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This paper focuses on the characterization and the stochastic modelling of the fluid
acceleration in turbulent channel flow. In the first part, the acceleration is studied by
direct numerical simulation (DNS) at three Reynolds numbers (Re∗ = u∗h/ν = 180,
590 and 1000). It is observed that whatever the wall distance is, the norm of
acceleration is log-normally distributed and that the variance of the norm is very
close to its mean value. It is also observed that from the wall to the centreline of
the channel, the orientation of acceleration relaxes statistically towards isotropy. On
the basis of dimensional analysis, a universal scaling law for the acceleration norm is
proposed. In the second part, in the framework of the norm/orientation decomposition,
a stochastic model of the acceleration is introduced. The stochastic model for the norm
is based on fragmentation process which evolves across the channel with the wall
distance. Simultaneously the orientation is simulated by a random walk on the surface
of a unit sphere. The process is generated in such a way that the mean components
of the orientation vector are equal to zero, whereas with increasing wall distance,
all directions become equally probable. In the third part, the models are assessed in
the framework of large-eddy simulation with stochastic subgrid acceleration model
(LES–SSAM), introduced recently by Sabel’nikov, Chtab-Desportes & Gorokhovski
(Euro. Phys. J. B, vol. 80, 2011, p. 177–187), and designed to account for the
intermittency at subgrid scales. Computations by LES–SSAM and its assessment
using DNS data show that the prediction of important statistics to characterize the
flow, such as the mean velocity, the energy spectra at small scales, the viscous and
turbulent stresses, the distribution of the acceleration can be considerably improved
in comparison with standard LES. In the last part of this paper, the advantage of
LES–SSAM in accounting for the subgrid flow structure is demonstrated in simulation
of particle-laden turbulent channel flows. Compared to standard LES, it is shown that
for different Stokes numbers, the particle dynamics and the turbophoresis effect can be
predicted significantly better when LES–SSAM is applied.
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1. Introduction
Beyond the traditional statement that channel flow is driven by the pressure gradient

working against the wall friction, recent studies at high Reynolds number revealed
an intriguing complexity of such a flow (see recent reviews by Marusic et al. 2010,
Smits, McKeon & Marusic 2011 or Jiménez 2012). The origin of this complexity
stems from the interactions between multiscale intermittent coherent motions. A
significant role is attributed to the viscous layer, in which most of the turbulent kinetic
energy is produced in tiny structures, comparable with the dissipative length scales.
When the Reynolds number is high, the direct numerical resolution of these scales
is hampered by limitations of computational resources. In the meantime, applying
the standard large-eddy simulation (LES) approach at high Reynolds number, the
momentum transfer across the channel remains ‘under-resolved’, and the wall shear
stress is inaccurately predicted (Piomelli & Balaras 2002). In order to account for
the effects of the discarded scales, various ideas and analytical frameworks have been
proposed. Examples include two widely used approaches: hybrid Reynolds-averaged
Navier–Stokes (RANS)/LES methods (Piomelli et al. 2003; Spalart et al. 2006;
Larsson, Lien & Yee 2007; Shur et al. 2008; Chaouat & Schiestel 2009) and LES
combined with a subgrid-scale (SGS) model (Kerstein 1999, 2002; Piomelli & Balaras
2002; Sagaut 2002; Schmidt, Kerstein & Wunsch 2003; Westbury, Dunn & Morrison
2004; Burton & Dahm 2005a,b; Kemenov & Menon 2006, 2007; Park & Mahesh
2008).

In this paper, we consider the second approach. Westbury et al. (2004) propose
simulating stochastically the residual stress tensor in the boundary layer. Their model
focuses on the reverse transfers of energy related to interactions between structures
of different sizes. Schmidt et al. (2003) propose stochastically estimating the near-
wall velocity fluctuations with a one-dimensional equation of turbulence (Kerstein
1999, 2002). In the approach of Kemenov & Menon (2006, 2007) the instantaneous
velocity field is decomposed into large-scale and small-scale parts. The small-scale
motions are simulated by the simplified one-dimesional momentum equation (in three
directions), and the modelled subgrid stress is coupled with large-scale equations.
These and other SGS models are well described and examined, and we do not
dwell on them further. Most important is that most of the SGS models (Meneveau
& Katz 2000) are focused on statistics of the residual velocity field. Customarily in
such models, the amplitude of the velocity fluctuations is not directly linked to the
Reynolds number, which is known to be an essential parameter of the small-scale
flow structure. This motivated Burton & Dahm (2005a,b) to combine LES with
a multifractal model of the small-scale vorticity field, which scales with the local
Reynolds number. They show that for homogeneous isotropic turbulence (HIT), the
model provides an intermittent velocity field in good agreement with statistics from
direct numerical simulations (DNS).

A natural alternative is to introduce the total acceleration (ai = ∂tui + uj∂jui) as a
key variable of the SGS model. This variable directly represents the resultant of forces
applied on the fluid and is essentially determined by the small-scale structures of the
flow. An SGS model based on the acceleration was proposed recently by Sabel’nikov,
Chtab-Desportes & Gorokhovski (2011), with applications to LES of HIT. Along with
improving the small-scale part of the energy spectra, this approach allows prediction
of the effects of intermittency reported earlier in the experimental studies of Mordant
et al. (2002) and Mordant, Crawford & Bodenschatz (2004a)

In this paper, our motivation is to study the statistics of the acceleration for channel
flow and to construct an SGS model based on this variable. Only a few investigations
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highlight the behaviour of the acceleration in channel flow (Christensen & Adrian
2002; Choi, Yeo & Lee 2004; Lee, Yeo & Choi 2004; Chen et al. 2010; Yeo, Kim
& Lee 2010). It is shown that acceleration is a strongly intermittent variable. As a
signature of its intermittency, the probability density function (p.d.f.) of acceleration
shows stretched tails (Choi et al. 2004). This intermittency is generally linked to the
dynamics of vortical near-wall structures. The strongest intermittency is observed in
the viscous wall layer, and is attributed to effects of near-wall streaks (Lee et al. 2004;
Yeo et al. 2010). Once the fluid-particle path is linked to a tiny helical motion, its
centripetal acceleration is characterized by large fluctuations. Around such a structure,
the acceleration direction changes rapidly, meanwhile its norm is preserved during the
structure lifetime. This leads to the long-time correlation of the acceleration norm,
versus the short time correlation of its orientation (of the order of the Kolmogorov
time). Previously, this was observed in high-Reynolds-number HIT: see experiments
by Voth, Satyanarayan & Bodenschatz (1998), Voth et al. (2002), Sawford et al.
(2003), Mordant, Crawford & Bodenschatz (2004b) and Xu et al. (2007), numerical
simulations by Pope (1990), Vedula & Yeung (1999), Tsinober, Vedula & Yeung
(2001), Sawford et al. (2003) and Yeung et al. (2006) as well as development of
models by Monin & Yaglom (1981), Pinsky, Khain & Tsinober (2000), Hill (2002),
Sawford et al. (2003) and Lamorgese et al. (2007); see also the review of Toschi
& Bodenschatz (2009). Consequently, for HIT there is an underlying suggestion of
time-scale separation of the norm and orientation of acceleration (Pope 1990; Mordant
et al. 2002, 2004a; Sabel’nikov et al. 2011):

ai = |a|ei, (1.1)

where |a| is the acceleration norm and ei is its orientation. In Sabel’nikov et al. (2011),
the two variables, |a| and ei are stochastically simulated as independent processes.
They showed that assumption (1.1) along with temporal correlation of orientation ei on
the Kolmogorov time scale is consistent with the Kolmogorov–Oboukhov 41 theory.

In our paper, along with the assumption of the decomposition (1.1), the modelling
of the acceleration for turbulent channel flow takes into account the two following
observations (Chen et al. 2010; Yeo et al. 2010): (i) the contribution of the
longitudinal solenoidal component is non-negligible in the viscous wall region;
(ii) tiny streaky motions close to the wall interact with the coherent structures of
the outer zone. However, to our knowledge the statistical universalities that may
be attributed to the acceleration norm and orientation across turbulent channel flow
remain unknown. This motivated us to perform DNS of turbulent channel flow, and
to analyse the scaling of |a| and ei with the wall distance and the Reynolds number.
In the framework of Barenblatt’s complete and incomplete similarities, we propose a
universal profile for the mean norm of acceleration across the channel. Further, with
our DNS, we observe that the acceleration norm presents a log-normal distribution
whatever the wall distances are, while its orientation manifests return to isotropy away
from the wall. In line with these observations, we propose to model the acceleration
norm by fragmentation processes under scaling symmetry evolving with the distance
from the wall. For the acceleration orientation, the evolution toward statistical isotropy
is simulated by a random walk on the unit sphere.

The objective is to assess these models for the computation of high-Reynolds-
number channel flow. To this end, our new stochastic models are coupled with
the Navier–Stokes equations in the large-eddy simulation with stochastic subgrid
acceleration model (LES–SSAM) framework of Sabel’nikov et al. (2011). Finally,
LES–SSAM is also assessed in turbulent channel flow with immersed solid inertial
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FIGURE 1. Channel flow. x, y, z represent the streamwise, the wall-normal and the spanwise
directions respectively.

point particles. In such a practically important flow, the particles interact with
turbulence at small scales, and hence, access to the flow structure at unresolved
scales is of primary importance for predictive simulations of the particle dynamics.

This paper is organized as follows. After a brief description of the numerical
approach in § 2, we focus in § 3 on universality in scaling of the acceleration norm
and orientation. In § 4, the new stochastic models are proposed and assessed by DNS
for the acceleration norm and orientation. The application is given in § 5, where in
the framework of LES–SSAM, the new stochastic models are assessed by comparison
with DNS and standard LES. At the end of § 5, this assessment is extended to channel
flows with inertial particles. The particle dynamics and the turbophoresis effect are
analysed in the framework of LES–SSAM, DNS and standard LES.

2. Details of the numerical simulations
Fully developed incompressible turbulent channel flow driven by a constant mean

pressure gradient is considered here. The flow is statistically homogeneous in the
streamwise (x) and the spanwise (z) directions and it is inhomogeneous in the wall-
normal direction (y) as illustrated in figure 1. The channel height is 2h. This flow is
given by the continuity and the Navier–Stokes equations:

∇ ·u= 0, (2.1)

∂u
∂t
+ (u ·∇)u=− 1

ρ
∇P+ ν∇2u, (2.2)

where ν is the kinematic viscosity and ρ the fluid density. Periodic boundary
conditions are imposed in the x- and z-directions. At the wall, the no-slip boundary
condition is applied:

u(y= 0)= u(y= 2h)= 0. (2.3)

Equations (2.1)–(2.3) are solved using a Galerkin spectral approximation (Fourier
Chebyshev) and the variational projection method in a divergence-free space. This
method is based on the original approach of Moser, Moin & Leonard (1983). The
further development of this method given by Buffat, Le Penven & Cadiou (2011)
was used with rotational form for convective terms in order to ensure the energy
conservation. For the computation of the Fourier transform of the nonlinear term the
3/2 de-aliasing rule is applied. The time integration uses the explicit Adams–Bashforth
algorithm for the nonlinear terms, and the semi-implicit algorithm for the diffusion
terms. This method was further tested in Zamansky, Vinkovic & Gorokhovski (2010),
by comparison of the velocity statistics in channel flow with the DNS of Moser, Kim
& Mansour (1999) and Hoyas & Jiménez (2008).
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FIGURE 2. (Colour online) Profiles of the mean (a) and of the variance-to-mean ratio (b) of
the acceleration norm for Re∗ = 180, 590 and 1000. Acceleration is normalized by a∗ = u3

∗/ν.

Re∗ Rec Nx × Ny × Nz Lx × Ly × Lz 1x+ ×1y+ ×1z+ dt+

180 3280 192×193×192 3πh× 2h× 4
3πh 9.0×(0.02∼ 3.0)×4.0 0.030

587 12490 384×257×384 3
2πh× 2h× 3

4πh 7.2×(0.04∼ 7.2)×3.6 0.033

1000 22250 512×385×512 4
3πh× 2h× 2

3πh 8.2×(0.03∼ 8.3)×4.1 0.034

TABLE 1. Parameters of the DNS. Ni and Li are the number of grid points and the domain
length in direction i. 1x+, 1y+ and 1z+ are the typical grid spacings and dt+ = dt/t∗ is
the time step.

Parameters of the present DNS are given in table 1, where Re∗ = u∗h/ν is
the Reynolds number based on the friction velocity u∗, while Rec = uch/ν is the
Reynolds number based on the mean channel-centre velocity (uc). In the following, the
superscript ‘+’ will denote quantities normalized by u∗, ν and ρ.

3. Statistics of acceleration
This section focuses on the evolution of the acceleration statistics with the wall

distance and the Reynolds number. In the first part we consider the statistics of the
acceleration norm. In the second part, the orientation of the acceleration vector is
studied, and finally we discuss the statistical independence of those two quantities. The
statistical properties observed by DNS are further used in § 4 for construction of an
SGS model for acceleration.

3.1. Norm of acceleration: log-normality and scaling properties
For three Reynolds numbers: Re∗ = 180, 590 and 1000, the profiles from our DNS
of the mean and the standard deviation of acceleration norm |a| = (aiai)

1/2 are given
in figure 2. It is seen that the acceleration norm is characterized by a peak close to
the wall, and that the profiles depend on the Reynolds number. In figure 2(b), the
ratio between the root-mean-square (r.m.s.) and the mean of the acceleration norm
is shown. This ratio stays relatively close to unity and tends to stay closer to unity
with increasing the distance to the wall and the Reynolds number. Hence for the
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acceleration norm we conclude that approximately:

|a|rms ≡ (〈|a|2〉 − 〈|a |〉2)1/2 ≈ 〈|a|〉. (3.1)

This is consistent with the dominant role of the fluctuations in the statistics of
acceleration components observed by Chen et al. (2010), even very close to the
wall.

Let us examine now the p.d.f. shape of ξ = |a|/|a|rms. By definition, the log-normal
distribution of ξ is given by:

L N (ξ ;µ, σ 2)= 1

ξ
√

2πσ 2
exp

(
−(ln ξ − µ)

2

2σ 2

)
(3.2)

with parameters µ and σ 2. When approximation (3.1) is used, along with the
expression of moments of the log-normal distribution (mk = exp(kµ + k2σ 2/2)), we
have:

σ 2 = ln 2, (3.3)

µ=− 1
2 ln 2. (3.4)

It is interesting to compare (3.2)–(3.4) with the one-point p.d.f. of ξ = |a|/|a|rms
obtained by the DNS data at different wall-normal distances, and at different Reynolds
numbers. This is shown in figure 3. It is seen that the p.d.f. shape remains almost
invariant with respect to the wall distance for all three Reynolds numbers. It is also
seen that the log-normal distribution (3.2)–(3.4) is very close to the DNS distributions,
even in the near-wall region. Besides, there is no appreciable departure from the log-
normality in the small sample space of strong statistical fluctuations. The log-normality
of the acceleration statistics has already been observed in HIT, by Yeung et al. (2006)
from DNS and experimental studies of Mordant et al. (2004b) and Reynolds et al.
(2005). Also it is stressed in these papers that the behaviour of the statistics of the
acceleration modulus may be different from those of the acceleration components.
Measurements of Mordant et al. (2004b) have shown, for HIT, that the shape of
the p.d.f. for the norm exhibits invariance with the Reynolds number whereas the
p.d.f.s of the components are Reynolds-number dependent. The log-normality of the
acceleration norm, observed here by DNS, will be assumed in § 4.1 of this paper for
the construction of a stochastic model for this variable.

Also interesting is the following question: how may the mean norm of acceleration
be scaled at a given distance from the wall? As a local reference acceleration scale,
we use the local Kolmogorov acceleration aη = 〈ε〉3/4ν−1/4 (〈ε〉 is the local mean
dissipation rate). Under the classical assumption, the flow properties at a given point
are specified by the wall shear stress τw, the kinematic viscosity ν, the fluid density
ρ, the distance to the wall y and the channel height h. Using these physical quantities,
dimensional analysis gives:

〈|a|〉
a∗
=Πa(y

+,Re∗), (3.5)

〈ε〉
ε∗
=Πε(y

+,Re∗), (3.6)

where a∗ = u3
∗/ν and ε∗ = u4

∗/ν are characteristic acceleration and dissipation wall
scales. Πa and Πε are two universal dimensionless functions with global and local



Acceleration in turbulent channel flow 633

(a)

5 10 15 20 25 30 350 40

104

102

100

10–2

10–4

106

10–6

(b)

5 10 15 20 25 30 350 40

104

102

100

10–2

10–4

106

10–6

(c)

5 10 15 20 25 30 350 40

104

102

100

10–2

10–4

106

10–6

FIGURE 3. p.d.f.s for the norm of acceleration for Re∗ = 180 (a), 590 (b), and 1000 (c) and
for several distances to the wall, each shifted upward by one decade, with the bottom line
corresponding to the lowest value of y+. The DNS data are compared with the log-normal
distribution with µ=−σ 2/2 and σ 2 = ln(2) (dashed lines).

parameters Re∗ and y+, respectively. Using the Kolmogorov scaling for the local
acceleration, the combination of (3.5) and (3.6) leads to:

〈|a|〉
aη
=Π ′a(y+,Re∗), (3.7)
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FIGURE 4. (Colour online) Comparison for Re = 180, 590 and 1000 between 〈|a|〉/aη and
the log-law (3.11). (a) Semi-logarithmic scale and (b) linear scale; inset: zoom in the near-
wall region and comparison with the linear curve 0.15y+.

where Π ′a = Πa/Π
3/4
ε is also a universal dimensionless function. Differentiating (3.7)

with respect to y+, it may be written:

y+
∂

∂y+
〈|a|〉
aη
= y+

∂

∂y+
Π ′a(y

+,Re∗)=Π ′′a (y+,Re∗). (3.8)

The DNS data from Lee et al. (2004), along with our DNS, show that the contribution
of viscous forces to the acceleration is dominant only in the viscous region (y+ < 30).
For larger distances from the wall, the solenoidal component of acceleration is
much smaller than its potential component. One may assume that for high enough
Re and y there is a region far from the wall and far from the centreline where
viscosity no longer influences the acceleration. Then, in the framework of complete
similarity (Barenblatt 1996) with respect to Re∗ and y+, and following the von
Kármán hypothesis of the vanishingly small effect of viscosity, it may be supposed
that Π ′′a (y

+→∞,Re→∞) adopts a constant value k:

y+
∂

∂y+
〈|a|〉
aη
=Π ′′a (∞,∞)= k. (3.9)

This leads to the logarithmic profile:

〈|a|〉
aη
= k ln y+ + A. (3.10)

We estimate constants k and A by DNS. The best fit of (3.10) to DNS data gives:
A = 0 and k ≈ 0.41 (surprisingly very close to the von Kármán constant κ , although
for the mean velocity profile, one finds 1/κ), i.e.

〈|a|〉
aη
= κ ln y+. (3.11)

In figure 4, the evolution of 〈|a|〉/aη from DNS is compared with (3.11) for three
Reynolds numbers. It is seen that in the outer layer (y+ > 50) the local mean norm of
acceleration scaled by the local mean Kolmogorov acceleration follows approximately
the logarithmic profile (3.11). Very close to the wall (y+ < 5), the quantity 〈|a|〉/aη
from DNS is linear (see inset in figure 4b). The transition region between the linear
and the logarithmic behaviour takes place for 5 < y+ < 50. We note here that in
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FIGURE 5. (Colour online) Comparison of 〈|a|〉/aη, in the plane (Ψa =
(lnRe/β1) ln(〈|a|〉/aη/(D0 lnRe + D1)); ln y+) between DNS for Re∗ = 180, 590 and 1000,
and (3.13) with β1 = 1, D0 = 0.15 and D1 = 0.01 (dashed line). (a) Log-linear scale (b) linear
scale.

Yeo et al. (2010), the linear behaviour of 〈|a|〉/aη in the inertial range with y+ was
proposed, with a slope depending on the Reynolds number.

An alternative physics in the estimation of (3.8) can be provided by assuming that
the viscosity has a small but not vanishing effect across the entire channel. In line with
Barenblatt’s incomplete similarity with respect to y+ and the lack of self-similarity
with respect to Re∗ (Barenblatt 1993), the following general form may be suggested in
the absence of a characteristic length of the flow:

∂

∂y+
〈|a|〉
aη
= 1

y+
B(Re) (y+)β(Re) . (3.12)

If Re→∞, the expansion of functions β(Re) and B(Re) in powers of a small
parameter 1/ lnRe leads to

〈|a|〉
aη
= (D0 lnRe+ D1) (y

+)β1/ ln(Re)
. (3.13)

Coefficients β1, D0 and D1 can be estimated from DNS as proposed by Barenblatt
& Prostokishin (1993). For the Reynolds number based on the centreline velocity
Re = Rec, it is found that β1 = 3/2, D0 = 0.10 and D1 = 0.02; for the Reynolds
number based on the friction velocity Re = Re∗, it is found that β1 = 1, D0 = 0.15
and D1 = 0.01. The values found here for exponent β1 by DNS are identical to those
proposed by Barenblatt (1993) for the mean velocity profile. In figure 5, (3.13) with
suggested constants β1, D0 and D1 is plotted against DNS data in the plane of the
following coordinates: (Ψa = (lnRe/β1) ln(〈|a|〉/aη/(D0 lnRe + D1)); ln y+). It is seen
that for y+ > 20, the DNS of 〈|a|〉/aη for all three Reynolds numbers collapse onto
a single curve. Also, for y+ > 100, the profiles of 〈|a|〉/aη for the three Reynolds
numbers are quite well fitted by the power-law function (3.13). The latter is presented
by the first bisectrix (Ψa = ln y+) in figure 5(a). Compared to figure 4, in which the
DNS data were fitted by the logarithmic profile (3.11), it is seen that the power law
(3.13) represents a slightly better fit of the DNS data. This is consistent with the
non-vanishing effect of viscosity across the whole channel, at least for this range of
Reynolds number.
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(a) linear scale and (b) semi-logarithmic scale.

In (3.13), the ratio D1/D0 is small compared to lnRe∗. Then this equation may be
simplified as:

〈|a|〉
a∗ lnRe∗

= aη
a∗

D0 (y
+)β1/ lnRe∗ . (3.14)

Recalling here the Kolmogorov scaling of acceleration aη and definitions of a∗ and
ε∗, using an estimation from Landau & Lifshitz (1987) 〈ε〉 = ε∗∂〈u+〉/∂y+, and
assuming again Barenblatt-type incomplete similarity (Barenblatt 1996): ∂〈u+〉/∂y+ =
(y+)aΦ(Re∗), one may rewrite (3.14) in the following form:

〈|a|〉
a∗ lnRe∗

= D0 (y
+)3ζ/4+β1/ lnRe∗ Φ(Re∗), (3.15)

where the exponent ζ is also assumed to be a function of Re∗. In spite of this complex
dependence on Re∗ provided by the similarity analysis, one may ask: is it possible to
associate a self-similarity argument to 〈|a|〉/a∗ lnRe∗, such that this quantity becomes
universal across the whole domain of y+ for all three Reynolds numbers Re∗ = 180,
590 and 1000? To this end, we introduce the following evolution parameter:

τ = ln
(

h

h− y

)
=− ln

(
1− y+

Re∗

)
. (3.16)

This parameter is equal to zero at the wall: y = 0, τ = 0, and tends to infinity when
the wall-normal distance reaches the external flow scale – the channel centreline
here: y→ h, τ →∞. The logarithmic form of this parameter is convenient for
the representation of long-distance influences of the wall. Further motivations and
references for the choice of this parameter are provided in § 4.

In figure 6, the DNS data are plotted against τ+ = τRe∗. It is seen that for the three
Reynolds numbers, profiles 〈|a|〉/a∗ lnRe∗ from DNS collapse almost on a single curve
up to approximately y/h= 1− exp(−τ+/Re∗) < 0.85. This supports to some extent the
universality of the introduced coordinates:(

a

a∗ lnRe∗
; τ+

)
. (3.17)
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FIGURE 7. (Colour online) Coordinate system, and definition of angles φ, θ , γ and β.

3.2. Orientation of acceleration: return to isotropy
As shown schematically in figure 7, the acceleration orientation ei = ai/|a| is defined
on the unit sphere by two angles denoted here as ‘longitude’ φ and ‘latitude’ θ . These
angles lie in two orthogonal planes: φ (−π < φ 6 π) in the plane (x, z) parallel to the
wall, and θ (−π/2 6 θ 6 π/2) in the normal-to-wall plane (x, y). θ = 0 and θ =±π/2
correspond to alignment with the wall and to the wall-normal directions, respectively.
Each component of the orientation is then given by:

ei = ai

|a| =


ex = cos(θ) cos(φ)
ey = sin(θ)
ez = cos(θ) sin(φ).

(3.18)

With these definitions, the p.d.f.s of φ and θ corresponding to a statistically
isotropic orientation are:

Pφ,iso(φ)= 1
2π
, −π< φ 6 π, (3.19)

Pθ,iso(θ)= |cos(θ)|
2

, −π
2

6 θ 6
π

2
. (3.20)

Corresponding to these distributions the mean of sinφ and sin θ is zero and the
variance is given by:

〈sin (φ)2〉iso =
∫ π
−π

sin (φ)2 Pφ,iso(φ) dφ = 1
2
, (3.21)

〈sin (θ)2〉iso =
∫ π/2
−π/2

sin (θ)2 Pθ,iso(θ) dθ = 1
3
. (3.22)

In figure 8, the variances of sinφ and sin θ are compared to (3.21) and (3.22) for
Re∗ = 180, 590 and 1000. In figure 8(a), it can be seen that across the channel, the
deviation of 〈sin (φ)2〉 from 〈sin (φ)2〉iso given by (3.21) is quite small. Concerning the
DNS of 〈sin (θ)2〉 (see figure 8b), in the inner layer, the variance increases almost
linearly with the wall distance until y+ ≈ 20. For intermediate distance to the wall (say
y+ > 50 and y/h< 0.3), 〈sin (θ)2〉 is shown to be very close to the isotropic orientation
value (3.22). This intermediate range seems to correspond to the actual domain of
validity of the logarithmic law of the velocity profile (Pope 2000). For larger distances
to the wall, the variance of sin θ presents an Re∗-dependence but stays approximately
close to its value for isotropic orientation. Finally, note that the orientation is not well
defined when the acceleration is zero. This prevents observation of the orientation too
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FIGURE 8. (Colour online) Profile of the variance of φ (a) and θ (b) for Re∗ = 180, 590 and
1000 (same line styles as previous figures). Variance of φ and θ is normalized by their values
in the case of isotropy: (3.21) and (3.22). Inset: zoom in the near-wall region (y+ < 100).
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FIGURE 9. p.d.f.s of φ (a) and of θ (b) at different distances to the wall (each shifted by
one decade upward, with the bottom line corresponding to the lowest value of y+). DNS for
Re∗ = 1000 (continuous lines), and comparison with the isotropic p.d.f.s (dashed lines) Pφ,iso
and Pθ,iso, (3.19) and (3.20).

close to the wall (say y+ < 1). To some extent, this relaxation towards isotropy is
confirmed by the DNS of Antonia, Kim & Browne (1991). In their study, the classical
hypothesis of local isotropy of the small-scale motions in turbulent channel flow
(Re∗ = 180 and 395) was assessed by invariants of the velocity-derivative tensor. It is
found that very close to the wall, the turbulent structures are almost bi-dimensional.
The isotropy in the small-scale motions is observed by those authors only near the
centre of the channel.

In figure 9, the p.d.f.s of both φ and θ are shown for Re∗ = 1000 at different
distances to the wall. It is seen that P(φ) (figure 9a) does not vary appreciably from
Pφ,iso(φ) given by (3.19). Nevertheless, it may be observed that very close to the
wall (y+ < 10), the acceleration is preferentially oriented in the upstream direction
(φ = ±π), while larger distances to the wall (y+ > 30) are associated preferentially
with the transverse direction (φ =±π/2). In figure 9(b), it is seen that with increasing
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FIGURE 10. (Colour online) Comparison between length scale Ls =
√〈ε〉/S3 and

η = 〈ε〉−1/4ν3/4 in wall units where l∗ = ν/u∗ ; Re∗ = 180, 590 and 1000.

y+, P(θ) approaches its isotropic distribution Pθ,iso(θ) given by (3.20). This figure also
displays that close to the wall, the most probable value of θ is close to 0, which means
that the orientation is almost parallel to the wall. The slightly positively skewed p.d.f.
of θ close to the wall may be attributed to the non-zero positive mean vertical pressure
gradient (Pope 2000).

As a condition of local isotropy in the inertial subrange, it was required by
Champagne, Harris & Corsin (1970) to have the time scale of energy transfer much
smaller than the mean shear time scale, at which energy is produced: (k3E (k))−1/2�
1/S, where k is the wavenumber, E is the energy spectra, S = (1/2)d〈u〉/dy is the
mean shear. In terms of length scales, with E (k) ∝ 〈ε〉2/3k−5/3, this condition is
k−1 �√〈ε〉/S3. According to Champagne et al. (1970) Ls =

√〈ε〉/S3 is the length
scale separating the shear-dominated large scales and the region where local isotropy
may be encountered. In figure 10, Ls is compared to the Kolmogorov length scale
η = 〈ε〉−1/4ν3/4 which is a typical scale for the acceleration. Both scales are given in
units of the viscous sublayer length scale l∗ = ν/u∗. It is seen that in the viscous
sublayer (y+ < 5), Ls and η are equal to each other, and are very close to the viscous
length scale l∗ = ν/u∗. This implies that, in this region, the flow is strongly anisotropic
even at the smallest scale. When distance to the wall increases, Ls grows much faster
than η. For example at y+ = 50 we have Ls/η ≈ 100, satisfying the condition for local
isotropy given by Champagne et al. (1970).

The DNS data in figures 8 and 9 suggest relaxation of orientation of acceleration
towards statistical isotropy with increasing distance to the wall: at y+ < 10, the
preferential orientation is aligned with the wall, while at y+ = 50, statistical isotropy of
orientation is almost reached. Also, from figure 9 it is seen that the mean components
of the acceleration orientation are very close to zero. The linear increase of 〈sin2θ〉
when y+ increases to y+ ≈ 20 may imply a diffusive character (or random walk) of
the θ -evolution towards statistical isotropy of the acceleration orientation. In order to
reproduce such behaviour, the Brownian random walk on a unit sphere, with relaxation
towards a uniform isotropic distribution, is introduced in § 4.

Another property of φ and θ is that to some extent they may be viewed as
two statistically independent angles. This is demonstrated in figure 11 in which for
Re∗ = 1000, p.d.f.s of θ conditioned on φ are presented in the highly anisotropic
region, y+ = 5 and y+ = 20. One can see that φ has very little effect on the distribution
of θ . It is also interesting to present the acceleration magnitude as a function of the
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FIGURE 11. (Colour online) p.d.f. of θ conditioned on φ for Re∗ = 1000 at y+ = 5 (a) and at
y+ = 20 (b). Comparison with the isotropic distribution Pθ,iso as given by (3.20).

acceleration orientation. The mean norm of acceleration conditionally averaged on its
orientation is given in 12 for Re∗ = 1000. Figures 12(a) and 12(b) show the mean
profiles conditioned on φ and θ , respectively. It is clearly seen that in the viscous wall
region (y+ < 30), the acceleration magnitude depends on its orientation. For example,
in the viscous layer, the magnitude of acceleration is dominated by events such as
ejections (positive θ ). Close to the wall (in the viscous sublayer), the acceleration in
the upstream direction appears to be also significant, providing the peak around y+ ≈ 5
in the acceleration norm profile conditionally on φ = ±π. However, for larger y+,
y+ > 30, the preferential orientations are no longer seen. Another illustration comes
from figure 13 where p.d.f.s of the acceleration norm conditioned on φ and θ at
y+ = 20 are shown. Already by y+ = 20 these p.d.f.s are practically independent of
the value of orientation angle; they stay log-normal as was already observed for the
unconditional p.d.f. in figure 3. We observe from our DNS that this log-normality
persists for greater distances to the wall, and for the other Reynolds numbers.

A stochastic simulation of the subgrid acceleration is provided in the subsequent
sections. The proposed models are based on statistical properties obtained by DNS, as
described above for Re∗ = 180, 590 and 1000.

4. Stochastic model for acceleration
In the framework of (1.1), the stochastic model for the acceleration is given by the

product of two independent stochastic processes, one for the acceleration modulus, the
other for its orientation.

For the acceleration norm we consider that the stochastic process evolves with
increasing distance from the wall, and not locally with time, in contrast with
Sabel’nikov et al. (2011). Such a process will be characterized by correlation across
the whole channel. Two different stochastic processes for the acceleration modulus are
proposed hereafter, both in the framework of fragmentation under scaling symmetry.
The homogeneous scaling symmetry transformations across the channel are defined by
the operator exp[ln a(∂/∂ξ)ξ ] with ξ = h − y/h and 0 < α < 1. These homogeneous
transformations across the channel induce a transformation group for the acceleration
modulus whose parameter is τ = ln(h/(h− y)). The proposition here is to describe the
statistical evolution from the wall to the channel centreline through this parameter
only. This parameter, referred to as the evolution parameter, was introduced in
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FIGURE 12. Profile of the variance of the acceleration norm conditioned on φ (a) and
θ (b) for different values of the angle (each shifted upward by 0.1 unit, with the bottom
line corresponding to the lowest value of φ and θ respectively, from DNS at Re∗ = 1000
(continuous lines), comparison with the unconditioned profile (dashed lines).
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FIGURE 13. p.d.f. of |a| normalized by its standard deviation conditioned on (a) φ and
(b) θ for Re∗ = 1000 at y+ = 20 (each shifted upward by one decade, with the bottom line
corresponding to the lowest value of φ and θ respectively). Comparison with log-normal
distribution with parameters: µ=−σ 2/2 and σ 2 = ln(2) (dashed lines).

the previous section. More arguments on the use of such an evolution parameter
in describing the turbulence under continuous symmetry scaling can be found in
Saveliev & Gorokhovski (2012, 2005) and Gorokhovski (2003). The expression for τ
is convenient, since at the wall τ = 0, and it tends to infinity on the channel centreline.

In terms of Kadanoff (2000), the first model represents a ‘non-self-averaging’
stochastic process. In this process (Gorokhovski & Saveliev 2008), the Kolmogorov
log-normal distribution represents the earlier asymptotic distribution, with two
parameters: the first two logarithmic moments of the fragmentation intensity spectrum.
The later asymptotic in this process is a power law with a single parameter, given by



642 R. Zamansky, I. Vinkovic and M. Gorokhovski

the ratio of these two logarithmic moments. These moments are introduced here as a
function of the logarithm of the Reynolds number. The second model assessed in this
paper represents a ‘self-averaging’ process. Consistently with the DNS, this process
starts with a log-normal distribution close to the wall. With increasing distance from
the wall, this distribution translates in the sample log-space, in such a way that in
the channel mid-plane, its mean is relaxed to assumed estimations from homogeneous
isotropic turbulence.

Simultaneously, the orientation of acceleration is stochastically simulated by a
random walk on a sphere. The stochastic process for unit vector of orientation
ei(t) evolves hereafter with the parameter τ as well as with time. These two
evolutions of the orientation are characterized by a short-scale correlation. In time,
the components of the orientation vector ei (ekek = 1) are assumed to be correlated on
the Kolmogorov time scale τη similarly to Sabel’nikov et al. (2011) for consistency
with the Kolmogorov–Oboukhov 41 theory, while with τ the short-scale correlation
will reproduce the evolution towards isotropy observed from the DNS.

4.1. Two different models for the acceleration modulus

In our model, the local acceleration norm is expressed as |a| = y(u2
∗/ν) f . Here yu2

∗/ν
is assumed to be a characteristic velocity increment at the point of interest y, and f
corresponds to the frequency at which this increment changes. In wall units, the above
relation becomes:

|a+| = y+f+, (4.1)

where f+ = ν/u2
∗ f . It is supposed that f is a stochastic variable evolving across

the channel. The following assumptions are made for its evolution. Near the wall,
it is characterized mostly by high-frequency events, thereby emulating small-scale
turbulent motions. In the outer region, f is characterized by low frequencies, which
may be alternated by rare events of high frequency. Those rare events may represent
ejections of small-scale turbulence towards the outer region. The main assumption is
that with increasing wall distance, the frequency f is governed by a fragmentation
process under scaling symmetry, i.e. f → αf , where 0 < α < 1 is a random coefficient
(Gorokhovski & Saveliev 2008). In this process, for any value of τ in the evolution
of the distribution G(f ; τ), we have 〈(ln f − 〈ln f 〉)2〉/〈ln f 〉 = 〈ln2α〉/〈lnα〉, with
〈ln f 〉 = ∫∞0 G(f ) ln f df . Here 〈lnα〉 and 〈ln2α〉 are the first two logarithmic moments
of α. In the Ito interpretation, the corresponding stochastic process is:

df = (〈lnα〉 + 〈ln2α〉/2)f dτ +
√
〈ln2α〉/2f dW(τ ), (4.2)

where dW(τ ) is the Wiener process: 〈dW(τ )〉 = 0 and 〈 dW (τ )2〉 = 2 dτ . It is
prescribed further that 〈ln2α〉/〈lnα〉 = −1/2, and 〈lnα〉 = −k1Re∗, where k1 = 0.04
is determined as the best fit to the DNS data.

In order to start the stochastic process (4.2), one needs to assume the initial
distribution of f . To this end, the frequency f at the wall (τ = 0), denoted here by
fw, is given as follows. From (4.1) we have: fw/(u2

∗/ν) = limy→0〈|a+|〉/y+. Since close
to the wall, according to DNS (see figures 6 and 14), the quantity 〈|a|〉/ lnRe∗ is a
linear function of y+ and is independent of the Reynolds number, one may write:

fw

u2∗/ν
= k2 lnRe∗, (4.3)
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FIGURE 14. (Colour online) Profile of the norm of acceleration for Re= 180, 590 and 1000
from DNS, zoom in the near-wall region. Dashed line: 0.01 slope.
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FIGURE 15. (Colour online) (a) Mean value for |a| from the stochastic model (4.2) (symbols)
and comparison with DNS (lines) for Re∗ = 180, 590 and 1000. (b) p.d.f. of |a| from
the stochastic model (4.2) for Re∗ = 1000 and y+ = 0, 3, 10, 30, 70 and 300, equivalent
respectively to τ = 0, 3× 10−3, 10−2, 3× 10−2, 7.2× 10−2 and 0.37, each shifted upward by
one decade, with the bottom line corresponding to the lowest value of y+. Comparison with
the log-normal distribution of parameters: µ=−σ 2/2 and σ 2 = ln(2) (dashed lines).

where k2 is a constant with ascribed value 0.01 from DNS. In figure 14, the profile
of 〈|a|〉/ lnRe∗ from the DNS is compared to line 0.01y+. Finally, f /fw is chosen to
be log-normally distributed at the wall, with the mean equal to variance, i.e. values
− ln
√

2 and ln 2 are ascribed to the mean and variance of ln(f /fw), respectively. These
assumptions, namely the presumed log-normal distribution of f /fw as well as the
equality of the mean and the variance, are consistent with observations from DNS
(figures 2 and 3 and (3.1)–(3.4)).

The statistics obtained by (4.1)–(4.3), using k1 = 0.04 and k2 = 0.01, are presented
in figure 15. In figure 15(a) the mean profile of the acceleration norm is shown
against DNS for Re∗ = 180, 590 and 1000. It is seen that although the evolution
of the profiles is only qualitatively reproduced by our model, the maximum values
agree quite well with the DNS data, and the agreement is satisfactory in the range
10 < y+ < 100. In figure 15(b) we present the p.d.f.s of |a| as obtained by the
stochastic model at different τ . These distributions are compared with the log-normal
distribution, in which the mean is equal to the standard deviation. As prescribed
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by the wall condition, it is seen that for small τ , the p.d.f. is quite close to the
log-normal shape. However when τ increases further, the p.d.f. develops very stretched
tails, which may represent rare events of intense acceleration. This process has no
characteristic scale and presents a self-similar evolution across the channel. This leads
to the development of a power-law distribution for the acceleration norm. However,
such an evolution towards the power-law distribution at large values of τ clearly
does not correspond to the DNS observations of turbulent channel flow, where the
distribution remains log-normal across the whole channel, and |a|rms ≈ 〈|a|〉. These
observations suggest a cut-off of the fragmentation frequency with relaxation of the
p.d.f.s to the log-normal distribution.

This motivates assessing another model. In the second model, the relaxation
parameter is imposed by the ‘external’ turbulent stream. Since in the DNS, |a| is
log-normally distributed over the entire channel, and |a|rms ≈ 〈|a|〉, the same behaviour
should be attributed to f+ (f+ remains defined by (4.1): f+ = |a+|/y+). For a given τ ,
χ = ln f+ is supposed to be Gaussian, with f+rms(τ ) = 〈f+〉(τ ). It is helpful to remark
that for the following Ornstein–Uhlenbeck process:

dχ =−(χ − µ∞) dτ
Tχ(τ )

+
√

2σ 2
χ

Tχ(τ )
dW(τ ), (4.4)

the solution for the first and second moments is given respectively by:

〈χ〉(τ )= µ∞ + (µ0 − µ∞) exp[−Γ (0, τ )], (4.5)

〈χ ′2〉(τ )= 〈χ ′2〉|τ=0 exp[−2Γ (0, τ )] + 2σ 2
χ

∫ τ

0
exp[−2Γ (s, τ )] ds

Tχ(s)
, (4.6)

where Γ (τ1, τ2) =
∫ τ2
τ1

ds/Tχ(s) and µ∞ and σ 2
χ are given parameters of (4.4);

Tχ = Tχ(τ ) is a given positive function; µ0 and 〈χ ′2〉|τ=0 represent respectively the
mean and the variance at the wall (i.e. τ = 0) and dW(τ ) is the Wiener process
(〈dW(τ )〉 = 0 and 〈dW (τ )2〉 = 2 dτ ). On the centreline, τ →∞, from (4.5) we have:

〈χ〉(τ →∞)= 〈ln f 〉|τ→∞ = µ∞. (4.7)

Furthermore from (4.6), if Tχ = Tχ(τ ) is a positive function, and 〈χ ′2〉|τ=0 = σ 2
χ , one

obtains:

〈χ ′2〉(τ )= 〈χ (τ)2〉 − 〈χ (τ)〉2 = σ 2
χ (4.8)

for any τ > 0. This implies that once the Gaussian distribution for χ(τ) (the
log-normal distribution for f (τ )) is assumed at τ = 0, the process (4.4) translates
this distribution in the sample space with increasing τ . Approaching the channel
centreline, its mean tends to (4.7). Here again, from the definition of moments
of the log-normal distribution, the case f+rms(τ ) = 〈f+〉(τ ) corresponds to σ 2

χ = ln 2.
Denoting fc = 〈f (τ →∞)〉 = exp(µ∞ + σ 2

χ/2), the corresponding stochastic equation
for f+(τ )= exp(χ(τ)) may be obtained by using the Ito transformation. Following the
log-normal stochastic model of Pope & Chen (1990) and Pope (1991), this equation is:

df

f
=−

(
ln
(

f

fc

)
− σ

2

2

)
dτ

Tχ(τ )
+
√

2σ 2
χ

Tχ(τ )
dW(τ ). (4.9)

Three parameters have to be specified from DNS: the mean quantity fc = 〈f (τ →
∞)〉 on the centreline; the correlation scale Tχ(τ ) as a function of τ ; and the mean
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FIGURE 16. (Colour online) (a) Profiles of the Kolmogorov acceleration against τRe∗
obtained by DNS with Reynolds numbers from Re∗ = 180 to 2000 (the first four curves,
Re∗ = 180, 550, 950, 2000, are from DNS of Hoyas & Jiménez (2008) and the last three are
from our DNS), and estimation from (4.11) with k1 = 0.12 (dashed lines). (b) Comparison of
the Kolmogorov acceleration at the channel centre from (4.11) with k3 = 0.12 (crosses) and
the DNS (continuous lines).

quantity fw = 〈f (τ = 0)〉. The latter is defined as in the first model (figure 14 and
(4.3)). Namely, f+w = k2 ln Re∗ with k2 = 0.01, and the initial log-normal distribution for
f /fw with parameters σ 2

χ = ln 2 and µ0 =−(1/2)σ 2
χ is assumed.

In order to obtain the mean quantity fc = 〈f 〉(τ →∞) in the channel mid-plane, we
applied estimations used for HIT. By definition, f+c = 〈|a(y= h) |+〉/Re∗, and according
to (3.11):

〈|a|〉|y=h

aη|y=h
= κ lnRe∗. (4.10)

Here the Kolmogorov acceleration in the channel mid-plane is given by aη|y=h =
ε

3/4
y=h/ν

−1/4, εy=h being the mean dissipation in the mid-plane. Using the Taylor
estimation of the dissipation in isotropic turbulence, ε ≈ 15νu2

rms/λ
2, and using the

channel mid-plane height, instead of the integral length scale, in the relationship
between the Taylor and integral length scales, λ = h/

√
Rec, the dissipation in the

mid-plane is estimated as

εy=h ≈ k3ν
u2
rms(y= h)

h2
Rec, (4.11)

where k3 is a constant determined by DNS. In figure 16 the acceleration scale
aη|y=h = ε3/4

y=h/ν
−1/4 for two cases is compared: the case when the mean dissipation

at y = h is given by DNS; and when that dissipation is obtained by (4.11), with
k3 = 0.12. The different Reynolds numbers from our DNS and the DNS of Hoyas &
Jiménez (2008) are taken. For a broad range of Reynolds numbers, estimation (4.11)
with the chosen k3 = 0.12, predicts quite correctly the magnitude of aη|y=h. Then,
(4.10) predicts 〈|a|〉|y=h and, consequently, fc:

f+c = κ
lnRe∗
Re∗

(
εy=h

ε∗

)3/4

. (4.12)

The correlation scale Tχ(τ ) is determined from the autocorrelation of the
acceleration norm in the wall-normal direction. The autocorrelation coefficient of the
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acceleration norm, for each fixed homogeneous plane parallel to the wall, at height y,
is defined as:

ρ|a|(y, r)= 〈|a |′(x)|a |′(x+ r)〉
(〈|a |′ (x)2〉〈|a |′ (x+ r)2〉)1/2

. (4.13)

Here |a(x)|′ = |a(x)| − 〈|a(x)|〉 is the fluctuation of the acceleration norm at point x.
The distance vector r is chosen in the wall-normal direction. Figure 17(a) represents
DNS of this autocorrelation for different distances to the wall. Integration of (4.13)
over distances r yields the integral length scale for the acceleration norm. It is seen in
figure 17(a) that due to the flow confinement, two wall-normal directions have to be
distinguished, one towards the channel centreline, and another towards the wall:

L|a|,r+(y)=
∫ 2h−y

0
ρ|a|(y, r) dr, (4.14a)

L|a|,r−(y)=
∫ 0

−y
ρ|a|(y, r) dr. (4.14b)

In figure 17(b), both integral length scales obtained by DNS are shown as functions
of y+ and for three Reynolds numbers. They are compared with two functions: one is
proportional to y+, another to

√
y+. It is seen that integral length scales from DNS are

very weakly related to the Reynolds number. When the distance to the wall becomes
significant, the confinement no longer has an influence, and the difference between the
two correlation scales, L|a|,r+(y) and L|a|,r−(y), is small. Furthermore, it is seen that
for y+ > 30, L+int ∼

√
y+ represents a quite correct approximation. When the stochastic

variable f is considered, the same behaviour may be prescribed to its correlation scale
Tf . By analogy with Pope & Chen (1990), it is suggested that Tf ∼ Tχ and by inverting
(3.16), one obtains:

Lint(y+((τ ))
h

≈ Tχ(τ )= c√
Re∗

√
1− e−τ . (4.15)

Here c is a constant supposed to be independent of the Reynolds number. The value
c= 25 is ascribed as the best fit to DNS data.

With these specified parameters, the evolution of 〈f 〉(τ ) corresponding to (4.9) is
given by:

〈f 〉(τ )
fw
=
(

fc

fw

)1−expΓ (τ)

, (4.16)

where

Γ (τ)=
∫ τ

0

dτ ′

Tχ(τ ′)
= 2

√
Re∗
c

ln
(√

eτ +√eτ − 1
)
. (4.17)

The mean acceleration norm obtained from (4.16), (4.17) and (4.1) is plotted in
figure 18 against the DNS profiles. For the three tested Reynolds numbers, the
model (4.9) produces a mean acceleration norm in good agreement with DNS data.
Moreover, with the prescribed value σ 2

χ = ln 2 and with the chosen initial conditions,
we have frms(τ ) = 〈f 〉(τ ) and the log-normal distribution of f /〈f 〉, with parameters
µ=−(1/2)σ 2 and σ 2 = ln 2. This is consistent with our observations from DNS.
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(b) Evolution with the wall distance of integral scales L|a|,r+ and L|a|,r− (4.14) from DNS for
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FIGURE 18. (Colour online) Mean value for |a| from the stochastic model (4.9) (symbols)
and comparison with DNS (lines) for Re∗ = 180, 590 and 1000.

4.2. Model for the orientation of the acceleration vector
The evolution of the acceleration orientation vector is simulated by a random walk on
the surface of the unit sphere. With increasing distance from the wall, the change of
position on this sphere is given by the two following expressions:

γ = 2D dW, 0 6 β < 2π, (4.18)

where as illustrated in figure 7, γ is the arclength between two successive positions
on the sphere and β is the initial direction from a point k to the point k + 1. In
(4.18), β is chosen randomly from a uniform distribution, D is a diffusion coefficient
and dW is the standard Wiener process defined by 〈dW〉 = 0, 〈dW2〉 = 2 dτ+, where
dτ+ = Re∗ dτ represents the increment in the wall-normal direction. The evolution of
the angles θ and φ from θk, φk to θk+1, φk+1, is linked to β and γ by the following
geodesic relations:

θk+1 = sin−1(sin θk cos γ + cos θk sin γ cosβ),
φk+1 = φk + arg(ζ ),

}
(4.19)
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where ζ is a complex number with real and imaginary parts given by Re(ζ ) =
sinβ sin γ cos θk and Im(ζ )= cos γ − sin θk sin θk+1, respectively.

Owing to the finite surface of the sphere, regardless of the initial distribution of θ
and φ, this process reaches a diffusive ‘equilibrium’ for large τ+. It corresponds to the
statistical isotropy of the orientation; then the p.d.f.s of θ and φ become:

Pθ(θ, τ
+→∞)→ Pθ,iso(θ),

Pφ(φ, τ
+→∞)→ Pφ,iso(φ),

}
(4.20)

where Pθ,iso(θ) and Pφ,iso(φ) are given by (3.19) and (3.20), respectively.
Following our DNS observations (figures 8 and 9), the orientation vector is chosen

to be initially given by a random orientation in the wall-parallel plane:

Pθ(θ, τ
+ = 0)= δ(θ),

Pφ(φ, τ
+ = 0)= Pφ,iso(φ),

}
(4.21)

where δ is the Dirac distribution. As seen from the definitions of θ and φ

(3.18), this condition at the wall gives for the mean orientation vector components:
〈ex(τ = 0)〉 = 〈ey(τ = 0)〉 = 〈ez(τ = 0)〉 = 0.

In summary, starting with (4.21), and with increasing τ+, the stochastic process
given by (4.18) and (4.19) provides a convergence of the p.d.f.s of θ and φ

towards (4.20). It is worth noting that the statistical azimuthal symmetry (i.e. the
invariance of the statistics with an arbitrary rotation in the wall-parallel plane),
imposed by the condition at the wall, is preserved during the evolution of the process:
Pφ(φ, τ+) = Pφ,iso(φ) for all values of τ+. Furthermore, the statistical symmetry of
reflection about the ‘equator’ plane of the sphere (θ = 0) is conserved when τ+

increases. Hence with the condition at the wall (4.21) the ensemble average of the
orientation vector components is:

〈ex〉 = 〈ey〉 = 〈ez〉 = 0, (4.22)

whatever the wall distance.
It is required to provide the Kolmogorov time scale as the correlation time in

simulation of the temporal evolution of ei(t). Introducing a correlation of the order
of τη in addition to the wall-normal evolution requires solving a partial differential
stochastic equation. As in Sabel’nikov et al. (2011), the simplified procedure is
employed here: the new value ei is generated by (4.18) and (4.19) after a time lag
t − t0 equal to the local Kolmogorov time scale, thereby replacing the exponential
relaxation function 〈ei(t)ej(t0)〉 = δij exp(−2|t − t0|/τη) by its approximation, as a linear
function. Similar approximations have been used by Chevillard & Meneveau (2006)
and Afonso & Meneveau (2010) for modelling the correlation of the velocity gradient
deformation.

In (4.18) and (4.19), the only parameter is the diffusion coefficient D. Previously, in
figure 8, it has been shown by DNS that the variance of θ evolves linearly with y+ in
the near-wall region (note that in this region τ+ ≈ y+). This allows us to estimate the
diffusion coefficient D. As seen in figure 19, the DNS data suggest that D = 0.01 is a
good approximation for all three tested Reynolds numbers. Using this value, figure 19
shows that model (4.18), (4.19) and (4.21) can correctly predict the DNS profiles of
the variance of θ by giving an evolution towards the isotropic variance.

Another comparison with DNS at Re∗ = 1000 is given in figure 20 for the p.d.f.s
of θ at different channel heights y+. Here, the comparison is less satisfactory, since
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FIGURE 20. p.d.f. of θ at different distances to the wall, shifted upward by one decade with
increasing wall distance. Comparison between the stochastic model (4.18), (4.19) and (4.21)
and DNS for Re∗ = 1000.

at small wall distances, the Brownian motion on the sphere fails to reproduce the
large fluctuations of orientation observed by DNS. Owing to the prescribed distribution
at the wall, neither can the small skewness be reproduced. Nevertheless, as expected,
with increasing wall distance, the simulated distribution of θ approaches the isotropic
distribution and the DNS distribution.

5. Large-eddy simulation with stochastic subgrid modelling of acceleration
In this part of the paper, the stochastic models developed in the previous section

are applied, as a subgrid acceleration model, in LES of fully developed turbulent
channel flow. This is done in the framework of the LES–SSAM approach (large-
eddy simulation coupled with stochastic subgrid acceleration model). The LES–SSAM
approach was recently introduced by Sabel’nikov et al. (2011), and applied to HIT
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simulations. In this approach, the instantaneous total acceleration is decomposed into
two parts, filtered and residual. Both parts need to be modelled to obtain a closed
system of equations. A surrogate flow, simulated by the stochastic Navier–Stokes
equations (SNSE), is then considered as an approximation to the instantaneous non-
filtered velocity field. The SNSE derived by Sabel’nikov et al. (2011) is:

âi = ∂ ûi

∂t
+ ûj

∂ ûi

∂xj
=− 1

ρ

∂P̂

∂xi
+ ∂

∂xj

[
(ν + νt)

(
∂ ûi

∂xj
+ ∂ ûj

∂xi

)]
+ a?i . (5.1)

Here ûi represent the components of the surrogate velocity field, νt is an eddy-viscosity
model, and a?i is the stochastic variable. The latter can be thought of as the total
acceleration in the non-resolved part of the velocity field which is required to be
solenoidal. Finally, P̂ is the pressure, that ensures incompressibility of the surrogate
velocity field:

∂ ûj

∂xj
= 0. (5.2)

Two models for the stochastic acceleration a?i are applied to (5.1)–(5.2). Both
models are based on the main assumption a?i = |a|ei, along with the use of
(4.18)–(4.21) for the modelling of the orientation. In the first model the acceleration
norm is simulated by (4.2), whereas in the second model the acceleration norm is
given by (4.9). Hereafter, they are referred to as LES–SSAM1 and LES–SSAM2,
respectively.

Usually, new terms corresponding to SGS motions are introduced into LES as the
divergence of a tensor, unlike the acceleration term in (5.1). This may raise questions
concerning momentum conservation in the flow. It follows from (5.1) that:∮

∂D
(+P̂δij − τ̂ij + ρûiûj)nj ds=

∫
D
ρa?i dv (5.3)

where τ̂ij is the viscous stress in the surrogate field, D is an arbitrary domain
with surface boundary ∂D and nj is the normal to the surface element ds. Both
LES–SSAM1 and LES–SSAM2 give 〈a?i 〉 = 0 for i= 1, 2, 3 at every point of the flow.
Here, the mean acceleration model is zero because it is given by the product of two
independent terms, one for the norm another for the orientation (assumption (1.1)), and
because the latter is zero on average, (4.22).

Then on average LES–SSAM1 and LES–SSAM2 are both conservative:∫
D
ρ〈a?i 〉 dv = 0. (5.4)

Furthermore, the subgrid accelerations are non-correlated in the homogeneous
directions (x and z); then regarding the right-hand side integral in (5.3) as an ensemble
average, one may consider this integral to be approximately zero at each time. This
implies a negligible contribution of subgrid scales over a control volume much larger
than the mesh cell.

In the rest of this section both LES–SSAM-1 and LES–SSAM-2 are assessed by
comparison with the DNS. Further, to emphasize the effect of a?i , this assessment is
compared with standard LES using the same mesh and parameters. Note that for this
comparison, the DNS and LES–SSAM have not been preliminarily filtered.
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5.1. Numerical simulations
The comparisons between LES–SSAM, LES and DNS are made for Re∗ = 590, 1000
and 2000. Two different mesh resolutions have been used for Re∗ = 1000 and 2000.
The parameters of the simulations are summarized in table 2. We note again that in
both LES and LES–SSAM identical sets of parameters and the same mesh are used.
It should be noted also that the resolution applied in our computation is quite coarse,
even for LES, especially for Re∗ = 2000. Using a pseudo-spectral method enables
us to minimize discretization errors and numerical dissipation effects. Therefore, the
computational code used for DNS (see § 2) was used for LES and LES–SSAM, with
the following modifications. The subgrid-stress model term 2νtSij and the acceleration
model a?i are computed as the nonlinear terms. For the turbulent viscosity νt we used
the Smagorinsky model with the improvement proposed by Lévêque et al. (2007).
This allows us to account for inhomogeneity in the shear flow, without introducing ad
hoc wall damping functions (Pope 2000), or the Germano–Lilly dynamical procedure
(Germano et al. 1991; Lilly 1992). The shear-improved Smagorinsky model is
expressed in the following way (Lévêque et al. 2007):

νt = `2(|S| − |〈S〉|), (5.5)

where the characteristic strain rate |S| is based either on the filtered velocity field in
LES, or on the surrogate velocity field in LES–SSAM. 〈S〉 denotes its average over
time and in the homogeneous planes, and ` is a characteristic length scale, ` = Cs∆

with ∆ = (∆x∆y∆z)
1/3 and Cs = 0.16. Following Lévêque et al. (2007) νt is required

to be greater than −ν by clipping lower values. This ensures that the total viscosity
(νt+ν) remains positive, thereby avoiding numerical instability. The computations were
also performed using two other eddy-viscosity models: the ‘classical’ Smagorinsky
model with a wall damping function and the dynamic Smagorinsky model. With
these three turbulent viscosity models the results of the comparisons are very similar,
thus we only present the comparison of the simulations with the shear-improved
Smagorinsky model of Lévêque et al. (2007).

5.2. Assessment of LES–SSAM
In this section comparison between LES–SSAM, LES and DNS is given for the
velocity, energy budget and acceleration statistics. Comparisons between the LES and
the LES–SSAM aim to emphasize the effect of the stochastic modelling for the
acceleration, while the DNS is used as a reference on which LES–SSAM should
ideally converge.

First, we focus on the computed value of the Reynolds number, Rec, related to
the mean velocity in the center of the channel. From table 2, it is seen that both
LES–SSAM-1 and LES–SSAM-2, give Rec closer to the DNS, than in the case of
the standard LES. The mean velocity in the center of the channel, and consequently,
the Reynolds number Rec are often overestimated in LES in comparison to DNS
(Germano et al. 1991; Sagaut, Montreuil & Labbé 1999; Sarghini, Piomelli & Balaras
1999; Hughes, Oberai & Mazzei 2001; Volker, Moser & Venugopal 2002; Park &
Mahesh 2008; Brasseur & Wei 2010). This overestimation stems from poor spatial
resolution of momentum transfer across the near-wall region. In our computation, the
mean pressure gradient (Re∗ = u∗h/ν =√−(1/ρ)〈dp/dx〉h/ν) is imposed and the mass
flow rate adjusts itself in order to produce the prescribed loss of pressure. Thus,
the better estimation of the centreline velocity by the LES–SSAM corresponds to
an enhanced momentum transfer towards the wall. Does it improve significantly the
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prediction of velocity and acceleration statistics across the whole channel compared to
the DNS data? This is the question raised in this Section. The comparison between
LES and LES–SSAM is shown here for the coarse resolution. The computation was
also carried out for a finer resolution (see table 2), but as expected, this leads to
reduced differences between LES–SSAM and standard LES.

In figure 21(a), the mean velocity profiles, corresponding to Re∗ = 590, 1000 and
2000 obtained by LES–SSAM, by LES, by our DNS, and by the DNS of Hoyas
& Jiménez (2008) are shown. It is seen that the profiles from DNS are better
predicted by LES–SSAM than by standard LES. Moreover, the differences between
the LES–SSAM-1 and the LES–SSAM-2 are very small.

For the same three Reynolds numbers, the r.m.s. of the three components of velocity
is shown in figure 21(b–d). In comparison to the standard LES, one can readily see
that the predictions of the profiles from the LES–SSAM become better, although the
match with the DNS profiles is still not perfect. More specifically, in the near-wall
region, when LES–SSAM is employed, the position of the peak, its magnitude, as well
as the growth rate of the profiles are closer to the DNS. This is especially visible for
the longitudinal component. At the same time, for Re∗ = 2000, the r.m.s. values near
the centre of the channel are slightly underestimated for both LES–SSAM and LES.
It is also seen that for Re∗ = 590 and 2000, LES–SSAM-2 provides better prediction
than LES–SSAM-1 for the velocity variance of the spanwise component.

In figure 22, the evolutions of viscous and turbulent stresses, τvisc = −ρν〈∂u/∂y〉
and τturb = −ρ〈u′v′〉, for LES, LES–SSAM and DNS are presented. These stresses are
normalized by the total stress τtot = τvisc + τturb, and they are compared for Re∗ = 1000.
It is seen that for LES–SSAM, the profiles of the stresses become significantly closer
to DNS, in comparison with standard LES. This reflects the fact that the momentum
transfer in the wall-normal direction is increased with LES–SSAM. On one hand, the
region directly influenced by the wall (the viscous sublayer and the buffer zone) is
better predicted. This is clearly visible from the r.m.s. profiles (figure 21b–d). On the
other hand, the mean velocity is improved as seen in figure 21(a).

An advantage of LES–SSAM in matching the DNS data can also be seen by
comparison of velocity spectra. The one-dimensional spectra for the three velocity
components obtained by LES–SSAM, standard LES and DNS are shown in figure 23
for Re∗ = 1000, and for two heights in the near-wall region, y+ = 5 and 20.
With the available mesh resolution, the energy of high wavenumbers obtained from
LES–SSAM is increased towards the DNS values. This emphasizes that adding a term
for modelling the residual acceleration enables a significant increase of the energy
contained in the large wavenumbers.

From (5.1) it can be seen that the LES–SSAM approach introduces an additional
term for the turbulent kinetic energy balance:

1
2

d〈uiuj〉
dt
= 〈u′iaLES

i 〉 + 〈u′ia?i 〉. (5.6)

The last term on the right-hand side, Pa = 〈u′ia?i 〉, represents the turbulent kinetic
energy production due to the subgrid stochastic model. In figure 24 this additional
term from LES–SSAM-1 and LES–SSAM-2 is compared to the production term:
P = −〈u′v′〉 d〈u〉/dy from DNS. Although the production due to the stochastic model
is not expected to have the same behaviour as the production due to the interaction
with the mean shear, the comparison between these two terms enables representation
of the contribution from the model in the kinetic energy budget. It is seen that
although for both models the injection of turbulent kinetic energy by the SGS model
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FIGURE 21. (Colour online) Velocity profile for Re∗ = 590, 1000 and 2000, respectively
from bottom to top. Squares: LES; crosses: LES–SSAM-1; triangles: LES–SSAM-2; solid
line: our DNS; dashed line: DNS of Hoyas & Jiménez (2008) for Re∗ = 2000. (a) Mean
velocity (log-linear scales). r.m.s. (log-linear scales) for the streamwise (b), the wall-normal
(c) and the spanwise (d) velocity components.

represents only a small part of P from DNS, this contribution is not negligible. For
LES–SSAM-1, shortly after the buffer zone, the subgrid source of energy drops very
rapidly, while for LES–SSAM-2 it decreases similarly to DNS.

Figure 25 presents the comparison between LES–SSAM, DNS and LES for the
effective rate of kinetic energy production and for the effective rate of dissipation,
Peff and εeff , respectively. The effective dissipation is defined as εeff = 2(ν+ νturb)SijSij,
νturb = 0 for the DNS. For the LES–SSAM the effective production is Peff =P +Pa.
First, the turbulent kinetic energy production is much higher with LES–SSAM than
with the LES. However, even with the LES–SSAM-2 the production is still largely
underestimated compared to the DNS. Adding the acceleration model increases the
kinetic energy production directly by Pa, and indirectly by a better estimation of
the turbulent stress (as observed in figure 22). Note also that the rate of turbulent
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FIGURE 23. (Colour online) Normalized longitudinal one-dimensional spectra of velocity for
two distances to the wall: (a) y+ = 5 and (b) 20, for Re+ = 1000. Squares: LES; crosses:
LES–SSAM-1; triangles: LES–SSAM-2; solid line: DNS; dashed line: DNS of Hoyas &
Jiménez (2008).

kinetic energy dissipation is closer to the DNS in the wall region. This is due to
the enhancement of the velocity gradient in LES–SSAM in comparison with standard
LES.

The next three figures (figures 26, 27 and 28) show a comparison between the
p.d.f.s of acceleration components obtained from LES–SSAM, LES and DNS. These
p.d.f.s are presented for Re∗ = 1000, and for three wall distances (y+ = 5, 20
and 950). As is observed from DNS in § 3, the acceleration distribution departs
significantly from the normal distribution. This is manifested by the stretched tails,
as a result of intermittency on small scales. The p.d.f.s of acceleration obtained
by LES–SSAM also present highly stretched tails. Moreover, the computation based
on LES–SSAM-1 is characterized by stronger tails of the acceleration distribution
than in the case of LES–SSAM-2. This is a direct consequence of rare events
given by (4.2). From these figures, it is difficult to show that one formulation of
LES–SSAM has an explicit advantage over the other. In the longitudinal acceleration
distribution close to the wall (y+ = 5, 20), the tails are overextended in LES–SSAM-1.
Thereby, LES–SSAM-2 has the advantage of being closer to the DNS. However,
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FIGURE 24. (Colour online) Profiles of the additional production term, Pa = 〈u′ia?i 〉,
for Re∗ = 1000. Crosses: Pa for LES–SSAM-1; triangles: Pa for LES–SSAM-2; line:
P =−〈u′v′〉d〈u〉/dy computed by DNS.
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FIGURE 25. (Colour online) Turbulent kinetic energy production and turbulent kinetic energy
dissipation for Re∗ = 1000. Dashed lines: Peff ; continuous lines: εeff . Squares: LES; crosses:
LES–SSAM-1; triangles: LES–SSAM-2; line: DNS.

for y+ = 950, LES–SSAM-1 matches DNS data better than LES–SSAM-2. For
the normal component of acceleration, DNS is better predicted by LES–SSAM-1.
Simultaneously, the acceleration p.d.f. in the spanwise direction presents overstretched
tails in LES–SSAM-1 and then LES–SSAM-2 has an advantage. However, despite
these differences, it is clearly seen that both LES–SSAM models are able to capture
intermittency effects.

This may be concluded also from the evolution of the velocity increment flatness
with separation scale, which is an efficient measure of the intermittency (Frisch
1995). First, the flatness of the velocity increments F(r) is computed from the
velocity structure function of order q: Sq(r) = 〈(δru)q〉, F(r) = S4(r)/S2 (r)

2 with
δru(x) = u(x + r, t) − u(x, t). Figure 29(a) shows the comparison for the flatness
computed from the longitudinal structure function of the normal velocity component
for Re∗ = 1000 and y+ = 75. One observes that for LES and LES–SSAM, the flatness
remains close to the DNS. However, because the mesh used for LES and LES–SSAM
is very coarse and is far larger than the Kolmogorov scale, the flatness stays of order
of 3, corresponding to a Gaussian field. In contrast, to ensure numerical stability,
the time step of the numerical simulation is lower than the Kolmogorov time scale
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FIGURE 26. (Colour online) p.d.f. of longitudinal acceleration at y+ = 5, 20 and 950
respectively shifted upward by 3 decades, for Re∗ = 1000. Squares: LES; crosses:
LES–SSAM-1; triangles: LES–SSAM-2; line: DNS.
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FIGURE 27. (Colour online) p.d.f. of wall-normal acceleration at y+ = 5, 20 and 950
respectively shifted upward by 3 decades, for Re∗ = 1000. Squares: LES; crosses:
LES–SSAM-1; triangles: LES–SSAM-2; line: DNS.

(table 2). Therefore, we are interested in the temporal increments of the velocity
at fixed positions. The flatness is computed from the Eulerian temporal structure
function: Sq(t) = 〈(δtu)

q〉, F(t) = S4(t)/S2 (t)
2 with δtu(x) = u(x, t′ + t) − u(x, t′).

In figure 29(b), the comparison for the flatness of the normal velocity temporal
increments at y+ = 75 and Re∗ = 1000 is given. In LES the velocity distribution
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FIGURE 28. (Colour online) p.d.f. of transverse acceleration at y+ = 5, 20 and 950
respectively shifted upward by 3 decades, for Re∗ = 1000. Squares: LES; crosses:
LES–SSAM-1; triangles: LES–SSAM-2; line: DNS.
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FIGURE 29. (Colour online) Evolution of the wall-normal velocity increment flatness at
y+ = 75 and Re∗ = 1000. (a) Evolution with spatial separation in the streamwise direction.
The dashed line corresponds to a Gaussian field. (b) Evolution with temporal separation (Tint
is the integral time scale). Squares: LES; crosses: LES–SSAM-1; triangles: LES–SSAM-2;
line: DNS.

remains close to Gaussian at all time lags, while in LES–SSAM, the flatness
increases similarly to the DNS with decreasing time lag. Hence effects of intermittency
associated with small scales are captured by LES–SSAM.

5.3. Application of LES–SSAM to the transport of solid particles
Because of the practical interest of particle-laden turbulent flows, a number of
laboratory studies have been performed in order to assess the interaction between
particles and the carrier turbulent flow. Among them, LES of inertial particle transport
(Armenio, Piomelli & Fiorotto 1999; Marchioli, Salvetti & Soldati 2008; Wang &
Squires 1996) show that with a fine enough mesh, particle velocity statistics may
reproduce acceptably the DNS data. However, in the case of a coarse grid, the
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gas velocity ‘seen’ by the particles is ‘under-resolved’. As a result, the Lagrangian
statistics of particle motion are simulated inaccurately, even for highly inertial
particles. To obtain accurate statistics, usually LES is supplemented by a subgrid-scale
modelling in the particle equation of motion (Kuerten 2006; Vinkovic et al. 2006;
Marchioli et al. 2008; Pozorski & Apte 2009). It has been shown in the previous
section that LES–SSAM gives the unfiltered velocity and that the turbulent flow
structure is significantly better predicted in comparison to standard LES. One may
expect that prediction of particle dynamics could also be improved. The advantage
here, is that additional modeling in the particle equation of motion (5.7) is un-
necessary since LES-SSAM provides the instantaneous un-filtered velocity at the scale
of the solid particle. An example of practical relevance is the ‘turbophoresis’ effect,
where, due to the turbulent structures, particles move towards the walls. Kuerten &
Vreman (2005) and Kuerten (2006) reported that particle accumulation close to the
wall may be significantly controlled by the small scales of the flow. The authors
showed that standard LES fails to estimate correctly the particle concentration close
to the wall. This motivated us to perform a comparison of particle statistics obtained
by DNS, LES–SSAM and LES in the case of a channel flow with immersed spherical,
non-rotating, heavy particles at low concentrations.

5.3.1. Methodology
It is assumed that the particle motion is governed by the Stokes law:

dup

dt
=− 1

τp

(
up − u

)
f (Rep), (5.7)

dxp

dt
= up, (5.8)

where up and xp are the velocity and position of a particle, and u is the carrier gas
velocity at the particle position; τp = ρpd2

p/(18ρν) is the response time of the particles,
with dp the particle diameter. The Stokes number St = τp/t∗ is defined here by the
ratio of the particle response time to a typical flow time scale t∗ = ν/u2

∗. The latter
is analogous to the Kolmogorov time scale t∗ = (ν/ε∗)1/2 in wall units. Action of
the surrounding fluid, which is modelled by the drag force, takes into account the
correction proposed by Clift, Grace & Weber (1978): f (Rep) = 1 + 0.15Re0.687

p , where
Rep = dp|up − u|/ν is the local particle Reynolds number.

From (5.7)–(5.8), the fluid velocity is computed by DNS, LES and LES–SSAM.
The fluid velocity at the particle position is then estimated by a third-order three-
dimensional Hermite interpolation scheme. Equations (5.7)–(5.8) are integrated by the
Adams–Bashford method. The particle initial position is randomly chosen and its
initial velocity is set to the fluid velocity. The wall is considered to be perfectly
smooth. Each particle that strikes the wall rebounds elastically. Particle statistics
are sampled starting from t+ = t/t∗ ≈ 1000, counted from particle release. For all
simulations, these statistics correspond to the quasi-stationary state (Marchioli &
Soldati 2002). Five sets of 200 000 particles are analysed, with different Stokes
numbers, ranging from St = 1 to 125, with a density ratio of ρp/ρ = 770. The
Reynolds number is Re∗ = 590 and the same mesh resolution as previously is used
(table 2). The physical parameters of the particles are summarized in table 3.

We present the comparison of the particle statistics when the carrier phase is
simulated by LES–SSAM, LES or DNS. The resolution of the velocity field by the
LES–SSAM approach corresponds to the LES–SSAM-1 case. Although this model did
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Re∗ St d/l∗ ρp/ρ

590 1 0.15 770
590 5 0.33 770
590 15 0.58 770
590 25 0.74 770
590 125 1.66 770

TABLE 3. Parameters used for the particle simulation (l∗ = ν/u∗).

not match the DNS perfectly, it is simpler than LES–SSAM2 and thus we prefer to
show the results from the model with fewer constants.

5.3.2. Comparison with DNS and standard LES
In figure 30, the particle velocity statistics are assessed. First, in figure 30(a),

the mean particle velocity is compared for five Stokes numbers, St = 1, 5, 15,
25 and 125. In the logarithmic layer, for all five Stokes numbers considered, the
particle velocity profile given by the LES–SSAM-1 is closer to the DNS than
standard LES. For the standard deviations of the particle velocity components, the
difference between LES and LES–SSAM is found essentially in the wall region. This
is shown in figure 30(b–d). For the wall-normal component (figure 30c), which is
mainly responsible for the cross-channel migration of particles, LES–SSAM is a
fair improvement on the prediction of r.m.s. velocity. For the streamwise r.m.s. of
particle velocity (figure 30b), the difference between LES and LES–SSAM is small,
though with increasing Stokes number, the peak of r.m.s. values becomes broader
for the LES, whereas in LES–SSAM this peak does not vary, as in DNS. For the
spanwise component of particle velocity (figure 30d), LES–SSAM overestimates the
r.m.s. values. This overestimation of the spanwise velocity r.m.s. has already been
observed for the fluid phase (figure 21b). It is also seen that for St = 125, the
difference in r.m.s. values obtained by DNS, LES and LES–SSAM is almost negligible.
A particle, with a response time much larger than the Kolmogorov time is prone to
‘filter’ the flow structure on subgrid scales. At the same time, the mean flow velocity is
better predicted by LES–SSAM. Consequently for St = 125 (figure 30a), LES–SSAM
gives a better estimation of the mean longitudinal velocity of particles.

In figure 31, the profiles of particle mean concentration from the DNS, LES and
LES–SSAM are shown for the five Stokes numbers. It is seen that modelling the
flow acceleration at the discarded scales of the simulation can indeed contribute
significantly to particle accumulation close to the wall. In contrast to LES, particle
mean concentration provided by LES–SSAM matches quite well the DNS. Low-inertia
particles do not sample intermittency of turbulent structures in the wall region. They
tend to travel along with the surrounding fluid. Accordingly, it is seen in figure 31,
that for St = 1, the effect of particle accumulation close to the wall is very small.
Neither do highly inertial particles respond to this intermittency, due to the filtering
effect. This is illustrated in figure 31 for St = 125. The profile of particle mean
concentration appears to be almost uniform. Only particles with intermediate inertia
are subjected to turbophoresis. In the considered range of Stokes numbers, the
strongest accumulation of particles on the walls is obtained for St = 15. This is
correctly reproduced by LES–SSAM, whereas, as reported by Kuerten & Vreman
(2005), standard LES fails in the prediction of particle mean concentration.
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FIGURE 30. (Colour online) Profiles for particle velocity statistics at Re∗ = 590, for St = 1,
5, 15, 25 and 125 from top to bottom, respectively. Squares: LES; crosses: LES–SSAM; line:
DNS. (a) Mean velocity (log-linear scales). r.m.s. acceleration profiles (zoom in y+ < 200
region) for the streamwise (b), the wall-normal (c) and the spanwise (d) component.

Acceleration of a solid particle is linked to its inertia and to the lifetime of turbulent
structures interacting with the particle; thus one would expect an important influence
of subgrid flow structure on the acceleration of particles with response times of the
order of the Kolmogorov time. It is therefore interesting to complete our assessment
of LES–SSAM by its prediction for the statistics of solid particle acceleration. This
acceleration is computed from the derivative of the particle velocity. As proposed
by Mordant et al. (2004b), the derivative is provided by the convolution with the
derivative of a Gaussian kernel. This kernel ensures the reduction of errors due to
numerical interpolation of the fluid velocity at the position of particles. As shown
by Choi et al. (2004) these errors may lead to inaccurate estimation of particle
acceleration. The filter cut-off is chosen to be of the order of the Kolmogorov
time scale at the wall. The consistency of this method has been carefully checked.
Namely, the acceleration of fluid particles computed in this way was compared
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FIGURE 31. (Colour online) Particle mean concentration profile at Re∗ = 590, for St = 1 , 5,
15, 25 and 125, from top to bottom, respectively. Each profile is shifted by 20 units upward.
Profiles are shown at t+ = 1200 from the time when particles were released into the flow.
Squares: LES; crosses: LES–SSAM; line: DNS.

with the Eulerian calculation of the material derivative. It was obtained that when
a particle trajectory, with the chosen filter cut-off, is sampled every 0.06t∗, the
mean, variance, skewness and flatness obtained from both approaches collapse. The
r.m.s. values of three components of the particle acceleration are given in figure 32
for St = 1, 5, 15, 25 and 125. In the region up to y+ ≈ 100, this figure shows
clearly the contribution of subgrid scales with decreasing Stokes number, i.e. with
decreasing particle response time. In the case of LES–SSAM, for all three components,
the prediction of particle acceleration r.m.s. is getting closer to DNS, compared to
standard LES. In contrast, particles with high Stokes number filter the subgrid flow
structures. As result, the difference between LES and LES–SSAM becomes negligible.
Very near the wall (y+ < 10) for St = 15, 25 and 125, one can observe a small peak
in vertical acceleration r.m.s., growing slightly with increasing Stokes number. This is
due to the condition on the wall for vertical particle velocity: a particle that strikes the
wall rebounds elastically.

6. Concluding remarks
In the first part of this paper, the statistics of the total acceleration in turbulent

channel flow are studied by DNS for three Reynolds numbers (Re∗ = 180, 590
and 1000). It has been observed that for each wall distance, the distribution of
the acceleration norm follows a log-normal law with Reynolds-number-independent
parameters: µ ≈ (1/2)σ 2 and σ 2 ≈ ln 2. It is shown that the ratio of the mean norm
of acceleration and the Kolmogorov acceleration (〈|a|〉/aη) presents an evolution
proportional to the mean velocity gradient, which may be related to interactions
with the mean shear. Using the von Kármán hypothesis, the scaling law for
〈|a|〉/aη is found to be a logarithmic profile: 〈|a|〉/aη ≈ κ ln y+. While in line
with the Barenblatt incomplete similarity, the profile 〈|a|〉/aη follows a power
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FIGURE 32. (Colour online) Particle r.m.s. acceleration profiles (zoom in y+ < 200 region)
for the streamwise (a), the wall-normal (b) and the spanwise (c) component at Re∗ = 590, for
St = 1, 5, 15, 25 and 125, from top to bottom, respectively. Each profile has been shifted by
0.1 units upwards. Squares: LES; crosses: LES–SSAM; line: DNS.

law, with a logarithmic dependence on the Reynolds number of the parameters:
〈|a|〉/aη = (D0 lnRe + D1) (y+)

β1/ ln(Re). Although both laws are based on equally valid
assumptions, the power law provides a better fit of the DNS profiles and its Reynolds-
number dependence suggests that viscosity cannot be completely neglected, at least
for Reynolds numbers lower than Re∗ = 1000. To emphasize the effect of the long-
range interaction across the channel on the scaling, a logarithmic distance to the wall
τ = ln(h/(h − y)) is introduced. With this evolution parameter it is observed that the
mean acceleration norm can be described by a universal relation of only one parameter
〈|a|〉 ∼ lnRe∗Π(τRe∗). Concerning its orientation, the acceleration relaxes towards
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isotropy with increasing wall distance. This relaxation appears to be independent of
the Reynolds number. The quasi-isotropy is confirmed by the fact that far from the
wall (y+ > 50), the statistics of the acceleration norm, conditioned on the orientation
of acceleration, become almost independent of its orientation. Universality of these
relations could be further investigated by studying other canonical wall flows (such as
turbulent boundary layer or pipe flow) and by extending the Reynolds number range.

In the second part, stochastic models for the acceleration are introduced in the
form of processes evolving across the channel with assumed forcing at the wall. The
basic assumption is to consider the acceleration as being governed by two independent
stochastic processes: one for the acceleration norm and the other for its orientation.

Two models are proposed for the norm, each based on statistical universalities
in fragmentation under scaling symmetry, evolving across the channel with τ =
ln(h/(h− y)). The first model represents a ‘non-self-averaging’ stochastic process. The
two parameters of the process are introduced as a function of the Reynolds number.
This process has the log-normal distribution as intermediate asymptotic and further
evolves towards a power-law distribution with increasingly stretched tails, which may
represent ejections of small structures far from the wall. The second model represents
a ‘self-averaging’ process. Consistently with our DNS observation, the distribution is
relaxed to the log-normal law, with parameters estimated from homogeneous isotropic
turbulence of the mean centreline acceleration norm. The second model is shown to
represent very well the statistics of the acceleration norm. Comparing the two models,
the relaxation towards the log-normal distribution may reflect the interactions of the
inner region and the the ’external’ turbulent stream.

In order to represent the relaxation towards isotropy, the model for the orientation
is based on a random walk on a unit sphere evolving with distance to the wall. The
DNS data show that the diffusion coefficient of this random walk is independent of the
Reynolds number. Comparisons with DNS show that the model correctly reproduces
the rate of return towards isotropy, although close to the wall, the Brownian motion
fails to reproduce the large fluctuations of the orientation vector. It is worthwhile to
note that a multifractal walk may help to recover the large fluctuations of θ , but
requires additional parameters to be fitted by DNS.

In the third part of this paper, the proposed stochastic models are coupled with large-
eddy simulation in the LES–SSAM framework (Sabel’nikov et al. 2011), where the
approximation of the ‘unfiltered’ instantaneous velocity field is given by a stochastic
model equation. Comparisons of velocity, acceleration, and energy spectra between
LES–SSAM, standard LES and DNS for Re∗ = 590, 1000 and 2000 show that
such a coupling can significantly improve the under-resolved simulations. Notably,
LES–SSAM can enhance the vertical momentum flux, along with giving access to the
small-scale intermittency of the flow. Furthermore, using either the first or the second
acceleration norm models, LES–SSAM shows very similar results. This comparison
implies that the region 10 < y+ < 100, almost as well-predicted by the first model
as by the second one, is a zone of significant interactions to be modelled. Further
development of this approach is associated with numerous questions concerning
more complex geometries, coupling between the resolved and subgrid fields, the
structure of the acceleration field in the near-wall region. For example, spatio-temporal
correlations between the large-scale field and the subgrid model can be introduced
using parameters for the stochastic equation defined by the local properties of the
resolved flow. The study by DNS of acceleration statistics conditioned on the velocity
would provide useful information in that direction. Such correlations have been shown
to exist in HIT (Hill 2002; Sawford et al. 2003; Crawford, Mordant & Bodenschatz
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2005). In addition to that, the introduction of correlation between the norm and
orientation of the acceleration near the wall may lead to a more accurate representation
of wall structures.

The LES–SSAM approach, in addition to improving the statistics of the resolved
field, has a practical advantage when physical phenomena are related to subgrid scales.
To illustrate the importance of taking into account the unresolved acceleration, in the
last part of the paper we focus on the transport of inertial particles in turbulent channel
flow. The results show that, without modification of the particle equation of motion,
LES–SSAM leads to significant improvement of the particle statistics in regard to LES
and DNS. This is due to a more accurate resolution of the momentum redistribution
in the flow. It has been shown that once the turbulence, ‘seen’ by particles, is better
simulated, we achieve a better prediction of the particle migration towards the wall.
This finding may open the possibility of applying the LES–SSAM successfully to
other multiphase flows.

Acknowledgements
The authors would also like to express their gratitude to P. Moin, P. Spalart and

V. Sabel’nikov for their useful comments on this work. M. Buffat is acknowledged
for the development of the computational code. The authors acknowledge support from
‘MAGIE’ (Modélisation et approche générique de l’injection essence, with Continental
Automotive France, and PSA). This work was granted access to the HPC resources
of CINES under the allocation c201002560 made by GENCI (Grand Equipement
National de Calcul Intensif). Numerical simulations were also performed on the
P2CHPD cluster.

R E F E R E N C E S

AFONSO, M. M. & MENEVEAU, C. 2010 Recent fluid deformation closure for velocity gradient
tensor dynamics in turbulence: timescale effects and expansions. Physica D 239, 1241–1250.

ANTONIA, R. A., KIM, J. & BROWNE, L. W. B. 1991 Some characteristics of small-scale
turbulence in a turbulent duct flow. J. Fluid Mech. 233, 369–388.

ARMENIO, V., PIOMELLI, U. & FIOROTTO, V. 1999 Effect of the subgrid scales on particle motion.
Phys. Fluids 11 (10), 3030–3042.

BARENBLATT, G. I. 1993 Scaling laws for fully developed turbulent shear flows. Part 1. Basic
hypotheses and analysis. J. Fluid Mech. 248, 513–520.

BARENBLATT, G. I. 1996 Scaling, Self-similarity, and Intermediate Asymptotics. Cambridge
University Press.

BARENBLATT, G. I. & PROSTOKISHIN, V. M. 1993 Scaling laws for fully developed turbulent shear
flows. Part 2. Processing of experimental data. J. Fluid Mech. 248, 521–529.

BRASSEUR, J. G. & WEI, T. 2010 Designing large-eddy simulation of the turbulent boundary layer
to capture law-of-the-wall scaling. Phys. Fluids 22 (2), 021303.

BUFFAT, M., LE PENVEN, L. & CADIOU, A. 2011 An efficient spectral method based on an
orthogonal decomposition of the velocity for transition analysis in wall bounded flow. Comput.
Fluids 42, 62–72.

BURTON, G. C. & DAHM, W. J. A. 2005a Multifractal subgrid-scale modeling for large-eddy
simulation. I. Model development and a priori testing. Phys. Fluids 17, 075111.

BURTON, G. C. & DAHM, W. J. A. 2005b Multifractal subgrid-scale modeling for large-eddy
simulation. II. Backscatter limiting and a posteriori evaluation. Phys. Fluids 17, 075112.

CHAMPAGNE, F. H., HARRIS, V. G. & CORSIN, S. 1970 Experiments on nearly homogeneous
turbulent shear flow. J. Fluid Mech. 41, 81–139.

CHAOUAT, B. & SCHIESTEL, R. 2009 Further insight into sub-grid scale transport for continuous
hybrid non-zonal RANS/LES simulations. In Proceeding of the Sixth Internal Symposium on



666 R. Zamansky, I. Vinkovic and M. Gorokhovski

Turbulence and Shear Flow Phenomena (TSFP 6) (ed. N. Kasagi, J. K. Eaton, J. A. C.
Humphrey, A. V. Johansson & H. J. Sung), pp. 1063–1068.

CHEN, L., COLEMAN, S. W., VASSILICOS, J. C. & HU, Z. 2010 Acceleration in turbulent channel
flow. J. Turbul. 11 (N41).

CHEVILLARD, L. & MENEVEAU, C. 2006 Recent fluid deformation closure for velocity gradient
tensor dynamics in turbulence: timescale effects and expansions. Phys. Rev. Lett. 97, 174501.

CHOI, J.-I., YEO, K. & LEE, C. 2004 Lagrangian statistics in turbulent channel flow. Phys. Fluids
16 (3), 779–793.

CHRISTENSEN, K. & ADRIAN, R. 2002 The velocity and acceleration signatures of small-scale
vortices in turbulent channel flow. J. Turbul. 3, 27–29.

CLIFT, R., GRACE, J. & WEBER, M. 1978 Bubble, Drops and Particles. Academic.
CRAWFORD, A. M., MORDANT, N. & BODENSCHATZ, E. 2005 Joint statistics of the Lagrangian

acceleration and velocity in fully developed turbulence. Phys. Rev. Lett. 94 (2), 024501.
FRISCH, U. 1995 Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press.
GERMANO, M., PIOMELLI, U., MOIN, P. & CABOT, W. H. 1991 A dynamic subgrid-scale eddy

viscosity model. Phys. Fluids A 3 (7), 1760–1765.
GOROKHOVSKI, M. 2003 Fragmentation under the scaling symmetry and turbulent cascade with

intermittency. In Annual Research Briefs 2003, pp. 197–203. Stanford University: Center for
Turbulence Research.

GOROKHOVSKI, M. A. & SAVELIEV, V. L. 2008 Statistical universalities in fragmentation under
scaling symmetry with a constant frequency of fragmentation. J. Phys. D: Appl. Phys. 41,
085405.

HILL, R. J. 2002 Scaling of acceleration in locally isotropic turbulence. J. Fluid Mech. 452,
361–370.
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