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An essential step in understanding the processes underlying the general mechanism of

perceptual categorization is to identify which portions of a physical stimulation modulate

the behavior of our perceptual system. More specifically, in the context of speech

comprehension, it is still a major open challenge to understand which information is

used to categorize a speech stimulus as one phoneme or another, the auditory primitives

relevant for the categorical perception of speech being still unknown. Here we propose

to adapt a method relying on a Generalized Linear Model with smoothness priors,

already used in the visual domain for the estimation of so-called classification images,

to auditory experiments. This statistical model offers a rigorous framework for dealing

with non-Gaussian noise, as it is often the case in the auditory modality, and limits the

amount of noise in the estimated template by enforcing smoother solutions. By applying

this technique to a specific two-alternative forced choice experiment between stimuli

“aba” and “ada” in noise with an adaptive SNR, we confirm that the second formantic

transition is key for classifying phonemes into /b/ or /d/ in noise, and that its estimation

by the auditory system is a relative measurement across spectral bands and in relation

to the perceived height of the second formant in the preceding syllable. Through this

example, we show how the GLM with smoothness priors approach can be applied to

the identification of fine functional acoustic cues in speech perception. Finally we discuss

some assumptions of the model in the specific case of speech perception.

Keywords: classification images, GLM, phoneme recognition, speech perception, acoustic cues, phonetics

INTRODUCTION

A major challenge in psychophysics is to establish what exact

parts of a complex physical stimulation modulate its percept by

an observer and constrain his/her behavior toward that stimulus.

In the specific field of speech perception, identifying the informa-

tion in the acoustic signal used by our neurocognitive system is

crucial in order to understand the human language faculty and

how it ultimately developed in human primates (Kiggins et al.,

2012). In this context, questions of speech segmentation, i.e.,

which acoustical cues are used to isolate word units in the con-

tinuous acoustic speech stream; or phonemic categorization, i.e.,

which among the auditory primitives that are encoded at the neu-

ral acoustic/phonetic interface are actually used by our perceptual

system to recognize and categorize phonemes, still constitute an

important open debate (see Cutler, 2012 for a review). As a con-

sequence, today there is no universal model of speech recognition

that can work directly on the acoustic stream. Models of speech

recognition, even the most efficient and well developed ones, usu-

ally avoid the acoustic/phonetic step (e.g., Luce and Pisoni, 1998;

Norris and McQueen, 2008) or rely on systems that are not based

on realistic human behaviors (Scharenborg et al., 2005).

In this paper we propose a method and procedure allowing

direct estimation of which parts of the signal are effectively used

by our neurocognitive system while processing natural speech. Of

course one way that was used in previous work to identify rele-

vant acoustic cues in speech is to proceed by progressive signal

reductions, i.e., eliminating certain cues from the speech signal in

order to demonstrate which ones are mandatory. In the 1950’s,

phoneme recognition was extensively studied by Liberman and

colleagues for example, using the systematic variation of a limited

number of features in the time-frequency domain (usually one

or two) along a continuum of synthetic speech (Liberman et al.,

1952, 1954, 1957). More recent work conducted on this topic has

involved artificially degraded speech, such as noise-vocoded (Xu

et al., 2005), sine-wave (Loizou et al., 1999), or band-pass filtered

speech (Apoux and Healy, 2009). These approaches can, however,

only offer a very limited account of the problem, as it is known

that the speech comprehension system shows very fast and effi-

cient functional plasticity. Once shaped by linguistic experience,

our speech perception system can rapidly modify the cues that

are relevant for phonemic categorization in response to drastic

signal reductions or even stronger manipulations (see for exam-

ple: Shannon et al., 1995). This resistance of speech perception to

drastic signal impoverishment was attributed to the redundancy

of information in speech: no single acoustic feature in speech is

absolutely crucial for its comprehension (Saffran and Estes, 2006).
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The signal reduction approach can therefore not account for the

many possible acoustic dimensions used by listeners in a single

categorization task, or for their evolution with listening situa-

tions. While signal reduction paradigms are appropriate to study

the functional plasticity triggered in our speech perception sys-

tem by signal reductions, they can hardly inform us on the way

the system reacts in more natural perception situations.

An alternate way to proceed would be to develop a method

allowing experimenters to directly “see” where humans listen

inside natural speech signals, without having to modify them. In

the following, we show how a methodological solution to this

issue can be provided by new developments in the domain of

so-called classification images (CIm). We demonstrate how this

method can now be adapted to auditory experiments and how

this method can further be developed to study the identification

of functional fine acoustic cues in speech perception. We will also

discuss how this method could be adapted to other domains of

studies both in perceptual and cognitive neuroscience.

Since Ahumada and Lovell (1971) first developed a correla-

tional technique to estimate the frequency weighting-function

of observers detecting a 500-Hz tone-in-noise, much has been

done for establishing a robust theoretical framework in which

to describe and analyze the set of techniques gathered under

the name of CIm (see Murray (2011) for an in-depth review).

The basic idea underlying the classification image approach is

that, faced with any kind of perceptual decision, our neurocog-

nitive system will sometimes generate correct perceptions and

sometimes errors, which could be informative on the computa-

tional mechanisms occurring in perceptual systems. If one could

have access to the physical conditions of the stimulation that

favor either perceptual failure or success, then one can derive

the relevant parts of any stimulation that impact the perceptual

decision process. As a consequence, the tasks used to gener-

ate CIm are categorization tasks. The typical paradigm used in

classification image experiments is an identification or detec-

tion experiment, in which each trial consists in the presentation

of one of two possible signals and the participant is instructed

to classify the stimuli between the two options (t0 or t1). In

order to derive a classification image, stimuli are systematically

masked by a certain amount of random background-noise. For

each trial, the response given by the participant, the signal actu-

ally presented and the trial-specific configuration of the noise field

are recorded. The classification image aims at showing the pre-

cise influence of the noise field on the observer’s response, for a

given signal.

The best known (and maybe the most intuitive) method for

calculating a classification image, first used by Ahumada (1996)

and termed reversed-correlation, derives from the idea of estab-

lishing the correlation map between the noise and the observer’s

responses. In practical terms, this is done by averaging all of the

noise fields eliciting response t0 and subtracting the average of all

of the noise fields eliciting response t1. The idea is that if one can

determine how the presence of background-noise at each point

inside the space of a stimulus interferes with the decision of the

observer, one can derive a map of the perceptual cues relevant to

achieve a specific categorization task. By showing which compo-

nents influence the recognition performance, this method gives us

insights into the observer’s internal decision template for this spe-

cific task. Although it has been primarily conceived as an answer

to a question raised in the auditory domain (Ahumada and Lovell,

1971; Ahumada et al., 1975), and although the method could

have easily been further developed to study auditory processes,

this powerful tool has been mostly exploited up to now in studies

on visual psychophysics. This technique has been used to inves-

tigate a variety of visual tasks, including the ability to perceive

two segments as aligned or not (i.e., Vernier acuity, Ahumada,

1996), the detection of Gaussian contrast modulation (Abbey and

Eckstein, 2002), the processing of illusory contours (Gold et al.,

2000), visual perceptual learning (Gold et al., 2004), and lumi-

nance (Thomas and Knoblauch, 2005) and chromatic (Bouet and

Knoblauch, 2004) modulation.

In the auditory domain, the classification image is a promising

approach for determining which “aspects” of the acoustic signal

(formant position or dynamic, energy burst, etc.) are crucial cues

for a broad variety of psychoacoustic tasks (i.e., tonal or pitch

discrimination, intensity perception or streaming, etc.) and par-

ticularly in the context of speech comprehension. However, to

our knowledge, attempts to adapt this methodology to the audi-

tory modality have until now produced limited results. Among

noteworthy attempts, Ardoint et al. (2007) have adapted the

reversed correlational method to study the perception of ampli-

tude modulations and very similar correlational procedures have

been used to determine spectral weighting functions of speech

stimuli (see for example: Doherty and Turner (1996); Apoux

and Bacon (2004) or Calandruccio and Doherty (2008)). Two

severe limitations can, at least partly, explain the limited devel-

opment of the technique. Firstly, several thousands of trials are

typically needed to compute a classification image accurately. The

minimum number of trials theoretically required is equal to the

number of free-parameters, but many more are needed to be

able to estimate the classification image with an adequate signal-

to-noise ratio (up to 11400 trials, in Barth et al., 1999). This

problem has been overcome in the visual domain by reducing the

number of random variables under consideration, for example

by averaging along irrelevant dimensions (Abbey and Eckstein,

2002, 2006), or by using a “dimensional” noise (Li et al., 2006).

Unfortunately, none of these methods can be used with such com-

plex and time-varying stimulus as speech. Furthermore, mental

and physiological fatigue occurs rapidly when listening to very

noisy stimuli. The second factor restricting the use of reverse-

correlation for estimating auditory CIm is the strong assumption

about the statistical distribution of the noise imposed by the sta-

tistical theory. Since its theoretical background has mostly been

developed assuming additive Gaussian-noise, methods such as

reverse-correlation are not the most suitable statistical framework

to deal with non-Gaussian noise-fields. In the visual domain,

CIm can be based on Gaussian noise, for example in the case of

luminance noise which will modify the observer’s perception in

a symmetric fashion, adding or subtracting luminance to pixels

in a picture. The interest of using CIm for the study of speech

signals, however, imposes the use of acoustic stimuli which will

have complex spectro-temporal composition and the calculation

of an auditory classification image should therefore not be based

on the amplitude of the noise samples, but rather on the power of
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the time-frequency bins of their power spectrum. These unfor-

tunately generally have non-Gaussian distributions. These two

limitations make it difficult to calculate auditory CIm using the

standard reverse-correlation method.

A major advance in the comprehension and computation of

CIm was achieved by Knoblauch and Maloney (2008) who pro-

posed to fit the data with a Generalized Linear Model (GLM),

which provide a more accurate and comprehensive statistical

framework for calculating CIm. This initial work was followed

by Mineault et al. (2009) and Murray (2011, 2012). Interestingly,

this appealing approach offers a way to overcome the two pit-

falls mentioned above. Firstly, GLMs naturally allow the addition

of prior knowledge on the smoothness of the expected classi-

fication image, resulting in Generalized Linear Models (GLMs)

(Hastie and Tibshirani, 1990; Wood, 2006). By exploiting the

dependencies between adjacent noise values, one can signifi-

cantly reduce the number of trials required. In fact, GLMs with

priors are widely used for describing the stimulus-response prop-

erties of single neurons (Pillow, 2007; Pillow et al., 2008), in

particular in the auditory system (in terms of Spectrotemporal

Receptive Field, STRF, Calabrese et al., 2011). Secondly, unlike

the reverse-correlation method, the GLM does not require the

noise to be normally distributed. Accordingly, it can measure

CIm using noise fields from non-Gaussian distributions, such

as the power spectrum of an acoustic noise, in a similar way to

the calculations of second-order CIm using GLM by Knoblauch

and Maloney (2012). Therefore, Generalized Linear and Additive

Models provide suitable and powerful tools to investigate the

way in which the human system achieves fast and efficient cat-

egorization of phonemes in noise. In this paper we applied the

GLM with smoothness priors technique to the identification of

acoustic cues used in an identification task involving two VCV

speech sequences: ABA (/aba/) and ADA (/ada/). In this particu-

lar case a strong hypothesis, formulated in Liberman et al. (1954),

is that the second formant transition would be a key for classi-

fying the stimulus into [ABA] or [ADA]. Under this assumption,

the classification image would be focused on the time-frequency

localization of the second formant transition.

MATERIALS AND METHODS

In the following sections we use the convention of underlined

symbols to indicate vectors, double underlined symbols to indi-

cate matrices, and non-underlined symbols to indicate scalars.

EXPERIMENTAL PROCEDURE

Three native French-speaking listeners took part into this study:

the first two Léo Varnet and Michel Hoen are co-authors on the

paper and were not naïve regarding details of the study, a third

participant was thus added, S.B. who was completely naïve toward

the task. They were 24, 25, and 35 year old, males, right handed

and native French speakers, without known language or hearing

deficits.

Targets sounds, hereafter denoted t0 and t1,were two natural-

speech signals (ABA /aba/ and ADA /ada/ respectively) obtained

by concatenating the same utterance of /a/ with an utterance

of /ba/ or /da/. Original sounds were recorded in a soundproof

chamber by the same female speaker and digitized at a sample

rate of 44.1 kHz. The sound samples were 680 ms long, and their

average power was normalized. Each stimulus si consisted of

one target-sound, embedded in a Gaussian additive-noise using

Equation (1):

si = αi · tki
+ ni (1)

In (1), i is the trial number, ki the target number (0 or 1) asso-

ciated with this trial, ni the noise field drawn from a normal

distribution, and αi a factor allowing the adjustment of signal-

to-noise ratio (SNR) as a function of the participant’s behavior,

see Adaptive stimulus-delivery procedure below. Each stimulus

was normalized in intensity level using the root mean square

and preceded with a Gaussian fade-in of 75 ms convolved with

a Gaussian-noise, in order to avoid clicks or abrupt attacks. The

sample rate was the same as for the original sounds.

The experiment consists in the presentation of a list of

N = 10,000 noisy stimuli (5000 for each target) presented in a

completely random order. Participants were instructed to listen

carefully to the stimulus and then indicate by a button press

whether the masked signal was t0 or t1, a response denoted by

ri (= 0 or 1). The following trial began after 200 ms. Listeners

could complete the task over a period of 1 week, at their own

pace, depending on individual fatigue and availability, for a total

duration of approximately 3h. Each participant divided the exper-

iment in sessions of approximately 1000 stimuli, on their own ini-

tiative. The experiment was run in a quiet experimental room and

stimuli were delivered using Sennheiser’s HD 448 headphones.

ADAPTIVE STIMULUS-DELIVERY PROCEDURE

During the course of the experiment, the signal level was con-

stantly adjusted to ensure a correct response rate around 75%, as

in several previous classification image experiments (e.g., Gold

et al., 2000). Signal contrast must be strong enough to ensure

that the SNR will not severely affect the decision rule, but suffi-

ciently low so that noise influences the decision of the observer.

That is to say, that noise must be misleading on a sufficient

number of stimuli, without leading the observer to reply ran-

domly on the task. For this purpose, the SNR was varied from

trial-to-trial on the basis of a local rate of correct responses cal-

culated on a 10-trial window, with an adaptation of 0.2, 0.4, 0.6

or 0.8 dB for differences of 5, 10, 15, or 20% between intended

and actual scores (variations of the SNR were limited to the range

−20 dB to −0 dB; we systematically record the final SNR value

for one session and use it as starting value for the next session

before the adaptive algorithm takes over in adjusting the SNR).

However, in the following we assume that the SNR does not affect

the observer’s strategy for categorization, a point that will be

discussed in Discussion.

DERIVING AUDITORY CLASSIFICATION IMAGES

Each stimulus noise ni is characterized by its power spectro-

gram, whose components are entered as predictor variables in the

model. Power spectrograms were calculated with Matlab function

spectrogram, using a Short-Time Fourier Transform with a mov-

ing 512 points Hamming window and no overlap, resulting in

86.13 Hz frequency resolution and 11.6 ms temporal resolution.

Since the last 340 ms of the signal were almost silent, we limited
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our analysis to a time range of 0–0.34 s and a frequency range of

0–4048 Hz, thus ensuring that the size of the data-set would not

exceed computational limits. The resulting 46-by-30 matrix (fre-

quency bins by time bins) is reshaped into a 1380-by-1 vector of

time-frequency bins, labeled Xi. A similar treatment is applied to

both targets, resulting in vectorized power spectrograms T0 and

T1 (Figure 1).

More biologically-inspired time-frequency representations of

the noise, as a cochleagram, can replace the spectrogram for

deriving the CIm, in order to obtain a “higher-level” representa-

tion of the functional acoustic cues. Or more simply, we could

apply a logarithmic scale to the frequency axis to account for

the non-linear spacing of filter center frequencies, as it is done

in the STRF calculation. Nevertheless, in our case the aim was

only to replicate a known property of the speech comprehen-

sion system, which is more intuitive on a simple time-frequency

representation.

In general agreement with the literature on classification image

(for example Ahumada, 2002) we assume that the observer per-

forms the detection of acoustic cues linearly by template match-

ing, a longstanding model for decision making. First, an internal

decision variable di is computed by taking the scalar product of

the input with a weighting function w referred to as the observer’s

template, and adding a random variable εi representing the inter-

nal noise of the system (accounting for the fact that the observer

does not necessarily give the same response when presented with

the same stimulus twice). In (2), the errors εi are assumed to have

a zero mean symmetric distribution and to be independent from

trial to trial.
di =

(
Xi + Tki

)T
· w + εi (2)

Then the response variable is given by (3):

ri =

{
1 if di > c

0 otherwise
(3)

c is a fixed criterion that determines the bias of the observer

toward one alternative. Knoblauch and Maloney (2008) reformu-

lated this very simple model in terms of a GLM, by expressing the

probability that the observer gave the response ri = 1, given the

FIGURE 1 | Spectrograms of target-signals t0 (/aba/) and t1 (/ada/)

used for the vectorized spectrograms T 0 and T 1, on a logarithmic

scale (dB). Blue boxes indicate the second formantic transition (F2).

data Xi, in the case of presentation of the target number ki:

P(ri = 1) = �(Xi
T · β + ski

) (4)

with � cumulative distribution function associated with ε, β the

classification Image, and s a two-level factor reflecting the influ-

ence of the target actually presented on the response. In line with

the psychophysics literature, we could assume that ε is taken from

a logistic distribution (a common choice for modeling binomial

data), and therefore the associated psychometric function � will

be the inverse of the logit function. It would still be possible

to use other assumptions, as a Gaussian distribution for ε and

as a consequence, the inverse of the probit function as �. Such

changes might have an impact on the model though it would be

presumably small.

The structure of Equation (4), with a linear combination of

parameters linked to the dependent variable via a psychometric

function, is the typical form of a GLM (Fox, 2008; Knoblauch and

Maloney, 2012). At this stage we could thus determine the values

of the model parameters θ =

{
β, s

}
that best fit the empirical

data, by simply maximizing the log-likelihood:

L
(
θ
)

= log
(

P
(

r
∣∣∣θ, k, X

))
(5)

= log

(∏

i

P
(
ri

∣∣θ, ki, Xi

)
)

that is a natural measure of match between data and fit, assuming

statistical independence between responses ri. Thus, calculating:

θ̂ML = argmax
θ

L
(
θ
)

(6)

by a standard maximization algorithm (e.g., the built-in Matlab

function glmfit) would provide us maximum likelihood estimates

of the CIm, β̂ and of the stimulus factor s.

Unfortunately, these estimates would be presumably too noisy

to be decipherable. Indeed GLMs, as well as reverse-correlation,

when comprising a large number of predictors (1382 in this

example), are prone to overfitting, which means that the model

will describe the trial-dependent noise as well as the underlying

classification mechanism. Estimates of the observer’s template by

GLM can therefore be quite noisy, and the model will not be able

to generalize to novel data. For proper predictions of previously

unseen data, templates should not be determined by the specific

distribution of noise in trials used to fit the model, but rather

reflect the decision process of the observer.

One solution has been developed in the GLM frame-

work under the name “Penalized Likelihood,” which has been

widely used for estimating the receptive fields of single neu-

rons (Wu et al., 2006; Calabrese et al., 2011; Park and Pillow,

2011) and adapted to CIm by Knoblauch and Maloney (2008)

and later by Mineault et al. (2009). Another example of

using a similar method for an application in the auditory

domain can be found in Schönfelder and Wichmann (2012),

who modeled results from a classical auditory tone-in-noise
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detection task using this approach. Among the various R

or Matlab toolboxes available, we decided to use Mineault’s

function glmfitqp (http://www.mathworks.com/matlabcentral/

fileexchange/31661-fit-glm-with-quadratic-penalty) that allows

optimizing a GLM with quadratic penalty. The aim of this method

is to incorporate prior knowledge about the smoothness of the

intended classification image (which is equivalent to introduce

dependencies between adjacent predictors). To do so, we asso-

ciate with each value of the model parameters θ a probability

P(θ|λ) representing our a priori beliefs about the true underly-

ing template (in our case, a smoother classification image will be

more expected, and therefore have a high prior probability). This

prior is defined by a distribution and a set of hyperparameters

λ, as explained later. Then, instead of maximizing the likelihood

as before, we maximize the log of the posterior P
(
θ

∣∣∣r, k, X, λ

)

that takes into account the likelihood and prior information, as

evidenced with Bayes’ rule:

P
(
θ

∣∣∣r, k, X, λ
)

=
P

(
r
∣∣∣θ, k, X

)
· P

(
θ
∣∣λ

)

P(r|k, X)
(7)

Therefore the Maximum A Posteriori (MAP) estimate of the

model parameters is given by:

θ̂MAP = argmaxθ log
(

P
(
θ

∣∣∣r, k, X, λ

))
(8)

= argmax
θ

log
(

P
(

r
∣∣∣θ, k, X

)
· P

(
θ
∣∣λ

))

= argmax
θ

[
log

(
P

(
r
∣∣∣θ, k, X

))
+ log

(
P

(
θ
∣∣λ

))]

= argmax
θ

[
L

(
θ
)
+ R

(
θ
)]

The last equation can be seen as the same maximization of the log-

likelihood as before, with an additional penalty term, R
(
θ
)
, that

biases our estimate toward model parameters with higher a-priori

probability. The optimal estimate is a tradeoff between fitting

the data well and satisfying the constraints of the penalty term.

Therefore, a prior on smoothness will favor CIm with slow vari-

ations in time and frequency (but note that other types of priors

exist (Wu et al., 2006), e.g., implying assumptions on indepen-

dence (Machens et al., 2004), sparseness (Mineault et al., 2009;

Schönfelder and Wichmann, 2012), or locality (Park and Pillow,

2011) of the model parameters).

In agreement with the Matlab function we use, we chose our

smoothness prior to be a sum of two quadratic forms:

P
(
θ|λ1, λ2

)
= λ1θ

TL
1
θ + λ2θ

TL
2
θ (9)

where L
1

is the Laplacian matrix along dimension 1 (time), L
2

the Laplacian matrix along dimension 2 (frequency) in the time-

frequency space (Wu et al., 2006). Thus, the quadratic form

θTL
D

θ provides a measure of the smoothness of θ over dimen-

sion D. As we do not know the appropriate importance of

smoothness along the time and frequency axis, we introduce two

hyperparameters (indeed the scale of smoothness in the spec-

tral and temporal dimensions are presumably unrelated) λ =

{λ1, λ2} that control the prior distribution on θ, and therefore

the strength of penalization. The absolute values of the hyperpa-

rameters (also called “regularization parameters”) have no clear

interpretation, as they represent the relative importance of qual-

ity of fit and smoothness. For large (>1) values of λ1 and λ2 we

put a strong disadvantage on sharp CIm, and for λ1 = λ2 = 0 we

recover the initial maximum likelihood solution.

The standard method for setting the value of the hyperparam-

eters is cross-validation (e.g., in Wu et al., 2006; Schönfelder and

Wichmann, 2012). This approach involves a partition of the data

between a “training” and a “test” set. For each given couple of

hyperparameters, we can estimate the model parameters on the

training-set by maximum a posteriori, as explained previously. It

thus becomes possible to assess how the model parameters would

generalize to an independent dataset, by comparing the predicted

responses on the test-set to the actual responses. When the model

predicts the most accurately unseen data, the strength of priors is

considered as optimal.

We determined one single couple of optimal hyperparameters{
λ1, opt, λ2, opt

}
by participant. More precisely, the selection of

λ1,opt and λ2,opt is performed on a model gathering together trials

on which signal 0 or 1 was presented, following the equation:

P (ri = 1) = �(Xi
T · β + b) (10)

This GLM relates strongly to that derived from Equation (4),

except that it does not take into account information about the

target signals that was actually presented at each trial (the two

level factor s being replaced with a constant term b). In particu-

lar this simple linear model cannot account for the fact that when

presented with a masked target ti the observer is more likely to

respond ri and as a consequence, it yields less accurate predic-

tions. Nevertheless, because the estimated template β̂ is very close

to that derived from Equation (4), this model provides a good

basis for estimating a common set of optimal hyperparameters,

which will then be applied in all estimations of CIm for this sub-

ject. To do so, we plotted the 10-fold cross-validation rate of the

model as a function of the hyperparameters {λ1, λ2} used for fit-

ting this model. The optimal hyperparameters
{
λ1, opt, λ2, opt

}

are found by choosing the models that yielded the best prediction

of responses to a new data set i.e., that correspond to a maxi-

mum of cross-validation rate. When the function exhibits several

peaks, the values are chosen to favor smooth weights along the

two dimensions. The same procedure was repeated for both par-

ticipants. In more simple terms, this technique yields to a form

of Automatic Smoothness Determination (Sahani and Linden,

2003) allowing us to apply smoothing in a principled fashion.

We assessed the statistical significance of the weights in

the resulting CIm by a simple permutation test. “Resampled”

estimates of the CIm were computed from 500 random re-

assignment of the responses to the trials (i.e., random permuta-

tion of the response vector r). We therefore obtained estimates of

the distribution of weights at each time-frequency bin, under the

null hypothesis of no effect of noise at this time-frequency bin.
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We used these estimated distributions to highlight weights signif-

icantly different from 0 (p < 0.005, two-tailed) in the actual CIm.

RESULTS

The SNR was manipulated across trials via an adaptive proce-

dure, in order to maintain the percentage of correct answers

roughly equal to 75% during the course of the entire experi-

ment. In consequence, variations of SNR provide an overview

of observers’ performances in the phoneme categorization task.

Figure 2A plots the evolution of SNR during the experiment and

the mean SNR for each participant, showing that there is no

strong effect of perceptual learning as a decline of SNR for the

same performance level over the course of the experiment. The

psychometric functions are therefore estimated on all available

data for each participant (Figure 2B). As noted by Eckstein et al.

(1997), linear observers such as the one described in Equations

(2) and (3) produce a linear relationship between signal con-

trast and detectability index (defined here as d′ = �−1 (PH) −

�−1 (PFA) with PH the proportion of response 1 when signal t1

was presented and PFA the proportion of response 1 when signal

t0 was presented). For the real data, such a linear relationship can

be observed in the range 2–10% signal contrast, supporting our

assumption of a (at least locally) linear model for the observers.

Furthermore, the small number of trials corresponding to very

high or very low contrast could also account for the non-linearity.

As explained in the Methods section, an optimal set of hyper-

parameters is chosen by plotting the cross-validation rate of the

FIGURE 2 | (A) Evolution of SNR across trials (mean SNR by blocks of 1000

trials) for each participant, and overall mean SNR (red dotted line). (B)

Psychometric function of each participant: detectability index d ′ (defined as

d ′ = �−1
(
PH

)
− �−1

(
PFA

)
as a function of signal contrast (values

calculated on less than 20 observations are not included).

model derived from Equation (4) and fitted by MAP estimate

as a function of {λ1, λ2}. An example of resulting surface for

subject MH is shown on Figure 3, with a clear maximum at

λ1 = 3.16e-08, λ2 = 1e-08 (a similar pattern of cross-validation

rate is seen for the four other subjects). The low values of cross-

validation rate, ranging from 0.49 to 0.53, are explained by the

fact that the very simple model described in Equation (10) does

not take into account information about the target signal pre-

sented, which is critical for an accurate prediction of observer’s

responses. Nevertheless, it allows us to track how the calculated

template generalizes to new data sets, excluding predictors other

than noise. For low values of hyperparameters, the model is over-

fitted and cannot generalize to the “test” dataset, resulting in

prediction performances around chance level (50%). For high

values of hyperparameters, the classification image is flat and the

model always gives the same answer, which corresponds to the

response bias of the observer (in this case 52% of Michel Hoen’s

answers were “aba”). In between a couple of hyperparameters may

be found that maximizes prediction performances.

Figure 4A shows the CIm β̂ obtained by the GLM method with

smoothness priors, as well as the optimal values of λ1 and λ2 for

the three listeners. For each participants, the classification image

provides a measure of the strength of the relation between the

noise at different time-frequency locations and the speech iden-

tification scores. In that sense, the classification image may be

regarded as a measure of the contribution of each time-frequency

bin to categorization, with high absolute values for locations

at which the power of the noise influences the decision of the

FIGURE 3 | Prediction accuracy of the model (in terms of 10-fold

cross-validation rate) as a function of regularization parameters λ1

(x-axis) and λ2 (y-axis) in logarithmic scale, for one participant (MH).

Around are shown classification images obtained with different pairs of

regularization parameters (λ1, λ2) (n = 10000 trials for each estimate).
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FIGURE 4 | (A) Classification Image β̂ for each participants, estimated with

optimal smoothness hyperparameters λ1 and λ2 (n = 10000 trials for each

estimate). Weights are divided by their maximum absolute values. Boxes

corresponds to the position of the second formantic transition (F2) in the

original stimuli spectrograms. (B) Same as above except that non-significant

weights are shown in gray scale (p < 0.005, permutation test).

observer. As can be seen from Figure 4, CIm often exhibit both

positive (red) and negative (blue) weights corresponding to areas

where the presence of noise, respectively, increases or decreases

the probability of stimulus to be identified as signal t0 (/aba/)

(weights are divided by their maximum absolute value to pro-

vide a common basis for comparison). Figure 4B shows the same

classification image, but non-significant weights are represented

in gray tones (p < 0.005, permutation test), as explained in the

method section.

For a better understanding of these CIm, we ran a similar test

performed by an ideal template-matcher (Figure 5). This clas-

sifier is the optimal observer for the linear model presented in

Equation (2) and (3) and is defined by taking w = (T1 − T0)/K

with K a normalization constant (difference template shown on

Figure 5A), and c = 0. Note that as it is used by the template-

matcher as a linear weighting function, we represented it with

a linear scale, whereas speech spectrograms on Figure 1 are

classically represented using a logarithmic scale (dB). Since the

difference template corresponds to the difference between the

two target spectrograms, the template-matcher observer bases

its classification strategy on the time-frequency bins where the

spectrograms of the two signals differ most in terms of power

(corresponding in this case to the region of the onset of the first

formant, which appears in red on the difference template). As the

performances of the algorithm do not vary over time, the SNR for

stimulus presentation was set to −25 dB, for a resulting percent-

age of correct answers of 68%. The difference template and the

obtained CIm are plotted on Figure 5.

FIGURE 5 | (A) Difference template w used by the template matcher

(difference between spectrograms of the targets). (B) Estimated model

parameters for the template-matcher optimal hyperparameters λ1 and λ2

(n = 10000 trials). Weights are divided by their maximum absolute values.

The classification image obtained from the optimal observer

(Figure 5) is very different that those obtained from human lis-

teners (Figure 4), suggesting that the usage of acoustic cues by the

human speech perception system is suboptimal in this particular

example.

DISCUSSION

By providing insight into how a given noise distribution affects

speech identification, the GLM may help to better understand the
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perceptual mechanisms behind speech-noise interferences. With

the present study, we demonstrated that CIm obtained from the

categorization of natural speech signals, i.e., the phonemes /b/

and /d/ embedded in /aba/ and /ada/ logatomes, can offer insight

into the way in which the human speech perception system

achieves fast and efficient categorization of phonemes in noise. By

adapting the GLM with smoothness priors to an adaptive identifi-

cation task performed on speech stimuli, we have shown that CIm

are applicable to studies in the auditory modality and can be used

to identify relevant portions of speech.

AUDITORY CLASSIFICATION IMAGES FROM A PHONEME

CATEGORIZATION TASK

Because the optimal values obtained for the smoothing parame-

ters λ1 and λ2 are not the same for all participants, the calculation

yields smoother CIm for MH than LV, and SB (left vs. middle

and right panel on Figure 4). Nevertheless, a similar pattern of

weights is observed for both participants. If we map the CIm

obtained from our human listeners onto the original stimuli spec-

trograms (Figure 1), we can observe two main foci of high- and

low-value weights, located in the time-frequency domain exactly

over the second formant F2 (blue frames in Figure 4). More

precisely, our preliminary observations suggest that, unlike the

template-matcher, which bases its decisions on main energy dif-

ferences between the two signals, the human observers used for

categorizing /aba/ and /ada/ speech specific cues, namely the end

of F2 in the first vowel and the onset of F2, on the consonant,

just following the occlusion. This is in agreement with previous

findings by Liberman et al. (1954): they showed that the second

formantic transition can serve as a cue for classifying phonemes

into /b/ or /d/, by using synthetic speech and by modulating the

direction and extent of the second formantic transition. However,

they did not test all possible cues and limited their study to

manipulations of F2, leaving open the possibility that other por-

tions of the signal could also be identified as functional cues

for this categorization task. Our approach conversely takes into

account all possible acoustic cues which might be used in the cat-

egorization and thus the results provides stronger support for the

hypothesis that the second formantic transition is the only crucial

characteristic for performing the task.

The pattern consistently observed at each time-frequency loca-

tions of the second formantic transition, composed of a cluster of

positive weights below a cluster of negative weights, supports the

assumption that frequency information is coded in terms of rela-

tive difference across frequency bands (Loizou et al., 1999). When

the energy of the noise is concentrated around 2000 Hz during

the formantic transition, the second formant sounds higher than

it actually is, and therefore the consonant is more likely to be per-

ceived as /d/. On the contrary, a high noise power around 1500 Hz

biases the decision toward /b/. In both cases, this phenomenon is

strengthened by a similar distribution of the noise at the end of

F2 in the preceding vowel /a/. Indeed, the strong absolute val-

ues of weights around 0.075 s for frequencies between 1500 Hz

and 2200 Hz in Figure 4, indicates that the decision depends on

this region, even though it contains no useful information for

performing the task (in our experiment the first syllable was the

same for both stimuli because it was obtained by concatenating

the same utterance of /a/). A very similar pattern of weights has

been observed for a Vernier acuity task in the visual domain

(Ahumada, 1996), highlighting the fact that our phoneme cate-

gorization task could be seen as the detection of the alignment

of formants in time. In addition, the obtained CIm evidence the

fact that the estimation of the second formant by the auditory sys-

tem is a relative measurement, since the presence of noise masking

the position of the second formant in the preceding vowel influ-

ences the decision of the observer. This is in-line with theories

postulating phonemic perception as an interpretation of phonetic

movements and trajectories. Further work will be dedicated to

studying in details the relationship between classification image

and phonetic discriminations.

This simple example illustrates the fact that our method is

suitable for studying the processing of fine-acoustic cues during

speech categorization by the human speech perception system.

Indeed, the use of a GLM with smoothness priors as a statisti-

cal method for the estimation of CIm in the auditory modality

is a reasonable way of overcoming traditional limitations of this

methodological approach in the auditory modality.

First, this method allows the addition of prior knowledge

about the smoothness of the expected image. By exploiting the

dependencies between adjacent noise values, one can significantly

reduce the number of trials required to obtain a reliable classifica-

tion image. Since our goal here was to explore the possibilities of

the method, participants completed a very large set 10,000 trials,

in order to gather sufficient amount of information and data to be

able to run accurate simulations. Nevertheless, there is in fact no

need for so many trials to calculate a classification image. To get an

idea of the appropriate amount of data, we estimated the model

parameters at various stage of completion of the experiment for

participant Michel Hoen, and calculated their correlation with

the “overall” CIm (calculated on 10,000 trials) as a measure of

accuracy (Figure 6). It can be seen from this graphs that we

reached the level of r = 0.8% with approximately 6000 trials, and

therefore this amount of data can be considered as sufficient to

calculate a reliable estimate of the underlying template. On the

other hand, below 6000 trials the optimal set of hyperparameters

becomes very difficult to identify because the cross-validation rate

exhibits several peaks and a less typical profile.

Second, unlike the reverse-correlation method, the GLM does

not require the stimulus or the noise to be normally distributed.

Accordingly, it can efficiently measure CIm using noise-fields

with non-Gaussian distributions, such as the power spectrum

of an acoustic-noise, in a similar way to the calculations of

second-order CIm using GLMs (Barth et al., 1999; Knoblauch

and Maloney, 2012). It should be noted that we could also rely

on the Central Limit Theorem and assume that images are nor-

mally distributed, as long as the noise is not heavy-tailed, but

this approximation leads to less precise estimation and to far less

smooth CIm. In this experiment we used white noise in order to

mask equally acoustic cues at low and high frequencies; however,

it is known that the human auditory system does not perceive all

frequency octaves with equal sensitivity (Robinson and Dadson,

1956; Suzuki and Takeshima, 2004). One option could be to use

another spectral distribution that compensates for the weight-

ing function of the auditory system, like pink noise in which
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FIGURE 6 | Correlation between coefficients of the Classification

Images estimated on n trials and the “overall” Classification Image, for

participant MH. Examples of Classification Images are shown at 3000,

6000, and 10,000 trials.

all frequency octaves are assumed to be perceived with an equal

loudness.

As mentioned earlier, our approach based on GLM with

smoothness priors has the advantage that it does not make

any assumptions about the distribution of noise in the stimu-

lus, unlike the reverse correlation approach. Nevertheless, other

strong assumptions about how observers perform speech catego-

rization tasks in noise have been made or maintained and must

be discussed.

SPECTROTEMPORAL ALIGNMENT OF TARGETS

The first simple requirement for observing functional cues

involved in our identification task is the precise spectrotempo-

ral alignment of the two targets. As we want to know in which

time-frequency bins the listener is focusing, the acoustic cues of

interest must be at the same time-frequency locations on the spec-

trogram of the stimuli on which the CIm is based. If this is not

the case, the resulting CIm would probably exhibit two clusters

corresponding to the same acoustic cue, instead of one. If not

addressed, this issue could put into question the method, as this

alignment is not trivial for natural speech. Of course, we also

do not know in advance the functional cues which have to be

matched between the two targets. Two possible practical solutions

can be considered:

1) Forcing the temporal alignment of the targets by using syn-

thetic speech or by cross-splicing the constant parts of the

stimuli. In the above example the first syllable /a/ was the same

FIGURE 7 | Classification Images β̂
0

and β̂1 estimated on the trials where t0 (/aba/) or t1 (/ada/) was presented respectively (n = 5000 trials for each

estimate). Hyperparameters values are the same as for the “overall” Classification Images Figure 4. Weights are divided by their maximum absolute values.
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in the two targets. This is a very convenient solution as it also

ensures that participants would not rely on trivial non-speech

cues to perform the task, such as a delay in the beginning of the

second syllable of one target compared to the other. However

in some cases we do not want to manipulate the natural utter-

ances of the targets, and we will have to go with a second

option.

2) Calculating two separate “target-specific” CIm, based only on

trials where one target was presented. Therefore, we ensure

that for all stimuli considered the acoustic cues are at the same

time-frequency locations. This is done simply by optimizing

the GLM parameters on a subset of our data, the 5000 tri-

als where t0 or t1 are presented, with the same regularization

parameters as for the “overall” CIm (Figure 7). The result-

ing CIm β̂
0

and β̂
1

are of course noisier than previous ones,

because they each rely on the half of the data, but they are

helpful in checking that the position of functional cues does

not differ when participants are presented with one target sig-

nal or the other. The “target-specific” CIm will be discussed

in more detail in the next section. This last point raises the

broader issue of non-linearities in the processing of the input

stimuli.

NON-LINEARITY OF THE AUDITORY SYSTEM

Our model is derived from Equation (2) defining the decision rule

for a linear observer. As for all studies involving any classification

image technique, we modeled the real observer performing the

identification task as a template-matcher linearly combining the

input sound and a decision template to calculate a decision vari-

able. It should be noted, however, that information processing

throughout the human auditory system is obviously non-linear

(Goldstein, 1967; Moore, 2002).

A first type of non-linearity already mentioned occurs when

the listener’s strategy is not identical when targets t0 or t1 are

presented. This phenomenon can be revealed by estimating two

separate CIm β̂
0

and β̂
1

based on the trials where the target sig-

nals t0 or t1 were presented, respectively (Figure 7). Differences

between the two estimates for a given observer are generally inter-

preted as evidence for non-linearities in the auditory system, the

template used for detection depending on the input signal [Abbey

and Eckstein (2006)]. For all participants the critical patterns

of positive and negative weights show up at the same time-

frequency locations, although sometimes less clearly because they

are estimated with only 5000 trials. As expected, for the ideal

template-matcher case, β̂
0

and β̂
1

are very close because this sim-

ulated observer is actually implemented as a linear algorithm

involving a single template. Similarly, for real listeners, differences

between the estimated templates appear to be less visible than in

other studies involving a discrimination signal-present vs. signal-

absent task (Ahumada, 2002; Thomas and Knoblauch, 2005).

Note that in our experiment the amount of phase uncertainty is

reduced by the presentation of a signal in both conditions.

We additionally assumed here that non-linearities in the audi-

tory system may be locally approximated by a linear function

FIGURE 8 | Classification Images β̂ for conditions lowest SNR (min to

median SNR) or highest SNR (median to max SNR), estimated using

GLM approach with smoothness priors (n = 5000 trials for each

estimate). Hyperparameters values are the same as for the “overall”

Classification Images Figure 4. Weights are divided by their maximum

absolute values.

Frontiers in Human Neuroscience www.frontiersin.org December 2013 | Volume 7 | Article 865 | 10

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Varnet et al. Auditory classification images

within the SNR range studied, a hypothesis supported by the local

linearity of psychometric functions (Abbey and Eckstein, 2006).

To explore this assumption empirically, we estimated the model

parameters for all participants by taking into account only tri-

als with signal contrast in the linear part of their psychometric

function. The resulting CIm are very similar to those obtained

previously on the whole dataset.

Furthermore, even if higher-order computations are involved,

the actual mechanisms of phoneme categorization are very

likely to rely on time-frequency regions highlighted by our CIm

because, to some extent, noise in these regions predicts the

response of the participant. In that sense, the literature on visual

tasks suggests that even when the strategy used by observers is

clearly non-linear, CIm may still be informative about the time-

frequency location of the cues involved in the categorization

mechanism. As a second step, some of these studies investigate

specific non-linear effects to account for the observed divergence

from linearity in their results, such as spatial or phase uncertainty

(Barth et al., 1999; Murray et al., 2005; Abbey and Eckstein, 2006).

ADAPTIVE SNR

Another related theoretical issue of interest here relates to the use

of an adaptive-SNR method. When gathering together data from

the whole experiment in order to calculate a classification image,

we assume that the observer’s strategy for phoneme categoriza-

tion in noise does not change drastically with SNR. However, this

is somewhat unlikely as a number of neurophysiological stud-

ies have highlighted significant changes in cortical activity with

the level of acoustic degradation of speech sounds (Obleser et al.,

2008; Miettinen et al., 2010; Obleser and Kotz, 2011; Wild et al.,

2012). This led us to investigate the effect of SNR on the classifica-

tion image, by estimating the model parameters only on the half

of the dataset with the lowest SNR (from min to median for each

participant) and on the half of the dataset with the lowest SNR

(from median to max) separately (Figure 8). The result seems

to indicate a difference in processing within the categorization

mechanism: while for low SNR the estimated templates exhibits

stronger weights in absolute value on the first cue, for high SNR

participants appear to rely equivalently on both cues, maybe even

more on the second F2 transition. A simple explanation for this

phenomenon could be that, when the noise fully masks the sig-

nal, the only remaining indicator to temporally track the relevant

cues is the onset of the stimulus. Therefore, temporal uncertainty

is stronger on the latest cue, resulting in more dispersed weights

on the second F2 transition. This example underlines that cate-

gorization mechanisms in noise do depend on SNR level and that

a lower signal contrast can bias estimated weights toward earliest

cues. Further developments and studies will thus be dedicated to

studying the evolution of functional fine acoustic cues with SNR

value and also to adapting the methods in order to account for

this influence (limiting the allowed SNR range for example).

CONCLUSIONS

We have shown how an adaptation of a GLM with smoothness

priors provides a suitable and powerful framework to investigate

the way in which the human speech perception system achieves

fast and efficient categorization of phonemes in noise and to esti-

mate how human observers differ from ideal template matchers.

Further developments and improvements of this method can be

derived from the visual classification image literature (i.e., gener-

alizing to multiple response alternatives and rating scales, see Dai

and Micheyl (2010) and Murray et al. (2002)). Additionally, the

possibility of calculating CIm in non-Gaussian noise makes it fea-

sible to extend our method to more ecological situations as com-

plex as speech-in-speech listening situations for example (Hoen

et al., 2007; Boulenger et al., 2010); a situation that is well known

to cause particular challenges in certain speech-development

pathological conditions, for example dyslexia (Ziegler et al., 2009;

Dole et al., 2012). Further developments should also deal with the

issues of realizing and analyzing group studies.
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