N

N

Three-dimensional dynamics of oblate and prolate
capsules in shear flow
Z. Wang, Yi Sui, Peter D.M. Spelt, W. Wang

» To cite this version:

Z. Wang, Yi Sui, Peter D.M. Spelt, W. Wang. Three-dimensional dynamics of oblate and prolate
capsules in shear flow. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2013, 88,
pp.053021. 10.1103/PhysRevE.88.053021 . hal-00931504

HAL Id: hal-00931504
https://hal.science/hal-00931504
Submitted on 3 Mar 2014

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00931504
https://hal.archives-ouvertes.fr

Submitted to Physical Review FE

Three-dimensional dynamics of oblate and prolate capsules in shear flow

Z. Wang!, Y. Sui!, P. D. M. Spelt?3, W. Wang!

L School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK

2 Laboratoire de la Mécanique des Fluides & d’Acoustique (LMFA), CNRS, Ecully, France
3 Département Mécanique, Université Claude Bernard Lyon 1, Villeurbanne, France
(Dated: November 5, 2013)

We study computationally the dynamics of oblate and prolate spheroidal capsules in simple shear
flow with small inertia for a range of dimensionless shear rates. The capsule is modelled as a
liquid droplet enclosed by a hyperelastic membrane, and its equatorial plane is initially tilted out
of the plane of shear. We find at low shear rates, the well accepted tumbling motion is not always
stable for both oblate and prolate capsules. For an oblate capsule, the dominant stable modes for
increasing dimensionless shear rate are: rolling with the equatorial plane staying in the plane of
shear, precessing around the vorticity direction, and tumbling. Interestingly, the order of modes
is reversed for a prolate capsule: tumbling, precessing and rolling with increasing dimensionless
shear rate. At transitional regimes, we find the stable motion of a capsule can depend on its initial
titled angle even at the same shear rate. At high dimensionless shear rates, a spheroidal capsule
undergoes a complicated oscillating-swinging motion: its major axis oscillates about the plane of
shear in addition to the swinging about a mean angle with flow direction found previously, and
the amplitudes of both oscillations decrease when increasing the dimensionless shear rate, towards
a steady tank treading motion asymptotically. We summarize the results in phase diagrams and
discuss the reorientation of both oblate and prolate capsules in a wide range of dimensionless shear

rates.

I. INTRODUCTION

A capsule is a small liquid droplet enclosed by a thin
membrane which has shear elasticity. The dynamic mo-
tion of a capsule subject to an external flow has been
drawing much attention for many years, because it is im-
portant for both fundamental research and biomedical or
industrial applications (e.g., in micro-encapsulation and
drug delivery [1, 2]). Furthermore, it forms the first step
for considering more complicated situations such as cap-
sule suspensions |3, 4].

Various types of motion have been identified for a
capsule freely suspended in simple shear flow. An ini-
tially spherical capsule has always been found to exhibit
a steady tank-treading motion, wherein the capsule has
deformed into a stationary configuration with a finite in-
clination with the flow direction and the membrane ro-
tates around the liquid interior (e.g., in Refs [5-8] and
a recent review by Barthes-Biesel [9]). The motion of
non-spherical capsules is richer in that it is known to
yield three modes: a tumbling mode, wherein a cap-
sule flips continuously, a swinging mode, corresponding
to periodic shape deformation and small amplitude incli-
nation oscillation with a non-zero mean angle with flow
direction when the membrane is rotating around the lig-
uid interior, and a vacillating-breathing mode, in which
the capsule’s major axis oscillates around the flow direc-
tion and the shape shows ample deformation (breathing)
[10, 11]. The vacillating-breathing mode lies between
tumbling and swinging. As to which class of motion
a non-spherical capsule adopts is known to be affected
by the viscosity ratio between the internal and exter-

nal liquids [12-14], the membrane viscosity [15-18], the
shear rate [11, 19-27] and the membrane bending stiff-
ness [28, 29]. In general, the transition from swinging
to tumbling can be induced by increasing the viscosity
ratio or membrane viscosity, reducing the shear rate, or
increasing the membrane bending stiffness when the cap-
sule has a non-spherical reference shape.

All of these modes (tank-treading, swinging, tumbling
and vacillating-breathing) are symmetric about the plane
of shear, and this symmetry has been imposed (at least
on initial conditions) in most previous theoretical and
numerical studies on capsules in shear flows. Early ex-
periments by Goldsmith and Marlow [12] and a very re-
cent study by Dupire et al. [30] on red blood cells have
suggested the existence of an asymmetrical mode, how-
ever. In other systems, such a mode is well documented:
a rigid ellipsoidal particle can exhibit a precessing orbit
wherein the trajectory of its axis of revolution forms a
cone [31], and the angle of the cone depends on the initial
inclination angle of the rigid particle. A similar off-the-
shear-plane motion has been found recently for vesicles
in shear flow both theoretically [32] and numerically [33—
35] and it was named as a ‘kayaking’ motion [33], which
appears when the viscosity ratio and the shear rate are
both high. However, a vesicle is different from a capsule
in that its membrane is incompressible but does not have
any shear elasticity, and such differences in membrane
mechanical property lead to very different dynamics in
shear flows (e.g., in Refs [10, 34, 36, 37]). For example,
the behaviour of a vesicle is critically determined by the
viscosity ratio. At low viscosity ratios a vesicle always
undergoes a steady tanking treading motion, indepen-



dent of the shear rate; however, a non-spherical capsule
could have a swinging or a tumbling motion depending
on the shear rate at such low viscosity ratios. Without
the constraint of membrane shear elasticity, the dynam-
ics of vesicles appears to be richer and recently novel
modes such as squaring and parity breaking have been
discovered in numerical simulations [35]. So far, the ex-
istence of an asymmetrical precessing mode for capsules
is still largely an open issue. The only related study is by
Dupont et al. [38] on prolate capsules. Clearly there is
a need for a numerical study of this possibility for oblate
capsules, which forms one motivation of the present pa-
per. In a larger context, it is well accepted that a red
blood cell can be modelled mechanically as a liquid-filled
oblate capsule (e.g., in Refs [26, 39-41]), so it would be of
interest to see to what extent an asymmetrical mode sug-
gested by experimental work cited above would indeed be
predicted by this model.

In experiments, yet another mode has been found for
red blood cells besides the suggestion of precessing mo-
tion discussed above (e.g., in Refs [12, 30, 42]): a cell
spins around its axis of revolution with its equatorial
planes staying in the plane of shear, like a rolling wheel.
These experiments show that this rolling motion can exist
under the same conditions as tumbling. It is in general
accepted that a red blood cell shares many features in
common with an oblate spheroidal capsule, however, such
rolling motion has not been reported for oblate capsules
with numerical simulation or theoretical approaches, to
the best of our knowledge. Only recently with a bound-
ary integral method, Dupont et al. [38] considered the
dynamics of prolate spheroidal capsules, whose revolu-
tion axis are initially not in the plane of shear. They
found that tumbling motion is not stable at low shear
rates, and that a prolate capsule will gradually adopt a
log-rolling motion with its revolution axis aligned with
the vorticity axis.

In summary, for non-spherical capsules in shear flow,
with the shear rate increasing, well documented modes
are tumbling, vacillating-breathing and swinging; all are
symmetric about the plane of shear. Experiments of
red blood cells in shear flow have identified an asym-
metric off-plane precessing mode and a rolling mode,
but these have not been recovered in numerical simu-
lations using the oblate-capsule model, and the relations
of these two motions with other modes remain unclear.
In this paper, we therefore study the effects of initially
tilting a capsule’s equatorial plane out of the plane of
shear, as an off-plane perturbation, on its subsequent
dynamics, seeking specifically to establish the sequence
of events when increasing the dimensionless shear rate,
which would provide a platform for future theoretical
work, as well as future work on suspensions of capsules;
also, the work establishes the possibility of coexistence of
modes, which has consequences for experimental observa-
tions. We use an immersed boundary lattice Boltzmann
method [43], which has been well validated for simulating
flow-induced deformation of capsules. Both oblate and
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FIG. 1. A spheroidal capsule in shear flow. r represents
the revolution axis. Vorticity axis is the y-axis. 6., and 6,
are angles that the capsule’s revolution axis makes with the
vorticity axis and z-axis respectively. ¢ is the phase angle
defined as the angle that the revolution axis makes with -
axis in the plane of shear.

prolate spheroidal capsules are considered. The capsule
is modelled as a Newtonian liquid droplet enclosed by
a hyperelastic membrane, in the limit wherein the mem-
brane is very thin, hence bending stiffness is neglected. A
unity viscosity ratio is used; also, the capsule is assumed
to be unstressed at its initial shape. Although real situa-
tions are usually more complicated, for example a capsule
membrane could be pre-stressed due to osmotic effects,
these assumptions form an important limit that has been
studied extensively for initial conditions wherein the cap-
sule is symmetric about the plane of shear (e.g., in Refs
[14, 24, 26]). Results for a range of initial tilting angles
and dimensionless shear rates are categorized (in partic-
ular, new regimes for capsules are identified and analysed
further) and discussed in light of the above summary of
prior work. The sensitivity of the results to the mem-
brane constitutive law used is assessed by comparing re-
sults obtained with two different models.

II. MEMBRANE MODEL AND NUMERICAL
METHOD

We consider an initially spheroidal capsule of vari-
ous aspect ratios in an incident linear shear flow, u =
(kz,0,0) where k is the shear rate (Fig. 1). The aspect
ratio of the capsule is defined as the length of its revo-
lution axis over that of the equatorial axis, and is thus
larger than unity for a prolate capsule and smaller than
unity for an oblate capsule. The axis of revolution of the
capsule is initially in y-z plane and the capsule’s equato-
rial plane is tilted out of shear plane under an angle 3; an
equivalent capsule radius is denoted by a = (3V/4r)/3,
where V is the volume of the capsule. As stated in the In-
troduction, some simplifying assumptions are made: the
fluids inside and outside the capsule are both taken to be
Newtonian and to have the same density p and viscosity



1, and the capsule membrane is assumed to be very thin,
hence bending stiffness is neglected. This leads also to
the formation of wrinkles in the simulations that would
otherwise be suppressed by bending, but we have found
these to remain at acceptable levels (as in related work,
e.g., [7, 26]); also, results are consistent with analytical
work, as discussed in Sec. III-IV. Barthes-Biesel and
co-workers studied the effect of membrane bending and
found that a moderate bending rigidity would alleviate
wrinkles but this does not have significant effects on the
global deformation and the dynamic motions of a capsule
[44].

Results have been obtained for two different membrane
constitutive laws in the present study. One is the neo-
Hookean (NH) law, assuming linear dependence of strain
energy density with the first invariant of the left Cauchy-
Green deformation tensor A2 + A\o2 + A\32. The terms
A1, A2 and A3 are the principle extension ratios in the
plane of the membrane, and in the direction perpendic-
ular to the plane, respectively. The NH law corresponds
to thin membranes made of three-dimensional isotropic
and volume-incompressible polymerized materials. The
area dilation is unrestricted and is compensated by the
thinning of the membrane: A3 = 1/A; 3. The strain en-
ergy function of NH law for a two-dimensional membrane
is given by

1 1
W—6E<11 1+12+1), (1)
where FE is the surface shear elasticity modulus, and
I; and I, are the first and second strain invariants in
two-dimensional, with I, = )\12 + )\22 — 2 and I, =
(AMA2)2 =1 = (dA/dAg)? — 1. The parameters dAg and
dA are initial and final areas of a membrane element.
The principal membrane elastic tensions 71 and 73, re-
sult from NH law are
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The second constitutive equation used is Skalak’s (SK)

law [45] to model the membrane of a red blood cell:

1_(1 1
W=cE <2112 + 1 — 12> + ECEI;. (3)

Postulated in such a way, SK law can capture the special
feature of biological membranes that deform easily under
shear while almost keep a constant area. For such mem-
branes, on the right hand side of Eq. (3) the factor C
(in the second term) must be quite large to ensure neg-
ligible area dilation (I2 — 0), and the first term mainly
accounts for shape deformation. These are clearer when
looking at the principle membrane tensions

_ EX\
= 37>\2 m2). (4)

We have divided the original strain energy function in
[45] by a factor of 1.5 so that Eq. (3) leads to the same
small deformation behavior as NH law when C' = 1.

Tl (A2 — 14 CON31o] (likewise for

The 3D capsule membrane is discretized into flat tri-
angular elements, and a finite-element membrane model
is employed to obtain the forces acting at the discrete
nodes of the membrane. The present simulation method
is based on the immersed boundary lattice Boltzmann
method of Sui et al. [43, 46-48]. The fluid-capsule in-
teraction is solved by the immersed boundary method of
Peskin [49], the flow field is solved by the lattice Boltz-
mann method with a multi-block technique to refine the
mesh around the deformable capsule. The method has
been validated extensively against results of boundary
element simulations and small deformation theory for
three-dimensional capsules in shear flow [22, 43]. The
simulation set-up (e.g. domain and mesh sizes) in the
present study is the same as that in our earlier work,
where detailed convergence tests were carried out. For
most cases in the present study, the global error in mass
conservation of the capsule is within 1.5%.

The following dimensionless groups are used: the
Reynolds number is based on the dimension of the cap-
sule, and is defined as Re = 4pka?/u; the ratio of viscous
and elastic forces is represented as G = pka/FE, which
can be considered to be a dimensionless shear rate or a
capillary number. In the present numerical simulations,
the shear rate is kept constant and the membrane shear
elasticity is varied, so that the Reynolds number does not
change but a range of values of dimensionless shear rates
can be achieved. We investigate the effect of the Reynolds
number on the results towards the end of this paper. The
same approach has been used in many previous studies
and in such a way the effect of the dimensionless shear
rate can be isolated from that of the Reynolds number.
In the presentation of the results, the time variable has
been made dimensionless with k1.

III. MOTIONS OF OBLATE CAPSULES

Results are first presented for an oblate spheroidal cap-
sule with an initial aspect ratio of 2:3 and an NH mem-
brane, for increasing the dimensionless shear rate G from
O(10~%) to O(10~1) whilst keeping the Reynolds number
fixed at 0.2. Effects of Re and the initial capsule aspect
ratio are discussed further below.

At low dimensionless shear rates, G < 0.01, it is in
general accepted that the capsule will undergo a tum-
bling motion. In the present study, we find tumbling is
not stable to off-plane perturbations; instead, the stable
modes of an initially oblate capsule for increasing dimen-
sionless shear rates are: rolling, precessing and tumbling.

At very low dimensionless shear rates, G < 1073, the
capsule’s global deformation is not visible, and it is found
that independent of the value of the initial angle 3, the
capsule gradually adopts a rolling motion (shown in Fig.
2 and discussed later on). This can be best characterized
by the time evolution of the angles that the capsule’s rev-
olution axis makes with the y-axis (direction of vorticity)
0,y (illustrated in Fig. 1) and x-axis (flow direction) 6,,
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FIG. 2. Illustration of the rolling motion of an oblate cap-
sule: (a) instantaneous profiles, black dots represent the same
membrane node on the capsule’s cross section in the plane of
shear; (b) flow field around the cross section of the capsule in
the plane of shear.

as shown in Fig. 3a for a capsule whose equatorial plane
is initially perpendicular to the plane of shear. It is seen
that the angle 0,, decreases in an oscillatory fashion to-
wards zero and that 6,., exhibits a dampened oscillation
around 90°. These results indicate that the motion of the
capsule loses its symmetry about the shear plane quickly;
a capsule precesses with its equatorial plane gradually be-
comes aligned with the plane of shear, and then carries
out a rolling motion as illustrated in Fig. 2a, in which
the capsule spins about its revolution axis like a wheel.
From Fig. 2b, it is seen that the capsule membrane in the
plane of shear resembles a closed streamline which also
suggests a steady configuration. It should be noted that
a similar transition to rolling has been observed recently
in numerical simulations of rigid oblate spheroidal par-
ticles in shear flow with small inertia [50, 51], which we

(a)
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FIG. 3. Rolling motion of oblate capsules: temporal evo-
lutions of (a) angles that the revolution axis of a capsule
with an NH membrane makes with x-axis 6,,, and y-axis €,
for 8 = 90° and G = 0.0005; (b) 6,y for capsules with NH
or SK membranes at different dimensionless shear rates and
B = 45°.

will discuss in Sec. V. The effect of dimensionless shear
rate on the time evolution of 6, is presented in Fig. 3b.
It is seen that at the same initial tilted angle, the dimen-
sionless time it takes for the capsule to change to rolling
motion increases monotonically with the shear rate. This
transient time also depends on the initial tilted angle, and
it is longest for 8 = 90° for the same dimensionless shear
rate. We have also carried out simulations of capsules
with an SK membrane and have found a similar transi-
tion to rolling motion at low shear rates. An example
has been included in Fig. 3b for C = 10 at G = 0.001.
When the dimensionless shear rate is increased, a new
mode of motion dominates a large range of initial tilted
angle values. The oblate spheroidal capsule still largely
keeps its initial shape; it carries out a precessing mo-
tion and seems to achieve a periodic state after a long
transient stage as shown in Fig. 4a. At G = 0.004, an
initial tilted angle of 8 = 22.5° is not enough to trig-
ger the precessing motion. The equatorial plane of the



capsule returns to the plane of shear shortly and the cap-
sule finally carries out a rolling motion. For sufficiently
large tilted angles, such as 3 = 45° or 60°, 0,, finally
oscillates around a constant value which suggests a pe-
riodic state. When G is increased slightly to 0.005, an
initial tilted angle of § = 22.5° is sufficient to lead to
a precessing motion (Fig. 4b and c). Figure 4b shows
the trajectory of the capsule’s revolution axis projected
onto a unit sphere. After the transient stage, the revo-
lution axis forms a cone, and its intersection point with
the surface of the unit sphere falls into a limit circle.
Apparently similar off-the-shear-plane motion has
been described by Jeffery[31] for rigid particles in shear
flow. For precessing motion of an ellipsoid of aspect ratio
X in shear flow without inertia, this corresponds to [31]

kt
tan ¢ = y tan [ ——— |, 5
an ¢ Xan<X+X1> (5)
B
tan6,., = X ) (6)
VX2 cos? ¢ + sin? ¢

where the phase angle ¢ is defined as the angle that the
revolution axis of the particle makes with the flow direc-
tion in the plane of shear (see Fig. 1); B is the so-called
orbit constant which only depends on the initial posi-
tion of release of a rigid particle; its value determines the
maximum and minimum values of ,., during the periodic
precessing motion through

tan 0?;"‘ = By, tan6;"" = B. (7)

Eq. (7) can be used to fit the value of B to the results of
the numerical simulation. In Fig. 4c we show an example
comparison of the precessing state with Jeffery’s orbit
[31] for x = 2/3 and a fitted value of B. Similar good
agreement has been observed for other cases in precessing
regime.

We have extracted the time-averaged value and the
oscillation amplitude of 6,., for capsules in the precessing
motion; one example is shown in Fig. 5. The results
suggest that transition from rolling to precessing happens
via a Hopf bifurcation. It is also seen that the oscillation
amplitude of §,, arrives at a maximum value when the
time averaged value is between 30° and 60°. The time
averaged value of 6,, increases with the dimensionless
shear rate in precessing regime, and for sufficiently high
dimensionless shear rates and large initial tilted angles,
the average value of 8., reaches 90°, which corresponds to
the axis of revolution of the capsule arriving in the plane
of shear and thus a tumbling motion which is symmetric
about the plane of shear. Our simulation results show
that when G is between 0.01 and 0.02, the capsule finally
carries out the tumbling motion for a wide range of .
Fig. 6a presents the time series of 0,., for a capsule with
various initial tilted angles. For g = 22.5° and 45°, a
tumbling motion is finally achieved, wherein the capsule
flips with its shortest axis staying in the plane of shear
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B:
80 B=45° G=0.004
B:

0
60° G=0.004
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FIG. 4. (Color online) Precessing motion of an oblate cap-
sule with an NH membrane: (a) temporal evolution of 6,
of a capsule with various initial tilted angles at G = 0.004;
(b) the stable trajectory of the revolution axis projected to
a unit sphere for a capsule at 8 = 22.5° and G = 0.005; (c)
comparison between numerical simulation (symbols) and Jef-
fery’s theory [31] (curves) in angles ¢ and 6,, for § = 22.5°,
G = 0.005.
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FIG. 5. The time averaged value and the oscillation amplitude
of 6, as a function of dimensionless shear rate G for an oblate
capsule with an NH membrane and an initial titled angle g =
45°.

(see the inset). Interestingly, for 8§ = 5°, which can be
considered as a small off-the-shear-plane perturbation to
a capsule whose equatorial plane is in the plane of shear,
the capsule turns back to rolling motion, which suggests
rolling motion is strongly stable for an oblate capsule.

At low shear rates (G < 0.02), the shape of the
capsule largely resembles an oblate spheroid. We can
find the length of the revolution axis ¢ and the equiv-
alent diameter of the capsule in its equatorial plane
with area S, b = 2(S/7)%°. A Taylor shape parameter
D = (b—1c¢)/(b+ ¢) has been computed and the results
are presented in Fig. 6b. It is seen that the oscillation
amplitude of the shape parameter increases with G and
the minimum value approaches zero. When D becomes
close to zero, the projection of the capsule onto the plane
of shear is close to a circle and it is difficult to identify a
major axis.

The limit D,,;, — 0 has been proposed recently in [26]
as a criterion for a transition from tumbling to swinging.
A swinging regime is indeed achieved when G is beyond
0.03, where the major axis of the capsule can be iden-
tified from the principle axis of the capsule membrane’s
moment of inertia tensor. In previous studies where the
capsule is symmetric about shear plane during deforma-
tion (e.g., in Refs [21, 22, 26]), it has been found that the
angle between the major axis and the flow direction os-
cillates around a mean value with a small amplitude in a
swinging motion. Interestingly, in the present study, we
find that initially tilting the capsule out of the shear plane
can lead to very complicated swinging states, in which the
major axis oscillates about the plane of shear in addition
to the previously found swinging about a mean angle with
the flow direction. Such an off-plane swinging motion has
also been found for prolate capsules in shear flow, and was
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FIG. 6. (Color online) Tumbling motion of an oblate capsule
with an NH membrane: (a) temporal evolution of 6., of a
capsule at G = 0.01. The inset shows the stable trajectory
of the revolution axis projected to a unit sphere for a capsule
with 8 = 22.5°%; (b) variations of the Taylor shape parameter
at different dimensionless shear rates for a capsule with § =
45°.

named as oscillating-swinging (OS) motion [38]; here we
use the same name. Figure 7a shows the trajectory of the
long axis projected to a unit sphere for such a oscillating-
swinging state, and it is seen to form a lemniscate with
size decreases when G is increased. Figure 7b shows the
variations of the angles that the major axis of the cap-
sule makes with the shear plane and x — y plane. When
increasing the dimensionless shear rate, both oscillation
amplitudes decrease, towards zero which corresponds to
a steady tank treading mode. However, there are two ex-
ceptions. One corresponds to 8 = 90°, where the capsule
carries out a swinging motion whilst adhering to sym-
metry about the shear plane; this has been well studied
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FIG. 7. (Color online) Oscillating-swinging motion of an

oblate capsule with an NH membrane. (a) Trajectories of
the long axis of a capsule projected to a unit sphere. The val-
ues of G are 0.05,0.1 and 0.2 respectively with the sizes of the
lemniscates decreasing. 8 = 67.5°. (b) Variations of the angle
that the long axis of a capsule makes with the plane of shear
015> (blue lines) and the angle that the long axis makes with
x — y plane 0,y (red bold lines) for increasing dimensionless
shear rate.

before. The other exception is for § = 0°, i.e., when the
capsule’s equatorial plane is initially in the plane of shear,
where we find the capsule to always be symmetric about
the shear plane and this is very stable to small perturba-
tions at § < 5°. The capsule achieves a stationary shape
with a constant inclination angle with the x — y plane
and the membrane rotates around the liquid inside, just
like a spherical capsule in shear flow.

Recently, Bagchi and co-workers identified a novel
vacillating-breathing mode for non-spherical capsules in
shear flow [11], notably when the fluid inside the capsule
is much more viscous. This motion happens between
tumbling and swinging when increasing the shear rate.
Vacillating-breathing mode was first predicted theoret-
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60 |

(<o R P P T 0s(T) OS(R)

30}

R R P T

R R

OFR R R R TT

10 10° 10"

G

FIG. 8. Phase diagram for an oblate capsule with an ini-
tial aspect ratio of 2 : 3 and an NH membrane. R repre-
sents rolling, P represents precessing, T is for tumbling, S for
swinging, OS(T) and OS(R) are for two types of oscillating-
swinging motion as explained in the text, and TT is for steady
tank-treading.

ically by Misbah [10] for vesicles. It is different from
swinging in that the major axis of the capsule/vesicle
oscillates around the flow direction and thus has a zero
mean inclination angle. In the present study assuming
a unity viscosity ratio, we do find swinging motion with
the major axis of the capsule periodically crossing the
plane of zero velocity, but the time averaged value of the
inclination angle with the flow direction is always consid-
erably larger than zero.

In a recent work by Omori et al. [52] on the dynamics
of an oblate spheroidal capsule in shear flow, an inter-
esting reorientation phenomenon was discovered wherein
the capsule is in the swinging regime at high shear rates.
Defining a unit vector which extends from the mass cen-
ter of the capsule to the material point of the membrane
that initially intersects with the revolution axis of the
capsule, it was found that this vector would gradually
approach the plane of shear at relatively low shear rates
(similar to that in the tumbling motion and here we use
OS(T) to represent this mode), and the unit vector would
approach the vorticity axis of the shear flow at relatively
high shear rates (similar to that in the Rolling motion
and here we use OS(R) to represent this mode). In
the present study we observed a similar reorientation for
oblate capsules. For example in Fig. 7, G = 0.05 belongs
to the OS(T) regime and G = 0.1 and 0.2 belongs to the
OS(R) regime. Detailed features of the reorientation can
be found in [52] and are thus not repeated here; such a
reorientation will be further discussed in Sec. V, covering
both oblate and prolate capsules in a much wider range
of dimensionless shear rates.

To summarize the various regimes as a function of
the dimensionless shear rate and the initial tilted an-
gle, a phase diagram has been constructed and is shown
in Fig. 8, noting that the viscosity ratio is unity and



FIG. 9. Illustration of the rolling motion of a prolate cap-
sule. Black dots represent the same membrane node on the
capsule’s cross section in the plane of shear.

bending has been neglected. Several novel features can
be observed from the phase diagram: first, at low di-
mensionless shear rates (G < 0.02 for the present oblate
capsule), previous studies assuming an initial symmetry
about the shear plane have reported only one tumbling
mode, while the present results indicate that when in-
creasing the dimensionless shear rate, the dominant sta-
ble motion exhibits the following modes: rolling, pre-
cessing and tumbling; second, it is seen that there can be
different modes at the same G, for example at G = 0.01,
which would explain the coexistence of different modes
(e.g., tumbling and rolling) observed in experiments on
red blood cells [12]; third, at high dimensionless shear
rates, a sufficient initial titled angle could lead to a more
complicated oscillating-swinging motion.

IV. MOTIONS OF PROLATE CAPSULES

In previous studies of prolate capsules in shear flow
(e.g., in [26]), the revolution axis of the capsule was ini-
tially in the plane of shear. It was found that the cap-
sule undergoes a tumbling motion at low shear rates, and
transits to a swinging motion with the shear rate increas-
ing. Recently, Dupont et al. [38] studied for the first
time the motions of prolate capsules in shear flow, with
the revolution axis being initially titled out of the plane
of shear. They found at low dimensionless shear rates,
the stable mode is a log-rolling motion, where the long
axis of the capsule aligns with the vorticity axis, as il-
lustrated in Fig. 9. They also discovered that with the
shear rate increasing the rolling motion becomes unsta-
ble, and the capsule precesses around the vorticity axis,
which was named as wobbling (illustrated in Fig. 10). At
even higher shear rates, the long axis of the prolate cap-
sule tends to approach and to oscillate about the plane of
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FIG. 10. Snapshots of a prolate capsule during a wobbling
motion. Time sequence is from (a) to (h). Two small spheres
are attached to the surface of the capsule as tracer particles.
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FIG. 11. Phase diagram for a prolate capsule with an initial
aspect ratio of 2:1 and an SK membrane with C = 1. T
represents tumbling, P represents precessing, R is for rolling,
S is for swinging and OS represents oscillating-swinging.

shear, in an oscillating-swinging motion similar to that of
an oblate capsule as described in Sec. ITI. This similarity
is possibly because at high shear rates both prolate and
oblate capsules deform into elongated ellipsoidal shapes.
In the present study, we have also considered the dynam-
ics of prolate spheroidal capsules in shear flow, for situa-
tions similar to that of Dupont et al. [38]. The difference
between our study and that of Dupont et al. is that we
include small inertia, and the lowest dimensionless shear
rate considered has been reduced to G = 0.0001.

In this section, results are presented for a prolate cap-
sule with an initial aspect ratio of 2:1 enclosed by an SK



80

B=45° G=0.0005
........... B=45° G=0.001

60
———— - B=30°G=0.001

2
D
40
i
20
. . . . .
0 50 100 150 200 250
kt
(a)
9| P p
7 71 /"
, £ , A #
60 | ‘ | | /
[ ‘ ) {
/ / ry /
/ / /
30} [ ‘
/ | ; | ;
S ! I | ! |
= 0fF I | ! )
[en) ! I | I /
r | r ! )
30 ! [ / ‘ /
! ! / 0] /
{ I I I (
60/ L I
[t Iy
| / [
4 1A
-90 | I ' I I I I
260 265 270 275 280
kt
(b)

FIG. 12. (a)Temporal evolution of 6, for prolate capsules in
tumbling and precessing motions; (b) comparison between nu-
merical simulation (symbols) and Jeffery’s theory [31] (curves)
in time evolution of angles ¢ and 6,, for 8 = 30° and
G = 0.001 when a capsule is in a precessing motion.

membrane with C' = 1. The dimensionless shear rate con-
sidered ranges from G' = 10~* to 0.4 and the Reynolds
number is kept at 0.2. We summarize the results in a
phase diagram as shown in Fig. 11. At relatively high
dimensionless shear rates, G > 0.01, our results are con-
sistent with those of Dupont [38]: with the dimension-
less shear rate increasing, we find rolling, wobbling (or
precessing) and oscillating-swinging motions as the sta-
ble modes. However, at lower dimensionless shear rates,
where the deformation of the capsule is very small, we
have observed fundamentally new features.

At very low dimensionless shear rates, G < 0.0005,
we find independent of the initial tilted angle a capsule
finally adopts a tumbling motion. The capsule places
its long axis in the shear plane and rotates about its

minor axis. Figure 12a shows the evolution of 6,, at
low dimensionless shear rates with an initial tilted angel
of 45°, it is seen that the transient dimensionless time
towards tumbling motion (6, = 90°) increases with the
dimensionless shear rate. When the dimensionless shear
rate is increased to around 0.002, a precessing motion
dominates a wide range of initial tilted angles. In this
mode, the long axis of a capsule precesses around the
vorticity axis with a nutation and forms a cone. The
time evolution of 6, of a prolate capsules in a precessing
motion is presented in Fig. 12a, and a comparison with
Jeffery’s orbit [31] is presented in Fig. 12b, where very
good agreement is observed. From Fig. 12a, we also infer
a dependency of the final stable motion on the initial
titled angle, similar to that of an oblate capsule. At
G = 0.001, an initial titled angle of 8 = 45° leads to
a tumbling motion, and S = 30° results in a precessing
motion.

In the precessing regime, the time-averaged value of
0., decreases with the dimensionless shear rate, towards
0° which corresponds to a log-rolling motion. For the
dimensionless shear rate G > 0.004, rolling motion is a
dominant stable mode where the prolate capsule finally
rotates around its long axis which is aligning with the
vorticity axis. The time evolutions of 8, for prolate cap-
sules in the rolling regime are presented in Fig. 13 for
a range of dimensionless shear rates. It is interesting to
find that upon increasing the dimensionless shear rate,
the transient dimensionless time towards steady rolling
first decreases, until approximately G = 0.01, beyond
which it increases until the next stable mode of motion,
which is wobbling. We also conclude from Fig. 13 that
the tumbling motion of the prolate capsule is strongly
stable: initially tilting the revolution axis out of the pane
of shear by 15° is not sufficient to trigger the rolling mo-
tion at G = 0.004, when rolling is the dominant mode.
The qualitative difference between the present results and
that of Dupont [38] may originate from the inertial effect,
which we will discuss in Sec. V.

V. DISCUSSION

A. Particle shear stress and effect of Reynolds
number

We investigate the particle shear stress for both oblate
and prolate capsules at low shear rates, in order to test
the relevance of an hypothesis of Jeffery [31] that non-
spherical rigid particles in Stokes shear flow finally adopt
a motion with minimum energy dissipation. The normal-
ized particle shear stress is [6]:

ore = MLV /A oz + (3 = Dugns + uzn,))dA (8)

where f, is the membrane force in the direction of x and
A is the viscosity ratio. The particle shear stress can be
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FIG. 14. Temporal evolutions of 6,, of an oblate capsule
with an initial aspect ratio of 2 : 3 and an NH membrane at
B =45°, G =0.001 and Re = 0.02 and 0.2.

used to indicate the shear viscosity of the suspension of
capsules.

For an oblate capsule with an NH membrane and an
initial aspect ratio of 2 : 3, at G = 0.001 the value of o,
averaged over one period equals 3.15 for tumbling mo-
tion and 3.87 for rolling motion, so it appears the cap-
sule tends to adopt a mode of motion which makes larger
contribution to the shear stress. The same phenomenon
is observed for prolate capsules, thereby also negating
the applicability of Jeffery’s hypothesis when extended
to flows with finite inertia. However, the solution of the
Stokes equations are known to minimize energy dissipa-
tion only for given boundary velocities (e.g., in [53]), and
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the presence of the membrane around the capsule makes
the applicability of this theorem here unclear. Further-
more, numerical studies on rigid particles in shear flow
[50, 51] have shown that when the Reynolds number is
within [0.1, 100], rigid oblate spheroids tend to carry out
a rolling motion and prolate particles tend to tumble,
which are very similar to the present findings.

In early experiments of Karnis et al. [54] about ax-
ial migration of particles in Poiseuille flow, it was found
that inertia becomes sufficient to break the reversibility
of the flow when the particle Reynolds number (defined
in a similar way to the present study) is of O(107%),
above which both rigid rods and disks adopt motions that
contribute to increasing the suspension viscosity. Draw-
ing an analogy between rigid particles and capsules, we
would expect there could be a transition in stable modes
of motions for capsules when the Reynolds number is at a
similar order. However, reducing Re from the present 0.2
to 10~* will increase the computational time by three or-
ders of magnitude, which is currently not accessible. An
attempt has been made to assess the significance of in-
ertia here, by carrying out a simulation with reduced Re
from 0.2 to 0.02, for a capsule with an NH membrane
with f = 45° and G = 0.001. The results as shown
in Fig. 14, indicate that the capsule transits to rolling
motion in a slightly shorter dimensionless time with de-
creasing Reynolds number. We therefore leave this issue
to future study, when new algorithms that can reduce the
computation time to an acceptable level are adopted.

B. Flow decomposition

In order to understand the mechanism whereby a
spheroidal capsule adopts a motion that increases the
suspension shear viscosity, we have decomposed the sim-
ple shear flow into an elongational flow and a rotational
flow for the case presented in Fig. 14 at Re = 0.2, and
studied the dynamics of the capsule in each of these basic
flows separately. We have found that the capsule finally
undergoes a tumbling motion in the rotational flow; in
the elongational flow the capsule achieves a steady state
with the revolution axis aligned with the direction of
compression and the equatorial plane being perpendic-
ular to the original plane of shear. In both flows, the
revolution axis of the capsule is within the original plane
of shear, and thus combining these two modes together
would naturally lead to a tumbling motion for the oblate
capsule. However, the capsule adopts a rolling motion
in the combined flow (simple shear flow). This analysis,
although does not completely explain the mechanism, it
suggests that the fluid-capsule system with small inertia
is complicated and highly nonlinear.



C. Effect of initial tilted angle

For both oblate and prolate spheroidal capsules, it is
interesting to find that the long-term dynamics of a cap-
sule can depend on the initial inclination angle in transi-
tional regimes in the phase diagrams: at the same dimen-
sionless shear rate, a capsule can adopt different modes of
motion. For example in Fig. 4a, an oblate capsule adopts
either a rolling or a precessing motion; even when £ falls
into the range where a capsule undergoes a precessing
motion, the average value of 6,, (the cone angle of the
trajectory of the capsule’s revolution axis) still depends
on the initial tilted angle 5. We have observed a simi-
lar phenomenon for prolate capsules, which suggests the
fluid-capsule system to be a high-dimensional dynamical
system. In fact, the dependence of the final stable mo-
tion on the initial condition has been observed in other
systems. Zhao and Shaqgfeh [34] considered vesicles in
shear flow with zero inertia, Huang et al. [51] studied
prolate and oblate rigid particles in shear flow with finite
inertia, and both reported off-the-shear-plane modes that
are sensitive to the initial inclination angle of the vesi-
cle or particle. These studies may shed some light on
the intriguing phenomenon of red blood cells subjected
to shear flow where individual cells adopt different types
of motion even under the same flow condition [12].

D. Reorientation

We generalize the reorientation phenomenon discussed
in Sec. IIT to both oblate and prolate capsules and a
much wider range of dimensionless shear rates covering
all modes of motion observed in the present study. In-
terestingly, for an oblate capsule, upon increasing the di-
mensionless shear rates, the unit vector (extending from
the mass center of the capsule and pointing to the mem-
brane material point that initially intersects with the rev-
olution axis) changes from being aligned with the vortic-
ity axis (in rolling motion) to being within the plane of
shear (in tumbling motion), and finally turns back to be-
ing aligned with the vorticity axis (in the OS(R) mode).
In between, the capsule adopts transitional off-the-shear-
plane motions (i.e., precessing and oscillating-swinging
modes). It is also interesting to find the reorientation
of the unit vector for a prolate capsule with increasing
dimensionless shear rate is in an opposite order: the unit
vector changes from being within the shear plane (in tum-
bling motion), to being aligned with the vorticity axis (in
rolling motion), and finally changes back to being within
the plane of shear. Similar to that of an oblate cap-
sule, off-the-shear-plane modes are observed in between.
Such a reorientation phenomenon and the difference be-
tween the reorientation of prolate and oblate spheroidal
capsules can be utilized in applications such as particle
alignment techniques.
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E. Effect of membrane constitutive laws and
capsule aspect ratio

Different membrane constitutive laws have been used
in the present study: the strain-softening neo-Hookean
(NH) law and strain-hardening Skalaks (SK) law. When
C =11in Eq. (3), both constitutive laws lead to the same
results at low dimensionless shear rates. We carried out
simulations for an oblate capsule with an SK membrane
with C' = 1, aspect ratio 2 : 3 and § = 45°. The phase
diagram, corresponding to a horizontal line in Fig. 8, is
the same to that of a capsule with an NH membrane. In
the oscillating-swinging regime, we observe larger oscil-
lating amplitudes of 0;;, and 0, for the capsule with an
SK membrane. This is mainly because an SK membrane
is strain-hardening and leads to less deformation at high
shear rates when compared with an NH membrane. The
effect of membrane constitutive laws has also been dis-
cussed by Dupont et al. [38]; they found that the main
factor that determines the stable mode of motion and
the transition is the deformation of the capsule instead
of the membrane constitutive law. On these bases, we
argue that the phase diagrams obtained in the present
study are robust to membrane constitutive laws of the
capsules.

We have also carried out simulations of capsules with
higher sphericity. For an oblate capsule with an aspect
ratio of 9 : 10, an NH membrane and an initial angle
of B = 45°, we observe all types of motion and in the
same order as in Fig. 8 when increasing the dimension-
less shear rate. However, the upper boundary of G for
rolling motion is increased from 0.003 to 0.006 when com-
pared with an oblate spheroidal capsule with aspect ratio
of 2 : 3. When G is further increased to 0.007, the cap-
sule is already in the oscillating-swinging regime. This
suggests that the window of dimensionless shear rate for
precessing and tumbling motions would be reduced when
increasing the sphericity of an oblate spheroidal capsule.
A similar phenomenon has been found for prolate cap-
sules, the range of rolling motion for a prolate capsule
with an aspect ratio of 3 : 2 and an SK membrane is
0.005 < G < 0.1, slightly smaller than that of a cap-
sule with aspect ratio of 2 : 1. In precessing motion at
low dimensionless shear rates, we find the dependence of
the precessing cone angle of the revolution axis on initial
tilted angle is weaker for capsules with lower spheric-
ity. For a prolate capsule with aspect ratio of 3 : 2, we
observed that different values of S can lead to precess-
ing with different cone angles at the same dimensionless
shear rate. However, for a capsule with an aspect ratio
of 2 : 1, the cone angle seems only to be a function of the
dimensionless shear rate for all cases considered. Finally,
at high dimensionless shear rates where the capsule is un-
dergoing the oscillating-swinging motion, we find the os-
cillation amplitudes of the angles 0., and 0;,., are smaller
for a capsule of higher sphericity.



VI. CONCLUSION

We have studied the dynamics of oblate and prolate
spheroidal capsules in simple shear flow with small iner-
tia, for the case of equal internal and external fluid vis-
cosity and without bending stiffness, using an immersed
boundary lattice Boltzmann method. The effect of the
initial tilted angle that the capsule’s equatorial plane
makes with the plane of shear on the motion the capsule
would carry out after an initial transient stage has been
investigated. Having identified the sequence of events
when increasing the dimensionless shear rate, and char-
acterized the various modes observed, form a necessary
step to further experimental and theoretical work.

For oblate capsules, it is found here that tumbling, a
previously well accepted mode of motion at low shear
rates, is unstable. Instead, at very low dimensionless
shear rates, independent of the initial angle, the capsule
is found at late times to be in a rolling motion, wherein
the capsule’s equatorial plane tends to stay in the plane
of shear. At larger dimensionless shear rates, a precess-
ing motion is observed for most initial inclination angles
over a long computational time. It is shown that this mo-
tion can be represented by Jeffery’s theory [31] for a rigid
spheroid in shear flow. Further increasing the shear rate
leads to the well-known tumbling motion as the stable
mode for a large range of inclination angles, in which the
capsule flips with its revolution axis staying in the plane
of shear. We find in transitional regimes, the capsule’s
motion could depend on the initial inclination angle. At
high dimensionless shear rates, the capsule carries out a
complicated oscillating-swinging motion: while the mem-
brane is rotating around the liquid inside, the major axis
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of the capsule oscillates about the shear plane in addi-
tion to the previously found swinging about a mean angle
with the flow direction. Both oscillations become weaker
with the dimensionless shear rate, towards a steady tank
treading motion asymptotically. The motion of a prolate
spheroidal capsule is found to be different from that of
an oblate one. When increasing the dimensionless shear
rate, the stable modes are tumbling with the revolution
axis staying in the plane of shear, precessing following
Jeffery’s orbit, log-rolling with revolution axis aligned
with the vorticity axis, precessing with large deforma-
tion (wobbling), and finally oscillating-swinging at high
dimensionless shear rates.

Both the rolling motion of an oblate capsule and the
tumbling motion of a prolate capsule at very low dimen-
sionless shear rates correspond to modes that contribute
to increasing the particle shear stress. These are similar
to the recent findings for rigid oblate and prolate solid
particles in shear flow with small inertia [51], suggest-
ing that the hypothesis of Jeffery [31] that non-spherical
particles in Stokes shear flow finally adopt a motion with
minimum energy dissipation does not apply to situations
where inertial effects are significant. Finally, we have also
reported here the interesting reorientation phenomenon,
wherein modes are observed in opposite order for oblate
and prolate capsule upon increasing the dimensionless
shear rate, which can be used in particle alignment tech-
niques.
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