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Université Claude Bernard Lyon 1, INSA de Lyon

36 avenue Guy de Collongue, 69134 Ecully, France
2Ecole Normale Supérieure de Lyon

46 allée d’Italie, 69007 Lyon, France
3Laboratoire Hubert Curien UMR5516 CNRS

Université Jean-Monnet

18 rue Pr Benoit Lauras, F-42000, St Etienne, France

compiled: August 22, 2013

Generalized Lorenz-Mie Theory (GLMT) for a multilayered sphere is used to simulate holograms produced by
evaporating spherical droplets with refractive index gradient in the surrounding air/vapor mixture. Simulated
holograms provide a physical interpretation of experimental holograms produced by evaporating Diethyl Ether
droplets with diameter in the order of 50 µm and recorded in a digital in-line holography configuration with
a divergent beam. Refractive index gradients in the surrounding medium lead to a modification of the center
part of the droplet holograms, where the first fringe is unusually bright. GLMT simulations reproduce well
this modification, assuming an exponential decay of the refractive index from the droplet surface to infinity.
The diverging beam effect is also considered. In both evaporating and non evaporating cases, an equivalence
is found between Gaussian beam and plane wave illuminations, simply based on a magnification ratio to be
applied to the droplets’ parameters.
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1. Introduction

Phase changes at droplet surface occur in many natural
situations and industrial processes, in the atmosphere,
in combustion chambers, in spray dryers and many other
fluid mechanic engineering applications. Until recently,
experimental studies of evaporating droplets were car-
ried out from an Eulerian point of view, i.e. measure-
ments were performed at a given point of the volume
under study, providing local information on velocity or
droplet size [1–3]. Such an approach is not suitable
to capture the strong coupling between the evaporat-
ing droplets and their immediate environment, which re-
quires a Lagrangian tracking of individual droplets pro-
viding both droplets’ trajectories and size evolution.
Digital in-line holography (DIH) is a very promising

optical technique to study the motion and the evolu-
tion of microscopic objects in 3D volumes, although it is

∗ Corresponding author: loic.mees@ec-lyon.fr

based on a rather simple experimental device. In asso-
ciation with a reconstruction algorithm based on an ’in-
verse problems’ approach [4–6] and high speed cameras,
DIH provides accurate location and size measurements,
as required to track micro-droplets with rapid size evolu-
tion. In a previous paper [7], DIH has been used to study
evaporating freon droplets in an isotropic and homoge-
neous turbulence. The droplets trajectories and their
diameter evolution have been reconstructed from holo-
grams by using an ’inverse problems’ approach. This ap-
proach consists in minimizing the difference between an
experimental droplet hologram and a parametric holo-
gram formation model for an opaque spherical particle
(a circular opaque disk, to be more specific).

It has been pointed out in [7] that the holograms are
modified when evaporation takes place. In Fig. 1, a
wake is visible in the vicinity of freon droplets, provid-
ing information on the Lagrangian relative motion of the
air about the droplets. In addition, the central part of
the holograms is abnormally bright compared to what
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is expected. This is the most problematic, because this
over-brightness is not described by the standard holo-
gram formation models. To get rid of this problem, an
exclusion mask method is used in [7] to not take account
for the central part of the hologram in the reconstruction
process. The brightness excess is attributed to evapora-
tion and the resulting refractive index gradient around
the droplets, but there is no undisputable evidence of
it. This paper proposes a physical explanation of this
phenomenon, based on rigorous electromagnetic scatter-
ing calculations, assuming a perfect spherical symme-
try. Experimental holograms of Diethyl Ether droplets
that fulfill the spherical symmetry assumption are pre-
sented and Generalized Lorenz-Mie Theory for multi-
layered sphere is used to simulate holograms of droplets
surrounded by a air/vapor mixture film showing a re-
fractive index gradient.

Fig. 1. Holographic image of freon droplets evaporating in a
turbulent flow. The experiment set-up is detailed in [7].

Lorenz-Mie Theory [8–10] provides a quasi-analytic
and rigourous solution to the scattering of a perfectly
spherical, homogeneous and non-magnetic particle illu-
minated by a plane wave. During the last decades, this
original ’theory’ has been extended to different particle
shapes and to non-uniform illumination under the name
of Generalized Lorenz-Mie Theories (GLMT) [11, 12]. In
this paper, GLMT for a multilayered sphere is applied
to simulate holograms produced by spherical droplets
surrounded by a refractive index gradient, under diver-
gent beam illumination. Section 2 recalls the material
needed to perform such computations. The main formu-
las required to perform the GLMT simulations, taken
from different sources, are written under a uniform no-
tation. Synthetic and experimental holograms produced
by evaporating droplets are presented in section 3. The
effect of refractive index gradient in the surrounding
medium is studied numerically and the effect of the beam
divergence is considered for both evaporating and non-
evaporating droplets. Section 4 is a conclusion.

2. Generalized Lorenz-Mie Theory for a Multilayered
sphere

The problem of electromagnetic scattering from a mul-
tilayered sphere illuminated by a Gaussian beam can
be solved rigorously in a Generalized Lorenz-Mie frame-
work, using the Bromwich formulation [13]. The scatter-
ing problem is expressed and solved in spherical coordi-
nates (r, θ, ϕ) in terms of scalar potentials from which all
the electromagnetic field components are derived. The
general solution to the scattering problem is written as
the sum of two special solutions, the Tranverse-Electric
(TE) for which the radial component of the electric field
is nul (Er = 0) and the Traverse-Magnetic (TM), for
which the radial component of the magnetic field is nul
(Hr = 0). The scattering particle is defined as an en-
semble of L concentric spherical layers of radius rj and
a complex refractive index nj as shown in figure 2. The
surrounding medium is transparent, its refractive index
n0 is real. In this paper, all particle layers and the
surrounding medium are assumed to be non magnetic.
The origin of the cartesian and the spherical coordinate
systems ((O, x, y, z) and (O, r, θ, ϕ)) coincides with the
particle center O. The particle is illuminated by a conti-
nous and monochromatic Gaussian beam, of wavelength
λ, linearly polarized along x direction. The beam waist
is arbitrary located in S of coordinates (x0, y0, z0) in
(O, x, y, z). The beam waist radius is denoted as ω0.
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Fig. 2. Multilayered particle illuminated by a Gaussian
beam.

In GLMT framework (as well as for LMT), incident
field, scattered field and internal fields are expanded
into series of spherical waves. Hovewer, the incident
field components can be directly computed by using the
first order (or ’Lowest’ order) Davis approximation [14]
expressed in spherical coordinates, omitting the time-
dependent harmonic term exp(iωt)

Ei
r = E0Ψ0

[

cosϕ sin θ

(

1−
2Q

l
r cos θ

)

+
2Q

l
x0 cos θ

]

exp (K) (1)
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Ei
θ = E0Ψ0

[

cosϕ

(

cos θ +
2Q

l
r sin2 θ

)

−
2Q

l
x0 sin θ

]

exp (K) (2)

Ei
ϕ = −E0Ψ0 sinϕ exp (K) (3)

Hi
r = H0Ψ0

[

sinϕ sin θ

(

1−
2Q

l
r cos θ

)

+
2Q

l
y0 cos θ

]

exp (K) (4)

Hi
θ = H0Ψ0

[

sinϕ

(

cos θ +
2Q

l
r sin2 θ

)

−
2Q

l
y0 sin θ

]

exp (K) (5)

Hi
ϕ = H0Ψ0 cosϕ exp (K) (6)

in which l = kω2
0 is the diffraction length,

K = −ik0 (r cos θ − z0)

Ψ0 = iQ exp

(

−iQ
r2 sin2 θ

ω2
0

)

exp

(

−iQ
x20 + y20
ω2
0

)

× exp

[

2iQ

ω2
0

r sin θ (x0 cosϕ+ y0 sinϕ)

]

Q =

(

i + 2
z − z0
k0ω2

0

)−1

k0 = 2πn0/λ is the wave number in the surrounding
medium.
The scattered fields components can be written as se-

ries of spherical waves as follows [15]

Es
r = −

E0

k20r
2

n=∞
∑

n=1

m=+n
∑

m=−n

cpwn ang
m
n,TM n(n+ 1)ξn (k0r)

×P |m|
n (cos θ) exp(imϕ) (7)

Es
θ = −

E0

k0r

n=∞
∑

n=1

m=+n
∑

m=−n

cpwn

[

ang
m
n,TMξ

′
n (k0r) τ

|m|
n (cos θ)

+mbng
m
n,TEξn (k0r) π

|m|
n (cos θ)

]

exp(imϕ) (8)

Es
ϕ = −i

E0

k0r

n=∞
∑

n=1

m=+n
∑

m=−n

cpwn

[

mang
m
n,TMξ

′
n (k0r) π

|m|
n (cos θ)

+bng
m
n,TEξn (k0r) τ

|m|
n (cos θ)

]

exp(imϕ) (9)

Hs
r = −

H0

k20r
2

n=∞
∑

n=1

m=+n
∑

m=−n

cpwn bng
m
n,TE n(n+ 1)ξn (k0r)

×P |m|
n (cos θ) exp(imϕ) (10)

Hs
θ = −

H0

k0r

n=∞
∑

n=1

m=+n
∑

m=−n

cpwn

[

mang
m
n,TMξn (k0r) π

|m|
n (cos θ)

−bng
m
n,TEξ

′
n (k0r) τ

|m|
n (cos θ)

]

exp(imϕ) (11)

Hs
ϕ = i

H0

k0r

n=∞
∑

n=1

m=+n
∑

m=−n

cpwn

[

ang
m
n,TMξn (k0r) τ

|m|
n (cos θ)

−mbng
m
n,TEξ

′
n (k0r) π

|m|
n (cos θ)

]

exp(imϕ) (12)

where an and bn are the scattering coefficients, gmn,TE

and gmn,TM are the beam shape coefficients (BSPs) and
cpwn is defined as

cpwn = (−i)n
2n+ 1

n(n+ 1)

ξn(kr) is the Riccati-Bessel function based on the

spherical Bessel function of the fourth kind Ψ
(4)
n and

the Hankel function of second kind H
(2)

n+ 1
2

by

ξn(kr) = krΨ(4)
n (kr) =

√

πkr

2
H

(2)

n+ 1
2

(kr)

ξ′n(kr) its derivative and the generalized Legendre func-
tion τmn (cos θ) and πm

n (cos θ) are defined from the asso-
ciated Legendre polynomials Pm

n by

τmn (cos θ) =
d

dθ
Pm
n (cos θ)

πm
n (cos θ) =

Pm
n (cos θ)

sin θ

The most efficient way to compute the BSPs is the
use of the localized approximation [12, 16], leading to
the following expressions :

[

gmn,TM

gmn,TE

]

=
1

2
(

1 + 2iz+0
) exp

(

iz+0
s2

−
x+0

2
+ y+0

2

1 + 2iz+0

)

× exp

(

−

(

n+ 1
2

)2
s2

1 + 2iz+0

)

×Rm
n (−i)|m|

[

iFm
n,TM

Fm
n,TE

]

(13)

where

Rm
n =

(

2

2n+ 1

)|m|−1

, |m| ≥ 1

R0
n =

2n (2n+ 1)

2n+ 1

[

F 0
n,TM

F 0
n,TE

]

=

[

2x+0
2iy+0

] ∞
∑

j=0

a2j+1 Xj
−X

j
+

j!(j + 1)!
(14)
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[

Fm
n,TM

Fm
n,TE

]

= am−1 Xm−1
−

(m− 1)!
+

∞
∑

j=m

a2j−m+1 X
j
−X

j−m
+

j!(j −m)!

×

[

X+

j−m+1 + X
−

j+1
X+

j−m+1 − X
−

j+1

]

,m > 0 (15)

[

Fm
n,TM

−Fm
n,TE

]

= a−1−m X−1−m
−

(−1−m)!
+

∞
∑

j=−m

a2j+m+1 X
j+m
− Xj

+

j!(j +m)!

×

[

X
−

j+m+1 + X+

j+1
X

−

j+m+1 − X+

j+1

]

,m < 0 (16)

where

a =
(n+ 1/2)s

1 + 2iz+0

X− = x+0 − iy+0 , X+ = x+0 + iy+0

and

x+0 =
x0
ω0
, y+0 =

y0
ω0
, z+0 =

z0
k0ω2

0

In case of a single homogeneous sphere (for both LMT
and GLMT), the scattering coefficients an and bn are de-
duced from the boundary conditions at the sphere sur-
face. In case of a multilayered sphere boundary condi-
tions are considered at each layer surface, leading to a
recursive determination of the coefficients [13] following

an =
ψn(x

′
L)H

a
n(xL)−mLψ

′
n(x

′
L)

ξn(x′L)H
a
n(xL)−mLξ′n(x

′
L)

(17)

bn =
mLψn(x

′
L)H

b
n(xL)− ψ′

n(x
′
L)

mLξn(x′L)H
b
n(xL)− ξ′n(x

′
L)

(18)

where xj = kjrj , x′j = kj+1rj , x′L = k0rL. kj
and mj = nj/n0 designates the wavenumber and the
relative refractive index in layer j. ψn is the Riccati-
Bessel function based on the spherical Bessel function of

the first kind Ψ
(1)
n and the Bessel fonction of the first

kind Jn following

ψn(kr) = krΨ(1)
n (kr) =

√

πkr

2
Jn+ 1

2
(kr)

and ψ′
n its derivative. The terms Ha

n(xL) and Hb
n(xL)

in relation (18) are calculated recursively following

Ha
n(xj) = Hb

n(xj) =
ψ′
n(x1)

ψn(x1)
(19)

Ha
n(xj) =

ψ′
n(xj)−Ra

jnχ
′
n(xj)

ψn(xj)−Ra
jnχn(xj)

(20)

Hb
n(xj) =

ψ′
n(xj)−Rb

jnχ
′
n(xj)

ψn(xj)−Rb
jnχn(xj)

(21)

with

Ra
1n = Rb

1n = 0 (22)

Ra
2n =

m2ψn(x
′
1)ψ

′
n(x1)−m1ψ

′
n(x

′
1)ψn(x1)

m2χn(x′1)ψ
′
n(x1)−m1χ′

n(x
′
1)ψn(x1)

(23)

Rb
2n =

m1ψn(x
′
1)ψ

′
n(x1)−m2ψ

′
n(x

′
1)ψn(x1)

m1χn(x′1)ψ
′
n(x1)−m2χ′

n(x
′
1)ψn(x1)

(24)

and for j > 2

Ra
jn =

mjψn(x
′
j−1)H

a
n(xj−1)−mj−1ψ

′
n(x

′
j−1)

mjχn(x′j−1)H
a
n(xj−1)−mj−1χ′

n(x
′
j−1)

(25)

Rb
jn =

mj−1ψn(x
′
j−1)H

b
n(xj−1)−mjψ

′
n(x

′
j−1)

mj−1χn(x′j−1)H
b
n(xj−1)−mjχ′

n(x
′
j−1)

(26)

in which χn designates the Riccati-Bessel function
based on the spherical Bessel function of the second kind

Ψ
(2)
n and the Bessel fonction of the second kind Yn fol-

lowing

χn(kr) = krΨ(2)
n (kr) =

√

πkr

2
Yn+ 1

2
(kr)

and χ′
n its derivative.

To simulate digital in-line holograms, incident fields
and scattered fields are computed onto the sensor plane
(z = zE = constant), following (1)-(6) and (7)-(12) re-
spectively. The total field is then computed by summa-
tion, that is Et = E

i +H
s and H

t = H
i +H

s. Intensi-
ties and propagation direction are given by the Poynting
vector:

S
t =

1

2
Re[Et ×H

t∗]

The recorded intensity is then the projection of St on
direction z, perpendicular to the sensor, that is

St
⊥ =

1

2
Re
[

cos θ
(

Et
θH

t
ϕ

∗
− Et

ϕH
t
θ

∗
)

− sin θ
(

Et
ϕH

t
r

∗
− Et

rH
t
ϕ

∗
)]

(27)

In the following, a normalized intensity IN will be used
to facilitate comparisons. This normalized intensity is
defined relatively to the non-perturbed incident intensity
Si
⊥ as follows

IN =
S⊥ − Si

⊥

Si
⊥

where

Si
⊥ =

1

2
Re
[

cos θ
(

Ei
θH

i
ϕ

∗
− Ei

ϕH
i
θ

∗
)

− sin θ
(

Ei
ϕH

i
r

∗
− Ei

rH
i
ϕ

∗
)]

(28)
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3. Evaporating droplet holograms with divergent
beam illumination

3.A. Experimental set-up

Holograms presented in [7] show unusually bright central
fringes and non-symmetric wakes which are elongated
because of the relative velocities between the freon drops
and the turbulent air-flow. To find a physical interpre-
tation of the holographic pattern central parts, a new
experiment has been conducted on free falling Diethyl
Ether droplets in still air. In this case, the relative veloc-
ities are small enough to fulfill the symmetry contrainst
imposed by GLMT calculations. Ether droplets are il-
luminated by a continuous divergent laser beam (wave-
lenght λ = 532 nm produced by a neodymium-doped
yttrium orthovanadate (Nd : Y V O4) laser in a digital
in line holography configuration, as shown in Fig. 3.
The laser beam is focused in S by means of a 25mm fo-
cal length lens. The distance between the object (Ether
droplets or calibration target) and the CMOS sensor is
zE = 360mm. The distance zS between the point source
(or beam waist) and the object is about 555mm. As an
example, a droplet hologram profile is ploted in figure
3, showing the unsually bright central fringe, to be later
discussed in this paper.

zS

Object plane

CMOS 

sensor
Nd:YVO4 

Laser
S

zE

Fig. 3. Experimental set-up. A divergent beam is used to
record evaporating Diethyl Ether droplet holograms.

3.B. Divergent beam effect for non evaporating

droplet

The use of a divergent beam leads to a magnification of
the holograms [17, 18] for both object size and recon-
struction distance, with a magnification ratio

G =
zS

zS − zE
(29)

The hologram produced by a drop of radius rD and
recorded at a distance zE in the divergent beam configu-
ration of figure 3 is then equivalent to the hologram pro-
duced by a drop of radius GrD, illuminated by a plane
wave and recorded at a distanceGzE . The magnification
ratio has been measured by using a calibration target
and a standard reconstruction process, for different zE
positions at constant zS (moving target along z), leading
to G = 2.86 for zE = 360mm and a refinement of the
point source position measurement zS = 553.5mm. The
magnification introduced by the beam divergence can be
demonstrated in the Fresnel integral framework [17, 18].

The equivalence is verified in the GLMT simulations
presented Fig. 4. This figure shows sections of the holo-
grams, taking advantage of their circular symetry. These
holograms are produced at a distance zE = 360mm by
homogeneous spherical particles of radius rD = 20 µm
and rD = 50 µm, illuminated by a Gaussian beam of
beam waist radius ω0 = 1 µm, wavelength λ = 532 nm
and focused on (x0, y0, z0) = (0, 0,−(zS − zE)). These
holograms perfectly fit the holograms produced at a
distance GzE = 1029.6 mm by spherical droplets of
radius GrD = 57.2 µm and GrD = 143 µm respec-
tively, illuminated by a plane wave. In this example,
the spherical particles contain only one layer of radius
r1 = rL = rD. The refractive index of liquid Ether is
set to n1 = (1.35 − 0i) and the surrounding medium
refractive index is set to n0 = 1.

3.C. Evaporating droplet holograms

Evaporating droplets are characterized by the presence
of a refractive index gradient inside the droplet (re-
lated to temperature gradient) and by the presence of
a air/vapor mixture film all around it. The internal re-
fractive index gradient can be considered in GLMT sim-
ulation by considering a large number of layers with a
nearly continuous refractive index evolution [19]. GLMT
simulations (not presented here) show that such an in-
ternal gradient does not affect the droplet holograms in
the present configuration (at large distance) and will be
not considered in the following.
The surrounding medium is also characterized by a re-

fractive index gradient, due to the evolution of both tem-
perature and Ether vapor concentration from the droplet
surface to surrounding air. Following [20], the refrac-
tive index gradient near the evaporating droplet surface
can be described by an exponential decay. Assuming a
spherical symmetry, evaporating droplets will be defined
as multilayered spheres with a first layer corresponding
to the liquid droplet of radius r1 = rD and refractive
index n1 = (1.35− 0i) surrounded by a large number of
layers with regularly spacing radii rj and refractive in-
dices nj following an exponential decay from the droplet
surface to infinity of the form

n(r) = n0 + ns exp

(

−
r − rD
σ

)

(30)

where n0 is the surrounding air refractive index (far
from the droplet), ns the refractive index deviation from
n0 at the droplet surface (in the gas phase) and σ is
a width parameter. The spacing between the radii rj
and the refractive indices nj must be small enough to
describe accurately the continuous evolution of relation
(30). The total number of layers L required and the ex-
ternal radius rL of the particle (droplet and surrounded
film) are determined from tests of convergence. In the
following, L is set to 200 and rL to 6σ.
Figure 5.b shows synthetic holograms computed by

GLMT for rD = 20µm radius droplets surrounded by re-
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fractive index gradients with constant width parameter
σ = 80 µm and various refractive index deviation ns as
shown in figure 5.a. The droplets are illuminated by the
divergent beam as defined above (ω0 = 1µm, λ = 532nm
and z0 = − (zS − zE) = −193.5mm) and the distance
between the droplet and the sensor is zE = 360mm. The
surrounding air refractive index (far from the droplets)
is n0 = 1. The case ns = 0 corresponds to a droplet
immersed in a homogeneous medium, that is a non-
evaporating droplet. The corresponding hologram is
used as a reference. It shows a standard pattern for the
large recording distance considered here, with a central
fringe amplitude (in x = 0) close to the average inten-
sity of the whole hologram, which is about zero with
the normalization adopted here. In the presence of re-
fractive index gradient (ns 6= 0), the central part of the
holograms is modified. The central fringe amplitude in-
creases with increasing ns, showing the same behavior as
observed experimentaly. For ns ≤ 10−6, the hologram is
almost unaffected by the refractive index gradient. For
ns = 5× 10−6 and ns = 10−5, only the central fringe is
affected. For greater values of ns, the second fringe of
the hologram is also modified by the presence of refrac-
tive index gradient.

0.000 0.001 0.002 0.003 0.004

x(m)

−0.2

−0.1

0.0

0.1

0.2

0.3

IN

Divergent beam rD =20 µm
Plane wave equivalence rD =20 µm
Divergent beam rD =50 µm
Plane wave equivalence rD =50 µm

Fig. 4. Comparison between holograms produced under fo-
cused beam and plane wave illumination. The plane wave
equivalence consists in applying the magnification ratio G

defined in Eq. 29 on both droplet radius and recording dis-
tance.

Figure 6.b shows synthetic holograms computed for
rD = 20 µm radius droplets surrounded by refractive
index gradients with constant ns = 5× 10−5 and differ-
ent width parameter σ, from 0 (no gradient) to 320 µm
(16 times rD), with other parameters unchanged with
respect to Fig. 5. The corresponding refractive index
profiles are plotted in figure 6.a. The central fringe am-
plitude increases with increasing σ but it reaches a max-
imum for σ near about 200 µm (not represented) and
then slightly decreases for greater σ. The second fringe
is increasingly affected for increasing σ as it was for ns

increasing in the previous figure. The next fringes am-

plitudes are nearly unaffected but it must be noted that
for σ ≥ 160 µm the presence of a surrounding gradient
induces a slight translation of these fringes. The results
of Figs. 5 and 6 show that only the three first fringes
are notably affected by the refractive index gradient in
the case of a rD = 20µm radius droplet and in the limit
of ns ≤ 10−4 and σ ≤ 4rD. Then, a masking method,
similar to the one used in [7], can be used to extract the
location and diameter of the evaporating droplets by us-
ing an ’inverse problems’ approach. After detecting the
holographic signature of an object, its central part (first
three fringes) can be excluded from the analysis and the
rest of the pattern can be compared to synthetic holo-
grams computed with a simple analytical model (opaque
disk and Fresnel integral propagation) which does not
take the surrounding gradient into account.

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025

x(m)

0.0

0.1

0.2

IN

ns =0

ns =5×10−6
ns =10−5

ns =5×10−5
ns =10−4

0 50 100 150 200 250 300 350 400

r(µm)

0.0

0.2

0.4

0.6

0.8

1.0

(n
(r
)−
n
0
)
×1

04

nD =1.35

(a)

(b)

Fig. 5. Evaporating droplet holograms for varying refrac-
tive index deviation at droplet surface. The droplet is il-
luminated by a Gaussian beam (ω0 = 1 µm, λ = 532 nm

and z0 = − (zS − zE) = −193.5 mm). The droplet radius is
rD = 20 µm, refractive index decreases exponentially in the
surrounding medium following Eq. 30 with variable ns and
a constant decay parameter σ = 80µm.

Figure 7 shows the effect of the refractive index gra-
dient on holograms, for different droplet sizes. In this
figure, the droplet radius varies from 10 to 30 µm and
the resulting holograms, with and without gradients, are
compared. For each droplet size, the refractive index
gradient is defined by a constant refractive index devia-
tion at the droplet surface ns = 5×10−5 and by a width
parameter varying proportionnally to the droplet radius,
that is σ = 4 rD. Other parameters remain unchanged
with respect to the previous figures. It can be seen here
that the modification of the holograms is still mainly
focused on the first fringes. However, other fringes are
progressively modified by the gradient when the droplet
size increases. This appears more clearly in Fig. 8 where
larger droplets of radius rD = 50µm and rD = 100µm
are considered, with the same other parameters as in
Fig. 7. In both cases, the first two fringes are clearly
affected. All the next fringes are unaffected in terms of
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Fig. 6. Evaporating droplet holograms for varying decay
parameter σ. The droplet is illuminated by a Gaussian
beam (ω0 = 1 µm, λ = 532 nm and z0 = − (zS − zE) =
−193.5 mm). The droplet radius is rD = 20µm and the
refractive index decreases exponentially in the surrounding
medium following Eq. 30 with variable σ from 0 to 320 µm

and a constant refractive index deviation at droplet surface
ns = 5× 10−5.

amplitude but they are clearly shifted as a consequence
of the surrounded gradient, including the fringes beyond
the first zero of the Airy function. Then, in this case,
one can expect some bias in the estimation of z and rD
using an exclusion mask.
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Fig. 7. Effect of the refractive index gradient on holograms
for different droplet sizes. The holograms are produced by
different droplets of radius rD = 10 µm, rD = 20 µm and
rD = 30 µm, with and wihout surrounding refractive in-
dex gradients, which are defined by a constant deviation at
droplet surface ns = 5 × 10−5 and a width parameter pro-
portional to the droplet radius σ = 4 rD.

This work opens a way to a complete characteriza-
tion of evaporating droplets, including the surrounding
refractive index gradient. The inversion of experimen-
tal data is out of this paper scope, but the hologram
simulations discussed above suggest that a two step in-
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Fig. 8. Effect of the surrounding refractive index gradi-
ent on holograms for different droplet sizes. The holo-
grams are produced by droplets of radius rD = 50 µm and
rD = 100 µm, with and wihout surrounding refractive in-
dex gradients, which are defined by a constant deviation at
droplet surface ns = 5 × 10−5 and a width parameter pro-
portional to the droplet radius σ = 4 rD.

version procedure could be used. To examplify the po-
tential of this approach, figure 9 shows an experimental
hologram profile of an evaporating Ether droplet. This
profile results from an angular averaging of a 2D holo-
gram recorded in the experimental conditions described
in section 3.A. A masking method is first apply to de-
termine the droplet radius rD and its location z : the
difference between the synthetic hologram and the ex-
perimental one is minimized, considering only x ranging
from 1.5mm to 6mm (dotted lines in Fig. 9), excluding
the first three fringes. The first step leads to rD = 21µm
and z = 360.426 mm. The synthetic hologram of the
corresponding droplet (without surrounding gradient) is
shown in the figure. Then, a surrounding refractive in-
dex with exponential decay is considered in the hologram
model. A second minimization procedure is applied with
fixed rD and z, to determine the surface refractive in-
dex deviation ns = 8.5× 10−5 and the decay parameter
σ = 80µm. The evaporating droplet synthetic hologram
almost agrees with the experiments, excepted for a sig-
nificant deviation in the second and third fringes am-
plitude. This departure is probably due to a significant
deviation from the ideal exponential decay considered in
simulations. The ns value deduced from the experimen-
tal hologram is of the same order of magnitude as the
one obtained in [20] (ns = 1.5 × 10−4) for large Ether
droplets (∼ 2mm) suspended on a stainless steel fiber
with thermal conductivity. It is even closer to the value
obtained in [21] (ns = 1.2 × 10−4) for Ether droplet
of about 1.5mm suspended on a plastic fiber with low
thermal conductivity.
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Fig. 9. Experimental hologram compared to computed holo-
grams, with and wihout surrounding refractive index gradi-
ent. For both evaporating and non evaporating case, the
droplet diameter is rD = 21µm and the recording distance
is z = 360.426mm. For the evaporating droplet, the sur-
rounding refractive index gradient is defined by σ = 80µm
and ns = 8.5 × 10−5.

3.D. Beam divergence effect for evaporating
droplets

In section 3.A an equivalence has been shown between
holograms recorded under plane wave and focused beam
illuminations. This equivalence consists of a magnifi-
cation ratio affecting both the measured droplet radius
rD and its distance zE to the sensor. In case of evap-
orating droplets, the surrounding refractive index gra-
dient is defined by the two other parameters ns and σ.
The equivalence is preserved with the same magnifica-
tion ratio G applied to rD, zE and to the decay pa-
rameter σ, providing that the refractive index deviation
ns at the droplet surface is divided by G. This equiv-
alence is illustrated in Fig. 10 where two particle sizes
are considered. For rD = 20 µm, the decay parameter
is σ = 80 µm and for rD = 50 µm, σ = 200 µm. In
both cases, the refractive index deviation at the droplet
surface is ns = 5 × 10−5. Figure 10, the droplet holo-
grams recorded at distance zE = 360 mm for a diver-
gent beam illumination (zS = 553.5mm), perfectly over-
laps with the holograms produced at distance GzE (with
G = 2.86) by droplets of radius GrD, decay parame-
ter Gσ and refractive index deviation at droplet sur-
face ns/G with a plane wave illumination. This equiv-
alence can be used to reduce computation time as it
is smaller for plane wave illumination (LMT) than for
focused beam (GLMT). However, computation time in-
creases with particle size and, in the present case, the
total gain in computation time using the plane wave
equivalence is limited to a factor 4.

4. Conclusion

GLMT for multilayered sphere was used to simulate
evaporating droplet holograms and to show the effect of
refractive index gradient in surrounding medium. Simu-
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Fig. 10. Comparison between holograms computed for a di-
vergent beam illumination and equivalent holograms com-
puted for a plane wave illumination and magnified droplet
parameters.

lations reproduce well the unusual central fringe bright-
ness observed on evaporating Ether droplet holograms
and show how a weigthed mask method can be used
to reconstruct particle location and size with an ’in-
verse problems’ approach based on a standard paramet-
ric hologram formation model. Diverging beam effect is
also considered, showing that the equivalence with plane
wave illumination can be extended to the case of evapo-
rating droplets. Results presented in this paper open the
way to a complete and accurate characterization of evap-
orating droplets using digital in-line holography together
with an ’inverse problems’ approach. These approach
requires a hologram formation model which takes into
account the surrounding medium refractive index gradi-
ent. However, GLMT is very time consuming compared
to model based on Fresnel propagation integrals, and
it is limited to gradients with radial symmetry. To in-
crease the applicative potential of this work, a less time
consumming model could be developped. To this pur-
pose, GLMT computations could be used as a reference
to validate this model.
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