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The three-dimensional analogue of Moffatt eddies is derived for a corner formed
by the intersection of three orthogonal planes. The complex exponents of the first
few modes are determined and the flows resulting from the primary modes (those
which decay least rapidly as the apex is approached and, hence, should dominate the
near-apex flow) examined in detail. There are two independent primary modes, one
symmetric, the other antisymmetric, with respect to reflection in one of the symmetry
planes of the cone. Any linear combination of these modes yields a possible primary
flow. Thus, there is not one, but a two-parameter family of such flows. The particle-
trajectory equations are integrated numerically to determine the streamlines of primary
flows. Three special cases in which the flow is antisymmetric under reflection lead
to closed streamlines. However, for all other cases, the streamlines are not closed
and quasi-periodic limiting trajectories are approached when the trajectory equations
are integrated either forwards or backwards in time. A generic streamline follows the
backward-time trajectory in from infinity, undergoes a transient phase in which particle
motion is no longer quasi-periodic, before being thrown back out to infinity along the
forward-time trajectory.

Key words: low-Reynolds-number flows, Stokesian dynamics

1. Introduction
Following the intriguing discovery by Moffatt (1964) of an infinite log-periodic

sequence of eddies in two-dimensional corner flow, a number of studies (see Shankar
2007, chapter 11, and references therein) have aimed at three-dimensional extensions.
Two types of problems can be distinguished: those which are three-dimensional
versions of the Taylor paint scraper problem, in which the flow is driven by wall
motion extending to the corner, and those which, like the Moffatt problem, have no
wall motion near the corner. An example of the former type is Hills & Moffatt (2000).

The second class of problems includes the one studied in this paper. As in the two-
dimensional case, it is argued that the effective Reynolds number decreases to zero as
the corner is approached, so a description using Stokes flow is appropriate in the near-
corner region. Cases which have been successfully treated include three-dimensional
flow in a two-dimensional corner (see e.g. Moffatt & Mak (1998), who showed that
eddies need not occur for three-dimensional flow), the circular cone (Wakiya 1976;
Liu & Joseph 1978; Malyuga 2005; Shankar 2005) and two concentric circular cones
(Malhotra, Weidman & Davis 2005; Hall, Hills & Gilbert 2009).
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There is, however, an interesting example which is conspicuous by its absence,
namely the corner formed by the intersection of three planes, a geometry referred
to as a trihedral cone. This might, for instance, represent flow near the corner of
a rectangular container. To quote Shankar (2007, § 11.3), ‘Nothing is known about
such flows. . . ’. To the best of the author’s knowledge, this remains the case today;
hence, the present paper, which provides the first analysis of such a flow. We study
the analogue of Moffatt eddies in a corner bounded by three orthogonal planes. This
geometry has previously been used by, e.g. Gomilko, Malyuga & Meleshko (2003),
but with forcing by wall motion extending to the apex, rather than driving by distant
flow. As noted above, this is a three-dimensional version of the Taylor paint-scraper
problem, rather than the Moffatt one, and has nothing to say about the near-apex
asymptotics of flow in the absence of wall motion which we study here.

Section 2 formulates the problem using spherical polar coordinates, r, θ, φ. As for
the Moffatt problem, linearity and absence of an intrinsic length scale lead to modes
for which the velocity components have rλ dependence on the radial coordinate, where
the exponent λ= λr+ iλi can be complex. The steady, incompressible Stokes equations
and no-slip boundary conditions lead to a homogeneous linear problem which must be
satisfied by the θ, φ dependent coefficients of the velocity and pressure. The problem
only has a non-zero solution for certain discrete values of λ, thus determining the
modes.

In § 3, the Chebyshev–Chebyshev collocation method used to discretize the
differential equations is described. This leads to a matrix system of the form
A(λ)χ = 0 (χ is a column vector formed by the velocity components and pressure at
the collocation points), i.e. λ must be such that A(λ) is singular. Reflection symmetry
is employed to split the problem into decoupled symmetric and antisymmetric parts.
Thus, there are two families of modes, symmetric and antisymmetric. The methods
used to locate the values λ and compute the modal velocity field are also described.

Section 4 gives the results. In particular, the modes with the smallest real part of
λ, which decay slowest as r→ 0 and hence should dominate the near-apex flow, are
found to have λ= 3.26358± 1.16164i. These are referred to as the primary modes and
include both symmetric and antisymmetric modes. Secondary modes arise at higher
values of λr, but, being more rapidly decaying as r→ 0, they are of lesser importance
and we have not studied the resulting flows in detail. The most general primary flow
which can be constructed is a linear combination of the symmetric and antisymmetric
modes. Thus, there is not one, but a two-parameter family of primary flows. As for
Moffatt eddies, the velocity decays like rλr as the corner is approached and repeats
itself log-periodically at smaller and smaller scales.

Streamlines and particle trajectories are perhaps the most widely used tools for
analysing flow structure. Given that the primary flows are steady, streamlines and
particle trajectories coincide and are obtained by numerical integration of the equations
of particle motion. Three special cases are found, characterized by antisymmetry of
the flow under reflection in one of the three symmetry planes of the cone. In these
cases, the particle trajectories are time-periodic and hence the streamlines are closed,
as for the Moffatt problem. However, for all other flows (i.e. the generic case), they
are aperiodic and the streamlines are not closed. Integrating forwards in time, we find
that streamlines approach a limiting trajectory which is quasi-periodic and leads to
particle motion away from the apex. Likewise, integrating backwards in time, another
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FIGURE 1. The coordinates θ and φ (as well as x, y, z, which are used in appendix B).
The shaded plane, φ = 0, is one of three for which the modal problem is symmetric under
reflection.

quasi-periodic trajectory is approached for which the particle moves towards the apex.
A generic streamline comes in from infinity along the backward-time trajectory, enters
a transient phase during which the particle motion is no longer quasi-periodic, before
going back out to infinity along the forward-time trajectory.

2. Formulation
Using spherical polar coordinates, r, θ, φ, having origin at the apex, we consider

steady, incompressible Stokes flow in the trihedral cone 0 6 θ 6 π/2, |φ| 6 π/4 (see
figure 1). The lack of an intrinsic length scale and linearity of the problem lead to
modal solutions of the form

vr

vθ

vφ

Π/µ

= rλ


ur (θ, φ)

uθ (θ, φ)
uφ (θ, φ)

r−1p (θ, φ)

 , (2.1)

where v,Π are the velocity and pressure, µ the dynamic viscosity and λ = λr + iλi

a constant which may be complex. As we shall see, only certain discrete values
of λ permit a non-zero solution. If λ is real, the velocity and pressure fields in
(2.1) are also real and evidently have power-law dependence on r. If λ is complex,
writing rλ = rλr exp[iλi ln r] shows that the velocity is the product of rλr and a periodic
function of ln r which changes sign every π/|λi|. Leaving aside the rλr factor, the
velocity field repeats itself log-periodically at smaller and smaller scales. Multiplying
r by exp[−π/|λi|] flips the sign of the velocity components, while multiplication by
exp[−2π/|λi|] leads to repetition. Complex λ occur in conjugate pairs, representing
modes which are complex conjugates of each other. Physically meaningful (i.e. real)
solutions of the governing equations follow from taking the real part of (2.1),
a process which combines conjugate modes. Conjugate modes represent the same
physical entity; both are needed to express a real flow.
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To avoid divergence of the integrated viscous energy dissipation rate as r→ 0, we
require λr > −1/2. Given this condition, the Reynolds number based on v and r
decreases to zero as r→ 0, implying consistency of the Stokes approximation near the
apex.

Written in matrix-operator form, the governing equations give

L− 2 −2∂θ − 2
cos θ
sin θ

− 2
sin θ

∂φ 1− λ

2∂θ L− 1

sin2θ
−2

cos θ

sin2θ
∂φ −∂θ

2
sin θ

∂φ 2
cos θ

sin2θ
∂φ L− 1

sin2θ
− 1

sin θ
∂φ

λ+ 2 ∂θ + cos θ
sin θ

1
sin θ

∂φ 0




ur

uθ
uφ
p

= 0, (2.2)

where ∂θ , ∂φ are partial derivatives and

L= ∂2
θ +

cos θ
sin θ

∂θ + 1

sin2θ
∂2
φ + λ(λ+ 1) (2.3)

arises from the scalar Laplacian. The first three rows of the matrix operator
represent the momentum equation, whereas the last row expresses the incompressibility
condition. The no-slip conditions at the walls imply ur = uθ = uφ = 0 for θ = 0,π/2
and φ =±π/4.

3. Numerical methods
The above differential equations are discretized using Chebyshev collocation, with

collocation points θ = θn, φ = φl, where

θn = 1
4
π

(
1− cos

(
nπ

Nθ + 1

))
1 6 n 6 Nθ , (3.1)

φl = 1
4
π cos

(
lπ

Nφ + 1

)
1 6 l 6 Nφ. (3.2)

The velocity and pressure are represented by their values at the collocation points,
organized as column vectors. For instance, unl

r = ur(θn, φl) yields an NθNφ-dimensional
column vector denoted Ur, with similar definitions for Uθ , Uφ and P. Specifically, the
order used was u11, u21, . . . , uNθ 1, u12, . . . , uNθ 2, . . . , u1Nφ , . . . , uNθNφ .

Equation (2.2) is evaluated at each of the collocation points, derivatives of the
velocity components and pressure being represented by matrix multiplication in the
usual manner (see appendix A for details). This leads to the block-matrix system

Λ− 2I −21θ − 2CS −2S1φ (1− λ) I
21θ Λ− S2 −2CS21φ −1̃θ

2S1φ 2CS21φ Λ− S2 −S1̃φ

(λ+ 2) I 1θ + CS S1φ 0




Ur

Uθ

Uφ

P

= 0. (3.3)

Within a block, rows correspond to the same equation applied at different collocation
points, ordered as for Ur, Uθ , Uφ and P. The matrices Λ, 1θ and 1φ arise from
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the Laplacian and first-order derivatives of the velocity components, 1̃θ and 1̃φ

come from the pressure derivatives, C and S are matrices representing multiplication
by cos θ and 1/ sin θ and I is the unit matrix. Note that these matrices are all
NθNφ × NθNφ . Thus, the matrix in (3.3) consists of square blocks of this size. The
boundary conditions have been used to express the Laplacian and first-order derivatives
of the velocity components and are thus implicit in (3.3).

The final NθNφ rows of (3.3) (incompressibility) imply

Ur = EθUθ + EφUφ, (3.4)

where

Eθ =− 1
λ+ 2

(1θ + CS), Eφ =− 1
λ+ 2

S1φ. (3.5)

Using (3.4) to eliminate Ur from (3.3),

A

Uθ

Uφ

P

= 0, (3.6)

where

A=

−21θ − 2CS+ (Λ− 2I)Eθ −2S1φ + (Λ− 2I)Eφ (1− λ) I
Λ− S2 + 21θEθ −2CS21φ + 21θEφ −1̃θ

2CS21φ + 2S1φEθ Λ− S2 + 2S1φEφ −S1̃φ

 (3.7)

consists of NθNφ × NθNφ blocks.
The original problem, equation (2.2) with zero-velocity boundary conditions, is

symmetric under the reflection φ 7→ −φ (see figure 1). This implies modes which
are either symmetric (ur 7→ ur, uθ 7→ uθ , uφ 7→ −uφ , p 7→ p) or antisymmetric
(ur 7→ −ur, uθ 7→ −uθ , uφ 7→ uφ , p 7→ −p). This property is inherited by the
numerical approximation (3.6) and allows splitting of the problem into symmetric
and antisymmetric parts, having matrices As and Aa. For the sake of simplicity, Nφ

is supposed even from here on, hence symmetric and antisymmetric problems with
one-half the size of (3.6) and having the form

B(λ)X = 0, (3.8)

where B = As for the symmetric problem and B = Aa for the antisymmetric one. The
column vector X consists of the first NθNφ/2 elements of Uθ , followed by those of Uφ

and P. The matrices As and Aa inherit the block structure of A, with square blocks
having NθNφ/2 rows and columns. Given a block of A, the corresponding blocks of
As and Aa result from dropping the final NθNφ/2 rows and appropriate summation and
subtraction of the columns corresponding to φl and −φl.

We want to obtain the values of λ for which (3.8) has a non-zero solution (i.e. B is
singular) for both the symmetric and antisymmetric problems, since these values lead
to modes. To this end, we use Gaussian elimination with partial pivoting to solve

B (λ)X (λ)= F, (3.9)
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where F is a column vector independent of λ. As λ approaches a value at which B is
singular, the quantity

σ(λ)= 1
‖X(λ)‖ , (3.10)

where ‖ ‖ denotes the usual norm of a complex vector, will generally tend to zero (it
would be an exceedingly unlucky choice of F if this were not true). Thus, we look for
solutions of σ(λ)= 0. Estimates of such solutions are obtained by a graphical method,
described in the next section, and refined using complex Newton–Raphson iteration on
the function

f (λ)= 1
FHX(λ)

, (3.11)

where FH is the Hermitian conjugate of F. The iteration requires the derivative of f (λ),
which is approximated by the finite difference (f (λ+ε)− f (λ−ε))/(2ε), with ε a small
parameter (we chose ε = 10−4). Iteration was continued until the difference between
successive values of λ was less in modulus than a specified tolerance (we used 10−12).
Note that double-precision arithmetic (64-bit IEEE 754) was used throughout.

Given a converged value of λ, solution of (3.9) by Gaussian elimination yields
the modal velocity and pressure fields, represented by X. Modal symmetry allows
calculation of Uθ and Uφ for all collocation points, while (3.4) gives Ur. Then ur, uθ
and uφ can be determined at any θ and φ using the same polynomial fitting employed
in appendix A to express the velocity derivatives (the fitting was implemented by
discrete Fourier transforms). Spatial resolution near the corners θ = π/2, φ = ±π/4
was augmented using rotational symmetry properties of the modes, as described in
appendix B.

4. Results
4.1. Determination of λ

Figure 2 shows curves of constant σ(λ) in the complex λ-plane for the symmetric
(figure 2a) and antisymmetric (figure 2b) problems. These results are for Nθ = Nφ = 8
and F with all elements equal to one (similar results are obtained for other choices
of F, in particular the zeros of σ(λ) are insensitive to this choice). Modal values
of λ, obtained using Newton–Raphson with Nθ = Nφ = 16, are indicated by crosses.
There is a zero at λ = 1 in figure 2(a), representing the constant pressure, zero-
velocity mode, which is of no dynamical significance and is thus ignored. Others
occur at λ = 3.26358 ± 1.16164i for both symmetries and represent modes which,
having the smallest λr, dominate the flow as r→ 0. These are the primary modes
to which we will subsequently focus attention. Owing to numerical discretization,
the values of λ from the symmetric and antisymmetric problems are not exactly the
same. That they should coincide precisely in the absence of numerical errors is a
consequence of rotational symmetry and is discussed in appendix B. Their difference
is thus a measure of numerical accuracy and, together with a refined calculation using
Nθ = Nφ = 32, indicated that the above values of λ are accurate to the given number
of decimal places. Secondary modes appear at higher λr. Those below λr = 7 lie at
λ= 5.294± 1.645i (s/a), λ= 5.354± 1.287i (s) and λ= 5.381 (a), where (s) indicates
a symmetric mode, (a) an antisymmetric mode and (s/a) implies both symmetries for
the same value of λ. We restrict attention to the primary modes from here on.
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(a)

(b)

FIGURE 2. Contours of constant σ(λ) in the complex λ-plane for (a) the symmetric problem,
(b) the antisymmetric problem (Nθ = Nφ = 8, −0.5 6 λr 6 6.5, |λi| 6 3.5). The crosses
represent zeros obtained using Newton–Raphson iteration with Nθ = Nφ = 16.

4.2. Velocity fields and particle trajectories of the primary flows
Combining the two primary modes with λ = 3.26358 + 1.16164i and taking the real
part, the velocity gives

v= Re{rλ(ζus(θ, φ)+ (1− ζ )eiψua(θ, φ))}, (4.1)

where Re{ } denotes the real part of a complex quantity, us and ua represent the
symmetric and antisymmetric modes and 0 6 ζ 6 1, 0 6 ψ < 2π parameterize the
family of flows given by (4.1). For definiteness sake, us and ua are normalized by
requiring us

θ = 1 and ua
φ = 1 on the cone axis, θ = arctan(

√
2), φ = 0. The parameter ζ

expresses the proportion of the symmetric component in the symmetric–antisymmetric
mix, while ψ determines the relative phases of the two components. A completely
general combination would multiply by an arbitrary complex constant, prior to taking
the real part in (4.1). This is equivalent to rescaling r and multiplying v by a real
constant. Thus, to within a change of radial scale and a multiplicative constant,
equation (4.1) provides the most general form of the velocity field resulting from
λ = 3.26358 + 1.16164i. The rest of this article concerns the particle trajectories
resulting from (4.1). Note that v changes sign and is divided by exp[πλr/λi] = 6810
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FIGURE 3. Radial projection of 10 streamlines of the purely antisymmetric primary flow
(ζ = 0) onto a plane perpendicular to the cone axis. Each point within the triangle represents
a particular (θ, φ) with the summit corresponding to θ = 0, the base to θ = π/2, the left-hand
side to φ = −π/4 and the right-hand side to φ = π/4. These results were obtained using
ψ = 0 and the initial conditions ρ = φ = 0 and θ = π/22, 2π/22, . . . , 10π/22.

when r is reduced by a factor of exp[π/λi] = 14.946. A radial period of the flow
corresponds to a reduction of r by a factor of exp[2π/λi] = 223.38.

Particle trajectories (also known as streamlines since the flow is steady) were
determined by fourth-order Runge–Kutta integration of

d
dτ

ρθ
φ

= (V2
ρ + V2

θ + V2
φ

)−1/2

Vρ
Vθ
Vφ

 , (4.2)

where ρ = ln r, τ is a time-like variable defined by

dτ
dt
= rλr−1 (V2

ρ + V2
θ + V2

φ)
1/2
, (4.3)

and

Vρ = Re{exp[iλiρ](ζus
r(θ, φ)+ (1− ζ )eiψua

r (θ, φ))}, (4.4)

Vθ = Re{exp[iλiρ](ζus
θ(θ, φ)+ (1− ζ )eiψua

θ(θ, φ))}, (4.5)

Vφ = 1
sin θ

Re{exp[iλiρ](ζus
φ(θ, φ)+ (1− ζ )eiψua

φ(θ, φ))}. (4.6)

Given the two-parameter nature of the flow and the three-dimensional space of initial
conditions, complete characterization of the trajectories is not feasible and we describe
results of a limited (but large, more than 14 000 trajectories in all) number of
calculations. The values Nθ = Nφ = 32 and a τ -step of 10−2 were used throughout.

When ζ = 0 the flow is purely antisymmetric and (performing 1000 trajectory
calculations) we found periodic trajectories, hence closed streamlines, for all initial
conditions (ρ(τ), θ(τ ) and φ(τ) are all periodic with the same period). Figure 3
shows the radial projection of a few streamlines onto a plane perpendicular to the
cone axis. Trajectories which cross the plane φ = 0 and return there are obliged by
antisymmetry to repeat (with a change in sign of φ) their previous time evolution in
reverse, thus producing closed streamlines with mirror symmetry. Rotation about the
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FIGURE 4. Streamline of the flow ζ = 0.5, ψ = 1 obtained by forward- and backward-time
integration of the particle trajectory equations with the initial conditions ρ = φ = 0 and θ = 1.
An orthogonal projection of (X,Y,Z) onto a plane of constant X + Y + Z is shown (see the
main text for details). The solid and dashed curves represent the forward- and backward-time
parts of the streamline, respectively. Particles come in from infinity along the dashed curve
and are thrown back out along the solid curve.

cone axis by angles ±2π/3 (cf. appendix B) yields two other flows of periodic type
(ζ =√3/(

√
3+ 1) and ψ = 0,π).

In all other flows, the computed trajectories (13 750 in all) were aperiodic. Figure 4
illustrates a particular case. In order to accommodate the large range of r (recall
that a radial period corresponds to a factor of 223.38), the modified radial coordinate
r1/6 is used. More precisely, the particle location is represented by (X,Y,Z), where
X = r1/6 cos θ , Y = r1/6 sin θ cos(φ + π/4) and Z = r1/6 sin θ sin(φ + π/4), and is
orthogonally projected onto a plane of constant X + Y + Z. The figure covers the
range 0< X,Y,Z < 10 (thus encompassing r up to above 106). Use of r1/6 means that
the figure is not a photographic representation of the streamline, but it nonetheless
conveys its overall character. Particles spiral in, reach a minimum r, then spiral back
out again.

Although figure 4 is more immediately assimilated, the radial projection and plot
of ρ(τ) in figure 5 make it apparent that, although the trajectory is aperiodic, it
approaches a quasi-periodic limit at large τ . By quasi-periodic we mean that θ(τ )
and φ(τ) are periodic, while ρ(τ) is the sum of linear and periodic functions.
The resulting ρ(τ) increases by 2π/λi per quasi-period. We refer to this quasi-
periodic limit trajectory as ‘forward-time’ to distinguish it from another quasi-periodic
trajectory which is approached when running the calculation backwards in time. The
backward-time trajectory can be obtained from the forward-time trajectory by adding
π/λi to ρ and switching the sign of τ . Hence, forward- and backward-time trajectories
have the same quasi-period and the same projection onto the coordinates (θ, φ). They
appear to be unique (up to addition of an arbitrary constant to τ and subject to
the exceptional cases discussed below) for a given flow and to be approached from
generic initial conditions. Thus, we expect a generic trajectory to be close to the
backward-time trajectory as τ →−∞, followed by a transient phase in which it is
no longer quasi-periodic, before approaching the forward-time trajectory as τ →+∞
and becoming quasi-periodic once more. Although, as illustrated by figure 5(b), the
forward-time trajectory may have intervals of time during which ρ(τ) decreases,
it increases overall. Likewise, the backward-time trajectory implies overall particle
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Quasi-period

(a)

(b)

FIGURE 5. Trajectory of the flow ζ = 0.5, ψ = 1 with initial conditions ρ = φ = 0 and
θ = 1: (a) radial projection as in figure 3; (b) plot of ρ(τ).

motion towards the cone apex. A generic streamline will spiral in towards the apex,
then be thrown out again following the transient phase. Of course, if a particle lies
precisely on one of the limit trajectories, it will move progressively away from or
towards the apex. However, such behaviour only concerns the subspace of dimension
one consisting of the two limit trajectories and is thus far from generic.

Exceptions to the statement made above that the limit trajectories are unique occur
for the purely symmetric flow, ζ = 1, and its rotated counterparts, ζ = 1/(

√
3 + 1),

ψ = 0,π. In these cases, the symmetry plane forms an impenetrable barrier for fluid
particles and there are two forward- and backward-time trajectories, related by mirror
symmetry (cf. figure 9j). This does not affect the conclusion concerning a generic
particle; it simply adopts the limit trajectories on its side of the barrier as τ →±∞.

Figures 6 and 7 illustrate the behaviour close to the periodic case, while figure 8
eliminates the transient phase to show the final quasi-periodic trajectory for the same
flow. Figure 9 shows the quasi-periodic trajectories of a variety of primary flows.

4.3. Limit trajectories as functions of real time
Up to now, we have used the time-like variable τ . The special cases in which the
trajectories are periodic in τ also lead to periodicity in the ‘real’ time, t. However, for
other flows it may be of interest to examine what quasi-periodicity in τ of the limit
trajectories implies for particle motion as a function of t.

The relation, (4.3), between t and τ can be written as

dt

dτ
= (V2

ρ + V2
θ + V2

φ)
−1/2

exp[(1− λr)ρ]. (4.7)
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FIGURE 6. As figure 4, but for the flow ζ = 0.01, ψ = 0 and the initial conditions ρ = φ = 0
and θ = 0.5.

(a) (b)

FIGURE 7. Trajectory of the flow ζ = 0.01, ψ = 0 with initial conditions ρ = φ = 0 and
θ = 0.5: (a) radial projection as in figure 3 (only the top half is shown); (b) plot of ρ(τ).

Consider the forward-time trajectory and let τn be such that τn+1 − τn is a quasi-period.
Denoting the corresponding times by tn, integration of (4.7) gives

tn+1 − tn =
∫ τn+1

τn

(V2
ρ + V2

θ + V2
φ)
−1/2

exp[(1− λr)ρ] dτ. (4.8)

Quasi-periodicity implies increase of ρ(τ) by 2π/λi every quasi-period, hence
periodicity of (V2

ρ + V2
θ + V2

φ)
−1/2 and

tn+1 − tn = (t1 − t0) exp
[

2π
1− λr

λi
n

]
(4.9)

according to (4.8). The solution of (4.9) is

tn = t∞ + t1 − t0

exp [2π((1− λr)/λi)]− 1
exp

[
2π

1− λr

λi
n

]
, (4.10)

where t∞ is some constant. Because λr > 1, tn → t∞ from below as n→∞, the
equally spaced τn becoming a geometrically convergent sequence in t. It follows
that ρ→∞ at the finite time, t∞. Likewise, the backward-time trajectory originates
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FIGURE 8. Quasi-periodic trajectory of the flow ζ = 0.01, ψ = 0 Radial projection as for
figure 7(a). The spiralling part of the curve corresponds to an attempt by the particle at
approximately periodic behaviour, an attempt which fails due to interaction with the corner
θ = 0 and the side walls φ =±π/4.

from infinity at finite time. Thus, a generic trajectory comes from, and goes back to,
infinity at finite times. It should, of course, be borne in mind that use of the primary
modes of Stokes flow in an infinite cone to represent real flows is only justified near
the apex.

Finally, in the case of the forward-time trajectory, it can be shown, using (4.10),
that θ and φ are periodic functions, and ρ a quasi-periodic function, of ln(t∞ − t)
with (quasi-)period 2π(λr − 1)/λi. A similar statement holds for the backward-time
trajectory. Thus, quasi-periodicity with respect to τ translates to quasi-periodicity as a
function of ln |t − t∞|, where t∞ is the time at which the forward- or backward-time
trajectory goes out to or comes in from infinity.

5. Conclusions
Moffatt-type modes in an infinite trihedral cone bounded by three orthogonal planes

have been derived. The modal velocity has complex power-law dependence, rλ, on
the radial coordinate in a spherical polar coordinate system, r, θ, φ. Following spatial
discretization using Chebyshev–Chebyshev collocation in θ and φ and decomposition
into symmetric and antisymmetric parts, the exponent λ is determined by the
requirement of a non-zero solution of one or other of the matrix problems As(λ)X = 0
or Aa(λ)X = 0, where the subscripts s and a refer to symmetric and antisymmetric
modes.

Symmetric and antisymmetric primary modes are found to have the same values of
λ, namely λ = 3.26358 ± 1.16164i, with secondary modes at higher λr. Primary flows
form a two-parameter family obtained by linear combination of the symmetric and
antisymmetric modes. Their trajectories are time-periodic, implying closed streamlines,
in the special cases for which the flow is antisymmetric with respect to one of the
symmetry planes of the cone. In all other cases, aperiodic trajectories are found. They
then approach quasi-periodic limits when the trajectory equations are integrated either
forwards or backwards in time. A generic particle spirals in from infinity following
the backward-time trajectory, undergoes a transient phase in which the motion is no
longer quasi-periodic, and is then thrown back out to infinity along the forward-time
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(a) (b)

(c) (d)

(e) ( f )

(g) (h)

(i) ( j)

FIGURE 9. Quasi-periodic trajectories of the flows (a–c) ζ = 1/4, (d–f ) ζ = 1/2, (g–i)
ζ = 3/4 and (j) ζ = 1. Radial projection as for figure 3. Within each triplet, ψ takes the
values 0,π/3 and 2π/3. Note that ψ 7→ ψ + π, φ 7→ −φ leaves trajectories unchanged,
hence there is no need to consider ψ > π. Recall that the radial projections of the forward-
and backward-time trajectories coincide (these trajectories differ in ρ and in the direction of
motion of the particle around the above curves).
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trajectory. Such a flow can hardly be described as consisting of eddies, this term
having, as it does, the connotation of localized regions of flow recirculation.

Finally, it would be interesting to make comparisons with the near-corner results of
the numerical computations of Leriche & Labrosse (2011), who studied Stokes modes
in a cube. It might also be interesting to extend the analysis to trihedral cones with
non-orthogonal planes.

Appendix A. Chebyshev derivative matrices
Let f (x) be a function on |x|6 1 taking the values f (xi)= fi at

xi = cos
(
πi

N + 1

)
0 6 i 6 N + 1. (A 1)

As is well-known, the derivative of f (x) can be approximated by that of the (N + 1)th
degree polynomial which matches f (xi)= fi, leading to

f ′(xi)∼
N+1∑
j=0

DN
ij fj 0 6 i 6 N + 1, (A 2)

where DN is the (N + 2)× (N + 2) matrix given by

DN
ij =

ci

cj

(−1)i+j

xi − xj
i 6= j, 0 6 i, j 6 N + 1, (A 3)

DN
ii =

1
2

xi

x2
i − 1

1 6 i 6 N, (A 4)

DN
00 =−DN

N+1,N+1 =
1
6
(2 (N + 1)2+1), (A 5)

in which

ci =
{

1 1 6 i 6 N
2 i= 0,N + 1.

(A 6)

Applying (A 2) with x= 1− 4θ/π, N = Nθ and x= 4φ/π, N = Nφ yields

Dθ =− 4
π

DNθ , Dφ = 4
π

DNφ (A 7)

for the derivative matrices with respect to θ and φ. Taking f = ur and using the
conditions of zero velocity at the boundaries gives

∂θur 7→1θUr, ∂φur 7→1φUr, Lur 7→ΛUr (A 8)

for the vectors of values of the derivatives and Laplacian of ur at the collocation
points θ = θn, φ = φl (1 6 n 6 Nθ , 1 6 l 6 Nφ), ordered as for Ur, Uθ , Uφ and P. The
NθNφ × NθNφ matrices 1θ , 1φ and Λ follow from

(1θUr)
nl =

Nθ∑
m=1

(Dθ)nm uml
r , (1φUr)

nl =
Nφ∑
k=1

(Dφ)lk unk
r , (A 9)

(ΛUr)
nl =

Nθ∑
m=1

(D2
θ)nm uml

r +
cos θn

sin θn

Nθ∑
m=1

(Dθ)nm uml
r +

1

sin2θn

Nφ∑
k=1

(D2
φ)lk unk

r + λ(λ+ 1)unl
r .

(A 10)
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Replacing r by θ or φ in (A 8) gives expressions for the derivatives and Laplacian of
the other velocity components.

The pressure derivatives are determined by a slightly different method. The (N−1)th-
degree polynomial matching f (xi) = fi for 1 6 i 6 N (but not for i = 0,N + 1) is
differentiated to obtain

f ′(xi)∼
N∑

j=1

D̃N
ij fj 1 6 i 6 N, (A 11)

where D̃N is the N × N matrix given by

D̃N
ij =

1
1− x2

i

((1− x2
j )D

N
ij + 2xiδij) 1 6 i, j 6 N (A 12)

and δij = 0 for i 6= j and δii = 1. This leads to the derivative matrices

D̃θ =− 4
π

D̃Nθ , D̃φ = 4
π

D̃Nφ , (A 13)

and, hence, taking f = p,

∂θp 7→ 1̃θP, ∂φp 7→ 1̃φP, (A 14)

where the NθNφ × NθNφ matrices 1̃θ and 1̃φ follow from

(1̃θP)
nl =

Nθ∑
m=1

(D̃θ)nm pml, (1̃φP)
nl =

Nφ∑
k=1

(D̃φ)lk pnk. (A 15)

Note that the above procedure avoids introducing values of the pressure on the
boundary.

Appendix B. Consequences of rotational symmetry
As well as reflection symmetry, the modal problem is invariant under rotation about

the cone axis, θ = arctan(
√

2), φ = 0, by an angle 2π/3. The effect of such rotation is
simplest to describe using the Cartesian coordinates x= r cos θ , y= r sin θ cos(φ+π/4)
and z= r sin θ sin(φ + π/4) (see figure 1). Given velocity and pressure fields u(x, y, z)
and p(x, y, z), the flow following rotation has velocity û(x, y, z) and pressure p̂(x, y, z),
where p̂(x, y, z)= p(y, z, x) and

ûx(x, y, z)= uz(y, z, x), ûy(x, y, z)= ux(y, z, x), ûz(x, y, z)= uy(y, z, x). (B 1)

We write (B 1) symbolically as û = Ru, so R is an operator expressing the effect of
rotation on the velocity field. Since the modal problem is invariant under rotation, if u
and p are a solution with exponent λ, Ru and p̂ are also a solution with the same λ.

Applying this result to the primary modes, Rus and Rua are also primary modes,
hence they can each be expressed as a linear combination of us and ua. Given
the normalization defined in the main text, the coefficients can be determined by
considering the effect of rotation for uθ and uφ on the cone axis, leading to

Rus = 1
2(
√

3ua − us), Rua =− 1
2(
√

3us + ua). (B 2)

Equation (B 2) implies

us =− 1
2(
√

3Rua + Rus), ua = 1
2(
√

3Rus − Rua), (B 3)
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us = 1
2(
√

3R−1ua − R−1us), ua =− 1
2(
√

3R−1us + R−1ua), (B 4)

where R−1 is the inverse of R, i.e. rotation of the velocity field in the opposite sense.
The above relations should hold for the exact modal velocity fields and approximately
for the numerically determined ones. They can be employed to assess numerical
accuracy of us and ua. Using Nθ = Nφ = 32, we found a maximum departure from
(B 3) and (B 4) of 8× 10−6 for ur and 4× 10−7 for uθ and uφ .

Equations (B 3) and (B 4) were also employed to augment the spatial resolution near
the corners θ = π/2, φ = ±π/4. First divide the flow into three regions: (i) x > y,
x > z; (ii) x < y, y > z; and (iii) x < z, y < z. No use is made of (B 3) or (B 4) in
region 1, while (B 3) is employed in region (ii) and (B 4) in region (iii). Thus, rotation
symmetry allows the determination of the velocity in regions (ii) and (iii) in terms of
that in region (i), where the spatial resolution near the corner θ = 0 is much better.

Rotational symmetry leads to three independent families of modes (in general,
neither symmetric nor antisymmetric) such that

Ru= ei2πk/3u, (B 5)

where k = 0,±1. Reflection symmetry implies that the families k =±1 have the same
values of λ. If λ results from k =±1, as is found to be the case for the primary modes,
there are two independent solutions with that value of λ. Thus, the space of primary
mode solutions is of dimension two, which is the reason why there are both symmetric
and antisymmetric primary modes. The secondary exponents λ = 5.294 ± 1.645i also
arise from k = ±1 and, hence, include both symmetric and antisymmetric modes.
However, λ = 5.354 ± 1.287i (s) and λ = 5.381 (a) come from k = 0 and do not
encompass both symmetries.
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