary of qσ∞([t1, t2]).

other points by ∼ (it suffices to select a point that is an increase point for neither functions of
Lemma 18). As a result, qσ∞(tk) /∈ qσ∞([t1, t2]) and dσ∞(qσ∞(tk), q

σ
∞(t)) → 0 as k → ∞, so that

qσ∞(t) ∈ ∂(qσ∞([t1, t2])). The same argument shows that Φt2([w
′, dσ∞(s•, t2)]) ⊆ ∂(qσ∞([t1, t2])) as

well. To see that π([[M (t1),M (t2)]]) ⊆ ∂(qσ∞([t1, t2])), we notice that

π
(

[[M (t1),M (t2)]]
)

= qσ∞

Å

{

t ∈ [t1, t2] : C
et
∞〈t〉 = inf

r∈[t1,t]
Cer

∞〈r〉 or Cet
∞〈t〉 = inf

r∈[t,t2]
Cer

∞〈r〉
}

ã

and apply a similar argument.

Conversely, let y ∈ ∂(qσ∞([t1, t2])) and t ∈ [t1, t2] be such that y = qσ∞(t) (note that qσ∞([t1, t2])
is a closed subset of qσ∞ as the image of a closed subset of [0, 1] under the projection from [0, 1]
into qσ∞). We further suppose for the moment that y is not the root of τ as this point needs a special
argument. There exists a sequence (rk)k of numbers in [0, 1]\[t1, t2] such that qσ∞(rk) → qσ∞(t). Up
to extraction, we may suppose that rk → t′ ∈ [0, 1]\(t1, t2). Then qσ∞(t′) = qσ∞(t), so that either
t ≃ t′, in which case Cet

∞〈t〉 = infr∈[t1,t] C
er
∞〈r〉 or Cet

∞〈t〉 = infr∈[t,t2] C
er
∞ 〈r〉 (we are necessarily in

the case (2a) of the definition of ≃ from Section 4.3.2, as we supposed that y is not the root of τ ), or
t 6≃ t′ but t ∼ t′, in which case L(t) = inf [t1,t] L or L(t) = inf [t,t2] L, by Proposition 17.

Finally, if the root of τ belongs to ∂(qσ∞([t1, t2])), it also belongs to the set we claim to be
∂(qσ∞([t1, t2])) by a simple continuity argument. �

We may now conclude that there is a unique geodesic from ρ• to x.

Proposition 22. The path Φs is the only geodesic from ρ• to x.

Proof. We consider a geodesic ℘ : [0, dσ∞(ρ•, x)] → qσ∞ from ρ• to x. Let ε > 0 be such that [s−ε, s+ε]
is included in the interval coding τa. We take si and sj satisfying the hypotheses of Lemma 20 with
this value of ε and we set r := sup{w : ℘(w) /∈ qσ∞([si, sj ])}, so that ℘(r) ∈ ∂(qσ∞([si, sj ])). Our
choice of si and sj ensures that ℘(r) /∈ π([[ai, aj ]]), hence, by Lemma 21,

℘(r) ∈ Φsi

(

[w′, dσ∞(s•, si)]
)

∪ Φsj

(

[w′, dσ∞(s•, sj)]
)

where w′ := inf
{

w : Φsi(w) 6= Φsj (w)
}

.

As Φsi and Φsj are the only geodesics from ρ• to xi and xj , this yields that ℘ restricted to [0, r] is
equal to either Φsi or Φsj restricted to the same interval. In particular, ℘(w) = Φsi(w) = Φsj (w)
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for w ∈ [0, w′]. See Figure 16. Conducting this reasoning with Φs, we obtain that ℘(w) = Φs(w) for
w ∈ [0, w′].

x

℘(r)

si
sj

℘

Φsi

Φsj

Figure 16: The geodesic ℘ is “trapped” between Φsi and Φsj .

As
inf

[s−ε,s+ε]
L− L(s•) ≤ w′ = inf

[si∧sj ,si∨sj ]
L− L(s•) ≤ L(s)− L(s•),

we conclude by continuity of L that ℘ = Φs. �

6.2 Geodesics from the base point to all points

Proposition 23. Let a ∈ M . The only geodesics from ρ• to the point π(a) are the paths (all distinct) Φs,
for all s such that M (s) = a.

Proof. We have already treated the case of leaves in Section 6.1. The other cases are a little more
intricate, but use exactly the same arguments, so that we only give a sketch of proof and leave the
details to the reader.

If a ∈ M \fl is a point of order 2, let s < s′ be such that a = M (s) = M (s′). For ε small enough,
the set [s − ε, s′ + ε] is included in the interval coding τa. For such an ε, following the ideas of
Lemma 20, we can find s − ε < si < s < sj < s + ε and s′ − ε < si′ < s′ < sj′ < s′ + ε such that
for all b ∈ [[ai, aj′ ]] ∪ [[ai′ , aj]], we have dσ∞(ρ•, a) < dσ∞(ρ•, b) + dσ∞(b, a).

We then follow the proof of Proposition 22, replacing qσ∞([si, sj ]) with qσ∞([si, sj ] ∪ [si′ , sj′ ]),
which is also a closed subset of qσ∞, and whose boundary is the reunion of π([[ai, aj′ ]] ∪ [[ai′ , aj ]]),
the ranges of Φsi and Φsj from the point where they separate up to xi and xj , as well as the ranges
of Φsi′ and Φsj′ from the point where they separate up to xi′ and xj′ . We eventually conclude that
the only geodesic from ρ• to π(a) are Φs and Φs′ by the same technique.

All remaining cases are treated in a very similar fashion. �

We immediately deduce the following result by the same method as Le Gall.

Corollary 24 ([LG10, Corollary 7.7]). Almost surely, for every ε > 0, there exists η ∈ (0, ε) such that
the following holds. Let ℘ and ℘′ be geodesics from ρ• to points x and x′ such that dσ∞(ρ•, x) ≥ ε and
dσ∞(ρ•, x′) ≥ ε. Then ℘(w) = ℘′(w) for every w ∈ [0, η].
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7 Remaining proofs

7.1 Proof of Theorems 3 and 2

Proof of Theorem 3. Note that, by (4), the indicator in Definition 6 is equal to 1{π(a)∈∂qσ
∞

}. Asser-
tion (i) is then a direct consequence of Proposition 23. We now turn to the three remaining as-
sertions. There is nothing to show in the case (g, p) = (0, 0) as all the sets in question are empty.
If (g, p) = (0, 1), by the Jordan curve Theorem, all the cycles are homotopic to 0, so that we only
need to see that π(B) = ∂qσ∞; this easily follows from (4). We thus suppose from now on that
(g, p) /∈ {(0, 0), (0, 1)}.

In this section, it will be convenient to “remove” the root edge dangling from s∞. Recall that,
as s∞ is dominant, one extremity of the root e∗ has degree 1 and the other one has degree 3. Let ǫ1,
ǫ2, ǭ2, ǫ3 be the sequence of successive half-edges in the contour order of f• such that {ǫ2, ǭ2} is the
root edge of s∞. Note that this implies that ǭ1 is the half-edge following ǭ3 in the contour of the
incident face. We define the (nondominant, unrooted) scheme s̃∞ as the unrooted map obtained
from s∞ by removing the root edge {ǫ2, ǭ2} and merging {ǫ1, ǭ1} with {ǫ3, ǭ3}. We associate with

every half-edge e ∈ ~E(s∞) a half-edge ẽ ∈ ~E(s̃∞) as follows: if e ∈ {ǫ1, ǫ2, ǭ2, ǫ3} then ẽ is the
merged edge, oriented from ǫ−1 to ǫ+3 ; if e ∈ {ǭ1, ǭ3} then ẽ is the reverse of the previous half-edge
and otherwise ẽ := e.

Recall from Section 4.3.2 that es is the half-edge of s∞ “visited” at time s. We also denote by Φ̄s

the reverse of Φs and by ℘ • ℘′ the concatenation of ℘ with ℘′.

Lemma 25. Let s ≃ s′. The path Φs • Φ̄s′ is homotopic to 0 if and only if ẽs = ẽs′ .

We postpone the proof of this lemma to the end of this section and conclude. Assertion (ii) is
shown as follows. First note that

B = M

Ä¶

s : Ces
∞〈s〉 = Ces

∞〈s〉 and es /∈ {e∗, ē∗}
©ä

.

This set splits into I ∪B where

I := M

Ä¶

s : Ces
∞〈s〉 = Ces

∞〈s〉 and es ∈ ~I(s∞)\{e∗, ē∗}
©ä

, (7)

B := M

Ä¶

s : Ces
∞〈s〉 = Ces

∞〈s〉 and es ∈ ~B(s∞)
©ä

.

We already know by (4) that π(B) = ∂qσ∞ so that it will be sufficient to show that π(I) = N (ρ•, qσ∞).
If s lies in the set defining I, then there exists s′ such that s ≃ s′ and ẽs′ 6= ẽs and as a consequence
qσ∞(s) ∈ N (ρ•, qσ∞), by Lemma 25. Conversely, if qσ∞(s) ∈ N (ρ•, qσ∞), then Lemma 25 implies the
existence of s′ such that s ≃ s′ and ẽs 6= ẽs′ ; as a result, the pair {s, s′} satisfies (2b) or (2c) and thus
M (s) ∈ I.

Assertion (iii) is also an easy consequence of Lemma 25: a point belongs to the set in question
if and only if it is of the form qσ∞(s) = qσ∞(s′) = qσ∞(s′′) with ẽs, ẽs′ , ˜es′′ pairwise distinct. These
points are in one-to-one correspondence with the vertices of s̃∞ that are not incident to any holes.
Let N(s∞) denotes their number. If p = 0, these are all the vertices of s̃∞: an easy application of
Euler characteristic formula shows that N(s∞) = 4g − 2. If p ≥ 1, the situation is a bit more com-
plicated as N(s∞) actually depends on s∞. It is a simple functional of s∞ so that its distribution
may be computed, as the distribution of s∞ is given by Proposition 15. Moreover, the distribution
of s∞ shows that s∞ is equal to every dominant scheme of type (p, 1) with positive probability.
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This yields that the support of N(s∞) is merely the range of this functional. Let us now compute
this range.

By Euler characteristic formula, |V (s̃∞)| = 4g + 2p − 2. Because every hole of s∞ is incident
to at least one vertex, and because no vertices can be incident to more than one hole, we see that
N(s∞) ≤ 4g + p − 2. Now, for any given k ∈ {0, 1, . . . , 4g + p − 2}, it is not hard to construct a
dominant scheme s of type (p, 1) such that N(s) = k by using the three following operations (see
Figure 17). Operation (a) consists in appending an edge with an extremity incident to a degree
1-hole: this increases the number N by one. Operation (b) consists in adding a degree 2-hole on
some edge and operation (c) consists in replacing a degree κ-vertex with a hole of degree κ.

If g ≥ 1 and 4g − 2 ≤ k ≤ 4g + p − 2, choose any dominant scheme of type (0, 1). At this
stage, it has no holes and its number N is 4g − 2. Perform k − (4g − 2) times operation (a) and
p − (k − (4g − 2)) times operation (b) to obtain the desired result. If g = 0, start with a dominant
scheme of type (1, 1) and perform k times operation (a) and p−1−k times operation (b). Finally, if
0 ≤ k < 4g − 2, take a (nondominant) scheme of type (0, 1) having exactly k + 1 degree 3-vertices,
one degree 1-vertex and one degree 4g−k-vertex. Perform operation (c) on the degree 4g−k-vertex
and perform p− 1 times operation (b).

(a) (b) (c)

Figure 17: Adding a face in order to construct a dominant scheme s for which N(s) = k. (a). Adding one hole while
increasing N by 1. (b) and (c). Adding one hole without changing N .

Assertion (iv) directly follows from the observation that ∂qσ∞ ∩ N (ρ•, qσ∞) is in one-to-one cor-
respondence with the set of vertices of s̃∞ that are incident to a hole, so that its cardinality is equal
to |V (s̃∞)| −N(s∞). �

Proof of Theorem 2. Here again, the Jordan curve Theorem allows us to directly conclude in the
cases (g, p) ∈ {(0, 0), (0, 1)}, so that we exclude them. By the previous discussion, N (ρ•, qσ∞) =
π(I), where I was defined by (7). In order to conclude that its Hausdorff dimension is a.s. equal
to 2, we apply the method used in [Bet14] to compute the dimension of the boundary. In [Bet14],
the method was used to prove that the Hausdorff dimension of the boundary, that is, the image
of the boundary edge of the scheme, was 2. In fact, the proof straightforwardly extends to any
edge of the scheme and, as I corresponds to a non-empty collection of scheme edges, the result
follows. �

Proof of Lemma 25. Let s ≃ s′ and a := M (s) = M (s′). If s = s′, the result is trivial so that we
suppose s 6= s′. The condition ẽs = ẽs′ is equivalent to saying that one of the sets M ([s _ s′]) or
M ([s′ _ s]) is a real tree. Indeed, if ẽs = ẽs′ , then s and s′ are instants corresponding to the same
forest, so that M ([s _ s′]) or M ([s′ _ s]) is a real tree. Conversely, if ẽs 6= ẽs′ then a belongs to
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the backbone B ⊆ M and both M ([s _ s′]) and M ([s′ _ s]) contain a connected component of
B\{a}. As a result, neither is a real tree.

Let us first suppose that ẽs = ẽs′ and, without loss of generality, let us suppose that M ([s _ s′])
is a real tree. Let w0 := inf{w : Φs(w) 6= Φs′(w)} and

R := {Φs(w),Φs′ (w) : w0 ≤ w ≤ dσ∞(s•, s)}. (8)

Plainly, Φs • Φ̄s′ is homotopic to R so that it will be sufficient to show that R is homotopic to 0. We
claim that R is equal to the boundary of

(

π
(

M ([s _ s′])
)

, dσ∞
)

: indeed, it is easy to check that if
X ⊆ X ′ are two surfaces with a boundary, then the boundary of X is the union of its topological
boundary with (∂X ′) ∩ X and we obtain the claim thanks to Lemma 21 (applied to t1 := s and
t2 := s′).

We will show that
(

π
(

M ([s _ s′])
)

, dσ∞
)

is homeomorphic to a disk and the result will immedi-
ately follow. We can easily construct sequences (in) and (i′n) such that mn(in) = mn(i

′
n), in/2n→ s,

i′n/2n → s′ and the submap of mn composed of the elements visited between time in and time i′n
in the contour order is a tree tn. The simple discrete geodesic in qn from v•n to in is the geodesic
made of the arcs between the successive successors of in in the construction of Section 3.3. The
two simple geodesics toward in and i′n may have a common part. Removing this common part,
we are left with a simple loop, which we denote by ln. The technique of Section 4.3.1 implies that
it is possible to isometrically embed the spaces of the pairs

Ç

(

V (qnk
),

Å

9

8nk

ã1/4

dqnk

)

,
(

V (tnk
),

Å

9

8nk

ã1/4

dqnk

)

å

as well as
((

qσ∞, d
σ
∞

)

,
(

π
(

M ([s _ s′])
)

, dσ∞
))

into the same metric space, in such a way that the first
pair jointly converges toward the latter. It should be understood here that the metric is restricted
to the considered sets. We cut the surface corresponding to qn introduced during Section 4.3.3
along the loop ln. Clearly, the component corresponding to tn is homeomorphic to a disk. Using
[Bet14, Proposition 16], we obtain that

(

π
(

M ([s _ s′])
)

, dσ∞
)

is homeomorphic to a disk as well.
(We need to check that the sequence (ln)n is 0-regular in the sense of [Bet14, Definition 9]; this is
clear as R is a simple curve not reduced to a single point.)

Conversely, let us suppose that neither M ([s _ s′]) nor M ([s′ _ s]) is a real tree. In particular,
a belongs to the backbone B ⊆ M . Two cases are possible: either M ([s _ s′])∩M ([s′ _ s]) = {a}
or M ([s _ s′]) ∩ M ([s′ _ s]) 6= {a}. Let us first suppose that we are in the latter case. Let us
define R as previously by (8). Recall from Section 5.2 that the set π−1(R) is composed only of
the point a and of leaves. We claim that this entails that the set qσ∞\R is connected. Indeed, as
a ∈ B, M \π−1(R) may only have one or two connected components. If it has one component, the
claim is immediate as qσ∞\R is the image under π of M \π−1(R). If it has two components, then a
has to be of order 3 (a corresponds to a node of s∞ because M ([s _ s′]) ∩ M ([s′ _ s]) 6= {a}).
Let s′′ /∈ {s, s′} be the third point such that M (s′′) = a. Then the two images under π of the
two connected components of M \π−1(R) are connected and, for w large enough, Φs′′(w) belongs
to both images; the claim follows. Because R is not reduced to a single point, The Jordan curve
Theorem entails that R cannot be homotopic to 0.

We now suppose that M ([s _ s′]) ∩ M ([s′ _ s]) = {a}. The same method as above shows
that both

(

π
(

M ([s _ s′])
)

, dσ∞
)

and
(

π
(

M ([s′ _ s])
)

, dσ∞
)

are surfaces with a boundary different
from the disk (they contain at least a boundary component or a handle of qσ∞), whose boundaries
contain R as a component. As a result, R cannot be homotopic to 0. �
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7.2 Asymptotics for large quadrangulations

The proof of Proposition 5 is a straightforward adaptation of [LG10, Section 9], so that we leave it
to the reader and concentrate on the other proofs, which also use the same ideas but with a little
extra work.

Proof of Proposition 6. We argue by contradiction and suppose that there exists η > 0 such that, for
infinitely many n’s, P(∃v ∈ V (qn) : HMultεnn (v•n, v) ≥ 4) ≥ η. From the corresponding increasing
sequence of integers, we extract a subsequence (nk)k≥0 along which the convergence of Theorem 1
holds. We consider the simple loops made of edges of qnk

that are not homotopic to 0. Let δnk

denote the smallest diameter of these loops. An easy adaptation of [Bet12, Lemma 21] shows that
δnk

/nk
1/4 is uniformly bounded from below by an a.s. positive random variable δ0.

We fix an integer n belonging to (nk)k≥0. We claim that for any v and v′, HMultεn(v, v
′) ≤

Multεn,δ(v, v
′) as soon as δ < δn/(2n

1/4). To see this, it is sufficient to see that every pair {℘n, ℘
′
n}

of paths such that ℘n • ℘̄′
n is not homotopic to 0 satisfies dpath(℘n, ℘

′
n) ≥ δn1/4. We argue by

contradiction and suppose that there exists a pair {℘n, ℘
′
n} satisfying the previous hypothesis but

not the conclusion. It defines at least a simple loop ln that is not homotopic to 0. Let v1, . . . , vj
(resp. v′1, . . . , v′j ) be the vertices of ln successively visited by ℘n (resp. ℘′

n). For every i ∈ {1, . . . , j},

we consider a geodesic γi linking vi to v′i. These geodesics have length smaller than δn1/4 by
hypothesis. For i ∈ {1, . . . , j − 1}, the simple loop resulting of the concatenation of γi, the edge
visited by ℘′

n between time i and i + 1, γ̄i+1 and the edge visited by ℘̄n between time i + 1 and i
has diameter smaller than 2δn1/4 so that it is homotopic to 0. As a result, the whole loop ln is
homotopic to 0, which is a contradiction.

This entails that, for every δ > 0,

P
(

∃v ∈ V (qn) : HMultεnn (v•n, v) ≥ 4
)

≤ P
(

δn ≤ 2δn1/4
)

+ P
(

∃v ∈ V (qn) : Multεnn,δ(v
•
n, v) ≥ 4

)

Using Proposition 5, we obtain the following contradiction:

η ≤ lim sup
k→∞

P
(

∃v ∈ V (qnk
) : HMult

εnk
nk

(v•nk
, v) ≥ 4

)

≤ inf
δ>0

P
(

δ0 ≤ 2δ
)

= 0. �

Before we proceed, let us show our claim following Proposition 7 about B(qn, v•n)\∂V (qn). Let
v ∈ B(qn, v•n)\∂V (qn). We can find i and i′ such that v = qn(i) = qn(i

′) and the i-th and i′-
th corners of mn do not belong to the same forest of the decomposition. It is a simple exercise
to check that the simple discrete geodesics toward i and i′ satisfy the required property, so that
HMult0n(v

•
n, v) ≥ 2.

Proof of Proposition 7. We follow the lines of reasoning of [LG10, Section 9]. We argue by contradic-
tion and suppose that there exists η > 0 such that, for infinitely many n’s,

P
(

∃v ∈ V (qn) : dqn
(v,B(qn, v•n)\∂V (qn)) ≥ δn1/4, HMultεnn (v•n, v) ≥ 2

)

≥ η.

From the corresponding increasing sequence of integers, we extract a subsequence (nk)k≥0 along
which the convergence of Theorem 1 holds, and we let (qσ∞, d

σ
∞) be the corresponding Brownian

surface. We argue on the event

lim sup
k→∞

{

∃v ∈ V (qnk
) : dqnk

(v,B(qnk
, v•nk

)\∂V (qnk
)) ≥ δnk

1/4, HMult
εnk
nk

(v•nk
, v) ≥ 2

}

,
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whose probability is greater than η > 0. For infinitely many k’s, we can find a vertex vnk
∈

V (qnk
) that satisfies the above requirements; we let ink

be an integer such that vnk
= qnk

(ink
).

By compactness, we can find yet another subsequence along which in/2n→ s; we set x := qσ∞(s).
Until further notice, we only consider integers n belonging to this subsequence. For every qσ∞(s′) ∈
B\∂qσ∞, we can easily construct a sequence i′n such that qn(i

′
n) ∈ B(qn, v•n)\∂V (qn) and i′n/2n→ s′

along our subsequence. This implies that dqn
(qn(in), qn(i

′
n)) ≥ δn1/4, so that dσ∞(x, qσ∞(s′)) ≥

(9/8)1/4δ and finally dσ∞(x,B\∂qσ∞) > 0. In particular, x /∈ N (ρ•, qσ∞).
As HMultεnn (v•n, vn) ≥ 2, we can find two paths ℘n and ℘′

n from v•n to vn with length less than
(1 + εn) dqn

(v•n, vn) and such that ℘n • ℘̄′
n is not homotopic to 0. There exist two integers wn and

w′
n such that the part of ℘n between times wn and w′

n concatenated with the part of ℘̄′
n between

times w′
n and wn make up a simple loop ln that is not homotopic to 0. We cut the surface of

Section 4.3.3 associated with qn along the loop ln: we obtain either one or two surfaces with a
boundary. As the number of possibilities for the topology of this or these surfaces is finite, there
exist infinitely many n’s for which the topology is always the same. Restricting us to these n’s,
we see by the method of the previous section that this or these surfaces converge jointly with
the surface associated with qn to a surface with the same topology and the boundary component
corresponding to ln converges to a loop l not homotopic to 0.

Now, let 0 ≤ w ≤ dσ∞(ρ•, x). We denote by ℘n(w) (resp. ℘′
n(w)) the unique vertex of ℘n (resp.

of ℘′
n) lying at distance ⌊(8n/9)1/4w ∧ dqn

(v•n, vn)⌋ from v•n. For each w, we fix an extraction along
which both ℘n(w) and ℘′

n(w) converge and we denote by ℘(w), ℘′(w) ∈ qσ∞ the limiting points.
As ℘n is an approximate geodesic, we see that dσ∞(℘(w), ℘(w′)) = |w − w′|, so that ℘ is a geodesic
from ρ• to x. Similarly, ℘′ is also a geodesic.

Up to further extraction, we may suppose that wn/(8n/9)
1/4 → w∞ and w′

n/(8n/9)
1/4 → w′

∞.
As w′

n − wn is half the length of ln, which, after scaling, does not converge to 0, we see that
w∞ < w′

∞. On the one hand, for w∞ < w < w′
∞, we have ℘n(w) ∈ ln for n sufficiently large, so

that ℘(w) ∈ l. On the other hand, by definition, the vertex of ℘n lying at distance wn from v•n is the
same as the vertex of ℘′

n lying at distance wn from v•n, so that |℘n(w∞) − ℘′
n(w∞)| → 0 and thus

℘(w∞) = ℘′(w∞). Moreover, as ℘(w∞) is a point of a geodesic that is not an end-point, it is a leaf
by the discussion of Section 5.2. As a result, ℘ and ℘′ restricted to [0, w∞] are geodesics from ρ•

to a leaf, so that they coincide. Summing up, we constructed two geodesics ℘ and ℘′ from ρ• to x
such that ℘(w) = ℘′(w) for 0 ≤ w ≤ w∞ and ℘([w∞, w

′
∞]) ∪ ℘′([w∞, w

′
∞]) ⊆ l. In order to obtain

a contradiction with the fact that x /∈ N (ρ•, qσ∞), we still need to see that ℘ 6= ℘′. Note that this
immediately entails that w′

∞ = dσ∞(ρ•, x) as otherwise, ℘(w′
∞) would be a leaf reachable from ρ•

by two distinct geodesics. To do this, let us take y ∈ l. As ln converges toward l, y is the limit
of points of the form ℘n(rn) or ℘′

n(rn) with rn ≥ wn/(8n/9)
1/4. We first extract a subsequence

along which rn → r. Considering the extraction along which both ℘n(r) and ℘′
n(r) converge,

we see that y ∈ {℘(r), ℘′(r)} so that actually ℘([w∞, d
σ
∞(ρ•, x)]) ∪ ℘′([w∞, d

σ
∞(ρ•, x)]) = l, which

concludes. �

Proof of Proposition 8. It is sufficient to show that

lim
δ→0

lim sup
n→∞

P
(

Aεn
n,δ(j)

)

≤ P(H ≥ j) ≤ lim
δ→0

lim inf
n→∞

P
(

Aεn
n,δ(j)

)

.

Let us focus on the first inequality. We argue by contradiction and suppose that there exist η > 0
and δ > 0 such that, for infinitely many n’s, P(Aεn

n,δ(j)) ≥ P(H ≥ j)+η. We extract from these n’s a
subsequence (nk)k≥0 along which the convergence of Theorem 1 holds, and we let (qσ∞, d

σ
∞) be the

corresponding Brownian surface. We argue on the event lim supk→∞ A
εnk

nk,δ
(j) whose probability is
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strictly greater than P(H ≥ j). Using the same technique as in the proof of Proposition 7, we can
construct j points x1, . . . , xj ∈ qσ∞ lying at distance greater than(9/8)1/4δ one from another and

belonging to the set appearing in (iii). As a result, we obtain that lim supk→∞ A
εnk

nk,δ
(j) ⊆ {H ≥ j},

which is a contradiction.
To show the second inequality, we do not extract any subsequences. We argue on the event

{H ≥ j}, that is, the event that s̃∞ has at least j vertices v1, . . . , vj that are not incident to any
holes (see Section 7.1). For n large enough, sn = s∞ so that these vertices correspond to vertices
of V (qn). It is not hard to see that these vertices are such that HMult0n(v

•
n, vi) = 3. As a result, the

event Aεn
n,δ(j) holds, as long as mini6=i′ dqn

(vi, vi′) ≥ δn1/4. The “cactus bound” (see [CLGM13])
implies that the later condition holds for n large enough, provided that δ is smaller than some a.s.
positive random variable ∆, which is an explicit function of s∞ and L. We just showed that

P
(

{δ ≤ ∆} ∩ {H ≥ j}
)

≤ P
(

lim inf
n→∞

Aεn
n,δ(j)

)

and we conclude thanks to Fatou’s Lemma and by taking the limit δ → 0. �

The proof of Proposition 9 is very similar to the proof of Proposition 8; we leave it to the reader.

Often used notation

Σ
∂
g,p compact orientable surface of genus g with p boundary components . . . . . 2

g ≥ 0 fixed genus in which we work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

m, q map, quadrangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

V , E, ~E vertex set, edge set, half-edge set of a map . . . . . . . . . . . . . . . . . . . . . 5

dm graph metric on m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

e−, e+, ē origin, end, reverse of the half-edge e . . . . . . . . . . . . . . . . . . . . . . . . 5

e∗ root half-edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

v•, v•• distinguished vertices in q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

f•, f•• face of m carrying v•, face of m carrying v•• . . . . . . . . . . . . . . . . . . . . 14

(m, [l]) labeled map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

p ≥ 0 number of holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

h1, . . . , hp holes in q or in m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

n ≥ 0 number of internal faces of q / number of edges not incident to a hole in m . 5

σi half boundary length of hi in q / boundary length of hi in m . . . . . . . . . . 5

Qn,σ set of genus g quadrangulations with p boundary components having n internal
faces and such that hi is of degree 2σi, for 1 ≤ i ≤ p . . . . . . . . . . . . . . . 5

M1
n,σ set of genus g maps having n+|σ| edges and p+1 faces denoted by h1, . . . , hp, f•

such that, for all i, hi has a simple boundary, is of degree σi and is not adjacent
to any other hj , and such that the root is not incident to any hole hj . . . . . 14

M1
n,σ set of pairs (m, [l]) where m ∈ M1

n,σ and l is a suitable labeling function . . . 14

M2
n,σ similar definition as M1

n,σ with one additional face f•• . . . . . . . . . . . . . 14

M2
n,σ similar definition as M1

n,σ with one additional face f•• . . . . . . . . . . . . . 14
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s scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
~I(s), ~B(s) internal half-edges of s, boundary half-edges of s . . . . . . . . . . . . . . . . 18

q ∈ {1, 2} number of distinguished vertices in the bijection . . . . . . . . . . . . . . . . . 18

Sp,q set of schemes of type (p, q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

S⋆
p,q set of dominant schemes of type (p, q) . . . . . . . . . . . . . . . . . . . . . . . 22

(fe, le) labeled forest corresponding to the half-edge e ∈ s . . . . . . . . . . . . . . . . 19

ξe ≥ 1 length of the forest fe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

me ≥ 0 mass of the forest fe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

be bridge corresponding to the half-edge e ∈ s . . . . . . . . . . . . . . . . . . . . 19

Ce
(n), L

e
(n), B

e
(n) rescaled coding functions corresponding to the half-edge e . . . . . . . . . . . 21

(qσ∞, d
σ
∞) Brownian surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

∂qσ∞ boundary of (qσ∞, d
σ
∞) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

M ,fl underlying continuous map, floor of M . . . . . . . . . . . . . . . . . . . . . . 26

[[a, b]] range of the unique injective path linking a to b . . . . . . . . . . . . . . . . . . 26

∼, ≃ equivalence relation defining qσ∞, equivalence relation defining M . . . . . . 25

π canonical projection M → qσ∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

L continuous label function, defined on [0, 1] or M . . . . . . . . . . . . . . . . . 27

s•, ρ• argminL, base point qσ∞(s•) of qσ∞ . . . . . . . . . . . . . . . . . . . . . . . . . . 27

[s _ t] [s, t] if s ≤ t or [s, 1] ∪ [0, t] if t < s . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Φs simple geodesic from ρ• of index s . . . . . . . . . . . . . . . . . . . . . . . . . 32
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