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ABSTRACT

We examine accretion disk flow under combined radial and vertical stratification utilizing a local Cartesian (or
“shearing box”) approximation. We investigate both axisymmetric and nonaxisymmetric disturbances with the
Boussinesq approximation. Under axisymmetric disturbances, a new dispersion relation is derived. It reduces
to the Solberg–Hoı̈land criterion in the case without vertical stratification. It shows that, asymptotically, stable
radial and vertical stratification cannot induce any linear instability; Keplerian flow is accordingly stable. Previous
investigations strongly suggest that the so-called bypass concept of turbulence (i.e., that fine-tuned disturbances of
any inviscid smooth shear flow can reach arbitrarily large transient growth) can also be applied to Keplerian disks.
We present an analysis of this process for three-dimensional plane-wave disturbances comoving with the shear
flow of a general rotating shear flow under combined stable radial and vertical rotation. We demonstrate that large
transient growth occurs for K2/k1 � 1 and k3 = 0 or k1 ∼ k3, where k1, K2, and k3 are the azimuthal, radial, and
vertical components of the initial wave vector, respectively. By using a generalized “wave–vortex” decomposition
of the disturbance, we show that the large transient energy growth in a Keplerian disk is mainly generated by the
transient dynamics of the vortex mode. The analysis of the power spectrum of total (kinetic+potential) energy in
the azimuthal or vertical directions shows that the contribution coming from the vortex mode is dominant at large
scales, while the contribution coming from the wave mode is important at small scales. These findings may be
confirmed by appropriate numerical simulations in the high Reynolds number regime.
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1. INTRODUCTION

Accretion phenomena play an important role in the evolution of many astrophysical systems. However, these phenomena are far
from being completely understood. For example, in accretion disks, the collapse of the matter toward the central object is a priori
inhibited by the conservation of angular momentum. One usually needs to appeal to turbulence to induce the necessary enhanced
transport coefficients responsible for the inflow of matter and the outward transport of angular momentum (through a “turbulent”
viscosity coefficient; see Shakura & Sunyaev 1973). The alpha disk model is a popular example. Several kinds of instabilities can occur
in disks. These instabilities are usually considered separately, after having been split into different classes: the magneto-rotational
instability (hereafter MRI) for ionized disks, thermal convection effects including different kinds of baroclinic instabilities, and
transient growth mechanisms leading to a possible bypass transition to turbulence for purely hydrodynamical disks. Each class is
discussed in a number of papers; we quote here only a few of the papers directly related to our present study. The MRI is thought
to power magneto-hydrodynamic turbulence, but its driving mechanism still remains unclear. Its dynamics can redistribute angular
momentum (see Balbus & Hawley 1998) in a way that ensures accretion. Our current paper shares important technical material with
our recent paper, Salhi et al. (2012). In this recent paper, we developed methods for studying possible transient growth in the case
of magnetized disks. For instance, in self-magnetized disks, we studied the dynamo effect with an induced toroidal magnetic field.
In this situation, MRI for the vertical magnetic field cannot operate. In contrast, in non-magnetized portions of disks, for example:
disks around young low-mass stars, in cataclysmic-variable disks in quiescence, in X-ray transients in quiescence (Stone et al. 2000;
Gammie & Menou 1998; Menou 2000; Johnson & Gammie 2005a, 2005b), or in purely azimuthal magnetic fields, the MRI cannot
operate (see, e.g., Balbus & Hawley 1998). It is widely believed that these disks are turbulent even though the physical origin of
this hydrodynamical turbulence is still highly debated (see, e.g., Yecko 2004; Ji et al. 2006; Balbus 2011). Thermal convection
effects could also be important for angular momentum transport. In the presence of stratification, thermal convection effects could
lead to baroclinic effects. For example, Klar (2004) studied transient convective baroclinic instabilities due to an entropy gradient;
these instabilities produced possible thermal winds. Thermal convection in the presence of differential rotation, together with radial
stratification that rendered the disk sub-Keplerian, was also considered by Klar & Bodenheimer (2003) with an assumed radial
negative entropy gradient for proto-planetary disks. A thermal wind was produced in this case.

In this paper, we mainly concentrate on the third topic about transient growth processes in connection with the analogy (within its
limitations) between accretion disks and Couette (Couette–Taylor) shear flows (plane and cylindrical ones). In cylindrical flows with
a Keplerian profile, the shearing sheet approximation (hereafter SSA; see Goldreich & Lynden-Bell 1965; Balbus & Hawley 1998,
2006; Umurhan & Regev 2004; Regev & Umurhan 2008; see also Figure 1) is used in many investigations of circumstellar Keplerian.
This approximation is also used in the rotating plane of Couette flows that may be of direct interest to astrophysics. However, the
validity of the SSA is limited to a local stability analysis only. Also from different recent experiments (see, for example, Paoletti
et al. 2012 and references therein), there is still a controversy (see also Balbus 2011) whether a cylindrical Couette–Taylor flow has
sufficiently relevant features to mimic correctly in the laboratory the angular momentum transport that may occur in accretion disks.
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Figure 1. Illustration of a shearing sheet flow under combined vertical and radial stratification.

We refer the reader a recent study by Schartman et al. (2012) where no net such transport was observed (consistent with the results
of Paoletti et al). In these two experiments, there was, however, no density stratification.

The flows under consideration are smooth shear flows (i.e., they present no inflection point in the equilibrium velocity profile).
According to theoretical analysis, these flows are linearly stable for all Reynolds numbers up to infinity (see, e.g., Mukhopadhyay
et al. 2005). Linear stability analysis, based on eigenspectra (see, e.g., Drazin & Reid 1981), yields no guarantee that these flows will
avoid becoming turbulent. On the other hand, it has been shown that linearly-stable sheared flows can exhibit significant “transient
growth” in energy given suitable initial perturbations (see, e.g., Schmid & Henningson 2001). This last mechanism is called a “bypass
transition” to turbulence and provides a possible solution to the problem of explaining the occurrence of turbulence in otherwise
spectrally stable shear flows. Transient growth theory has been addressed by a number of authors in the hydrodynamics community
(see, e.g., Boberg & Brosa 1988; Butler & Farrell 1992; Reddy & Henningson 1993; Grossmann 2000). It has been shown previously
that transient growth results from the non-normal character of the operators describing the linear dynamics in smooth sheared flows.
This result arises because the corresponding eigenfunctions are non-orthogonal and can strongly interfere for a finite time, limited
by modes phase detuning. This idea has been applied to astrophysical accretion disks to analyze the disks’ hydrodynamic turbulence
problem. Ioannou & Kakouris (2001) examined two-dimensional (2D) transient growth in a global disk model (see also Longaretti
2002; Lesur & Longaretti 2007). Chagelishvili et al. (2003) used the SSA and showed that strong transient growth can occur for a high
initial ratio of the azimuthal wavelength to the radial one. In that study, they find a physical explanation for this bypass scenario, as
well as a connection between disk flow and examples from fluid dynamics (see also Afshordi et al. 2005). We note that the analytical
solution derived by Afshordi et al. (2005) for axisymmetric disturbances (i.e., for an infinite azimuthal wavelength, or equivalently the
m = 0 mode) is the same as the one derived by Salhi & Cambon (1997). In another study by Salhi et al. (1997), an analytical solution
for three-dimensional (3D) vorticity disturbances was derived for the case of a disk with a constant specific angular momentum with
q = 2 for the exponent of the radial dependence of the differential rotation Ω(r) ∝ r−q in the accretion disk (q = 3/2 for Keplerian
orbits). Umurhan & Regev (2004) performed a nonlinear development of the Chagelishvili et al. (2003) growing mode, while Yecko
(2004) and Mukhopadhyay et al. (2005) studied accretion disk (within SSA) under 3D disturbances including both viscosity and
rigid boundary conditions (the Reynolds numbers for cold astrophysical disks are believed to be much larger than 106, but there
is not yet any direct possible measurement of viscosity or a related quantity in disks). These authors found very strong transient
growth factors that may trigger hydrodynamic turbulence in disks. In addition, the effect of stratification on Keplerian flows has been
addressed by many authors since the combined action of differential rotation and stratification may influence the flow stability and
lead to turbulence at a high enough Reynolds number. Dubrulle et al. (2005) discussed the possibility that stable vertically stratified
accretion disks are dynamically unstable to nonaxisymmetric disturbances. They found a global instability that is intimately tied to
the presence of boundary conditions (see also Umurhan 2006; Lesur & Longaretti 2007; Shariff 2009). Johnson & Gammie (2005a)
considered the case of radially stratified disks and analyzed the stability problem for an infinite vertical wavelength at which rotation
has no effect because it corresponds to the 2D limiting case (according to the Taylor–Proudmans theorem). They suggested that the
aliasing of waves sheared in the right direction to waves sheared in the left direction is responsible for the resurgence of growth
(see also Shariff 2009). A similar problem was addressed by Salhi & Cambon (2010) and a spectral linear theory (SLT) solution
was derived for non-axisymmetric disturbances, yielding a general dispersion relation (see their relation (33)). One previous stability
study that is related to the work presented here is the radiative instability, since it is due to two helical inertial gravity waves rotating
with opposite signs that are emitted by a rotating vortex. This was examined, for instance, in the study by Riedinger et al. (2011).

Other couplings and resonances in stratified, rotating, shearing flows have been shown by others to lead to instabilities. Another
related instability is the strato-rotational instability, due to the mode coupling in the case of both rotation and a vertical density
stratification (see, Molemaker et al. 2001; Le Bars & Le Gal 2007). Umurhan (2008) presented a scaling argument that he developed
into the shallow water theory of non-axisymmetric disturbances in annular sections of thin Keplerian disks. In that study, it was shown
that the strato-rotational instability is contained within generic class of barotropic/baroclinic potential vorticity (PV) instabilities.

Tevzadze et al. (2003) extended the analysis of Chagelishvili et al. (2003) by considering vertically stable, stratified disks under
3D perturbations. They showed that the combined action of rotation and stratification generates an aperiodic vortex mode undergoing
non-modal transient growth. Bodo et al. (2005) performed a detailed analytical and numerical study of the dynamics of perturbations
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(vortex/aperiodic mode, Rossby and spiral-density waves) in 2D compressible disks following Keplerian rotation. In a more recent
paper, Tevzadze et al. (2008) focused again on the mathematical and physical aspects of the mode coupling in vertically stable,
stratified Keplerian disks. These authors concluded that the bypass concept of turbulence can also be applied to these disks. They
investigated the mode coupling in a 2D compressible disk with radial stratification and differential rotation. Tevzadze et al. (2010)
also extended once more the same analysis to study the coupling between the vorticity, entropy, and compressional 2D modes. These
authors characterized the transient growth in radially stratified disks, with interchanges and mode coupling including a dilatational
mode (a new degree of freedom is opened in the system due to compressibility). Also, recently Lesur & Papaloizou (2010) studied
the subcritical (or nonlinear) baroclinic instability in local accretion disks and concluded that such an instability can lead to a weak
outward transport of angular momentum due to the generation of density waves by the vortices. This is related to our present work
because we are performing here an extension of these previous studies including both radial and vertical stratifications. Above all,
we extend the work of Tevzadze et al. (2008) in the same situation by including the transient growth analysis. Indeed, Tevzadze
et al. (2008; and previous works by the same authors) have shown that an aperiodic vortex mode is induced by the strato-rotational
balance (for a vertical gradient). The vortex mode can generate spiral density waves (or gravito-inertial ones) through linear coupling
in shear flows. Both modes (wave and vortex) can extract energy from the background mean flow and exhibit a rapid transient growth
behavior due to the non-normality of the shear flow. The vortex can feed the wave but not the opposite. In this paper, we use the SSA
and by means of SLT, we study the wave–vortex mode coupling in vertically and radially stratified accretion disks. As in Tevzadze
et al. (2008), we introduce a significant simplification by neglecting the rotational-acoustic waves; we assume that their characteristic
timescale is much shorter than the vortex and wave modes. This simplification is the Boussinesq approximation used to describe the
dynamics of stratified astrophysical disks. We refer the reader to many other related studies for a formal review (see, e.g., Balbus &
Hawley 1998). The main purpose of this work can be summarized as follows.

1. As indicated previously, vertically stable, stratified disks are spectrally stable. This has been proven using a WKB
(Wentzel–Kramers–Brillouin) assumption and/or numerical computations (see, e.g., McWilliams & Yavneh 1998). The proof of
such a result by means of Levinson’s theorem (see, e.g., Eastham 1989) is given in the present study; this theorem has a wider
application since the WKB methods can fail when the timescale for the perturbation is no longer rapid compared with the long
wave vector k-changing timescale (see, e.g., Balbus & Hawley 1992). For this purpose, we introduce a linear response function
(or the 3 × 3 Green matrix g(t), which reduces to unity at t = 0). The use of Levinson’s theorem requires (1) the solution g(w)

corresponds to a vanishing PV, and (b) the solution g(v) corresponds to a non-vanishing PV. Accordingly, we recover the relevant
decomposition by Chagelishvili et al. (1997) that consists of decomposing the velocity or buoyancy Fourier mode into two parts:
a wave mode characterized by a vanishing PV and a vortex mode characterized by a non-vanishing PV: g = g(w) + g(v).

2. In some studies using the SSA (or local Lagrangian coordinates ignoring the boundaries, see, e.g., Afshordi et al. 2005), the case
of an infinite vertical wavelength (or k3 = 0) at which rotation effects vanish and for which there is a simple analytical solution
(see Chagelishvili et al. 1997; Salhi & Cambon 1997) has been considered to better illustrate the transient growth scenario
(see Chagelishvili et al. 2003; Tevzadze et al. 2003; Umurhan & Regev 2004; Afshordi et al. 2005). More details related to
the transient growth rate are presented in Section 5. We show that the transient growth rate in stratified accretion disks under
combined vertical and radial stratification is well captured by the dynamics in the k3 = 0 plane provided the ratio of the initial
radial wavenumber to the azimuthal wavenumber is large (K2/k1 � 1). In most previous studies, initial conditions corresponding
to the vortex perturbations in a pure form were considered to compute the transient growth rate. In the present study, we consider
initial isotropic conditions with a dense spectrum and we examine in detail the realizability conditions for the choice of the initial
total (kinetic+potential) vortex, wave, and mutual energies (i.e., these energies must be positive or zero).

3. Because our SLT analysis is not only “mono-modal” but also involves simultaneously different modes, either from the viewpoint
of coupling of modes or from the viewpoint of prediction of statistics from initial disturbances with a dense spectrum, we also
analyze the behavior of the power spectrum of the total energy in both the vertical and azimuthal directions. The algebraic form
of these spectra is synonymous with particular flow structures such as the streaky structures.

The paper is organized as follows. The governing equations under the Boussinesq approximation are introduced in Section 2. In
Section 3, we reduce the number of involved variables by working in the local frame attached to the wave vector, we define the Green’s
functions for universal initial conditions, and we perform the linear stability of perturbations in the axisymmetric case. In Section 4,
we derive the non-normal stability analysis for the vertical stratification case and use Levinson’s theorem (to go beyond the WKB
analysis) to demonstrate stability. In Section 5, we examine the transient growth of the spectral density of the total (kinetic+potential)
energy using the wave–vortex decomposition. In Section 6, we treat, in a similar manner, the general case with combined radial and
vertical stratification. Section 7 gives our conclusions.

2. BOUSSINESQ EQUATIONS

2.1. Base Flow

For the purpose of the linear analysis of stratified thin disks, we employ the shearing sheet formalism in the Boussinesq
approximation. The reader may consult Hawley et al. (1995), Balbus (2003), and Regev & Umurhan (2008) for an extensive
discussion of the properties and limitations of the shearing sheet model. In a locally Cartesian coordinate system (x1, x2, x3) centered
at r = r0, where r is the radial coordinate, this flow can be approximated as a linear shear in a uniformly rotating frame

U = (U1, 0, 0) , U1 = Ax2, Ω = (0, 0, Ω0) , (1)

where A = (r∂Ω) |r=r0 and Ω0 = Ω(r0). The coordinate system used here differs from the shearing box (SB) convention in that
x2 = xSB → (r − r0) and x1 = −ySB → −r0(φ − φ0), where (r, φ, z = x3) are the cylindrical coordinates. We assume that the
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background buoyancy scalar Θ = −(g/ρ0)ρ varies linearly in both the radial and vertical directions (see, e.g., Balbus & Hawley
1991),

Θ = N2
2 x2 + N2

3 x3, (2)

where g is the gravitational acceleration, ρ0 is a reference density, and ρ is the background density. Here, N2
2 and N2

3 are constants
that represent the square of Brunt–Väsäilä frequencies with respect to the (x2, x3) directions such that (see Salhi et al. 2012)

n3N
2
2 − n2N

2
3 = 0, n2

2 + n2
3 = 1.

Hence, for stable vertical and radial stratification, N2
2 > 0 and N2

3 > 0, the unit vector n belongs to the first quadrant of the (x2, x3)
plane, i.e., n2 > 0 and n3 > 0. For N2

2 < 0 (unstable radial stratification) and N2
3 > 0 (stable vertical stratification), the unit vector

n belongs to the fourth quadrant, i.e., n2 > 0 and n3 < 0 (see Figure 1(b)). As indicated by Lesur & Papaloizou (2010), radially
stratified Keplerian disks (A = (3/2)Ω0) are stable under axisymmetric disturbances provided (−4/9)A2 < N2

2 < 0 (see also Salhi &
Cambon 2010). A general dispersion relation for disks with radial and vertical buoyancy gradients under axisymmetric disturbances
is given in Section 3.2.

The flow of Equations (1) and (2) is an exact steady solution of the Boussinesq’s equations (written for an inviscid and non-diffusive
fluid in Equations (3) and (4)) upon introduction of a base pressure P (x2, x3), whose gradient balances the Coriolis and buoyancy
forces

∇·ũ = 0, ∂t ũ +
(
ũ·∇) ũ = −∇p̃ − 2Ω × ũ + θ̃n, (3)

(∂t + ũ·∇)θ̃ = 0. (4)

p̃ is the pressure divided by ρ0 and includes the centrifugal potential. n = (0, n2, n3)T denotes a fixed unit vector antiparallel to the
gravitational acceleration vector g. The viscosity effect will be addressed later considering, for simplicity, the case where the Prandtl
number (i.e., the ratio of diffusivity to kinematic viscosity) is unity.

2.2. Linearized Equations for the Disturbances

Following standard methods, the base state velocity is U = A·x, where Aij = Aδi1δj2. The pressure P (x2, x3) and buoyancy
scalar Θ(x2, x3) are perturbed by adding an infinitesimal disturbance u(x, t), p(x, t), and θ (x, t). The linearized equations of motion
for the disturbance are

∇·u = 0, Dt u = −A·u − 2Ωn × u − ∇p + θn,

Dtθ = − (N2
2 u2 + N2

3 u3
)
, n3N

2
2 = n2N

2
3 , (5)

where Dt (·) = (∂t + Sx2∂x1 ) (·) . Disturbances are sought in terms of advected Fourier modes (see, e.g., Moffatt 1967; Craik 1989),
also called Kelvin modes or shear waves,

(u(x, t), p(x, t), θ (x, t)) = (û(k, t), p̂(k, t), θ̂ (k, t)) exp(ık(t)·x), (6)

where the components of the time-dependent wave vector k(t) are of the form (see Moffatt 1967)

k1 = K1 k2(t) = K2 − K1At, k3 = K3. (7)

The capital letters denote initial values: K = k(t = 0). The substitution of the solution (6) into the system (5) yields the following
differential system:

k·û = 0, ˙̂u = −A·û − 2Ωn × û − ıp̂k + θ̂n,

˙̂
θ = − (N2

2 û2 + N2
3 û3
)
, n3N

2
2 = n2N

2
3 . (8)

In addition, the above system admits a temporal invariant from the conservation of absolute PV (Ertel theorem). Conservation of the
corresponding full quadratic term (∇ × ũ)·(∇ θ̃ ) results from Equations (3) and (4), so that the linear perturbation of the PV is

π̃ (x, t) = (2Ω − A)
∂θ

∂x3
+ N2

2 ω2 + N2
3 ω3,

where ω = ∇ × u is the vorticity disturbance and 2Ω − A is the (sole) vertical component of the absolute vorticity of the base flow.
Its Fourier counterpart, as in Equation (6), is

π̂ = ı(2Ω − A)k3θ̂ + ıN2
2 (k3û1 − k1û3) + ıN2

3 (k1û2 − k2û1). (9)

It should be noted that in the magnetized stratified disks, π̃ (x, t) does not constitute a Lagrangian invariant, while its counterpart, i.e.,
the magnetic potential induction π̃m = b̃·∇ θ̃ , where b̃ is the magnetic field, constitutes a Lagrangian invariant for an inviscid and
non-diffusive fluid as shown recently by Salhi et al. (2012).
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3. THE REDUCED SYSTEM AND A SIMPLIFIED STABILITY ANALYSIS

3.1. Toroidal, Poloidal, and Buoyancy Modes

A way to reduce the number of components in the linear system of equations is to use a local orthonormal frame (e(1), e(2), e(3)),
where e(3) = k/k and

e(1) =
(

k2

kh

,− k1

kh

, 0

)T

, e(2) =
(

k1k3

khk
,
k2k3

khk
,−kh

k

)T

. (10)

In this frame, the velocity field is decomposed into toroidal u(1) and poloidal u(2) components as û = u(1)e(1) + u(2)e(2) (see, e.g.,
Salhi et al. 2012; Chandrasekhar 1961). For consistency, the buoyancy variable θ̂ is scaled to have the same dimension as the velocity
modes

u(1) = k2

kh

û1 − k1

kh

û2, u(2) = − k

kh

û3, u(3) ≡ − 1

ARi

θ̂, (11)

where kh =
√

k2
1 + k2

2 is the horizontal wavenumber and Ri is the Richardson number that compares the shear timescale to the
buoyancy timescale (see, e.g., Drazin & Reid 1981). Ri is defined here as

Ri = N2
3 /(n3A

2) = N2
2 /(n2A

2)

since we consider stable radial and vertical stratification. The linear differential system for the vector v of toroidal, poloidal, and
potential components is

dv

dτ
= L·v, (12)

deduced from the system (8), where τ = At is the dimensionless time. The three-rank matrix L is of the form

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

k1k2

k2
h

− (1 + RΩ)
k3

k
Ri

(
n2

k1

kh

)
(

RΩ + 2
k2

1

k2
h

)
k3

k
−k1k2

k2
h

k2
3

k2
Ri

(
n3

kh

k
− n2

k2k3

khk

)

−n2
k1

kh

−n3
kh

k
+ n2

k2k3

khk
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (13)

in which

RΩ = −2Ω0

A
= 2Ω0(

r
dΩ
dr

)
r = r0

= − 2

q

is the rotation number (RΩ = −4/3 for Keplerian disks). More details of the derivation of system (12) are given in Salhi et al. (2012).
These authors studied the effect of radial and vertical stratification on the MRI growth rate. In addition, it is more convenient to
introduce the Green’s function g such that v(k, t) = g·v(K , 0). This function is governed by the same equation as v, i.e.,

dg
dτ

= L·g, (14)

but with the universal initial condition g(0) = I3, where I3 is the three-rank unit matrix. The above 3D system can be reduced to a 2D
one if we use the conservation of the PV defined by Equation (9), which can be rewritten in terms of the toroidal–poloidal–buoyancy
mode:

q0 ≡ ı
n3

N2
3

π̂ =
(

n3kh − n2
k2k3

kh

)
u(1) − n2

k1k

kh

u(2) − (1 + RΩ) k3u
(3). (15)

Or, equivalently, (
n3kh − n2

k2k3

kh

)
g1j − n2

k1k

kh

g2j − (1 + RΩ) k3g3j

= [1 − δ (q0)]

[(
n3Kh − n2

K2k3

Kh

)
δ1j − n2

k1K

Kh

δ2j − (1 + RΩ) k3δ3j

]
, (16)

where δ(q0) = 1 if the constant q0 is zero and δ(q0) = 0 if q0 	= 0. Reduction of the linear system in Equation (14) to a rank-two
non-homogeneous system, using Equation (16), will be used in Section 4.
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Figure 2. Inertia–gravity–shear waves in the k1 = 0 plane. The period of oscillation vs. the angle α (i.e., the angle between the wave vector and the radial direction)
is shown for the case of a Keplerian disk with vertical stratification (n2 = 0, n3 = 1 and Ri = 1), radial stratification (n3 = 0, n2 = 1, and Ri = 1), or combined
radial and vertical stratification (n2 = n3 = √

2/2 and Ri = 1).

3.2. Simplified Stability Analysis

Under axisymmetric disturbances (i.e., k1 = 0), the wave vector k, as well as the matrix L, becomes time-independent. In that
case, one easily determines the eigenvalues of the matrix L. There are solutions of the algebraic equation Det (L − λI3) = 0, or
equivalently, λ(λ2 − κ2

s /A2) = 0, where

κ2
s = κ2 sin2 α +

N2
3

n3
cos2 γ, κ2 = 2Ω0 (2Ω0 − A) , (17)

with

cos γ = n3
kh

k
− n2

k2k3

khk
= n3 cos α − n2 sin α.

α is the angle between the wave vector and the transverse (radial) direction, such that cos α = k2/k. We note that, for radially stratified
disks, the dispersion relation (17) reduces to the Solberg–Hoı̈land criterion, i.e., κ2 + N2

2 > 0 for stability.
As stressed in Section 1, the angular velocity in an incompressible uniform disk can be described by Ω(r) = Ω0 (r0/r)q , where

q = 3/2 for a Keplerian disk. Hence, the square of the epicyclic frequency takes the form κ2 = 2(2 − q)Ω2
0, which has a positive

sign indicating stability except for a disk with a constant specific angular momentum (q = 2), for which it vanishes (κ = 0). Under
stable stratification, i.e., N2

3 � 0 and n3 � 0 (see Section 2.1), the disk remains stable (κ2
s � κ2 > 0), implying that the period of

the inertia–shear–gravity waves (T = 2π/κs) is less than or equal to the period of the inertia–shear waves propagating in the k1 = 0
plane with the phase velocity V ϕ = (κs/k2)k. Figure 2 shows the variation of the period T = 2π/κs of the wave versus the angle α
for stratified Keplerian disks with Ri = 1. Three cases are considered: radial stratification only (N3 = 0), vertical stratification only
(N2 = 0), and combined radial and vertical stratification (n2/n3 = 1). As can be seen, the waves are more dispersive in the radially
stratified case than in the vertically stratified one.

Disks with unstable radial stratification and stable vertical stratification (N2
2 < 0 and n2 > 0,N2

3 > 0 and n3 < 0) are stable
provided that

−κ2 sin2 α <
(
N2

2 /n2
)

cos2 γ < 0.

This implies that −Ω2
0 < N2

2 < 0 for unstably radially stratified Keplerian disks (without vertical stratification). Details of the
unstable domain, in terms of RΩ, n3, n2 and α, are easily derived from Equation (17) and are not given here for the sake of brevity;
our focus is on Keplerian disks and on the non-axisymmetric modes in them.

As a final remark on the axisymmetric case k1 = 0, the use of the q0 invariant holds, and a non-homogeneous linear system of
two equations is still valid. However, in the stable case, one recovers only a simple superposition of periodic inertia–gravity waves
and a constant vortex mode, which is the quasi-geostrophic part of the disturbance flow without mean shear (details can be found in
Appendix A.4). In this case, the presence of the shear is marginal, and only the non-axisymmetric case is essential for a dramatic
transient growth fed by the vortex mode.

Under non-axisymmetric disturbances, the use of a WKB-type of analysis (see, e.g., McWilliams & Yavneh 1998), which consists
of replacing the time-dependent coefficients in Equation (13) with their long-time limits, gives stability. In fact, the long-time limit
of the matrix L is of the form

L∞ =
(

0 0 0
0 0 n3Ri

0 −n3 0

)
, (18)
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with eigenvalues λ1,2 = ±ın3
√

Ri indicating stability independent of rotation provided that Ri > 0.
Because WKB methods can break down when the timescale for the perturbation evolution is no longer rapid compared with the long

k-changing timescale (see, e.g., Balbus & Hawley 1992), we propose to rigorously demonstrate the stability of vertically stratified
disks (referred to as VSD) under non-axisymmetric disturbances (see Section 4).

4. SINGLE-MODE NON-NORMAL STABILITY ANALYSIS FOR VSD

We will now use the explicit reduction of the rank of the linear system of equations from three to two. We use the conservation of
linearized absolute PV. As stressed before, this reduction is only relevant for the non-axisymmetric mode. For k1 	= 0 indeed, one
recovers the time dependence of the wavevector in Equation (7): this time dependency in SLT reflects the explicit advection by the
base shear flow, which renders the non-normality of the linear operator.

When there is no radial stratification (n2 = 0, n3 = 1), the relation (16) characterizing the conservation of the PV reduces to

g1j = (1 + RΩ)
k3

kh

g3j + [1 − δ(q0)]

[
Kh

kh

δ1j − (1 + RΩ)
k3

kh

δ3j

]
. (19)

The substitution of the above relation into the system (14) leads to the following 2D nonhomogeneous system (see Appendix A.1):

d

dτ

⎛
⎝ k

kh

g2j

g3j

⎞
⎠−
(

0 C12(τ )
C21(τ ) 0

)
·

⎛
⎝ k

kh

g2j

g3j

⎞
⎠ =
(

[1 − δ(q0)] hj (τ )
0

)
, (20)

where

C12(τ ) = (1 + RΩ)

(
RΩ + 2

k2
1

k2
h

)
k2

3

k2
h

+ Ri,

C21(τ ) = −k2
h

k2
= −1 +

k2
3

k2
,

hj (τ ) =
(

RΩ + 2
k2

1

k2
h

)
k3

kh

[
Kh

kh

δ1j − (1 + RΩ)
k3

kh

δ3j

]
, (21)

where j = 1, 2, 3. We first consider the homogeneous system, i.e., we set δ(q0) = 1 in Equation (20). With the help of the following
theorem, we will rigorously demonstrate the stability of that system.

Theorem 1 (Levinson, see Lagnado et al. 1984; Eastham 1989): Let the linear differential system d X/dτ = (C0 + C1(τ )) ·X,
where C0 is an n × n constant matrix with n distinct eigenvalues λ1, λ2, ..., λn; and C1(τ ) is an n × n matrix for which the elements
(C1)ij satisfy ∫ ∞

0
| (C1)ij (τ )|dτ < ∞ (i, j = 1, 2, ..., n). (22)

Then, for large τ , there exist n independent solutions X (1), X (2), ...., X (n) such that as τ → ∞
X (�)(τ ) = [Y (�) + O(1)] exp(λ�τ ) (� = 1, 2, ..., n), (23)

where Y (�) (1 � � � n) is an eigenvector of C0 corresponding to the eigenvalue λ�.
Accordingly, we decompose the matrix C(τ ) into two matrices, C = C0 + C1(τ ), where C0 is a constant matrix and C1(τ ) is a

time-dependent one,

C0 =
(

0 Ri

−1 0

)
, C1(τ ) =

(
0 C12 − Ri

k2
3/k

2 0

)
, (24)

and we verify that the eigenvalues of the matrix C0 are distinct: λ1,2 = ±ı
√

Ri. Moreover, we show that condition (22) stated in
Theorem 1 is satisfied (see Appendix A.2) ∫ ∞

0
|C1(τ )|dτ < ∞. (25)

It follows that the solution of the homogeneous system exhibits an oscillatory behavior for long times. With the aid of the following
theorem, we will now demonstrate that the nonhomogeneous system (20) is stable.

Theorem 2: (see Struble 1962, p. 119): If all solutions of d X/dτ = (C0 + C1(τ )) ·X are bounded as τ → ∞, then the same is
true of the inhomogeneous system d X/dτ = (C0 + C1(τ )) ·X + h(τ ) provided condition (22) in Theorem 1 is satisfied and h(τ ) is
impulsively small as τ → ∞, ∫ ∞

0
|h(τ )|dτ < ∞. (26)
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As shown previously, the homogeneous system satisfies condition (22) in Theorem 1. In addition, we show in Appendix A.2 that
the nonhomogeneous term (i.e., the term hj (τ ) in (20)) satisfies the condition (26). Accordingly, we may conclude that a disk under
stable vertical stratification (N2

3 > 0) is stable under non-axisymmetric disturbances.
We will now show that the above proof of stability can allow us to recover the relevant decomposition first proposed by

Chagelishvili et al. (1997). By setting δ(q0) = 1 in system (20), we obtain its associated homogeneous system. We denote by
g

(w)
ij (i = 2, 3, j = 1, 2, 3) the solution of that system, or equivalently, the solution at vanishing PV. We note that, at vanishing PV,

Equation (19) reduces to

g
(w)
1j (t) = (1 + RΩ)

k3

Kh

g
(w)
3j (t), (27)

allowing us to determine g
(w)
1j from the solution g

(w)
3j . In a similar manner, we denote by g

(v)
ij (i = 2, 3, j = 1, 2, 3) a particular

solution of the nonhomogeneous system (20), and from Equation (19) we express the component g
(v)
1j in terms of g

(v)
3j ,

g
(w)
1j (t) = (1 + RΩ)

k3

Kh

g
(w)
3j (t) −

[
δ1j − (1 + RΩ)

k3

Kh

δ3j

]
(j = 1, 2, 3) (28)

since the particular solution corresponds to a nonzero value for the PV (i.e., q0 	= 0 and hence δ(q0) = 0). Accordingly, at any time t,
the complete solution gij (t) is the sum of g

(w)
ij and g

(v)
ij ,

gij (t) = g
(w)
ij (t) + g

(v)
ij (t). (29)

Then, we may introduce the wave and vortex modes as

u(i)
w (t) = g

(w)
ij (t)u(j )

0 , u(i)
v (t) = g

(v)
ij (t)u(j )

0 .

Therefore, we recover the relevant decomposition first proposed by Chagelishvili et al. (1997),

u(i)(t) = gij (t)u(j )
0 = u(i)

w (t)︸ ︷︷ ︸
wave (q0=0)

+ u(i)
v (t)︸ ︷︷ ︸

vortex (q0 	=0)

.

As for the initial condition for g
(w)
ij and g

(v)
ij , we choose the following simple form that is justified in Appendix A.5:

g
(w)
ij (0) =

⎛
⎜⎝0 0 (1 + RΩ)

k3

Kh
0 1 0
0 0 1

⎞
⎟⎠ g

(v)
ij (0) =

⎛
⎜⎝1 0 − (1 + RΩ)

k3

Kh
0 0 0
0 0 0

⎞
⎟⎠ , (30)

leading to

g
(w)
11 = g

(w)
21 = g

(w)
31 = 0, g

(v)
12 = g

(v)
22 = g

(v)
32 = 0 (31)

at any time (see Appendix A.3). The interplay between disk rotation and stratification gives rise to the vortex/aperiodic mode,
characterized by g

(v)
ij , that is able to extract the basic flow energy transiently (see Tevzadze et al. 2003, 2008). The spiral-density wave

mode is characterized by g
(w)
ij .

When k3 	= 0 and k1 	= 0, the time evolution of g
(w)
ij and g

(v)
ij for a given k/k in the case of vertically stable, stratified Keplerian

disks (RΩ = −4/3) is determined numerically. Due to the above initial condition, the determination of energies in k space, which
allows us to estimate the transient growth rate as well as the one-dimensional spectra, requires the integration of the following reduced
differential system deduced from the system (20):

d

dτ

⎛
⎝
(

k

kh

g
(v)
21

) (
k

kh

g
(w)
22

)
g

(v)
31 g

(w)
32

⎞
⎠ =
(

0 C12
C21 0

)
·

⎛
⎝
(

k

kh

g
(v)
21

) (
k

kh

g
(w)
22

)
g

(v)
31 g

(w)
32

⎞
⎠ +

(
h1 0
0 0

)
, (32)

with the initial condition
g

(w)
22 (0) = 1, g

(v)
21 (0) = g

(v)
31 (0) = g

(w)
32 (0) = 0, (33)

where C12, C21, and h1 are given by Equation (21). A fourth-order Runge–Kutta scheme with a time step of δτ = 10−3 has been used
to perform the numerical integration of the above system. Note that the choice of this initial condition, which ensures the realizability
conditions, gives rise to a zero value for the mutual energy, i.e., the energy characterizing the interaction between the vortex and wave
modes (see Appendix A.5).
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5. TRANSIENT GROWTH OF ENERGIES IN VSD

While the linear analysis shows that the unmagnetized disks are spectrally stable (i.e., there are no exponentially growing solutions)
with or without stable stratification, as rigorously shown in the previous two sections, there is irrefutable observational evidence that
Keplerian disks have to be turbulent. This fact incited many authors to adopt the bypass concept of turbulence for these disks (see,
e.g., Ioannou & Kakouris 2001; Chagelishvili et al. 2003, Tevzadze et al. 2003, 2008; Umurhan & Regev 2004; Afshordi et al. 2005).
This concept has been developed by the hydrodynamic community for spectrally stable shear flows, as indicated in Section 1. In
the bypass concept, perturbations undergo a transient growth. If they have an initially finite amplitude, they may reach an amplitude
that is sufficiently large to allow positive feedback through nonlinear interactions that repopulate the growing disturbances. This
mechanism could plausibly sustain turbulence for large enough Reynolds numbers.

By setting v = (u(1), u(2),
√

Riu
(3))T , the spectral density of the total energy can be expressed as the scalar product

2ET (τ ) = 〈v(τ ), v(τ )〉 = 〈g·v(0), g·v(0)〉 = 〈v(0), gAg·v(0)
〉
,

where gA = gT ∗ is the transconjugate matrix of g and the maximum energy growth G(τ ) obtainable at time τ over all possible initial
conditions v̂(0) is (see, e.g., Blackburn et al. 2008)

G(τ ) = max
v(0)

〈
v(0), gAg·v(0)

〉
〈v(0), v(0)〉 .

In some studies, the Rayleigh quotient,

Ra =
〈
v(0), gACg·v(0)

〉〈
v(0), gAg·v(0)

〉 ,
is also used to characterize the transient growth (see, e.g., Brandenburg & Dintrans 2006).

In the present study, we restrict our attention to particular initial conditions corresponding to initial isotropic conditions with zero
helicity, zero initial potential energy, and zero initial density fluxes (more details are reported in Appendix A.5):〈

u
(1)∗
0 u

(1)
0

〉
=
〈
u

(2)∗
0 u

(2)
0

〉
= Eκ (0),

〈
u

(3)∗
0 u

(3)
0

〉
= 0,

〈
u

(i)∗
0 u

(j )
0

〉
= 0 (i 	= j )

i, j = 1, 2, 3, so that ET (0) = Eκ (0). Thus, the evaluation of the growth rate G(τ ) requires the determination of the total
(kinetic+potential) energy ET (t) in k space. This total energy can be expressed in terms of the components of the matrix g (see
Appendix A.5):

ET (t)

ET (0)
= 1

2

2∑
i=1

2∑
j=1

|gij |2 +
Ri

2

2∑
j=1

|g3j |2. (34)

Some theoretical insights in characterizing the role of the vortex and wave modes in the transient growth can be gained by substituting
the solutions g

(w)
ij and g

(v)
ij into Equation (34). This defines the so-called wave and vortex energies

E (w)
T (t)

ET (0)
= 1

2

∣∣∣g(w)
22

∣∣∣2 +
1

2

(
Ri + (1 + RΩ)2 k2

3

k2
h

) ∣∣∣g(w)
32

∣∣∣2 , (35)

E (v)
T (t)

ET (0)
= (1 + RΩ)

k3Kh

k2
h

�g
(v)
31︸ ︷︷ ︸

(I )

+
1

2

K2
h

k2
h︸ ︷︷ ︸

(II )

+
1

2

[(
Ri + (1 + RΩ)2 k2

3

k2
h

) ∣∣∣g(v)
31

∣∣∣2 +
∣∣∣g(v)

21

∣∣∣2]︸ ︷︷ ︸
(III )

. (36)

Under the initial conditions described by Equation (31), the “mutual” energy E (vw)
T (t)—or equivalently, the energy characterizing the

interaction between the vortex and the wave modes—is zero at any time (see Appendix A.5) so that ET (t) = E (w)
T (t) + E (v)

T (t).
The case of an infinite vertical wavelength (i.e., k3 = 0) for which a simple analytical solution is found (see Appendix A.4) is

considered by many authors to illustrate the transient growth rate (Chagelishvili et al. 2003; Umurhan & Regev 2004; Afshordi et al.
2005). In that case, both terms (I) and (III) in Equation (36) vanish, so that the “vortex” energy behaves like K2

h/k2
h,

E (v)
T (k3 = 0, t)

ET (0)
= 1

2

K2
h

k2
h

= 1

2

k2
1 + K2

2(
k2

1 + (K2 − k1τ )2
) , (37)
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Figure 3. Time evolution of the transient growth rate G(t) = ET (t)/ET (0) in vertically stable Keplerian disks (RΩ = −4/3, Ri = 1). The figure reveals that when
K2/k1 = 30 (�1) and k3/k1 = 1 (or ∼1), there is an important transient growth rate that is mainly due to the vortex contribution (see also Figure 4).

i.e., it grows with time for 0 � τ < τm ≡ K2/k1 and decays with time for τ > τm, approaching zero for long times. On the other
hand, the wave energy remains constant, E (w)

T (k3 = 0, t)/ET (0) = 1/2, and hence, the total energy behaves as

ET (k3 = 0, τ )

ET (0)
= E (w)

T (k3 = 0, τ )

ET (0)
+
ET (k3 = 0, τ )

ET (0)
= 1

2
+

1

2

K2
h

k2
h

. (38)

The maximum growth rate occurs at τ = τm (or equivalently, for k2(t) = 0),

ET (k3 = 0, τm)

ET (0)
= 1 +

1

2

K2
2

k2
1

, (39)

and hence, at K2/k1 � 1, it becomes very large. Note that the possible maximum value of 0 < K2/k1 is determined by the Reynolds
number, which can take large values (>1010) in Keplerian disks (see, e.g., Tevzadze et al. 2003).

Recall that the results presented in this section concern Keplerian disks (i.e., RΩ = −4/3). Computations indicate that when
K2/k1 � 1 and 0 � k3 < k1 or k3 ∼ k1, the time evolution of the growth rate ET (t)/ET (0) during the leading phase (i.e., τ � τm)
follows Equation (39) in characterizing the dynamics in the k3 = 0 plane (see Figure 3). The rapid transient growth is due to the vortex
mode of the toroidal component since at k3 = 0 it is found that all components g

(v)
ij vanish except g

(v)
11 = Kh/kh, or equivalently (see

Appendix A.4),

u(1)
v (k3 = 0, τ ) = g

(v)
1j (k3 = 0, τ )u(j )

0 = Kh

kh

u
(1)
0 .

A close examination of the “vortex” energy expression given by relation (36) indicates that the important contribution comes from
terms (II) and (III) as shown by Figure 4. In fact, during the leading phase, term (II), which represents the “vortex” energy at k3 = 0,
is dominant. Whereas for τ > τm, term (III), which is associated with the vortex modes of the poloidal and buoyancy components
u(2)

v and u(3)
v , is dominant.

When k3/k1 � 1, the transient growth is less important than in the case where k3 ∼ k1 even if K2/k1 � 1 as shown by Figure 5.
This is mainly due to term (I) in Equation (36), which has a negative sign. Its magnitude, however, is large for k3/k1 � 1.

To better characterize the contribution coming from the vortex mode to the total energy at different streamwise or vertical scales,
we compute the power spectrum of the total energy (kinetic + potential) in the azimuthal or vertical directions. The power spectrum
can be defined as

ST (k1, t) =
∫ ∞

0

∫ 2π

0
ET (t, α, r)rdαdr =

∫ π
2

0

∫ 2π

0
ET (t, α, β) tan β(1 + tan2 β)dαdβ, (40)

where (r, α) are polar coordinates in the (K2, k3)-plane,

K2 = r cos α k3 = r sin α, and r = tan β.

The power spectrum of the total energy in the vertical direction, ST (k3), can be defined similarly. As in several experimental and
numerical studies, we use the following initial Gaussian spectrum (see, e.g., Hawley et al. 1996):

ET (0) = C0

4πk3
p

exp
(−K2/k2

p

)
, (41)
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Figure 4. Relative contribution of terms (II) (∼ K2
h/k2

h) and (III) in Equation (36) to the energy due to the vortex mode. This mode is an important contributor to the
transient growth in vertically stratified Keplerian disks (Ri = 1). Here, K2/k1 = 30 and k3/k1 = 1, so the contribution coming from term (I) in Equation (36) is not
important.
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Figure 5. Time evolution of the transient growth rate G(t) = ET (t)/ET (0) in vertically stable Keplerian disks (RΩ = −4/3, Ri = 1). The figure reveals that when
k3/k1 (=10) is large, the transient growth is reduced even if K2/k1 (= 30) is large.

where C0 = 4ET (0)/
√

π is the normalization constant and

ET (0) = 4π

∫ ∞

0
ET (0)K2dK

is the initial total energy that is equal to the initial kinetic energy since we have assumed that the initial potential energy is zero (see
Section 4). We take kp = 10 in accordance with the experimental study by Piccirillo & Van Atta (1997).

As indicated previously, when k1 	= 0 and k3 	= 0, the spectral density of energies given by Equations (35) and (36) is computed
numerically. Also, the double integral described by Equation (40) is computed numerically using the Gauss–Chebyshev method with
400 points in the interval 0 � β � (π/2) and 997 points in the interval 0 � α � 2π.

Figure 6 shows the power spectrum ST (k1) and the two parts S
(w)
T (k1) and S

(v)
T (k1) characterizing the contributions coming from the

wave and the vortex modes for vertically stratified Keplerian disks (Ri = 1, RΩ = −4/3) at large times (τ = St = 40). The spectrum
decreases with k1, showing that there is more energy at large scales (i.e., low k1). At these scales, there are small differences between
ST (k1) and S

(v)
T (k1), signifying that the contribution to the total energy from the vortex mode is dominant. The same conclusion is

also drawn when considering the power spectrum of the total energy in the vertical direction, S
(v)
T (k3).

In addition, the present numerical results show that, at large times, only very low k1 components continue to gain energy while at
the other scales ST (k1) is “time-independent” as illustrated by Figure 7. At 10−0.5 < k1 < 100.5, the power spectrum ST (k1) scales as
k−a

1 where a ≈ 1. This particular form is also found when considering the following initial spectrum with a K2 form prefactor:

ET (0) = C ′
0

4πk5
p

K2 exp
(−K2/k2

p

)
, (42)
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Figure 6. Power spectrum of total energy in the azimuthal direction for vertically stratified Keplerian disks with Ri = 1 at τ = At = 40. The figure clearly shows that
the contribution coming from the vortex mode, S

(v)
T (k1), is dominant at large scales (i.e., at low k1).
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Figure 7. Power spectrum of total energy in the streamwise (azimuthal) direction ST (k1) at different times for vertically stratified Keplerian disks with Ri = 1. The
figure shows that ST (k1) scales as k−a

1 where a ≈ 1 in the range 0.3 < k1 < 3. At this range, the power spectrum is “time-independent” for long times.
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Figure 8. Power spectrum of the total energy in the vertical direction ST (k3) at At = 100 for vertically stratified Keplerian disks with Ri = 1. The figure shows that
ST (k3) scales as k−a

3 for long times where a ≈ 4/5 in the range 0.3 < k1 < 3. At this range, the power spectrum is “time-independent.”

where C ′
0 is the normalization constant. A similar behavior is found for the power spectrum of kinetic energy in

the vertical direction, ST (k3, t). At 10−0.5 < k1 < 100.5, ST (k3) exhibits a k−a scaling where a ≈ 4/5 for both
spectra (41) and (42) as shown by Figure 8. Further discussion of the implications of these algebraic forms is given in
Section 6.
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6. DISKS WITH RADIAL AND VERTICAL STRATIFICATION

6.1. Stability Analysis of the Case with k3 = 0

When both radial and vertical stratification gradients are simultaneously present (n2 	= 0 and n3 	= 0), the stability analysis
under non-axisymmetric disturbances is much more complicated and requires tedious calculations except for the case with an infinite
vertical wavelength (k3 = 0). The study of that case is relevant for the characterization of the rapid transient growth.

At k3 = 0, such that kh = k, the system (14) and the relation (16) reduce to

dg1j

dτ
= k1k2

k2
h

g1j + Ri n2
k1

kh

g3j ,
dg2j

dτ
= Ri n3g3j ,

dg3j

dτ
= −n2

k1

kh

g1j − n3g2j , (43)

n3g1j = n2
k1

kh

g2j + [1 − δ(q0)]

[
n3

Kh

kh

δ1j − n2
k1

kh

δ2j

]
, (44)

respectively. Thus, the substitution of Equation (44) into Equation (43) yields the following two-dimensional nonhomogeneous
system:

d

dτ

(
g2j

n3g3j

)
−
⎛
⎝ 0 Ri

−n2
3 − n2

2
k2

1

k2
h

0

⎞
⎠

︸ ︷︷ ︸
C

·
(

g2j

n3g3j

)
=
(

0
[1 − δ(q0)] hj (τ )

)
, (45)

where

hj (τ ) = −n2
k1

kh

(
n3

Kh

kh

δ1j − n2
k1

kh

δ2j

)
. (46)

Using the same procedure as in Section 4, we show that the conditions (22) and (26) in Theorems 1 and 2 are satisfied by the
system (45), signifying stability (see Appendix A.2).

We choose the following simple initial condition (see Appendix A.5) for the matrix g(w), which is the solution of the system (45)
at vanishing PV:

g
(w)
ij (0) =

⎛
⎜⎜⎝

n2

n3

k1

Kh

β0
n2

n3

k1

Kh

β1 0

β0 β1 0
0 0 β2

⎞
⎟⎟⎠ , (47)

and g
(v)
ij (0) = δij − g

(w)
ij (0). As shown in Appendix A.5, this choice gives rise to vanishing mutual energies. Here,

−1 � β0 =
n2

n3

k1

Kh

1 +
n2

2

n2
3

k2
1

K2
h

� 1,

0 � β1 = 1

1 +
n2

2

n2
3

k2
1

K2
h

� 1, β2 = 1. (48)

The expression of the spectral density of the wave energy is obtained by substituting Equation (44) with δ(q0) = 1 into Equation (34):

E (w)
T (k3 = 0, t)

ET (0)
= 1

2

[(
1 +

n2
2

n2
3

k2
1

k2
h

)(∣∣∣g(w)
21

∣∣∣2 +
∣∣∣g(w)

22

∣∣∣2) + Ri

(∣∣∣g(w)
31

∣∣∣2 +
∣∣∣g(w)

32

∣∣∣2)] . (49)

To compute the above expression, we integrate numerically the system (45) with δ(q0) = 0 and the initial condition described by
Equation (47). In a similar manner, we derive the spectral density of the vortex energy by substituting Equation (44) with δ(q0) = 0
into Equation (34):

13
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Figure 9. Time evolution of the transient growth rate G(t) = ET (t)/ET (0) in Keplerian disks under combined vertical and radial stratification (n2/n3 = 1, Ri = 1).
Here, k3 = 0 and K2/k1 = 30 (� 1). During the leading phase τ < τm = K2/k1, the transient growth follows Equation (37) as in vertically stratified Keplerian disks.
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Figure 10. Transient growth rate G(t) = ET (t)/ET (0) for K2/k1 = 30 and k3/k1 = 1 in vertically stratified Keplerian disks (n2/n3 = 0) and Keplerian disks
under combined radial and vertical stratification (n2/n3 = 1). Here, Ri = 1. The figure shows that the transient growth is approximately the same for stable vertical
stratification and combined radial and vertical stratification.

E (v)
T (k3 = 0, t)

ET (0)
= n2

n3

k1Kh

k2
h

�g
(v)
21 − n2

n3

k2
1

k2
h

�g
(v)
22︸ ︷︷ ︸

(I )

+
1

2

[(
1 +

n2
2

n2
3

k2
1

k2
h

) ∣∣∣g(v)
22

∣∣∣2 + Ri

∣∣∣g(v)
32

∣∣∣2]︸ ︷︷ ︸
(II )

+

1

2

(
K2

h

k2
h

+
n2

2

n2
3

k2
1

k2
h

)
︸ ︷︷ ︸

(III )

+
1

2

[(
1 +

n2
2

n2
3

k2
1

k2
h

) ∣∣∣g(v)
21

∣∣∣2 + Ri

∣∣∣g(v)
31

∣∣∣2]︸ ︷︷ ︸
(IV )

. (50)

We compute this expression by integrating numerically the system (45) with δ(q0) = 0 and the initial condition g
(v)
ij (0) = δij −g

(w)
ij (0),

where g
(w)
ij (0) is given by Equation (47). When k3 	= 0 and k1 	= 0, we integrate numerically the system (14) with the initial condition

gij (0) = δij to compute ET (t) given by Equation (34). As indicated previously, a fourth-order Runge–Kutta scheme with a time step
of δτ = 10−3 was used to perform the numerical integration.

6.2. Results and Discussion

As in the case of vertically stratified disks, numerical computation indicates that there is a rapid transient growth of ET (t) provided
K2/k1 � 1 and 0 � k3/k1 < 1 or k3 ∼ k1. Figure 9 shows the time evolution of the transient growth rate G(t) = ET (t)/ET (0) and the
contribution coming from the wave and vortex modes for stratified Keplerian disks with Ri = 1 and n2/n3 = 1. Here, K2/k1 = 30
and k3 = 0. As can be seen, the rapid transient growth is due to the vortex mode. During the phase τ < τm = K2/k1, the transient
growth follows Equation (37), i.e.,

ET (t)

ET (0)
= 1

2

(
1 +

K2
h

k2
h

)
,

as in vertically stratified Keplerian disks. Under the same conditions of Figure 9, except k3/k1 = 1, Figure 10 displays the time
evolution of the growth rate G(t). For comparison, we have reported in this figure the results at k3 = 0 and also the results for
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Figure 11. Power spectra of total energy ST (k1) and ST (k3) for Keplerian disks with combined radial and vertical stratification (n2/n3 = 1, Ri = 1) at τ = At = 100.

The figure shows that the shape of the spectra are similar to their counterparts in vertically stable, stratified Keplerian disks without radial stratification.

the vertically stratified disks (n2/n3 = 0). At large times, the energy level is higher when radial and vertical buoyancy gradients
are present than when vertical stratification alone is present. In both cases, the high level of energy is mainly due to the “vortex”
component (in the sense of the particular solution of the nonhomogeneous reduced linear system of equations) of the poloidal and
buoyancy modes, u(2)

v and u(3)
v . More precisely, the high energy is due to the components g

(v)
21 and g

(v)
31 , since

lim
τ→∞

ET (t)

ET (0)
= lim

τ→∞
E (v)

T (t)

ET (0)
= 1

2

(∣∣∣g(v)
21

∣∣∣2 + Ri

∣∣∣g(v)
31

∣∣∣2) .

When both the radial and vertical buoyancy gradients are present, there is a similar behavior of the spectral density of the total energy
considering either the k3 = 0 mode or the modes for which k1 ∼ k3. This fully justifies the study of the k3 = 0 mode to characterize
the rapid transient growth that occurs when K2/k1 � 1.

Finally, we present in Figure 11 the power spectra ST (k1, τ ) and ST (k3, τ ) in Keplerian disks with radial and vertical stratification
(n2/n3 = 1 and Ri = 1) at the large time τ = At = 100. For comparison, we have also reported in this figure ST (k1, τ ) and ST (k3, τ ),
obtained in the case of a vertically stratified Keplerian disk (n2/n3 = 0, Ri = 1). As can be seen, there is little difference between
the spectra in the two cases.

In previous studies, it was shown that the increase of the mean shear rate affects rather the large scales (low streamwise wavenumbers;
see the experimental study by Nagata & Komori 2000) in the sense that the turbulent structures become longer in the streamwise
(azimuthal) direction, consistent with the generation of streaks. According to the study of homogeneous turbulent shear flow at a high
mean shear rate, by means of SLT and direct numerical simulations (DNS; see Lee et al. 1990), the mechanism for the formation of
streaks is mainly due to linear effects. In connection with the fact that the form k−1

1 , occurring at intermediate scales, would be an
indicator of the presence of elongated structures in the streamwise (azimuthal) direction, it has been noted in the recent review of
fluid mechanics in disks by Shariff (2009) that when the eddy Rossby number Rω ≡ |ω3|/(2Ω) is very small, the resulting eddies are
highly elongated in the azimuthal direction. Moreover, previous 2D incompressible (Bracco et al. 1999) and compressible (Goden &
Livio 2000; Johnson & Gammie 2005b) disk simulations show the appearance of long-lived vortices that are anticyclonic; the weaker
they are, the higher their aspect ratio becomes (see Section 5.6 in Shariff 2009).

7. CONCLUDING REMARKS

In this paper, we have shown several possible behaviors for Keplerian and sub-Keplerian disks with a Boussinesq fluid. Gravity
is directed radially inward (see Figure 1(b)), while the radial density gradient is outward (linear stable case) and the vertical density
gradient is positive (linear stable case). Indeed, apart from non-linear effects not considered here, either there is a dominant linear
instability (with an exponential growth of perturbations with time) or the flow is linearly stable but it can be finite amplitude stable
after suffering transient growths (that eventually decay if a finite viscosity is taken into account). We presume the conditions that have
been discussed in Sections 5 (for vertical stable stratification) and Section 6 (under combined both stable radial and stable vertical
stratifications), which are summarized below. The relevance of these behaviors to accretion disks is thought to be important even if
the precise physical conditions acting on a real accretion disk remain for the moment still unknown. Let us recall first some former
known situations: the stability criterion of Schwarzschild is that the flow is unstable if N2

2 < 0, but with shear included we have
the criterion of Solberg–Hoı̈land instead: the flow is unstable if N2

2 + κ2 < 0. But there could be other situations where it can be
Schwarzschild-unstable but Solberg–Hoiland-stable in the radial direction. Thus, we have examined here cases with N2

2 > 0 and
N2

3 > 0 and we have first proved rigorous stability using the Levinson theorem, while also looking at possible transient growths.
As already explained in detail in our review in Section 1, our investigation is complementary to previous studies that have

also examined stably stratified accretion-disk-like flows but in less general cases. More specifically, we have studied here the
axisymmetric and non-axisymmetric linear theory for plane-wave disturbances within SLT of a rotating shear flow under combined
radial and vertical stratification. We have applied the limit of a large speed of sound. We have considered the direct application of
linear theory to astrophysical Keplerian accretion disks.
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Our main findings are summarized as follows.

1. We have derived a local dispersion equation for axisymmetric perturbations (see Equation (17)) showing that the astrophysical
disks under combined stable radial and vertical stratification are linearly stable. The disks under unstable radial stratification
(N2

2 < 0) are also linearly stable provided that the epicyclic frequency exceeds the critical buoyancy frequency, κN,

κ2 > κ2
N = N2

3

|n3|
(n3 cos α − n2 sin α)2

sin2 α
.

Because of the relation N2
3 /n2 = N2

2 /n3, the Solberg–Hoı̈land criterion (see, e.g., Lesur & Papaloizou 2010) is recovered in the
limit of N3 = 0 (without vertical stratification); see above.

2. For neutral astrophysical accretion disks, the transient growth can act as an alternative to the more conventional MRI instability
in ionized disks in generating the turbulence necessary to explain the observed accretion efficiencies (see, e.g., Afshordi et al.
2005). We have studied the transient energy growth of non-axisymmetric disturbances of disks under combined stable radial and
vertical stratification. For the characterization of the transient energy growth, we have followed and extended previous works by
Tevzadze et al. who studied the wave–vortex mode coupling in stable stratified Keplerian disks. These two modes are jointly able
to extract the background energy and determine the disk dynamical activity in the small-scale range (see Tevzadze et al. 2008).
Because the dynamics depends on which mode is initially imposed, we have introduced for each mode an associated Green’s
function with initial conditions leading to positive or zero values for the wave, vortex, and mutual energies. An initial balance of
energy (i.e., the wave energy equal to the vortex energy, while the mutual energy is zero) was considered and the transient energy
growth was computed for a Keplerian disk under combined stable radial and vertical stratification. A large transient energy
growth was found for large radial wavenumbers (K2/k1 � 1, k3 = 0, or k3 ∼ k1), as for stable vertically stratified astrophysical
disks. The important transient energy growth is mainly due to the vortex mode. The contribution of the vortex mode to the power
spectrum of energy in the azimuthal or vertical directions is important at large scales, while the contribution coming from the
wave mode is important at small scales. At intermediate scales, the power spectrum is approximately time-independent for large
times. The present study may stimulate disk simulations in the high Reynolds number regime. In addition, a detailed comparison
between DNS and SLT would clarify the role of the linear processes in the turbulent angular momentum transport in disks and
the corresponding flow structures. In addition, one should notice that the inclusion of stratification in numerical simulations
involving the SB approximation is rather recent; see, for example, the paper by Meheut et al. (2010) for the role of vertical
stratification on the Rossby wave instability in accretion disks. Another example is the influence of vertical stratification on the
helicity conservation in the case of magneto-rotational turbulence by Oishi & Mac Low (2011). Hence, we ascribe importance
to disk stratification (vertical here) on the accretion dynamics.

APPENDIX

A.1. Derivation of the Non-homogeneous System given by Equation (20)

When there is no radial stratification, n2 = 0, the differential system (14) reduces to

dg1j

dτ
= k1k2

k2
h

g1j − (1 + RΩ)
k3

k
g2j ,

dg2j

dτ
=
(

RΩ + 2
k2

1

k2
h

)
k3

k
g1j − k1k2

k2
h

k2
3

k2
g2j + Ri

kh

k
g3j ,

dg3j

dτ
= −kh

k
g2j ,

(j = 1, 2, 3). Due to the following relations:

k
dk

dτ
= kh

dkh

dτ
= −k1k2,

d

dτ

(
k

kh

)
= k1k2

k2
h

k2
3

khk
,

the differential equation for g2j can be rewritten as

d

dτ

(
k

kh

g2j

)
=
(

RΩ + 2
k2

1

k2
h

)
k3

kh

g1j + Ri g3j ,

and the substitution of Equation (19) into the latter differential equation yields

d

dτ

(
k

kh

g2j

)
= C12(τ )g3j + hj (τ ),

where the expressions C12(τ ) and hj (τ ) are given by Equation (21).
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A.2. Absolute Convergence of Some Integrals Appearing in Sections 4 and 6.

The matrix C in the system (20) was decomposed into two matrices as C = C0 + C1(τ ), where C0 is a constant matrix. The nonzero
components of the matrix C1(τ ) in Equation (24) are

(C1)12 = (1 + RΩ)

(
RΩ + 2

k2
1

k2
h

)
k2

3

k2
h

, (C1)21 = k2
3/k2.

Then,

|(C1)12| � |RΩ(RΩ + 1)| k2
3

k2
h

+ 2 |RΩ + 1| k2
1k

2
3

k4
h

,

and hence (see, e.g., Gradshteyn & Ryzhik 1965),∫ ∞

0

k2
3

k2
h

dτ = k2
3

2k2
1

(π + 2ζ ) < ∞, (A1)

∫ ∞

0

k2
3k

2
1

k4
h

dτ = k2
3

4k2
1

(sin 2ζ + π + 2ζ ) < ∞, (A2)

provided that k1 	= 0. Here, tan ζ = K2/k1. This implies that∫ ∞

0
| (C1)12 (τ )|dτ < ∞.

In addition, one has ∫ ∞

0
| (C1)21 (τ )|dτ =

∫ ∞

0

k2
3

k2
dτ

= k2
3

k1

√
k2

1 + k2
3

⎡
⎣π

2
+ arctan

⎛
⎝ K2√

k2
1 + k2

3

⎞
⎠
⎤
⎦ < ∞

if k1 > 0 or

= k2
3

|k1|
√

k2
1 + k2

3

⎡
⎣π

2
− arctan

⎛
⎝ K2√

k2
1 + k2

3

⎞
⎠
⎤
⎦ < ∞

if k1 < 0 signifying that ∫ ∞

0
| (C1)21 (τ )|dτ < ∞.

The nonzero components of the vector h in the system (20) are h1(τ ) and h3(τ ), such that

h1(τ ) = k3Khh(τ ), h3(τ ) = k2
3h(τ ), and h(τ ) =

(
RΩ + 2

k2
1

k2
h

)
1

k2
h

.

Thus, it is sufficient to show that the latter term is impulsively small as τ → ∞ (see, e.g., Struble 1962)∫ ∞

0
|h(τ )|dτ =

∫ ∞

0

∣∣∣∣
(

RΩ + 2
k2

1

k2
h

)
1

k2
h

∣∣∣∣ �

|RΩ|
∫ ∞

0

1

k2
h

dτ + 2
∫ ∞

0

k2
1

k4
h

dτ < ∞,

provided that k1 	= 0.
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A.3. A Formal Analysis

We consider the 2D homogeneous system associated with Equation (20), which is also reported here for the sake of clarity

d

dτ

(
k

kh

g
(w)
2j

)
= C12 g

(w)
3j ,

d

dτ
g

(w)
3j = C21

(
k

kh

g
(w)
2j

)
, (A3)

with the initial condition (30), or g
(w)
ij = δij (i = 1, 2, j = 1, 2, 3), while the component g

(w)
1j is expressed as a function of g

(w)
3j , as

done in Equation (27).
Let Ψ1(τ ) and Ψ2(τ ) be two linearly independent solutions of the above system. Then

g
(w)
3j = A1j Ψ1(τ ) + A2j Ψ2(τ ), (j = 1, 2, 3),

g
(w)
2j = − k

kh

(A1j Ψ̇1(τ ) + A2j Ψ̇2(τ )), (A4)

where A1j and A2j are constants depending on the initial conditions,

A1j Ψ1(0) + A2j Ψ2(0) = δ3j ,

A1j Ψ̇1(0) + A2j Ψ̇2(0) = −Kh

K
δ2j , (A5)

and Ψ̇1 = [dΨ1(τ )/dτ ]. Non-degenerate solutions are characterized by

Δ = Ψ1(0)Ψ̇2(0) − Ψ2(0)Ψ̇1(0) 	= 0.

This implies that A11 = A21 = 0. Then,
g

(w)
31 = g

(w)
21 = g

(w)
11 = 0 (A6)

at any time. Because h2(τ ) in the system (20) is zero and g
(v)
21 (0) = g

(v)
22 (0) = 0, in a similar manner, we show that g

(v)
22 = g

(v)
32 = 0 at

any time.

A.4. Analytical Solutions of the Modes k1 = 0 and k3 = 0

For disks with vertical and radial stratification and k1 = 0 (so that the wave vector and the matrix L are time-independent), an
analytical solution of the system (12) is easily derived

u(2)(t) = u
(2)
0 cos (κst) + u

(3)
0

κs

A cos γ
sin (κst)︸ ︷︷ ︸

wave

+
q0

k

RΩ sin α

cos γ

A

κs

sin (κst)︸ ︷︷ ︸
vortex

,

u(3)(t) = −u
(2)
0

A cos γ

κs

sin (κst) + u
(3)
0 cos (κst) − q0

k

A2RΩ sin α

κ2
s

(1 − cos (κst)) ,

u(1)(t) = −u
(2)
0

A(1 + RΩ) sin α

κs

sin (κst) + u
(3)
0

(1 + RΩ) sin α

cos γ
cos (κst) +

q0

k

1

cos γ

[
1 − A2RΩ(1 + RΩ) sin2 α

κ2
s

(1 − cos (κst))

]
,

where κs, α, and γ are defined by Equation (17) and q0 is described by Equation (19).
For vertically stratified disks (n2 = 0) and when k3 = 0 so that k = kh, an analytical solution for the system (12) is also easily

derived,

u(1)(t)︸ ︷︷ ︸
vortex

= q0

kh

= u
(1)
0

Kh

kh

,

u(2)(t)︸ ︷︷ ︸
wave

= u
(2)
0 cos (N3t) − u

(3)
0

√
Ri sin (N3t) ,

u(3)(t)︸ ︷︷ ︸
wave

= u
(2)
0

sin (N3t)√
Ri

− u
(3)
0 cos (N3t) ,

indicating that the toroidal mode is a purely vortex mode. The poloidal and buoyancy modes constitute wave modes.
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A.5. Isotropic Initial Conditions and the Realizability Conditions

For clarity, we review here some previously given definitions and relationships.
We consider initial isotropic conditions for the second-order two-point correlation 〈u(x, t)u(x′, t)〉 and a nonzero initial potential

energy. We attempt to determine the initial conditions for the matrices g(w) and g(v) giving non-negative initial mutual energies.
Let ρ be the density fluctuation and ρ the basic (or mean) density. The potential energy per unit mass is defined by

Ep = −1

2

g

ρ0‖∇ρ‖
〈
ρ2
〉
,

where the brackets 〈〉 indicate an ensemble average and

‖∇ρ‖ =
[(

∂ρ

∂x2

)2

+

(
∂ρ

∂x3

)2
] 1

2

=
[

1 +
N4

2

N4
3

] 1
2
(

−ρ0

g

)
N2

3 =
(

−ρ0

g

)
N2

3

n3
,

since we have n2N
2
3 = n3N

2
2 , where n = (0, n2, n3) is a unit vector antiparallel to the gravitational acceleration g (see Salhi et al.

2012). Here, N2 and N3 are the Brunt–Väsäilä frequencies with respect to the (x2, x3) directions,

N2
2 = − g

ρ0

(
∂ρ

∂x2

)
, N2

3 = − g

ρ0

(
∂ρ

∂x3

)

in which ρ0 is a reference density. Thus, the expression for Ep becomes

Ep = 1

2

g2n3

ρ2N2
3

〈
ρ2〉 = 1

2

n3

N2
3

〈
θ2〉 = Ri

2

〈
u2

p

〉
,

where

θ =
(

− g

ρ0

)
ρ, up = −n3A

N2
3

θ = n3A

(∂ρ/∂x3)
ρ,

Ri = N2
3 /(n3A

2) is the Richardson number and A is the shear rate, as already indicated.
Let Sκ (K) and Sρ(K) be the radial spectra of the initial kinetic energy and potential energy, respectively,

Eκ (0) =
∫ ∞

0
Sκ (K)dK, Ep(0) =

∫ ∞

0
Sρ(K)dK.

As in previous studies of stratified homogeneous turbulence (see, e.g., Salhi & Cambon 2007), we assume that the spectra Sκ (K) and
Sρ(K) are proportional

Sρ(K) = ξSκ (K),

where ξ is a positive coefficient. In addition, we consider initial isotropic conditions with zero initial helicity and zero value for the
initial density fluxes,

� 〈ûi(K , 0)û∗
j (K , 0)

〉 = Sκ (K)

4πK2

(
δij − KiKj

K2

)
, � 〈ûi(K , 0)û∗

j (K , 0)
〉 = 0

〈
ûp(K , 0)û∗

j (K , 0)
〉 = 0 (j = 1, 2, 3),

where the asterisk denotes conjugate and

up(x, t) = ûp(k, t) exp (ık(t)·x) , ûp = u(3).

In the orthonormal basis (e(1), e(2), e(3)) where e(3) = k/k, these initial conditions can be rewritten as

� 〈u(i)(K , 0)u(j )∗(K , 0)
〉 = Sκ (K)

4πK2

⎛
⎝1 0 0

0 1 0
0 0 2ξ

Ri

⎞
⎠ (i, j = 1, 2, 3).
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By setting u(i)(k, t) = gij (t)u(j )(K , 0), the expression of the second-order spectral correlation can be expressed in terms of the
Green’s function g as follows:

� 〈u(i)(k, t)u(j )∗(k, t)
〉 = Sκ (K)

4πK2
�

⎡
⎢⎢⎣
(

g11 g12 g13
g21 g22 g23
g31 g32 g33

)
·

⎛
⎜⎜⎝

g∗
11 g∗

21 g∗
31

g∗
12 g∗

22 g∗
32

2ξ

Ri

g∗
13

2ξ

Ri

g∗
23

2ξ

Ri

g∗
33

⎞
⎟⎟⎠
⎤
⎥⎥⎦ ,

where gij (0) = δij . Thus, we deduce expressions for the spectral density of toroidal, poloidal, and potential energies:

Etor(t) = 1

2

〈
u(1)(k, t)u(1)∗(k, t)

〉 = Sκ (K)

8πK2

(
|g11|2 + |g12|2 +

2ξ

Ri

|g13|2
)

, (A7)

Epo�(t) = 1

2

〈
u(2)(k, t)u(2)∗(k, t)

〉 = Sκ (K)

8πK2

(
|g21|2 + |g22|2 +

2ξ

Ri

|g23|2
)

, (A8)

Epot(t) = Ri

2

〈
u(3)(k, t)u(3)∗(k, t)

〉 = Ri Sκ (K)

8πK2

(
|g31|2 + |g32|2 +

2ξ

Ri

|g33|2
)

. (A9)

Hence, the spectral density of total (kinetic + potential) energy takes the form

ET (t) = Sκ (K)

8πK2

⎛
⎝ 2∑

i=1

2∑
j=1

∣∣gij

∣∣2 + Ri

2∑
j=1

∣∣g3j

∣∣2 + 2ξ

3∑
i=1

|gi3|2
⎞
⎠ .

By setting ξ = 0 in the above relation and ET (0) = Eκ (0) = Sκ (K)/(4πK2), we recover Equation (34).
Additionally, we consider the relevant decomposition first proposed by Chagelishvili et al. (1997)

u(i)(k, t) = u(i)
w (k, t)︸ ︷︷ ︸
wave

+ u(i)
v (k, t)︸ ︷︷ ︸
vortex

= gij (t)u(j )(K , 0),

so that

u(i)
w (k, t) = g

(w)
ij (t)u(j )(K , 0), u(i)

v (k, t) = g
(v)
ij (t)u(j )(K , 0),

gij (t) = g
(w)
ij (t) + g

(v)
ij (t) (A10)

for any time, where g
(w)
ij is the Green’s function characterizing the “wave” and “vortex” regimes, respectively, i.e., the regimes

corresponding to a zero value or a nonzero value for the PV. For instance, by substituting the relation (A10) into Equation (A7), we
obtain the expressions for the spectral density of the toroidal wave, vortex and mutual energies,

E (w)
tor (t) = 1

2

〈
u(1)

w (k, t)u(1)∗
w (k, t)

〉 = Sκ (K)

8πK2

(∣∣∣g(w)
11

∣∣∣2 +
∣∣∣g(w)

12

∣∣∣2 +
2ξ

Ri

∣∣∣g(w)
13

∣∣∣2) ,

E (v)
tor (t) = 1

2

〈
u(1)

v (k, t)u(1)∗
v (k, t)

〉 = Sκ (K)

8πK2

(∣∣∣g(v)
11

∣∣∣2 +
∣∣∣g(v)

12

∣∣∣2 +
2ξ

Ri

∣∣∣g(v)
13

∣∣∣2) ,

E (vw)
tor (t) = � 〈u(1)

w (k, t)u(1)∗
v (k, t)

〉 = Sκ (K)

4πK2
�
(

g
(w)
11 g

(v)∗
11 + g

(w)
12 g

(v)∗
12 +

2ξ

Ri

g
(w)
13 g

(v)∗
13

)
.

In the following, we will examine the initial condition g
(w)
ij (0) giving a positive or a zero value for the initial spectral density of the

mutual energies. In fact, to ensure the realizability conditions, it is necessary that the kinetic energy be positive or zero. Also, the
potential energy must be positive or zero since Ri > 0 (stable stratification). We assume that g

(w)
ij (0) is real. Because gij (0) = δij ,

and hence, g
(v)
ij (0) = δij − g

(w)
ij (0) at t = 0, Equation (A7) reduces to

E (vw)
tor (0) = Sκ (K)

4πK2

[
g

(w)
11 (0) −

(∣∣∣g(w)
11 (0)
∣∣∣2 +
∣∣∣g(w)

12 (0)
∣∣∣2 +

2ξ

Ri

∣∣∣g(w)
13 (0)
∣∣∣2)] .
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Similarly, we obtain

E (vw)
po� (0) = Sκ (K)

4πK2

[
g

(w)
22 (0) −

(∣∣∣g(w)
21 (0)
∣∣∣2 +
∣∣∣g(w)

22 (0)
∣∣∣2 +

2ξ

Ri

∣∣∣g(w)
23 (0)
∣∣∣2)] .

E (vw)
pot (0) = Ri

Sκ (K)

4πK2

[
2ξ

Ri

g
(w)
33 (0) −

(∣∣∣g(w)
31 (0)
∣∣∣2 +
∣∣∣g(w)

32 (0)
∣∣∣2 +

2ξ

Ri

∣∣∣g(w)
33 (0)
∣∣∣2)] .

Because the mutual energy must be positive or zero, this implies that

g
(w)
11 (0) �

(∣∣∣g(w)
11 (0)
∣∣∣2 +
∣∣∣g(w)

12 (0)
∣∣∣2 +

2ξ

Ri

∣∣∣g(w)
13 (0)
∣∣∣2) , (A11)

g
(w)
22 (0) �

(∣∣∣g(w)
21 (0)
∣∣∣2 +
∣∣∣g(w)

22 (0)
∣∣∣2 +

2ξ

Ri

∣∣∣g(w)
23 (0)
∣∣∣2) , (A12)

g
(w)
33 (0) � Ri

2ξ

(∣∣∣g(w)
31 (0)
∣∣∣2 +
∣∣∣g(w)

32 (0)
∣∣∣2 +

2ξ

Ri

∣∣∣g(w)
33 (0)
∣∣∣2) . (A13)

A.5.1. Vertically-Stratified Disks

We will now consider the case of vertically stratified disks. In that case, the equation characterizing a vanishing PV can be
written as

g
(w)
1j (t) = (1 + RΩ)

k3

Kh

g
(w)
3j (t) (j = 1, 2, 3),

setting δ(q0) = 0 in Equation (19). Accordingly, Equation (A11) reduces to

(1 + RΩ)
k3

Kh

g
(w)
31 (0) � (1 + RΩ)2 k2

3

K2
h

(∣∣∣g(w)
31 (0)
∣∣∣2 +
∣∣∣g(w)

32 (0)
∣∣∣2 +

2ξ

Ri

∣∣∣g(w)
33 (0)
∣∣∣2) . (A14)

For the sake of simplicity, we consider the following form:

g
(w)
ij (0) =

(
0 χ0 0
χ1 0 χ2

)
(i = 2, 3, j = 1, 2, 3),

where χ0, χ1, and χ2 are arbitrary coefficients. The substitution of this form into Equations (A12)–(A14) yields⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

χ0 � χ2
0 ,

(1 + RΩ)
k3

Kh

χ1 � (1 + RΩ)2 k2
3

K2
h

(
χ2

1 +
2ξ

Ri

χ2
2

)
.

2ξ

Ri

χ2 �
(

χ2
1 +

2ξ

Ri

χ2
2

)
When ξ = 0, as in the present study, the above inequalities lead to χ1 = 0 and 0 � χ0 � 1, while χ2 can take any positive or zero
value. This justifies the choice of the initial condition described by Equation (30) that gives a zero value for the mutual energies. For
the case where the initial potential energy is not zero, ξ 	= 0, the vanishing initial mutual energies correspond to

χ0 = 1, χ1 = 0, χ2 = 1,

when k3 = 0 or RΩ = −1 (i.e., the case of zero absolute vorticity) and

χ0 = 1,

(
χ2

1 +
2ξ

Ri

χ2
2

)
= Kh

(1 + RΩ)k3
χ1 = 2ξ

Ri

χ2

or equivalently,

χ0 = 1, −1 � χ1 =
2ξ

Ri

(1 + RΩ)
k3

Kh(
1 +

2ξ

Ri

(1 + RΩ)2 k2
3

K2
h

) � 1

0 � χ2 = 1(
1 +

2ξ

Ri

(1 + RΩ)2 k2
3

K2
h

) � 1 (A15)

otherwise.
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A.5.2. Disks with Combined Radial and Vertical Stratification

When there is combined radial and vertical stratification (n2/n3 	= 0) and k3 = 0 (an infinite vertical wavelength), the equation
characterizing the conservation of the PV gives

g
(w)
1j (t) = n2

n3

k1

kh

g
(w)
2j (t),

setting δ(q0) = 0 and k3 = 0 in Equation (16). In that case, we consider the following form:

g
(w)
ij (0) =

(
β0 β1 0
0 0 β2

)
(i = 2, 3, j = 1, 2, 3),

and for vanishing mutual energies we obtain, by proceeding in a similar manner, the following expressions:

−1 � β0 =
n2

n3

k1

Kh

1 +
n2

2

n2
3

k2
1

K2
h

� 1,

0 � β1 = 1

1 +
n2

2

n2
3

k2
1

K2
h

� 1, β2 = 1 (A16)

that are independent of the Richardson number Ri.
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