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Introduction

In [START_REF] Aravantinos | A schemata calculus for propositional logic[END_REF] a logic is dened for reasoning on schemata of propositional formulae. It extends standard propositional logic by using indexed symbols (e.g. p 0 , p i , p i+1 , etc.), arithmetic parameters (i.e. constant symbols interpreted as natural numbers) and iterated connectives such as ∨ n i=0 p i or ∧ n i=0 p i (where n denotes a parameter, not a xed number) that can be viewed as formulae with bounded quantiers ∃i ∈ [0, n], p i and ∀i ∈ [0, n], p i . It is shown that the validity problem is undecidable when arbitrary indices and (linear) arithmetic expressions are considered. The problem is co-semi-decidable and decision procedures of reasonable complexity can be dened for some interesting classes (see [START_REF] Aravantinos | Decidability and undecidability results for propositional schemata[END_REF] for details).

A simple example is the following schema: p 0 ∧ p n+1 ∧ ∧ n i=0 (p i ⇔ ¬p i+1 ), that is satisable if and only if n is odd. This formula can be reduced into a propositional one by xing the value of n, e.g. for n ← 0: p 0 ∧ p 1 ∧ (p 0 ⇔ ¬p 1 ), or for n ← 1: p 0 ∧ p 2 ∧ (p 0 ⇔ ¬p 1 ) ∧ (p 1 ⇔ ¬p 2 ). A SAT-solver can determine whether the formula is satisable or unsatisable for a given value of n and a model can be found (if it exists) by enumerating all possible values (n ← 0, 1, 2, . . . ). However, proving that such a formula is unsatisable for all values of n (which is the case for instance if one adds the constraint n = 2 × m) is much dicult, and usually requires to use some particular form of mathematical induction. The proof procedure described in [START_REF] Aravantinos | A schemata calculus for propositional logic[END_REF] combines usual tableaux-based decomposition rules with lazy instantiation of the parameter and a loop detection mechanism that captures a restricted form of descente innie induction reasoning ensuring completeness in some cases.

Our aim in this paper is to extend these results to schemata of (quantierfree) SMT-problems (standing for Satisability Modulo Theory). Proving the unsatisability (or satisability) of a ground formula modulo some background theory is an essential problem in computer science, in particular for the automatic verication of complex systems. In software verication for example, the background theory can dene data structures such as integers, arrays or lists.

These problems are known as T -decision problems or more commonly, SMT problems, and the tools capable of solving these problems are known as T -decision procedures, or SMT solvers. A lot of research has been devoted to the design of SMT solvers that are both ecient and scalable. A survey can be found in [START_REF] Barrett | Satisability modulo theories[END_REF].

The schemata we consider in this paper may be seen as (countably innite) families of SMT-problems, parameterized by a natural number n. Both the signature of problems and the set of axioms may depend on n. Consider for instance the following formula, representative of those arising in, e.g, verifying programs handling arrays:

∧ n i=0 a i+1 ≽ a i ∧ ∧ n i=0 b i+1 ≼ b i ∧a 0 ≽ b 0 ∧a n+1 ≼ c∧b n+1 ≻ c.
It is not hard to see that this example is unsatisable. Again, by instantiating n, say to 1, we get a ground formula:

a 1 ≽ a 0 ∧ a 2 ≽ a 1 ∧ b 1 ≼ b 0 ∧ b 2 ≼ b 1 ∧ a 0 ≽ b 0 ∧ a 2 ≼ c ∧ b 2 ≻ c.
The satisability of this formula modulo, e.g., arithmetic can be tested by any SMT-solver. However proving that the original schema is unsatisable for every n ∈ N is out of the scope of these tools. One can of course encode such a schema as a non-ground (i.e. with universal quantier) SMT-problem, simply by considering n as a constant symbol of sort integer, by writing indices as arguments, and by replacing iterated connectives by quantiers:

∀i, 0 ≼ i ∧ i ≼ n ⇒ a(i + 1) ≽ a(i) ∧ ∀i, 0 ≼ i ∧ i ≼ n ⇒ b(i + 1) ≼ b(i) ∧ a(0) ≽ b(0) ∧ a(n + 1) ≼ c ∧ b(n + 1) ≻ c
However, this is of no practical use since of course there is no complete and terminating procedure for solving non-ground SMT-problem. The heuristics that are used by SMT-solvers to handle quantiers, although rather ecient and powerful in some cases, cannot handle such formulae. For instance the well-known SMT-solver Yices [START_REF] Dutertre | The YICES SMT-solver[END_REF] that uses E-matching [START_REF] De Moura | Ecient E-Matching for SMT Solvers[END_REF] for instantiating universally quantied variables fails to establish the unsatisability of this schema. Some complete techniques have been proposed for instantiating universal quantiers [START_REF] Ge | Complete instantiation for quantied formulas in satisabiliby modulo theories[END_REF] but they do not terminate in our case. Alternatively, indexed constant symbols can be modeled by arrays (with quantiers on the indices), however the obtained formulae are again outside the known decidable classes [START_REF] Bradley | What's decidable about arrays[END_REF][START_REF] Habermehl | What else is decidable about integer arrays[END_REF]. The reason is that the formulae obtained by encoding schemata of SMT-problems cannot, in general, be reduced to unsatisable ground formulae by nitely grounding the universally quantied variables: the logic is not compact and using mathematical induction is required. Our approach extends SMT-solvers with a limited form of mathematical induction.

The rest of the paper is structured as follows. In Section 2 we introduce the syntax and semantics of our logic and we show that the satisability problem is undecidable (even in cases in which purely propositional schemata are actually decidable). In Section 3 we devise a very general and abstract proof procedure that relies on semantic properties of the considered class of problems. In Section 4 we give concrete examples of classes satisfying the previous requirements, thus turning the abstract procedure in Section 3 into concrete decision procedures for these classes. Examples are provided in Section 5 and Section 6 briey concludes the paper. Due to space restriction, the proofs are skipped to the Appendix.

We dene the logic of T -schemata, where T is a theory (more precisely a class of interpretations) for which the satisability problem is assumed to be decidable.

Syntax

We consider terms built on a signature containing indexed constants and function symbols, where the indices are arithmetic expressions. We assume that the symbols are indexed by at most one index (e.g. a i,j is forbidden) and that the expressions contain at most one occurrence of an arithmetic variable (e.g. a i+j and even a i+i are not allowed, but f i+1 (a i ) and f 0 (a i ) are) 1 . We also assume that the considered formulae contain a unique parameter, which is interpreted by a natural number. More formally:

Let n and i be two distinct symbols. n is the parameter and i is the index variable. The set of index expressions is {i,

i+1}∪{succ k (0) | k ∈ N}∪{succ k (n) | k ∈ N}.
As usual, the expressions succ k (0) and succ k (n) (where k ∈ N) are written k and n + k respectively.

Let Sorts denote a set of sort symbols (containing in particular a symbol bool) and let F denote a set of function symbols, partitioned into two disjoint sets F = F I ⊎ F NI : the indexed symbols F I and the non-indexed symbols F NI . Each symbol f ∈ F is mapped to a unique prole of the form s 1 , . . . , s k → s, where k ∈ N and s 1 , . . . , s k , s ∈ Sorts. This is written f : s 1 , . . . , s k → s or simply f : s if k = 0 (in this case f is a constant). If s = bool then f is a predicate symbol. k is the arity of f . We assume that F NI contains in particular a symbol JHKA : bool.

The set T(s) of terms of sort s is the smallest set of expressions satisfying the following conditions: If f : s 1 , . . . , s k → s is a non-indexed function symbol and if u 1 , . . . , u k are terms of sort s 1 , . . . , s k respectively, then f (u 1 , . . . , u k ) is a term of sort s. If f : s 1 , . . . , s k → s is an indexed function symbol, if α is an index expression and if u 1 , . . . , u k are terms of sort s 1 , . . . , s k respectively, then f α (u 1 , . . . , u k ) is a term of sort s.

Note that, by construction, the only variable occurring in a term is i (there are no non-arithmetic variables).

For instance, if F I = {a : elem, f : elem, elem → elem} and F NI = {b : elem, p : elem → bool} then a 0 , a n , a i+1 , f n+2 (a 0 , b), f 0 (a i+2 , a 3 ) are terms of sort elem and p(a i+1 ) is a term of sort bool. Terms such as a i+2 , a i+n are not allowed (indeed, i + 2 and i + n are not index expressions). Now we dene the syntax of formulae. For technical convenience, we assume that all formulae are in negative normal form. An atom is of the form u ≈ v, where u and v are two terms of the same sort. An atom of the form u ≈ JHKA is Removing these conditions yields undecidable logics, even in the purely propositional case [START_REF] Aravantinos | A schemata calculus for propositional logic[END_REF][START_REF] Aravantinos | Decidability and undecidability results for propositional schemata[END_REF], thus we prefer to add them immediately rather than dening a very general formalism that will have to be strongly restricted at a later stage (as done in [START_REF] Aravantinos | A schemata calculus for propositional logic[END_REF]). non-equational. A literal is of the form u ≈ v or u ̸ ≈ v. For readability a literal u ≈ true or u ̸ ≈ true is simply written u or ¬u. false is a shorthand for ¬true.

An iteration body is inductively dened as either a literal not containing n or a formula of the form ϕ ∨ ψ or ϕ ∧ ψ where ϕ and ψ are iteration bodies. Finally, a schema is inductively dened as follows:

A literal not containing i is a schema. If ϕ and ψ are schemata then ϕ ∨ ψ and ϕ ∧ ψ are schemata. If ϕ is an iteration body containing i and α is an index expression of the

form k or n + k (where k ∈ N) then ∨ α i=0 ϕ and ∧ α i=0 ϕ are schemata.
For readability, we will sometimes use the abbreviation

u ≈ v ⇒ ψ (resp. u ̸ ≈ v ⇒ ψ) for u ̸ ≈ v ∨ ψ (resp. u ≈ v ∨ ψ).
S denotes the set of all schemata. A schema is iteration-free i it contains no iterated connective ∨ or ∧ and parameter-free if it contains no occurrence of n. A sentence is a schema that is both iteration-free and parameter-free. Such a schema may be viewed as a standard (quantier-free) formula in the usual sense (with function symbols indexed by natural numbers), but we prefer not to use the word formula to avoid confusions.

For instance ϕ 1 :

∨ n i=0 (a i+1 ≈ f (b i ) ∧ b i+1 ≈ g(a i )), ϕ 2 : a n+1 ≈ f (b n ) ∧ b n+1 ≈ g(a n ), ϕ 3 : ∨ 3 i=0 (a i+1 ≈ f (b i ) ∧ b i+1 ≈ g(a i )) and ϕ 4 : a 1 ≈ f (b 0 ) ∧ b 1 ≈ g(a 0
) are schemata. ϕ 2 and ϕ 4 are iteration-free, ϕ 3 and ϕ 4 are parameter-free and ϕ 4 is a sentence.

An expression may be a term, a vector of terms, an iteration body or a schema. It is ground if it contains no occurrence of i (notice that it may contain the parameter n) and non-indexed if it contains no indexed symbols (by denition all non-indexed expressions are ground).

Let α be a ground index expression. If ϕ is an iteration body then ϕ{i ← α} denotes the iteration-free schema obtained from ϕ by replacing all occurrences of i by α. If ϕ is a schema or an index expression, then ϕ{n ← α} denotes the schema or index expression obtained from ϕ by replacing all occurrences of n by α.

If ϕ is an iteration-free schema or an iteration body, we denote by Ind(ϕ) the set of index expressions occurring in ϕ:

Ind(u α ) @AB = {α}, Ind(u ≈ v) = Ind(u ̸ ≈ v) = Ind(u) ∪ Ind(v), Ind(ϕ ⋆ ψ) @AB = Ind(ϕ) ∪ Ind(ψ) if ⋆ ∈ {∨, ∧}.

Semantics

The semantics is straightforwardly dened. The only dierence with rst-order logic is that the parameter must be interpreted by a natural number and that the index variable ranges over N. More precisely, a schema interpretation (or interpretation for short) I is a function mapping n to a natural number ⟨n⟩ If α is an index expression, then ⟨α⟩ I @AB = α{n ← ⟨n⟩ I }. Notice that ⟨α⟩ I is then equivalent to a natural number. ⟨f (v 1 , . . . , v k )⟩ I @AB = ⟨f ⟩ I (⟨v 1 ⟩ I , . . . , ⟨v k ⟩ I ).

⟨f α (v 1 , . . . , v k )⟩ I @AB = ⟨f ⟩ I ⟨α⟩ I (⟨v 1 ⟩ I , . . . , ⟨v k ⟩ I ). ⟨ ∨ α i=0 ϕ⟩ I @AB = JHKA if there exists l ∈ [0, ⟨α⟩ I ] such that ⟨ϕ{i ← l}⟩ I = JHKA. ⟨ ∧ α i=0 ϕ⟩ I @AB
= JHKA if for all l ∈ [0, ⟨α⟩ I ] we have ⟨ϕ{i ← l}⟩ I = JHKA.

We omit the denitions for the symbols ≈, ̸ ≈, ∨, ∧, which are standard. If ϕ is a schema, we write I |= ϕ i ⟨ϕ⟩ I = JHKA. In this case, I is a model of ϕ and ϕ is satisable.

Usually, satisability is tested w.r.t. a particular class of interpretations, in which the semantics of some of the symbols is xed (for instance the sort symbol int is interpreted as Z and + is interpreted as the addition). Let T be a class of interpretations. ϕ is T -satisable i there exists I ∈ T such that I |= ϕ. Two schemata ϕ and ψ are T -equivalent i we have I |= ϕ ⇔ I |= ψ for every interpretation I ∈ T and T -sat-equivalent i ϕ and ψ are both T -satisable or both T -unsatisable. We assume that there exists an algorithm for checking whether a given sentence (i.e. a schema without iterated connective and without parameter) is T -satisable or not.

A function f is non-built-in if its interpretation is arbitrary, i.e. for every interpretation I ∈ T , the interpretation obtained from I by changing only the interpretation of f is also in T . We assume that every indexed symbol is nonbuilt-in (i.e. the only symbols whose interpretation is xed are non-indexed).

Note that if I is an interpretation and α is a ground expression, then by denition I • {n → α} is also an interpretation. I • {n → α} and I coincide on every symbol, except on n. If α ∈ N then ⟨n⟩ I•{n →α} = α and otherwise

⟨n⟩ I•{n →α} = ⟨α⟩ I .
Proposition 1. For every parameter-free schema ϕ one can compute a sentence that is T -equivalent to ϕ. Thus the T -satisability problem is decidable for parameter-free schemata.

As usual in SMT problems, we shall assume that the schemata are attened, i.e. for every term of the form f (u 1 , . . . , u k ) occurring in the schema (where f is possibly indexed) u 1 , . . . , u k are (possibly indexed) constant symbols. This is not restrictive, for instance a term of the form f (g(a i ), g i+1 (a 0 )) can be replaced by f (b i , c i ), where the axioms

∧ n i=0 b i ≈ g(a i ) and
∧ n i=0 c i ≈ g i+1 (a 0 ) are added to the schema.

Extensions of the language

Several extensions of this basic language can be considered. We did not include them in the previous denitions because they do not increase the expressive power, but for readability we shall sometimes use them in the following.

Inequality tests. Atoms of the form i ≤ k (where k ∈ N) can be added in iteration bodies. This does not increase the expressive power since such atoms can be equivalently replaced by atoms of the form p ≤k i , where p ≤k is a fresh constant symbol of sort bool (depending on k), dened by the following axioms:

p ≤k 0 ∧ • • • ∧ p ≤k k ∧ ¬p ≤k k+1 ∧ ∧ n i=0 (p ≤k i+1 ⇒ p ≤k i ).
Arbitrary lower bounds. Iterations whose lower bound is distinct from 0 can easily be expressed using the previous atoms:

∧ n i=k ϕ is written ∧ n i=0 (i ≤ k -1 ∨ ϕ) (if k > 0).
Arbitrary translations. Terms of the form a i+k can also be considered, where k > 1. Indeed, such a term can be replaced by a fresh constant symbol a +k i , where a +k is dened by the following axioms:

∧ n+k i=0 ( a +0 i ≈ a i ∧ a +1 i ≈ a +0 i+1 ∧ • • • ∧ a +k i ≈ a +k-1 i+1 ) .
Additional parameters. 

∧ n i=0 (¬p =m i ∨ ¬p =k i ).
Using the parameter in iteration bodies. A term of the form a n can be replaced by a fresh non-indexed constant b, with the axiom: b ≈ a n .

Undecidability

The next theorem states that the considered logic is undecidable in general.

Theorem 1. The satisability problem is undecidable for S.

This result does not follow from the undecidability results in [START_REF] Aravantinos | A schemata calculus for propositional logic[END_REF] or [START_REF] Aravantinos | Decidability and undecidability results for propositional schemata[END_REF] (for propositional schemata) because the schemata considered here are much more restricted. The satisability problem is actually decidable if we restrict to propositional formulae (see Section 4.1). Intuitively, even though the language is suciently restricted to obtain decidability in the non-equational case, the equational part of the language adds enough power to retrieve the undecidability. This

shows that the extension of schemata to SMT-problems is a dicult task.

Proof procedure

We dene a proof procedure for testing the satisability of schemata that is sound and complete w.r.t. satisability. We show that, under some particular semantic conditions (depending both on the theory T and on the considered class of schemata), this procedure can be turned into a decision procedure.

Enumerating interpretations

We rst dene a semi-decision procedure for schemata. It is very simple but sufcient for our purposes. It is parameterized by a simplication function which is a function replacing a schema by a set of schemata (interpreted as a disjunction) in such a way that satisability is preserved.

Denition 1. Let ϕ be a schema and let Ψ be a set of schemata. We write ϕ Ψ i the following conditions hold:

1. For every I ∈ T , if I |= ϕ then there exists ψ ∈ Ψ such that I |= ψ.

2. For every I ∈ T , if there exists ψ ∈ Ψ such that I |= ψ then there exists an interpretation J ∈ T such that J |= ϕ and ⟨n⟩ J = ⟨n⟩ I .

For instance, we have

ϕ ∨ ψ {ϕ, ψ}, (ϕ ∨ ϕ ′ ) ∧ ψ {ϕ ∧ ψ, ϕ ′ ∧ ψ}, or p 0 ∧ ϕ
{ϕ} if the indexed predicate symbol p does not occur in ϕ. We also have

∨ n+1 i=0 ϕ { ∨ n i=0 ϕ, ϕ{i ← n + 1}}. However we have ¬p 0 ∧ p n ̸ {JHKA} or ¬p 0 ∧ ∨ n i=0 p i ̸ {JHKA} (although ¬p 0 ∧ p n , ¬p 0 ∧ ∨ n i=0 p i and JHKA are T -sat- equivalent). Notice that if ϕ Ψ then ϕ is T -sat-equivalent
to the disjunction of the schemata in Ψ . Furthermore, if ϕ and the disjunction of the schemata in Ψ are equivalent then obviously ϕ Ψ . Denition 2. A simplication function is a total function Γ : S → 2 S such that for every ϕ ∈ S, ϕ Γ (ϕ).

Theorem 2 implies that T -satisability is semi-decidable for schemata in S. Indeed, to test whether ϕ ∈ S is T -satisable, it suces to construct the Γ -expansion E Γ (ϕ) of ϕ (using a straightforward simplication function, e.g. Γ (ϕ) = {ϕ}). By Denition 3, E Γ (ϕ) is recursively enumerable. By Theorem 2, ϕ is T -satisable i a schema ψ such that ψ{n ← 0} is T -satisable is eventually obtained. The satisability of ψ{n ← 0} is decidable by Proposition 1. Of course, as such, this algorithm is very inecient and seldom terminates (when the schema at hand is unsatisable): its eciency and termination essentially depend on the choice of the simplication function.

The next denition states a condition on Γ ensuring that all the schemata in E Γ (ϕ) remain in a given class.

Denition 4. Let C be a class of schemata. A simplication function

Γ is C- preserving i ϕ ∈ C ⇒ Γ (ϕ{n ← n + 1}) ⊆ C. Proposition 2. Let C be a class of schemata. Let ϕ ∈ C and let Γ be a C- preserving simplication function. E Γ (ϕ) ⊆ C.

Terminaison

We dene a simplication function ensuring terminaison (for a particular class of schemata) of the proof procedure dened in Section 3. The intuitive idea is the following: the Γ -expansion of a given schema ϕ is innite in general, since the recursive replacement of n by n+1 creates schemata with increasingly deep index expressions. For instance from

∧ n i=0 (p i ⇒ p i+1 ) one gets ∧ n+1 i=0 (p i ⇒ p i+1 ), ∧ n+2 i=0 (p i ⇒ p i+1 ), .
. . A rst step towards termination would be to have the iteration

∧ n i=0 (p i ⇒ p i+1
) instead of this innite set of iterations. This is easily obtained by unfolding the previous iterations (i.e. taking out the ranks n + 1, n + 2, etc.). However we are of course left with the new formulae introduced by those unfoldings. For instance, in the same example, one would get p n+1 ⇒ p n+2 , p n+2 ⇒ p n+3 , etc. One way to obtain termination is if we are able to somehow simplify those new formulae (of course this simplication depends on the considered theory T ) so that they belong to a nite set. This goal can be reached, in particular, if the indices of the involved atoms are restricted to be lower than n + k for some xed k ∈ N. It is actually sucient to consider k = 1, which leads to the following notion:

Denition 5. A schema is n-elementary if it contains no index of the form n + k where k > 1.
The major problem is, of course, to transform the schemata into n-elementary ones (preserving T -sat-equivalence). This may be done, in some particular cases, by using decomposition and simplication rules. In the previous example, the unfolding yields:

∧ n i=0 (p i ⇒ p i+1 )∧(p n+1 ⇒ p n+2 ).
Then in order to eliminate all the indices greater than n + 1, we only have to eliminate p n+2 which can be done in this simple case by considering all the possible values for p n+2 (true or false). This yields the disjunction of the following schemata:

∧ n i=0 (p i ⇒ p i+1 ) ∧ ¬p n+1
(if p n+2 is false) and

∧ n i=0 (p i ⇒ p i+1 ) (if p n+2 is true).
Of course this case is an easy one, since the domain of the constant symbols is nite (thus every constant can be eliminated, if needed, by instantiation). But consider the case:

∧ n+1 i=0 (a i ≈ f (a i+1 )).
Here the unfolding yields the literal a n+1 ≈ f (a n+2 ). Since the domain is, a priori, not nite, the same technique cannot apply. Thus the ability to eliminate a n+2 depends on the theory T : if, for instance, f is the successor function on N then it suces to state that a n+1 ≻ 0.

To ensure that non-n-elementary literals can always be eliminated, we will have to impose additional conditions on the class of interpretations T and on the considered schemata. To restrict the class of schemata we shall actually impose conditions on the literals occurring in it: Denition 6. A frame L is a nite set of literals such that for every λ ∈ L, the two following conditions hold:

1. λ{i ← n + 1} ∈ L. 2. If λ is n-elementary then λ{n ← n + 1} ∈ L.
A schema ϕ is L-dominated if every literal occurring in ϕ (both in iteration bodies and outside iterations) is in L.

Those conditions are useful to ensure that a class of n-elementary schemata is closed under replacement of n by n + 1 and unfolding of the iterations.

Example 1. The following set L is a frame: {f (ai) ≈ bi, f (ai) ̸ ≈ g(bi+1), f (an) ≈ bn, f (an) ̸ ≈ g(bn+1), f (an+1) ≈ bn+1, f (an+1) ̸ ≈ g(bn+2), f (an+2) ≈ bn+2}. The literals f (ai) ≈ bi, f (ai) ̸ ≈ g(bi+1), f (an) ≈ bn, f (an) ̸ ≈ g(bn+1) and f (an+1) ≈ bn+1, are n-elementary, f (an+1) ̸ ≈ g(bn+2) and f (an+2) ≈ bn+2 are not. φ : ( ∨ n i=0 f (ai) ≈ bi)∧f (an) ̸ ≈ g(bn+1) and ψ : ( ∧ n i=0 f (ai) ̸ ≈ g(bi+1))∨f (an+2) ≈ bn+2 are L-dominated. φ is n-elementary, ψ is not.
The denition of the simplication function is divided into two steps: unfolding and decomposition.

Unfolding The rst step simply aims at unfolding iterations, for instance by replacing

∨ n+1 i=0 ϕ by ∨ n i=0 ϕ ∨ ϕ{i ← n + 1}.
Obviously this is possible only if the lower bound of the iteration is strictly lower than the upper bound. Denition 7. If ϕ is a schema, we denote by unfold(ϕ) the schema obtained from ϕ by replacing every subschema of the form

∧ n+k i=0 ψ or ∨ n+k i=0 ψ occurring in ϕ such that k > 0 by (respectively): ( ∧ n i=0 ψ) ∧ ψ{i ← n + 1} ∧ • • • ∧ ψ{i ← n + k} and ( ∨ n i=0 ψ) ∨ ψ{i ← n + 1} ∨ • • • ∨ ψ{i ← n + k}.
The unfolding transformation does not aect the semantics of the considered schema. It is useful only to extract (when possible) the last operands of the iterations in order to pave the way for the elimination of the terms with greatest indices, which is done in the next subsection.

Decomposing schemata The second step is more complex. It aims at eliminating, in a schema ϕ, all the symbols whose index is greater than n + 1. This is the crucial part of our procedure, since the elimination of those symbols will ensure that only nitely many distinct schemata can be generated, hence that E Γ (ϕ) is nite. We now introduce the conditions on L and T that ensure that the elimination of literals whose indices are strictly greater than n + 1 is feasible.

If I, J are two interpretations, we write I ∼ L J i I and J coincide on every literal obtained from a literal in L by replacing i by a natural number lower or equal to n. More precisely, I ∼ L J if I and J coincide on n and on every sort symbol in Sorts, and if for every literal λ ∈ L containing i and for every k ∈ [0, ⟨n⟩ I ] we have ⟨λ{i ← k}⟩ I = ⟨λ{i ← k}⟩ J . Denition 8. A frame L is stably decomposable, relatively to a function ∆ : S → S, i for all ground non-n-elementary literals λ 1 , . . . , λ k ∈ L the following conditions hold:

∆(λ 1 ∧ • • • ∧ λ k ) is a boolean combination of ground n-elementary literals in L.

For every interpretation

I, I |= ∆(λ 1 ∧ • • • ∧ λ k ) i there exists an interpre- tation J such that J ∼ L I and J |= λ 1 ∧ • • • ∧ λ k .
In what follows, we assume the existence of a frame L and of a function ∆ s.t. L is stably decomposable w.r.t. ∆. Both depend on the theory T . Thus, applying our method to a theory T requires that T be accompanied with a frame L and a function ∆. We shall provide in Section 4 some examples of such frames and functions depending on T .

We now dene the simplication function. It is dened by means of a tableaux calculus, using the usual propositional decomposition rules. These rules are restricted to apply only on non-n-elementary schemata. The goal is to decompose the schema in order to get rid of all non-n-elementary literals occurring at nonroot level. Then a new rule is dened, the so-called Elimination rule, in order to eliminate non-n-elementary literals at root level, by taking advantage of the existence of a function ∆ satisfying the conditions of Denition 8.

A branch is a conjunction of schemata and a tableau is a set of branches. As usual, tableaux are constructed using a set of expansion rules that are written in the form:

S S 1 . . . S k
meaning that a branch that is of the form S ∧ S ′ (up to the AC-properties of the connective ∧) is deleted from the tableau and replaced by the k branches S 1 ∧ S ′ , . . . , S k ∧ S ′ . If k = 0 the rule simply deletes (or closes ) the branch. This is written S ⊥

. Initially, the tableau contains only one branch, dened by the schema at hand. We denote by ρ the following set of expansion rules:

∨-Elimination: φ ∨ ψ φ ψ If φ ∨ ψ is not n-elementary. Closure: φ ∧ ¬φ ⊥ Elimination: λ1 ∧ • • • ∧ λ k ∆(λ1 ∧ • • • ∧ λ k )
If {λ1, . . . , λ k } ⊆ L is the set of all the nonn-elementary literals occurring in the branch.

We do not need a specic rule for the connective ∧ since branches are considered as conjunctions (thus the ∧-rule is implicitly replaced by the associativity of ∧).

Proposition 3. The non-deterministic application of the rules in ρ terminates on any schema.

For every schema ϕ, we denote by ρ * (ϕ) an arbitrarily chosen normal form of the tableau {ϕ} by the rules in ρ. Since tableaux are dened as sets of schemata (conjunctions), ρ * (ϕ) is a set of (irreducible) schemata (i.e. the leaves).

Example 2. Let φ = {(an+2 ≽ 0 ∧ an+2 ≈ bn+1 ∨ pn+1 ∨ pn) ∧ ¬pn+1 ∧ (pn ∨ qn+1)}.
The application of the rules ∨-Elimination and Closure yields the two following branches:

an+2 ≽ 0 ∧ an+2 ≈ bn+1 ∧ ¬pn+1 ∧ (pn ∨ qn+1) and pn ∧ ¬pn+1 ∧ (pn ∨ qn+1)
Notice that the schema (pn ∨ qn+1) is not decomposed, because it is n-elementary.

The second branch contains no non-n-elementary schema hence is irreducible. The non-n-elementary conjuncts in the rst branch are an+2 ≽ 0 and an+2 ≈ bn+1. The rule Elimination applies, and the function ∆ replaces these conjuncts by some T -satequivalent conjunction of n-elementary literals. In this case, it is intuitively obvious that we should take: ∆(an+2 ≽ 0 ∧ an+2 ≈ bn+1) = bn+1 ≽ 0 (see Section 4 for the formal denition). Thus ρ * (φ) = {bn+1 ≽ 0 ∧ ¬pn+1 ∧ (pn ∨ qn+1), pn ∧ ¬pn+1 ∧ (pn ∨ qn+1)}.

Let S(L) be the class of schemata ϕ such that unfold(ϕ{n ← n + 1}) is L-dominated and such that the upper bound of all iterations in ϕ is n.

Lemma 1. Let L be a stably decomposable frame. ρ * • unfold is an S(L)preserving simplication function .

To ensure termination, we introduce a contraction operation: ϕ ∧ ϕ → ϕ which is applied modulo the usual AC properties of the connective ∧. Obviously this rule preserves equivalence. A set of schemata is nite up to contraction if its normal form by the previous rule is nite. Theorem 3. Let L be a stably decomposable frame. If ϕ ∈ S(L) then E ρ * •unfold (ϕ) is nite up to contraction ! . Thus the satisability problem is decidable for S(L).

Examples of stably decomposable frames

Theorems 2 and 3 dene a procedure for deciding the satisability of schemata in S(L). However, it relies on the fact that L is stably decomposable, and on the existence of a function ∆ satisfying the conditions of Denition 8. Thus, it would be of no use if no concrete example of (reasonably expressive) stably decomposable frame could be exhibited. The purpose of the present section is precisely to turn this abstract and generic result into concrete decision procedures.

4.1

Literals containing at most one index

The rst example is independent of the theory T . Intuitively, it corresponds to the case in which each literal contains at most one index. Let L ⋄ be the set of attened literals λ such that Ind(λ) ∈ {{n}, {n + 1}, {n + 2}, {i}, {i + 1}, {0}}.

It is easy to check that L ⋄ is a frame (it is nite if the signature is nite). Let ∆ ⋄ be the function dened as follows:

∆ ⋄ (λ 1 ∧ • • • ∧ λ k ) @AB = { true if (λ 1 ∧ • • • ∧ λ k ) {n ← 0} is T -satisable false otherwise. Theorem 4. L ⋄ is stably decomposable w.r.t. ∆ ⋄ .
For instance, any purely propositional schema (i.e. any schema in which all atoms are non-equational) is in S(L ⋄ ) " . Such schemata are essentially equivalent to the ones considered in [START_REF] Aravantinos | A schemata calculus for propositional logic[END_REF]. The function ∆ ⋄ should be compared with the pure literal rule in [START_REF] Aravantinos | A schemata calculus for propositional logic[END_REF] that serves a similar purpose. The intuition is that the interpretation of the non-n-elementary literals does not interfere with the one of n-elementary literals. Notice that the analysis is much simpler in the present paper due to the strong syntactic restrictions.

See Denition 4 for the notion of S(L)-preserving function. ! See Denition 3 for the notation EΓ (φ). " Provided indices greater than n + 2 or 0 are eliminated as explained in Section 2.3.

Ordered theories

The second example is more specic and also more complex. We assume that the signature contains a predicate symbol ≼ interpreted as a non-strict ordering (in T ). Let C ≈ , C ≼ be two disjoint sets of indexed constant symbols. Intuitively, the constants in C ≼ will only occur at the root level in non-strict inequations or equations, whereas the ones in C ≈ only occur in equations of some particular form. More precisely, we assume that every constant symbol a ∈ C ≈ is mapped to a nite set of terms θ(a), intended to denote the set of terms u such that a n+2 ≈ u is allowed to occur in the considered schema. Furthermore, we assume that for all u, v ∈ θ(a), there exists an iteration-free n-elementary schema τ

(u ≈ v) such that τ (u ≈ v) ≡ T u ≈ v.
The intuition is as follows. If u and v occur in θ(a), then the considered schema will possibly contain a conjunction of the form a n+2 ≈ u∧a n+2 ≈ v. As explained in Section 3.2, the symbol a n+2 will have to be eliminated (since it is non-n-elementary) by applying an appropriate function ∆. But to this purpose, one necessarily has to ensure that the equation u ≈ v holds. The existence of the function τ guarantees that this property can be expressed as an n-elementary schema. Denition 9. Let L ≼ be the set of literals λ satisfying one of the following conditions:

λ is of the form u ≼ v # , where each of the u, v is either a non-indexed term or of the form a α where a ∈ C ≼ and α ∈ {n, n + 1, n + 2, i, i + 1}.

λ is of the form a n+2 ≈ u where a ∈ C ≈ and u ∈ θ(a). λ is of the form a i+1 ≈ v (resp. a n+1 ≈ v) where a ∈ C ≈ and v{i ← n + 1} ∈ θ(a) (resp. v{n ← n + 1} ∈ θ(a)).
It is easy to check that L ≼ is a frame. We assume furthermore that for every a ∈ C ≈ and for all terms u, v ∈ θ(a), τ (u ≈ v) is L ≼ -dominated.

Before proceeding, we give a concrete example of a theory T for which θ(a) and τ can be dened (it will be used in forthcoming examples).

Example 3. Assume that Sorts contains in particular the sort symbols nat, int and real with their usual meanings. We assume that the signature contains the usual functions + and ≼ $ and built-in constant symbols 0, . . . , k of sort nat. If a : s ∈ C≈, we dene θ(a) as the set containing all terms in 0, . . . , k (if s is nat) and all terms of the form an+1 + u where u is either a non-indexed term or of the form bn+1 where b ∈ C ≼ . Then the function τ can be dened as follows:

τ (an+1 + u ≈ an+1 + v) @AB = u ≈ v. τ (l ≈ l ′ ) @AB = l ≈ l ′ if Ind(l ≈ l ′ ) = ∅. τ (an+1 + u ≈ l) @AB = ∨ l 1 +l 2 =l (an+1 ≈ l1 ∧ u ≈ l2) if l ∈ {0, . . . , k}.
Note that the number of pairs (l1, l2) such that l1 + l2 = l must be nite since by denition of θ(a), a (and thus l, l1 and l2) must be of sort nat. Hence this iteration is not a formal one but belongs to the meta-language. This would not be the case if a was of sort int or real. # Of course, equations u ≈ v can also be considered, as abbreviations for u ≼ v ∧v ≼ u. $ For readability, we use the same notation for the symbols + and ≼ whatever may be the type of their arguments.

It is easy to check that this function τ satises the desired properties.

Denition 10. Let ∆ ≼ be the function dened as follows. For every conjunction of literals ϕ, we denote by E(ϕ) the smallest set of schemata such that: If ϕ contains two literals of the form a n+2 ≈ u and

a n+2 ≈ v then τ (u ≈ v) ∈ E(ϕ). If ϕ |= u ≼ v, u ≼ v is an n-elementary literal in L ≼ and u ̸ = v then u ≼ v ∈ E(ϕ).
We dene: ∆ ≼ (ϕ)

@AB = ∧ ψ∈E(φ) ψ.
Notice that E(ϕ) is necessarily nite. Let φ be the conjunction of the following literals:

an+2 ≈ an+1 + 1 an+2 ≈ 2 bn+2 ≈ bn+1 + cn+1 bn+2 ≈ bn+1 + e cn+1 ≼ dn+2 dn+2 ≼ dn+1 dn+2 ≼ f + 1
Then ∆ ≼ (φ) is the conjunction of the following schemata:

an+1 ≈ 1 cn+1 ≈ e cn+1 ≼ dn+1 cn+1 ≼ f + 1 Theorem 5. L ≼ is stably decomposable w.r.t. ∆ ≼ .
Another trivial example of stably decomposable sets of literals that we do not develop here, is the one in which every constant symbol indexed by an expression n + l where l > 1, is of a nite sort. Indeed, in this case all such constants can be straightforwardly eliminated by replacing them by each possible value (yielding a disjunction of n-elementary schemata).

Examples

We provide in this section some examples of application of our technique.

Example 5. Let φ be the schema considered in the Introduction:

∧ n i=0 (ai+1 ≽ ai) ∧ ∧ n i=0 (bi+1 ≼ bi) ∧ a0 ≽ b0 ∧ an+1 ≼ c ∧ bn+1 ≽ c + 1.
We compute the set of schemata E ρ * •unfold (φ). According to the denition, n must be instantiated by n + 1 and the iterations are unfolded, yielding:

∧ n i=0 (ai+1 ≽ ai) ∧ an+2 ≽ an+1 ∧ ∧ n i=0 (bi+1 ≼ bi) ∧ bn+2 ≼ bn+1∧a0 ≽ b0 ∧ an+2 ≼ c ∧ bn+2 ≽ c + 1.
In order to get rid of the symbols indexed by n + 2, we apply the rules in ρ. Since the schema is already a conjunction of iterations and literals, no rule applies, except Elimination. The conjunction of literals that are not n-elementary is an+2 ≽ an+1 ∧ bn+2 ≼ bn+1 ∧ an+2 ≼ c ∧ bn+2 ≽ c + 1. Applying the function ∆ ≼ (see Denition 10), we obtain: c ≽ an+1 ∧ c + 1 ≼ bn+1. Replacing the previous conjunction by its image by ∆ ≼ yields a schema that is actually identical to the rst one. Hence the procedure stops (no further schema is generated) and we get E ρ * •unfold (φ) = {φ}. By Theorem 2, the T -satisability of φ is thus equivalent to the one of φ{n ← 0} which can be easily tested by any SMT-solver. Example 6. Consider the algorithm below, counting the number of occurrences o of an element e in an array t. We want to check that if the nal value of o is 1 then the formula ∀i, j, ai ≈ e ∧ aj ≈ e ⇒ i ≈ j holds. This is modeled by a schema φ dened as follows (oi : nat denotes the value of o at step i and ti : int is t[i], notice that we cannot use the theory of arrays, since no stably decomposable frame has been dened for this theory this is left to future work).

i ← 0 o ← 0 while i ≼ n do if t[i] = e then o ← o + 1 end if i ← i + 1 end while φ : o0 ≈ 0 ∧ n i=0 (ti ≈ e ⇒ oi+1 ≈ oi +1) ∧ n i=0 (ti ̸ ≈ e ⇒ oi+1 ≈ oi) on+1 ≈ 1 ∨ n i=0 (i ≈ m ∧ ti ≈ e) ∨ n i=0 (i ≈ k ∧ ti ≈ e) m ̸ ≈ k
m, k are additional parameters interpreted as elements of [0, n]. These parameters and the literals i ≈ m, i ≈ k and m ̸ ≈ k can be encoded in our language as explained in Section 2.3 (we omit the translation for readability). t is in C ≼ and o is in C≈. The schema is in S(L ≼ ). The reader can check that E ρ * •unfold (φ) = {φ, ψ1, ψ2, ψ3}, where ψ1, ψ2 and ψ3 are dened respectively by:

ψ1 : ψ2 : ψ3 : o0 ≈ 0 ∧ n i=0 ti ≈ e ⇒ oi+1 ≈ oi +1 ∧ n i=0 ti ̸ ≈ e ⇒ oi+1 ≈ oi on+1 ≈ 0 tn+1 ≈ e n + 1 ≈ m ∨ n i=0 i ≈ k ∧ ti ≈ e m ̸ ≈ k o0 ≈ 0 ∧ n i=0 ti ≈ e ⇒ oi+1 ≈ oi +1 ∧ n i=0 ti ̸ ≈ e ⇒ oi+1 ≈ oi on+1 ≈ 0 tn+1 ≈ e n + 1 ≈ k ∨ n i=0 i ≈ m ∧ ti ≈ e m ̸ ≈ k o0 ≈ 0 ∧ n i=0 ti ≈ e ⇒ oi+1 ≈ oi +1 ∧ n i=0 ti ̸ ≈ e ⇒ oi+1 ≈ oi on+1 ≈ 0 tn+1 ≈ e ∨ n i=0 i ≈ m ∧ ti ≈ e ∨ n i=0 i ≈ k ∧ ti ≈ e m ̸ ≈ k
In order to check that φ is T -unsatisable, one only has to test the T -satisability of the sentences φ{n ← 0}, ψ1{n ← 0}, ψ2{n ← 0} and ψ3{n ← 0}.

The next example is slightly more complex, hence we only show the encoding (to give a taste of the expressive power of the class S(L ≼ )).

Example 7. Consider the algorithm to the right, inserting a new element in a sorted sequence. We want to check that the obtained sequence a ′ is sorted, which is modeled by the schema on the left. b0 ∧ ¬bn+1 ∧ ( ∧ n i=0 φ) ∧ ψ, where: b is true inside the rst loop, false otherwise. φ is dened as follows:

(¬bi ∨ new + 1 ≼ ai ∨ a ′ i ≈ ai ∧ bi+1) ∧ (¬bi ∨ ai ≼ new ∨ a ′ i ≈ new ∧ ¬bi+1) ∧ (bi+1 ∨ a ′ i+1 ≈ ai) ∧ (bi ∨ ¬bi+1).
ψ states the fact that a ′ is not sorted:

∨ n i=0 (a ′ i ≻ c ∧ a ′ i+1 ≼ c).
It can be checked that the obtained schema is in

S(L ≼ ). a, a ′ both occur in C ≼ . i ← 0 while ai ≼ new ∧ i ≼ n do a ′ i ← ai i ← i + 1 end while a ′ i ← new while i ≼ n do a ′ i+1 ← ai i ← i + 1

end while 6 Conclusion

A logic has been dened for reasoning on parameterized families of SMTproblems and a sound and complete (w.r.t. satisability) proof procedure has been designed. It does not terminate in general (the logic is proven to be undecidable) but we have devised semantic conditions on the underlying theory and on the considered class of formulae that ensure that this proof procedure can be turned into a decision procedure by adding appropriate simplication rules. Then, concrete examples of theories and classes of schemata satisfying these conditions have been provided. Some simple examples of application have also been proposed. Our method relies on the use of an external decision procedure for the underlying theory. It applies to a wide range of theories (provided they are decidable). In the present work, we mainly focus on examples in verication, but one could also handle for instance schemata of formulae in (decidable) modal or description logics.

The implementation of this technique is part of future work. Another obvious line of research is to identify other classes of stably decomposable frames (see Section 3.2) in order to extend the scope of our results (in particular, the important theory of arrays should be considered). Concerning potential applications in verication, automatic procedures for extracting schemata modeling the algorithms as the ones in Section 5 ought to be devised and comparison with the numerous existing techniques should be provided. A longer term goal would be to consider quantication, either as standard quantication such as ∀x, ∀y, p(x, y) or of schemata of quantications such as ∀x 1 , . . . , x n , p(x 1 , . . . , x n ) (where the indexed variables and dots are part of the language).

A Proof of Proposition 1

The only iterations occurring in ϕ are of the form

∨ k i=0 ψ (resp. ∧ k i=0 ψ)
where k ∈ N. Such an iteration % is equivalent to (hence can be replaced by)

: ψ{i ← 0}∨ ψ{i ← 1}∨• • •∨ψ{i ← k} (resp. ψ{i ← 0}∧ψ{i ← 1}∧• • •∨ψ{i ← k}).
After all iterations have been replaced, one obtains a schema containing no iteration and no occurrence of n, i.e. a sentence. By hypothesis, the T -satisability problem is decidable for sentences.

B Proof of Theorem 1

In this section, we assume that T simply contains all the interpretations on the considered signature (i.e. there are no built-in symbols). Notice that the signature contains indexed constant symbols and non-indexed function symbols (see below). The proof is by reduction to the Post correspondence problem. Let k ∈ N and let (Γ 1 , . . . , Γ k ), (Λ 1 , . . . , Λ k ) be two sequences of words over an alphabet A. For every word w ∈ A * , |w| denotes the length of w (i.e. the number of characters). w • w ′ denotes the concatenation of the words w and

w ′ . If Ω ∈ {Γ, Λ}, i ∈ [1, k] and j ∈ [1, |Ω i |],
we denote by Ω i (j) the j-th character of the word Ω i (we do not use indices to avoid confusion with indexed symbols in the language). We recall that the aim of the Post problem is to determine whether there exists a non-empty sequence of indices (δ 1 , . . . , δ l ) such that Γ δ1 • . . .

• Γ δ l = Λ δ1 • . . . • Λ δ l . It is well known that this problem is not decidable. The sequence δ 1 , . . . , δ l is the sequence solution and Γ δ1 • . . . • Γ δ l (or equivalently Λ δ1 • . . . • Λ δ l )
is the word solution. Signature

We consider three dierent sorts A (intended to be interpreted as elements of A), ind (elements of [1, k]) and seq (sequences of elements of [1, k]). We assume that all the symbols ♠ in A are mapped to pairwise distinct non-indexed constant symbols of sort A. For the sake of readability, the image of ♠ is also denoted by ♠. Similarly, each natural number in [1, k] is considered as a non-indexed constant symbol of sort ind. We encode sequences of indices (i.e. elements of [1, k] * ) using two non-built-in function symbols head : seq → ind and tail : seq → seq, which return respectively the rst element of the sequence and its tail. The constant symbol d : seq denotes the sequence solution δ = (δ 1 , . . . , δ l ) and nil : seq denotes the empty sequence.

We use two indexed constants sol Ω : A and F Ω : seq for each Ω ∈ {Γ, Λ}. sol Ω is used to stored the word solution

Ω δ1 • . . . • Ω δ l , more precisely sol Ω i is the i + 1-th character of the word Ω δ1 • . . . • Ω δ l (if i ≥ |Ω δ1 | + • • • + |Ω δ l |
then the value of sol Ω i is irrelevant). F Ω contains the suxes of the sequence solution corresponding to a given position in the word solution. More precisely,

if i is of the form |Ω δ1 | + • • • + |Ω δm | (for some m ∈ [0, l]) then F Ω i contains
(δ m+1 , δ m+2 , . . . , δ l ). If i is not of this form then the value of F Ω is equal to a special constant symbol ⊥ of sort seq. In particular, if i = 0 then F Ω i contains the whole sequence (corresponding to the case m = 0).

% Notice that such an iteration is never empty because k ≥ 0.

Example 8. Let A = {α, β, γ, π}. Let Γ = {αβ, αγ, π}. In this example, we have k = 3. Assume that the sequence solution δ is {1, 3, 2}. The corresponding word solution is αβπαγ. The following array species, for each index i, the corresponding values of sol Γ and F Γ .

i 0 1 2 3 4 5 sol α β π α γ • F (1, 3, 2) ⊥ (3, 2) (2) ⊥ ()

Encoding

The problem is specied by the following axioms (parameterized by k, Γ and Λ). Notice that, for the sake of readability, arbitrary translations are used in the indices (see for instance Axiom 4, index i + m). As explained in Section 2.3, they can be easily encoded in the language. The parameter n encodes the length of the word solution.

(1): F Ω 0 ≈ d for each Ω ∈ {Γ, Λ} % The initial sequence of each word is the solution sequence.

(2): d ̸ ≈ nil ∧ d ̸ ≈ ⊥ % The solution sequence is not empty and distinct from ⊥.

(3):

∧ n i=0 ( F Ω i ≈ ⊥ ∨ F Ω i ≈ nil ∨ head(F Ω i ) ≈ 1 ∨ • • • ∨ head(F Ω i ) ≈ k ) for each Ω ∈ {Γ, Λ} % The rst element of each (non-empty) sux is in [1, k]. (4) 
:

∧ n i=0 ( F Ω i ≈ ⊥ ∨ head(F Ω i ) ̸ ≈ l ∨ sol Ω i+m ≈ Ω l (m + 1)
)

for each Ω ∈ {Γ, Λ}, l ∈ [1, k] and m ∈ [0, |Ω l |[ % Relate the value of sol Ω i , sol Ω i+1 , . . . to the value of F Ω i (5): ∧ n i=0 ( F Ω i ≈ ⊥ ∨ head(F Ω i ) ̸ ≈ l ∨ F Ω i+m ≈ ⊥ ) for each Ω ∈ {Γ, Λ}, l ∈ [1, k] and m ∈ [0, |Ω l |[ % Store ⊥ at the indices not corresponding to a sequence. (6): ∧ n i=0 ( F Ω i ≈ ⊥ ∨ head(F Ω i ) ̸ ≈ l ∨ F Ω i+|Ω l | ̸ ≈ ⊥ ∧ F Ω i+|Ω l | ≈ tail(F Ω i )
)

for each Ω ∈ {Γ, Λ} and for each l ∈ [1, k] % The next value of F Ω is equal to the tail of the previous sequence. ( 7)

∧ n i=0 sol Γ i ≈ sol Λ i % The word indices corresponding to each sequence are identical. (8) F Ω n+1 ≈ nil for each Ω ∈ {Γ, Λ} % Both sequences end at n.
We denote by ϕ(Γ, Λ) the conjunction of Axioms 1-8. Notice that the obtained set of axioms is nite (if the sequences Γ and Λ are xed for a given instance of the Post correspondence problem). Lemma 2. ϕ(Γ, Λ) is satisable i there exists a non-empty sequence of indices δ 1 , . . . , δ l such that Γ δ1 . . . . .Γ δ l = Λ δ1 . . . . .Λ δ l . Proof. This is easy to check from the previous explanations. Proof. By a straightforward induction on ϕ.

⊓ ⊔

Lemma 3. Let Γ be a simplication function. For every schema ϕ, for every ψ ∈ E Γ (ϕ) and for every interpretation I ∈ T validating ψ, there exists a schema

ψ ′ ∈ E Γ (ϕ) such that I |= ψ ′ {n ← 0}.
Proof. The proof is by induction on ⟨n⟩ I . Assume that ⟨n⟩ I = 0. Then I |= ψ{n ← 0}. Since ψ ∈ E Γ (ϕ), the desired result trivially holds for ψ ′ = ψ. Now, assume that ⟨n⟩ I > 0. By Property 2 in Denition 3, Γ (ψ{n ← n+1}) ⊆ E Γ (ϕ). Let

J = I •{n → ⟨n⟩ I -1}. We have ⟨ψ{n ← n + 1}⟩ J = ⟨ψ{n ← n + 1}⟩ I•{n →⟨n⟩ I -1} .
By Proposition 4, this is equal to ⟨ψ⟩ I i.e. to JHKA by hypothesis. So J |= ψ{n ← n+1}. By Point 1 in Denition 1, we deduce that J |= ψ ′ for some ψ ′ ∈ Γ (ψ{n ← n + 1}). Thus by the induction hypothesis (since ⟨n⟩ J < ⟨n⟩ I ) there exists a schema ψ ′′ ∈ E Γ (ϕ) such that J |= ψ ′′ {n ← 0}. Since ψ ′′ {n ← 0} contains no occurrence of n, I and J coincide on ψ ′′ {n ← 0}, hence I |= ψ ′′ {n ← 0}.

⊓ ⊔

Assume that ϕ is T -satisable. Let I ∈ T be an interpretation satisfying ϕ. By Point 1 in Denition 3, ϕ ∈ E Γ (ϕ). By Lemma 3, there exists ψ ∈ E Γ (ϕ) such that I |= ψ{n ← 0}. Now, assume that E Γ (ϕ) contains a schema ψ such that ψ{n ← k} is Tsatisable (for some arbitrary natural number k, in particular if k = 0). This means that ψ has a model I ∈ T such that ⟨n⟩ I = k. We prove, by induction on the construction of the set E Γ (ϕ) that ϕ is T -satisable. If ψ = ϕ then the proof is straightforward. If ψ ∈ Γ (ψ ′ {n ← n + 1}) for some ψ ′ ∈ E Γ (ϕ), then by Point 2 in Denition 1, there exists an interpretation J ∈ T such that J |= ψ ′ {n ← n + 1} and ⟨n⟩ J = ⟨n⟩ I = k. Then by Proposition 4, the interpretation

J ′ = J • {n → ⟨n⟩ I + 1} must be a model of ψ ′ . Since ⟨n⟩ J = k, ψ ′ {n ← k + 1}
is T -satisable and by the induction hypothesis this implies that ϕ is T -satisable.

D Proof of Proposition 3

The Closure and ∨-Elimination rules strictly decrease the number of logical symbols occurring in the branches hence termination is obvious. The rule Elimination applies at most once on every branch. Indeed, by denition, ∆(λ 1 ∧ • • • ∧ λ k ) only contains n-elementary literals. Thus by the application of the rule (and because the Elimination rule is dened to apply on the set of all non-n-elementary literals in the branch), every literal in the obtained branch must be n-elementary. Consequently, the branch obtained after applying Elimination is necessarily irreducible.

E Proof of Lemma 1

Proposition 5. For every schema ϕ, unfold(ϕ) ≡ T ϕ.

Proof. The replacement obviously preserves equivalence. ⊓ ⊔ Lemma 4. Let L be a frame. Let I and J be two interpretations such that I ∼ L J. For all L-dominated n-elementary schemata ϕ irreducible by unfold we have:

I |= ϕ i J |= ϕ.
Proof. It suces to prove that for every k ∈ [0, ⟨n⟩ I ] we have ⟨ϕ{i ← k}⟩ I = ⟨ϕ{i ← k}⟩ J . The proof is by induction on ϕ.

If ϕ is a literal, then since ϕ is L-dominated, ϕ necessarily occurs in L. Since

k ∈ [0, ⟨n⟩ I ],
we have by the denition of ∼ L : ⟨ϕ{i ← k}⟩ I = ⟨ϕ{i ← k}⟩ J . If ϕ is of the form ψ 1 ⋆ ψ 2 (for ⋆ ∈ {∨, ∧}) then by the induction hypothesis we have J . The proof is similar if ψ is an iterated conjunction.

I |= ψ i i J |= ψ i (for i = 1, 2) thus I |= ϕ i J |= ϕ. Assume that ϕ is

⊓ ⊔

We rst prove that ρ * • unfold is a simplication function. Let ψ ∈ S(L). Let ϕ = unfold(ψ). We have to prove that ψ ρ * (ϕ). By Proposition 5 we have ϕ ≡ T ψ thus ψ {ϕ}. We prove that ϕ ρ * (ϕ) (then the proof immediately follows from Proposition 6). By denition, ρ * (ϕ) is an irreducible tableau constructed by the expansion rules in ρ from {ϕ}. The proof is by induction on the number of rules applied to get ρ * (ϕ). If no rule is applied then ρ * (ϕ) = {ϕ} and the proof is obvious. Otherwise, we distinguish several cases, according to the rst rule applied on ϕ.

If this rule is the Closure rule, then ρ * (ϕ) = ∅. In this case ϕ contains two contradictory literals, hence is unsatisable. Thus ϕ ρ * (ϕ). If this rule is the ∨-Elimination rule, then ϕ is of the form (ϕ 1 ∨ ϕ 2 ) ∧ ψ. The two obtained branches are ϕ 1 ∧ψ and ϕ 2 ∧ψ.

Thus ρ * (ϕ) = ρ * (ϕ 1 ∧ψ)∪ρ * (ϕ 2 ∧ ψ). ϕ is equivalent to (ϕ 1 ∧ ψ) ∨ (ϕ 2 ∧ ψ) hence ϕ {ϕ 1 ∧ ψ, ϕ 2 ∧ ψ}.
By the induction hypothesis, we have ϕ 1 ∧ ψ ρ * (ϕ 1 ∧ ψ) and ϕ 2 ∧ ψ ρ * (ϕ 2 ∧ ψ). By Proposition 6, we deduce that ϕ ρ * (ϕ

1 ∧ ψ) ∪ ρ * (ϕ 2 ∧ ψ) = ρ * (ϕ).
If this rule is the Elimination rule, then ϕ is of the form λ 1 ∧ • • • ∧ λ k ∧ ϕ ′ where ϕ ′ contains no non-n-elementary literals and λ 1 , . . . , λ k are non-nelementary literals. Moreover, the obtained branch is

∆(λ 1 ∧ • • • ∧ λ k ) ∧ ϕ ′ .
By denition, this branch must be irreducible, since

∆(λ 1 ∧• • •∧λ k ) contains only n-elementary literals. Hence ρ * (ϕ) = {∆(λ 1 ∧ • • • ∧ λ k ) ∧ ϕ ′ }.
Let I ∈ T be an interpretation satisfying ϕ. Since L is stably decomposable w.r.t. ∆, we have

I |= ∆(λ 1 ∧ • • • ∧ λ k ). Thus I |= ∆(λ 1 ∧ • • • ∧ λ k ) ∧ ϕ ′ . Conversely, let I ∈ T be an interpretation satisfying ∆(λ 1 ∧ • • • ∧ λ k ) ∧ ϕ ′ . By denition of ∆, there exists an interpretation J ∼ L I such that J |= λ 1 ∧ • • • ∧ λ k .
By denition ϕ ′ contains no non-n-elementary literals and is irreducible by unfold. By Lemma 4, we have J |= ϕ ′ . Thus J |= ϕ. Moreover, ⟨n⟩ I = ⟨n⟩ J , by denition of ∼ L .

Then we have to prove that ρ * • unfold is S(L)-preserving. Let ϕ ∈ S(L). Let ψ ∈ ρ * (unfold(ϕ{n ← n + 1})). We have to show that ψ ∈ S(L), i.e. that for every literal λ occurring in unfold(ψ{n ← n + 1}), we have λ ∈ L. Let λ be a literal in unfold(ψ{n ← n + 1}). By denition of unfold, there exists a literal λ ′ occurring in ψ such that either λ = λ ′ {n ← n + 1} or λ = λ ′ {i ← n + 1}. We distinguish two cases:

If λ ′ has been introduced by an application of the rule Elimination, then by denition λ ′ ∈ L. Moreover it is n-elementary and ground. Thus we must have λ = λ ′ {n ← n + 1} (since λ ′ contains no occurrence of i). By Condition 2 in Denition 6 (denition of a frame), we deduce λ ∈ L. Otherwise, λ ′ must occur in unfold(ϕ{n ← n+1}). Furthermore, it must be nelementary. Since ϕ ∈ S(L), λ ′ ∈ L. Thus λ ′ {n ← n+1} ∈ L, by Condition 2 in Denition 6. If λ = λ ′ {n ← n + 1} then the proof is completed. Otherwise, by Condition 1 in Denition 6 we have λ ′ {i ← n + 1} ∈ L, i.e. λ ∈ L.

F Proof of Theorem 3

The depth of a schema or an iteration body is dened as usual: depth(ϕ)

@AB = 0 if ϕ is a literal, depth(ϕ ⋆ ψ) @AB = max(depth(ϕ), depth(ψ)) + 1 (if ⋆ = ∨, ∧) depth(¬ϕ) @AB = depth(ϕ + 1), depth( ∨ α+k i=0 ϕ) @AB = depth( ∧ α+k i=0 ϕ) @AB = depth(ϕ) + 1.
Then we dene the function depth ∧ (ϕ) as follows (it is identical to depth(ϕ), except that all the conjunctions at root level are ignored): depth ∧ (ϕ)

@AB = depth(ϕ)
if ϕ is not a conjunction, and depth ∧ (ϕ 1 ∧ ϕ 2 ) @AB = max(depth ∧ (ϕ 1 ), depth ∧ (ϕ 2 )).

We have the following: Proposition 7. Let L be a frame. Let d ∈ N. The set of schemata ϕ such that ϕ ∈ S(L) and depth ∧ (ϕ) ≤ d is nite up to contraction.

Proof. By denition, ϕ can be written as

ϕ 1 ∧ • • • ∧ ϕ k where ϕ 1 , . . . , ϕ k are not conjunctions. Then we have depth ∧ (ϕ) = max l∈[1,k] depth(ϕ l ), hence ∀l ∈ [1, k], depth(ϕ l ) ≤ d.
Since the set of literals possibly occurring in ϕ 1 , . . . , ϕ k is nite and since the depth of ϕ 1 , . . . , ϕ k is bounded, the set of possible schemata ϕ 1 , . . . , ϕ k is nite, and thus the set of possible schemata ϕ is nite up to contraction.

⊓ ⊔

We write ψ ⊏ ϕ if ϕ is of the form ψ ∧ ψ ′ (modulo the AC property of ∧). Intuitively, a conjunction ψ 1 ∧ • • • ∧ ψ k is seen as a set as it is the case in the tableau calculus considered here and ⊏ denotes the membership of this set. Proposition 8. Let ψ be a schema in E ρ * •unfold (ϕ). Let Π α i=0 ζ be an iteration in ψ (where Π ∈ { ∧ , ∨ }). Then the following conditions hold:

1. If ψ ̸ = ϕ then α = n. 2. ζ occurs in ϕ. 3. If ϕ ̸ = ψ and ζ contains i + 1 then Π n i=0 ζ ⊏ ψ. 4. If ϕ ̸ = ψ and ζ does not contain i + 1 then Π n i=0 ζ occurs in a schema of the form Π n i=0 ζ π ζ{i ← n + 1} in ψ, where π ∈ {∨, ∧}. 5. If ϕ ̸ = ψ, ψ ̸ ∈ ρ * (unfold(ϕ{n ← n + 1})) and ζ does not contain i + 1 then Π n i=0 ζ π ζ{i ← n + 1} ⊏ ψ. 6. If λ ⊏ ψ and λ contains no iteration then depth(λ) ≤ depth(ϕ).
Proof. The proof is by induction on the construction of the set

E ρ * •unfold (ϕ). It is straightforward if ϕ = ψ. Otherwise, by denition of E ρ * •unfold (ϕ), ψ occurs in a set ρ * (unfold(ψ ′ {n ← n + 1})), where ψ ′ is some schema in E ρ * •unfold (ϕ) (with possibly ψ ′ = ϕ).
Since the rules in ρ * do not introduce new iterations, Π α i=0 ζ must occur in unfold(ψ ′ {n ← n + 1}). This implies that the iteration is irreducible by unfolding hence α = n (1). Furthermore, Π α i=0 ζ cannot occur in a schema of the form ψ ′ {n ← n + 1} (precisely because α = n) hence it must have been generated by unfolding. Thus it occurs in a schema of the form Finally, let λ ⊏ ψ be an iteration-free schema. Since the rules in ρ cannot increase the depth of the schema, there exists an iteration-free schema λ ′ ⊏ unfold(ψ ′ {n ← n + 1}) such that depth(λ ′ ) ≥ depth(λ). Then, since λ ′ contains no iteration it either occurs in ψ ′ {n ← n+1} or in a schema ζ{i ← n+1}, where ζ is an iteration body in ψ ′ . In both cases we have obviously depth(λ ′ ) ≤ depth(ϕ) (by induction hypothesis) thus depth(λ) ≤ depth(ϕ) [START_REF] Dutertre | The YICES SMT-solver[END_REF].

(Π n i=0 ζ)π(ζ{i ← n + 1}) in unfold(ψ ′ {n ← n + 1}) (where π = ∨ if Π = ∨ and π = ∧ if Π = ∧ ).
⊓ ⊔

Let ψ be a schema in E ρ * •unfold (ϕ) distinct from the ones in {ϕ} ∪ ρ * (unfold(ϕ{n ← n + 1})). ψ can be written in the form ψ 1 ∧ • • • ∧ ψ k where the ψ 1 , . . . , ψ k are not conjunctions. If some ψ l (for l ∈ [1, k]) contains an iteration then by the previous proposition (5) it is either an iteration in ϕ or of the form Π n i=0 ζπ(ζ{i ← n + 1}) where Π n i=0 ζ is an iteration in ϕ. This implies that the depth of ψ l is bounded by depth(ϕ) + 1 (since the depth of Π n i=0 ζ is lower or equal to the one of ϕ). If ψ l is not an iteration, then by the previous proposition [START_REF] Dutertre | The YICES SMT-solver[END_REF] we know that depth(ψ l ) ≤ depth(ϕ). Thus by Proposition 7 we conclude that the set E ρ * •unfold (ϕ) is nite (up to contraction).

G Proof of Theorem 4

Lemma 5. Let λ 1 , . . . , λ k be a set of ground literals such that, for every l ∈ [1, k], Ind(λ l ) is of the form {n + m + 1}, for some m ∈ N (possibly depending on l).

If λ 1 ∧ • • • ∧ λ k is T -satisable then (λ 1 ∧ • • • ∧ λ k ){n ← l} is T -satisable, for any l ∈ N.
Proof. Let I ∈ T be a model of λ 1 ∧ • • • ∧ λ k . We obtain a model of (λ 1 ∧ • • • ∧ λ k ){n ← l + 1} by interpreting every indexed symbol f m such that m ≥ l as ⟨f m-l+⟨n⟩ I ⟩ I (since the indexed symbols are non-built-in, the obtained interpretation is still in T ). Notice that the interpretation of f 0 is not aected. It is easy to prove that for every expression ψ occurring in λ 1 ∧ • • • ∧ λ k , we have

⟨ψ⟩ I = ⟨ψ{n ← l + 1}⟩
J (by a straightforward induction on ψ).

⊓ ⊔

Let I be an interpretation satisfying ∆(λ 1 ∧ • • • ∧ λ k ). Then we must have

∆(λ 1 ∧ • • • ∧ λ k ) = JHKA hence λ 1 ∧ • • • ∧ λ k is T -satisable. Let J ∈ T such that J |= λ 1 ∧• • •∧λ k .
By Lemma 5, we can assume that ⟨n⟩ I = ⟨n⟩ J . Since λ 1 , . . . , λ k are non-n-elementary, for every i ∈ [1, k], Ind(λ i ) contains an expression of the form n + l where l > 1. But then, since L is homogeneous, every index in Ind(λ i ) must have this property. Thus the truth value of λ i in J only depends on the interpretation of the indexed symbols f α where α > ⟨n⟩ J + 1. Thus we can assume that J coincides with I on every indexed symbol f α where α ≤ ⟨n⟩ J + 1. Then we have J ∼ L⋄ I. Now, assume that there exists an interpretation J ∼ L⋄ I such that J |=

λ 1 ∧ • • • ∧ λ k . By Lemma 5, (λ 1 ∧ • • • ∧ λ k ){n ← 0} is T -satisable. Then by denition ∆(λ 1 ∧ • • • ∧ λ k ) = JHKA and obviously I |= ∆(λ 1 ∧ • • • ∧ λ k ).
H Proof of Theorem 5 Lemma 6. Let I, J be two interpretations such that I ∼ L ≼ J. If λ is a ground n-elementary literal in L ≼ then ⟨λ⟩ I = ⟨λ⟩ J . Proof. By inspection of the dierent cases in the denition of L ≼ , it is easy to see that λ must be of the form λ ′ {i ← n}, for some λ ′ ∈ L ≼ (since λ contains no occurrence of n + 2). Then by denition of ∼ L ≼ we deduce that ∀k ∈ [0, ⟨n⟩ I ], ⟨λ ′ {i ← k}⟩ I = ⟨λ ′ {i ← k}⟩ J hence in particular (for k = ⟨n⟩ I ) that ⟨λ⟩ I = ⟨λ⟩ J .

⊓ ⊔

Let ϕ be a conjunction of ground non-n-elementary literals in L ≼ . Let I be an interpretation. Assume that there exists an interpretation J ∼ L ≼ I satisfying ϕ. Then for every pair of literals a n+2 ≈ u and a n+2 ≈ v occurring in ϕ we must have J |= u ≈ v, thus J |= τ (u ≈ v). Since by denition every literal in τ (u ≈ v) is n-elementary and occurs in L ≼ , by Lemma 6, I and J coincide on τ (u ≈ v) hence I |= τ (u ≈ v). Finally, if ϕ |= u ≼ v and if u ≼ v is n-elementary and is in L ≼ , then we must have J |= u ≼ v (since J |= ϕ) and by Lemma 6: I |= τ (u ≼ v). Thus I |= ∆ ≼ (ϕ). Now, assume that I |= ∆ ≼ (ϕ). Let ≥ be the interpretation of ≽ in I. W.l.o.g. we assume that for every constant symbol a ∈ C ≼ there exists at least one term m a without index such that a n+2 ≽ m a occurs in ϕ. If it is not the case, it suces to add to ϕ, for every a ∈ C ≼ , the literal a n+2 ≽ m a , where m a is a fresh non-indexed constant symbol of the same sort as a. Then the interpretation I is extended by interpreting m a as an arbitrary value lower or equal to all other ground terms of the same sort in I.

Let J be the interpretation coinciding with I except for the interpretation of the indexed constants of the form a ⟨n⟩ I +2 where a ∈ C ≈ ∪ C ≼ , that are dened as follows:

If a ∈ C ≼ then ⟨a n+2 ⟩ J is the maximal (according to the ordering ≤) value ⟨u⟩ I such that u is an n-elementary term with ϕ |= a n+2 ≽ u. If a ∈ C ≈ and ϕ contains a literal a n+2 ≈ u then ⟨a n+2 ⟩ J @AB = ⟨u⟩ I . Since I |= ∆ ≼ (ϕ), we have I |= E(ϕ) (by denition of ∆ ≼ ) hence for every pair of literals a n+2 ≈ u and a n+2 ≈ v occurring in ϕ we must have I |= τ (u ≈ v) ≡ T u ≈ v. Therefore the interpretation of a n+2 does not depend on the choice of u. If no such term u exists the interpretation of a n+2 is arbitrary.

By construction, it is clear that I ∼ L ≼ J (since I and J coincide on every symbol whose index is in [0, ⟨n⟩ I + 1]). Now we prove that J |= ϕ. Let λ be a literal in ϕ. We distinguish several cases, according to the form of λ (see the denition of L ≼ ):

λ is of the form a n+2 ≽ u, where u is an n-elementary term. We have ϕ |= a n+2 ≽ u, hence ⟨a n+2 ⟩ J ≽ ⟨u⟩ I = ⟨u⟩ J . Thus J |= λ. λ is of the form a n+2 ≽ b n+2 , where a, b ∈ C ≼ . We have ϕ |= b n+2 ≽ u ⇒ ϕ |= a n+2 ≽ u, hence by denition ⟨a n+2 ⟩ J ≥ ⟨b n+2 ⟩ J . Thus J |= λ. λ is of the form a n+2 ≼ u, where u is an n-elementary term. By denition, there exists an n-elementary term v such that ⟨a n+2 ⟩ J = ⟨v⟩ I = ⟨v⟩ J and ϕ |= a n+2 ≽ v. Then we must have by transitivity ϕ |= v ≼ u. u and v are both n-elementary. Moreover, by denition of L ≼ the inequation v ≼ u must occur in L ≼ . Thus E(ϕ) contains the literal v ≼ u, by denition of ∆ ≼ . Consequently we have I |= v ≼ u, hence ⟨v⟩ I ≤ ⟨u⟩ I . Since I and J coincide on n-elementary terms, this implies that J |= λ. λ is of the form a n+2 ≈ u. The proof is immediate by construction of J.

Example 4 .

 4 Let a : nat, b : int ∈ C≈, c : int, d : int ∈ C ≼ , e : int and f : int. Let θ(a) = {an+1 + 1, 0, 1, 2} and θ(b) = {bn+1 + cn+1, bn+1 + e}.

Proposition 4 .

 4 Let ϕ be a schema and let I be an interpretation. ⟨ϕ⟩ I•{n →α} = ⟨ϕ{n ← α}⟩ I .

Proposition 6 .

 6 If ϕ Ψ ∪ {ψ} and ψ Ψ ′ then ϕ Ψ ∪ Ψ ′ .Proof. Immediate.

  notice that by irreducibility w.r.t. unfold, the upper bound of the iterations must be n). ⟨ϕ⟩ I = JHKA i there exists l ∈ [0, ⟨n⟩ I ] such that ⟨ψ{i ← l}⟩ I = JHKA i.e. by Proposition 4, I • {n → l} |= ψ. Since l ≤ ⟨n⟩ I , by the induction hypothesis, ⟨ψ{i ← l}⟩ I = ⟨ψ{i ← l}⟩ J . Thus ⟨ψ⟩ I = ⟨ψ⟩

  Inequalities of the form i ≤ m where m is an

	additional parameter interpreted as an element of [0, n] can be encoded by
	atoms p ≤m i dened by the following axioms: ¬p ≤m n+1 ∧p ≤m 0 ∧ Then i ≈ m can be dened using ∧ n i ⇔ p ≤m i ∧ ¬p ≤m i+1 ) and a disequality ∧ n i=0 (p ≤m i ). i+1 ⇒ p ≤m i=0 (p =m m ̸ ≈ k can be tested by the schema:

  Then necessarily an iteration of the form Π n+k i=0 ζ must occur in ψ ′ . By the induction hypothesis, ζ occur in ϕ (2). By the induction hypothesis, sinceψ ′ ̸ = ϕ, Π n i=0 ζ occurs in a schema Π n i=0 ζπ(ζ{i ← n+1}) in ψ ′ . Then ψ ′ {n ← n+1} contains Π n+1 i=0 ζπ(ζ{i ← n+2}) which is reduced by unfolding to Π n i=0 ζπ(ζ{i ← n + 1})π(ζ{i ← n + 2}). ζ{i ← n + 2} is non-n-elementary (since ζ contains i) hence the decomposition rules in ρ apply on the previous schema and we must have Π n i=0 ζπ(ζ{i ← n + 1}) ⊏ ψ (5).

	Assume that ζ contains i + 1. Then (Π n i=0 ζ)π(ζ{i ← n + 1}) is necessar-
	ily non-n-elementary. Hence it must be decomposed by the rules in ρ and we
	must have Π n

i=0 ζ ⊏ ψ (3). Now, assume that ζ does not contain i + 1. Then

(Π n i=0 ζ)π(ζ{i ← n + 1}) in unfold(ψ ′ {n ← n + 1}

) is n-elementary, hence it cannot be decomposed by the rules in ρ. Therefore, it must occur in ψ (4).

Assume that ψ ̸ ∈ ρ * (unfold(ϕ{n ← n + 1})) and that ζ does not contain i + 1.

As explained in the Introduction, a trivial way to construct a model of a schema ϕ (if it exists) is to enumerate all the possible values for n and then test the T -satisability of the obtained sentences. Denition 3 formalizes this idea in a way that will be convenient for our purpose. We enumerate all possible instances of ϕ by instantiating recursively n by n + 1. A given simplication function Γ is systematically applied to the instantiated schemata: Denition 3. Let Γ be a simplication function. The Γ -expansion of a schema ϕ ∈ S is the set of schemata E Γ (ϕ) inductively built as follows:1. ϕ ∈ E Γ (ϕ). 2. If ψ ∈ E Γ (ϕ) then Γ (ψ{n ← n + 1}) ⊆ E Γ (ϕ).Theorem 2. Let Γ be a simplication function and let ϕ be a schema. ϕ is T -satisable i E Γ (ϕ) contains a schema ψ such that ψ{n ← 0} is T -satisable.