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Schemata of SMT-problems

Vincent Aravantinos and Nicolas Peltier

University of Grenoble (LIG, CNRS)

Abstract. A logic is devised for reasoning about iterated schemata of
SMT problems. The satis�ability problem is shown to be undecidable
for this logic, but we present a proof procedure that is sound, complete
w.r.t. satis�ability and terminating for a precisely characterized class of
problems. It is parameterized by an external procedure (used as a black
box) for testing the satis�ability of ground instances of the schema in
the considered theory (e.g. integers, reals etc.).

1 Introduction

In [1] a logic is de�ned for reasoning on schemata of propositional formulae. It
extends standard propositional logic by using indexed symbols (e.g. p0, pi, pi+1,
etc.), arithmetic parameters (i.e. constant symbols interpreted as natural num-
bers) and iterated connectives such as

∨n

i=0 pi or
∧n

i=0 pi (where n denotes a
parameter, not a �xed number) that can be viewed as formulae with bounded
quanti�ers ∃i ∈ [0, n], pi and ∀i ∈ [0, n], pi. It is shown that the validity prob-
lem is undecidable when arbitrary indices and (linear) arithmetic expressions are
considered. The problem is co-semi-decidable and decision procedures of �reason-
able� complexity can be de�ned for some interesting classes (see [2] for details).
A simple example is the following schema: p0 ∧ pn+1 ∧

∧n

i=0(pi ⇔ ¬pi+1), that
is satis�able if and only if n is odd. This formula can be reduced into a propo-
sitional one by �xing the value of n, e.g. for n← 0: p0 ∧ p1 ∧ (p0 ⇔ ¬p1), or for
n← 1: p0 ∧ p2 ∧ (p0 ⇔ ¬p1)∧ (p1 ⇔ ¬p2). A SAT-solver can determine whether
the formula is satis�able or unsatis�able for a given value of n and a model
can be found (if it exists) by enumerating all possible values (n ← 0, 1, 2, . . . ).
However, proving that such a formula is unsatis�able for all values of n (which
is the case for instance if one adds the constraint n = 2 × m) is much di�cult,
and usually requires to use some particular form of mathematical induction. The
proof procedure described in [1] combines usual tableaux-based decomposition
rules with lazy instantiation of the parameter and a loop detection mechanism
that captures a restricted form of �descente in�nie� induction reasoning ensuring
completeness in some cases.

Our aim in this paper is to extend these results to schemata of (quanti�er-
free) SMT-problems (standing for Satis�ability Modulo Theory). Proving the
unsatis�ability (or satis�ability) of a ground formula modulo some background
theory is an essential problem in computer science, in particular for the auto-
matic veri�cation of complex systems. In software veri�cation for example, the
background theory can de�ne data structures such as integers, arrays or lists.



These problems are known as T -decision problems or more commonly, SMT prob-
lems, and the tools capable of solving these problems are known as T -decision
procedures, or SMT solvers. A lot of research has been devoted to the design of
SMT solvers that are both e�cient and scalable. A survey can be found in [3].

The schemata we consider in this paper may be seen as (countably in�nite)
families of SMT-problems, parameterized by a natural number n. Both the sig-
nature of problems and the set of axioms may depend on n. Consider for instance
the following formula, representative of those arising in, e.g, verifying programs
handling arrays:

∧n

i=0 ai+1 ≽ ai∧
∧n

i=0 bi+1 ≼ bi∧a0 ≽ b0∧an+1 ≼ c∧bn+1 ≻ c.
It is not hard to see that this example is unsatis�able. Again, by instantiating
n, say to 1, we get a ground formula: a1 ≽ a0 ∧ a2 ≽ a1 ∧ b1 ≼ b0 ∧ b2 ≼
b1 ∧ a0 ≽ b0 ∧ a2 ≼ c ∧ b2 ≻ c. The satis�ability of this formula modulo, e.g.,
arithmetic can be tested by any SMT-solver. However proving that the origi-
nal schema is unsatis�able for every n ∈ N is out of the scope of these tools.
One can of course encode such a schema as a non-ground (i.e. with universal
quanti�er) SMT-problem, simply by considering n as a constant symbol of sort
integer, by writing indices as arguments, and by replacing iterated connectives
by quanti�ers:

∀i, 0 ≼ i ∧ i ≼ n⇒ a(i+ 1) ≽ a(i)
∧ ∀i, 0 ≼ i ∧ i ≼ n⇒ b(i+ 1) ≼ b(i)
∧ a(0) ≽ b(0) ∧ a(n+ 1) ≼ c ∧ b(n+ 1) ≻ c

However, this is of no practical use since of course there is no complete and
terminating procedure for solving non-ground SMT-problem. The heuristics that
are used by SMT-solvers to handle quanti�ers, although rather e�cient and pow-
erful in some cases, cannot handle such formulae. For instance the well-known
SMT-solver Yices [6] that uses E-matching [5] for instantiating universally quan-
ti�ed variables fails to establish the unsatis�ability of this schema. Some com-
plete techniques have been proposed for instantiating universal quanti�ers [7]
but they do not terminate in our case. Alternatively, indexed constant symbols
can be modeled by arrays (with quanti�ers on the indices), however the ob-
tained formulae are again outside the known decidable classes [4, 8]. The reason
is that the formulae obtained by encoding schemata of SMT-problems cannot,
in general, be reduced to unsatis�able ground formulae by �nitely grounding the
universally quanti�ed variables: the logic is not compact and using mathematical
induction is required. Our approach extends SMT-solvers with a limited form of
mathematical induction.

The rest of the paper is structured as follows. In Section 2 we introduce the
syntax and semantics of our logic and we show that the satis�ability problem is
undecidable (even in cases in which purely propositional schemata are actually
decidable). In Section 3 we devise a very general and abstract proof procedure
that relies on semantic properties of the considered class of problems. In Section
4 we give concrete examples of classes satisfying the previous requirements, thus
turning the abstract procedure in Section 3 into concrete decision procedures for
these classes. Examples are provided in Section 5 and Section 6 brie�y concludes
the paper. Due to space restriction, the proofs are skipped to the Appendix.



2 Preliminaries

We de�ne the logic of T -schemata, where T is a theory (more precisely a class of
interpretations) for which the satis�ability problem is assumed to be decidable.

2.1 Syntax

We consider terms built on a signature containing indexed constants and func-
tion symbols, where the indices are arithmetic expressions. We assume that the
symbols are indexed by at most one index (e.g. ai,j is forbidden) and that the
expressions contain at most one occurrence of an arithmetic variable (e.g. ai+j

and even ai+i are not allowed, but fi+1(ai) and f0(ai) are)
1. We also assume

that the considered formulae contain a unique parameter, which is interpreted
by a natural number. More formally:

Let n and i be two distinct symbols. n is the parameter and i is the index
variable. The set of index expressions is {i, i+1}∪{succk(0) | k ∈ N}∪{succk(n) |
k ∈ N}. As usual, the expressions succk(0) and succk(n) (where k ∈ N) are
written k and n+ k respectively.

Let Sorts denote a set of sort symbols (containing in particular a symbol
bool) and let F denote a set of function symbols, partitioned into two disjoint
sets F = FI ⊎ FNI: the indexed symbols FI and the non-indexed symbols FNI.
Each symbol f ∈ F is mapped to a unique pro�le of the form s1, . . . , sk → s,
where k ∈ N and s1, . . . , sk, s ∈ Sorts. This is written f : s1, . . . , sk → s or
simply f : s if k = 0 (in this case f is a constant). If s = bool then f is a
predicate symbol. k is the arity of f . We assume that FNI contains in particular
a symbol true : bool.

The set T(s) of terms of sort s is the smallest set of expressions satisfying
the following conditions:

� If f : s1, . . . , sk → s is a non-indexed function symbol and if u1, . . . , uk are
terms of sort s1, . . . , sk respectively, then f(u1, . . . , uk) is a term of sort s.

� If f : s1, . . . , sk → s is an indexed function symbol, if α is an index expression
and if u1, . . . , uk are terms of sort s1, . . . , sk respectively, then fα(u1, . . . , uk)
is a term of sort s.

Note that, by construction, the only variable occurring in a term is i (there are
no non-arithmetic variables).

For instance, if FI = {a : elem, f : elem, elem → elem} and FNI = {b :
elem, p : elem → bool} then a0, an, ai+1, fn+2(a0, b), f0(ai+2, a3) are terms of
sort elem and p(ai+1) is a term of sort bool. Terms such as ai+2, ai+n are not
allowed (indeed, i+ 2 and i+ n are not index expressions).

Now we de�ne the syntax of formulae. For technical convenience, we assume
that all formulae are in negative normal form. An atom is of the form u ≈ v,
where u and v are two terms of the same sort. An atom of the form u ≈ true is

1 Removing these conditions yields undecidable logics, even in the purely propositional
case [1, 2], thus we prefer to add them immediately rather than de�ning a very general
formalism that will have to be strongly restricted at a later stage (as done in [1]).



non-equational. A literal is of the form u ≈ v or u ̸≈ v. For readability a literal
u ≈ true or u ̸≈ true is simply written u or ¬u. false is a shorthand for ¬true.

An iteration body is inductively de�ned as either a literal not containing n or
a formula of the form ϕ∨ψ or ϕ∧ψ where ϕ and ψ are iteration bodies. Finally,
a schema is inductively de�ned as follows:

� A literal not containing i is a schema.
� If ϕ and ψ are schemata then ϕ ∨ ψ and ϕ ∧ ψ are schemata.
� If ϕ is an iteration body containing i and α is an index expression of the

form k or n+ k (where k ∈ N) then
∨α

i=0 ϕ and
∧α

i=0 ϕ are schemata.

For readability, we will sometimes use the abbreviation u ≈ v ⇒ ψ (resp.
u ̸≈ v ⇒ ψ) for u ̸≈ v ∨ ψ (resp. u ≈ v ∨ ψ).

S denotes the set of all schemata. A schema is iteration-free i� it contains
no iterated connective

∨

or
∧

and parameter-free if it contains no occurrence of
n. A sentence is a schema that is both iteration-free and parameter-free. Such a
schema may be viewed as a standard (quanti�er-free) formula in the usual sense
(with function symbols indexed by natural numbers), but we prefer not to use
the word �formula� to avoid confusions.

For instance ϕ1 :
∨n

i=0 (ai+1 ≈ f(bi) ∧ bi+1 ≈ g(ai)), ϕ2 : an+1 ≈ f(bn) ∧

bn+1 ≈ g(an), ϕ3 :
∨3

i=0 (ai+1 ≈ f(bi) ∧ bi+1 ≈ g(ai)) and ϕ4 : a1 ≈ f(b0)∧ b1 ≈
g(a0) are schemata. ϕ2 and ϕ4 are iteration-free, ϕ3 and ϕ4 are parameter-free
and ϕ4 is a sentence.

An expression may be a term, a vector of terms, an iteration body or a
schema. It is ground if it contains no occurrence of i (notice that it may contain
the parameter n) and non-indexed if it contains no indexed symbols (by de�nition
all non-indexed expressions are ground).

Let α be a ground index expression. If ϕ is an iteration body then ϕ{i← α}
denotes the iteration-free schema obtained from ϕ by replacing all occurrences
of i by α. If ϕ is a schema or an index expression, then ϕ{n ← α} denotes the
schema or index expression obtained from ϕ by replacing all occurrences of n by
α.

If ϕ is an iteration-free schema or an iteration body, we denote by Ind(ϕ) the

set of index expressions occurring in ϕ: Ind(uα)
def

= {α}, Ind(u ≈ v) = Ind(u ̸≈

v) = Ind(u) ∪ Ind(v), Ind(ϕ ⋆ ψ)
def

= Ind(ϕ) ∪ Ind(ψ) if ⋆ ∈ {∨,∧}.

2.2 Semantics

The semantics is straightforwardly de�ned. The only di�erence with �rst-order
logic is that the parameter must be interpreted by a natural number and that
the index variable ranges over N. More precisely, a schema interpretation (or

interpretation for short) I is a function mapping n to a natural number ⟨n⟩I ,

mapping each sort s ∈ Sorts to a non-empty set ⟨s⟩I , mapping each non-indexed

function symbol f : s1, . . . , sk → s to a function ⟨f⟩I : ⟨s1⟩
I
, . . . , ⟨sk⟩

I → ⟨s⟩I

and mapping each indexed function symbol f : s1, . . . , sk → s to a family of
functions ⟨f⟩Il : ⟨s1⟩

I
, . . . , ⟨sk⟩

I → ⟨s⟩I (where l ∈ N). The function x 7→ ⟨x⟩I is
then extended to any ground term or atom and to any schema as follows:



� If α is an index expression, then ⟨α⟩I
def

= α{n ← ⟨n⟩I}. Notice that ⟨α⟩I is
then equivalent to a natural number.

� ⟨f(v1, . . . , vk)⟩
I def

= ⟨f⟩I(⟨v1⟩
I
, . . . , ⟨vk⟩

I
).

� ⟨fα(v1, . . . , vk)⟩
I def

= ⟨f⟩I⟨α⟩I (⟨v1⟩
I
, . . . , ⟨vk⟩

I
).

� ⟨
∨α

i=0 ϕ⟩
I def

= true if there exists l ∈ [0, ⟨α⟩I ] such that ⟨ϕ{i← l}⟩I = true.

� ⟨
∧α

i=0 ϕ⟩
I def

= true if for all l ∈ [0, ⟨α⟩I ] we have ⟨ϕ{i← l}⟩I = true.

We omit the de�nitions for the symbols ≈, ̸≈,∨,∧, which are standard. If ϕ
is a schema, we write I |= ϕ i� ⟨ϕ⟩I = true. In this case, I is a model of ϕ and
ϕ is satis�able.

Usually, satis�ability is tested w.r.t. a particular class of interpretations, in
which the semantics of some of the symbols is �xed (for instance the sort symbol
int is interpreted as Z and + is interpreted as the addition). Let T be a class
of interpretations. ϕ is T -satis�able i� there exists I ∈ T such that I |= ϕ.
Two schemata ϕ and ψ are T -equivalent i� we have I |= ϕ ⇔ I |= ψ for every
interpretation I ∈ T and T -sat-equivalent i� ϕ and ψ are both T -satis�able
or both T -unsatis�able. We assume that there exists an algorithm for checking
whether a given sentence (i.e. a schema without iterated connective and without
parameter) is T -satis�able or not.

A function f is non-built-in if its interpretation is arbitrary, i.e. for every
interpretation I ∈ T , the interpretation obtained from I by changing only the
interpretation of f is also in T . We assume that every indexed symbol is non-
built-in (i.e. the only symbols whose interpretation is �xed are non-indexed).

Note that if I is an interpretation and α is a ground expression, then by
de�nition I ◦ {n 7→ α} is also an interpretation. I ◦ {n 7→ α} and I coincide

on every symbol, except on n. If α ∈ N then ⟨n⟩I◦{n 7→α}
= α and otherwise

⟨n⟩I◦{n 7→α}
= ⟨α⟩I .

Proposition 1. For every parameter-free schema ϕ one can compute a sen-
tence that is T -equivalent to ϕ. Thus the T -satis�ability problem is decidable for
parameter-free schemata.

As usual in SMT problems, we shall assume that the schemata are �attened,
i.e. for every term of the form f(u1, . . . , uk) occurring in the schema (where f is
possibly indexed) u1, . . . , uk are (possibly indexed) constant symbols. This is not
restrictive, for instance a term of the form f(g(ai), gi+1(a0)) can be replaced by
f(bi, ci), where the axioms

∧n

i=0 bi ≈ g(ai) and
∧n

i=0 ci ≈ gi+1(a0) are added
to the schema.

2.3 Extensions of the language

Several extensions of this basic language can be considered. We did not include
them in the previous de�nitions because they do not increase the expressive
power, but for readability we shall sometimes use them in the following.

� Inequality tests. Atoms of the form i ≤ k (where k ∈ N) can be added
in iteration bodies. This does not increase the expressive power since such
atoms can be equivalently replaced by atoms of the form p

≤k
i , where p≤k



is a fresh constant symbol of sort bool (depending on k), de�ned by the

following axioms: p≤k0 ∧ · · · ∧ p≤kk ∧ ¬p
≤k
k+1 ∧

∧n

i=0(p
≤k
i+1 ⇒ p

≤k
i ).

� Arbitrary lower bounds. Iterations whose lower bound is distinct from 0
can easily be expressed using the previous atoms:

∧n

i=k ϕ is written
∧n

i=0(i ≤
k − 1 ∨ ϕ) (if k > 0).

� Arbitrary translations. Terms of the form ai+k can also be consid-
ered, where k > 1. Indeed, such a term can be replaced by a fresh
constant symbol a+ki , where a+k is de�ned by the following axioms:
∧n+k

i=0

(

a+0
i ≈ ai ∧ a

+1
i ≈ a

+0
i+1 ∧ · · · ∧ a

+k
i ≈ a+k−1

i+1

)

.
� Additional parameters. Inequalities of the form i ≤ m where m is an

additional parameter interpreted as an element of [0, n] can be encoded by

atoms p≤m
i de�ned by the following axioms: ¬p≤m

n+1∧p
≤m

0 ∧
∧n

i=0(p
≤m

i+1 ⇒ p
≤m
i ).

Then i ≈ m can be de�ned using
∧n

i=0(p
=m
i ⇔ p

≤m
i ∧¬p

≤m

i+1) and a disequality
m ̸≈ k can be tested by the schema:

∧n

i=0(¬p
=m
i ∨ ¬p

=k
i ).

� Using the parameter in iteration bodies. A term of the form an can be
replaced by a fresh non-indexed constant b, with the axiom: b ≈ an.

2.4 Undecidability

The next theorem states that the considered logic is undecidable in general.

Theorem 1. The satis�ability problem is undecidable for S.

This result does not follow from the undecidability results in [1] or [2] (for
propositional schemata) because the schemata considered here are much more
restricted. The satis�ability problem is actually decidable if we restrict to propo-
sitional formulae (see Section 4.1). Intuitively, even though the language is su�-
ciently restricted to obtain decidability in the non-equational case, the equational
part of the language adds enough power to �retrieve� the undecidability. This
shows that the extension of schemata to SMT-problems is a di�cult task.

3 Proof procedure

We de�ne a proof procedure for testing the satis�ability of schemata that is
sound and complete w.r.t. satis�ability. We show that, under some particular
semantic conditions (depending both on the theory T and on the considered
class of schemata), this procedure can be turned into a decision procedure.

3.1 Enumerating interpretations

We �rst de�ne a semi-decision procedure for schemata. It is very simple but suf-
�cient for our purposes. It is parameterized by a simpli�cation function which is
a function replacing a schema by a set of schemata (interpreted as a disjunction)
in such a way that satis�ability is preserved.

De�nition 1. Let ϕ be a schema and let Ψ be a set of schemata. We write
ϕ Ψ i� the following conditions hold:

1. For every I ∈ T , if I |= ϕ then there exists ψ ∈ Ψ such that I |= ψ.



2. For every I ∈ T , if there exists ψ ∈ Ψ such that I |= ψ then there exists an

interpretation J ∈ T such that J |= ϕ and ⟨n⟩J = ⟨n⟩I .

For instance, we have ϕ ∨ ψ  {ϕ, ψ}, (ϕ ∨ ϕ′) ∧ ψ  {ϕ ∧ ψ, ϕ′ ∧ ψ}, or
p0 ∧ ϕ  {ϕ} if the indexed predicate symbol p does not occur in ϕ. We also

have
∨n+1

i=0 ϕ {
∨n

i=0 ϕ, ϕ{i← n+1}}. However we have ¬p0∧pn ̸ {true} or
¬p0 ∧

∨n

i=0 pi ̸ {true} (although ¬p0 ∧ pn, ¬p0 ∧
∨n

i=0 pi and true are T -sat-
equivalent). Notice that if ϕ  Ψ then ϕ is T -sat-equivalent to the disjunction
of the schemata in Ψ . Furthermore, if ϕ and the disjunction of the schemata in
Ψ are equivalent then obviously ϕ Ψ .

De�nition 2. A simpli�cation function is a total function Γ : S → 2S such
that for every ϕ ∈ S, ϕ Γ (ϕ).

As explained in the Introduction, a trivial way to construct a model of a
schema ϕ (if it exists) is to enumerate all the possible values for n and then
test the T -satis�ability of the obtained sentences. De�nition 3 formalizes this
idea in a way that will be convenient for our purpose. We enumerate all possible
instances of ϕ by instantiating recursively n by n + 1. A given simpli�cation
function Γ is systematically applied to the instantiated schemata:

De�nition 3. Let Γ be a simpli�cation function. The Γ -expansion of a schema
ϕ ∈ S is the set of schemata EΓ (ϕ) inductively built as follows:

1. ϕ ∈ EΓ (ϕ).
2. If ψ ∈ EΓ (ϕ) then Γ (ψ{n← n+ 1}) ⊆ EΓ (ϕ).

Theorem 2. Let Γ be a simpli�cation function and let ϕ be a schema. ϕ is
T -satis�able i� EΓ (ϕ) contains a schema ψ such that ψ{n← 0} is T -satis�able.

Theorem 2 implies that T -satis�ability is semi-decidable for schemata in
S. Indeed, to test whether ϕ ∈ S is T -satis�able, it su�ces to construct the
Γ -expansion EΓ (ϕ) of ϕ (using a straightforward simpli�cation function, e.g.
Γ (ϕ) = {ϕ}). By De�nition 3, EΓ (ϕ) is recursively enumerable. By Theorem 2,
ϕ is T -satis�able i� a schema ψ such that ψ{n ← 0} is T -satis�able is eventu-
ally obtained. The satis�ability of ψ{n ← 0} is decidable by Proposition 1. Of
course, as such, this algorithm is very ine�cient and seldom terminates (when
the schema at hand is unsatis�able): its e�ciency and termination essentially
depend on the choice of the simpli�cation function.

The next de�nition states a condition on Γ ensuring that all the schemata
in EΓ (ϕ) remain in a given class.

De�nition 4. Let C be a class of schemata. A simpli�cation function Γ is C-
preserving i� ϕ ∈ C ⇒ Γ (ϕ{n← n+ 1}) ⊆ C.

Proposition 2. Let C be a class of schemata. Let ϕ ∈ C and let Γ be a C-
preserving simpli�cation function. EΓ (ϕ) ⊆ C.



3.2 Terminaison

We de�ne a simpli�cation function ensuring terminaison (for a particular class of
schemata) of the proof procedure de�ned in Section 3. The intuitive idea is the
following: the Γ -expansion of a given schema ϕ is in�nite in general, since the
recursive replacement of n by n+1 creates schemata with increasingly deep index
expressions. For instance from

∧n

i=0(pi ⇒ pi+1) one gets
∧n+1

i=0(pi ⇒ pi+1),
∧n+2

i=0(pi ⇒ pi+1), . . . A �rst step towards termination would be to have the
iteration

∧n

i=0(pi ⇒ pi+1) instead of this in�nite set of iterations. This is easily
obtained by unfolding the previous iterations (i.e. taking out the ranks n + 1,
n + 2, etc.). However we are of course left with the new formulae introduced
by those unfoldings. For instance, in the same example, one would get pn+1 ⇒
pn+2, pn+2 ⇒ pn+3, etc. One way to obtain termination is if we are able to
somehow simplify those new formulae (of course this simpli�cation depends on
the considered theory T ) so that they belong to a �nite set. This goal can be
reached, in particular, if the indices of the involved atoms are restricted to be
lower than n+ k for some �xed k ∈ N. It is actually su�cient to consider k = 1,
which leads to the following notion:

De�nition 5. A schema is n-elementary if it contains no index of the form
n+ k where k > 1.

The major problem is, of course, to transform the schemata into n-elementary
ones (preserving T -sat-equivalence). This may be done, in some particular cases,
by using decomposition and simpli�cation rules. In the previous example, the
unfolding yields:

∧n

i=0(pi ⇒ pi+1)∧(pn+1 ⇒ pn+2). Then in order to eliminate all
the indices greater than n+1, we only have to eliminate pn+2 which can be done
in this simple case by considering all the possible values for pn+2 (true or false).
This yields the disjunction of the following schemata:

∧n

i=0(pi ⇒ pi+1)∧¬pn+1

(if pn+2 is false) and
∧n

i=0(pi ⇒ pi+1) (if pn+2 is true).
Of course this case is an easy one, since the domain of the constant symbols

is �nite (thus every constant can be eliminated, if needed, by instantiation).

But consider the case:
∧n+1

i=0(ai ≈ f(ai+1)). Here the unfolding yields the literal
an+1 ≈ f(an+2). Since the domain is, a priori, not �nite, the same technique
cannot apply. Thus the ability to eliminate an+2 depends on the theory T : if, for
instance, f is the successor function on N then it su�ces to state that an+1 ≻ 0.

To ensure that non-n-elementary literals can always be eliminated, we will
have to impose additional conditions on the class of interpretations T and on the
considered schemata. To restrict the class of schemata we shall actually impose
conditions on the literals occurring in it:

De�nition 6. A frame L is a �nite set of literals such that for every λ ∈ L, the
two following conditions hold:

1. λ{i← n+ 1} ∈ L.
2. If λ is n-elementary then λ{n← n+ 1} ∈ L.

A schema ϕ is L-dominated if every literal occurring in ϕ (both in iteration
bodies and outside iterations) is in L.



Those conditions are useful to ensure that a class of n-elementary schemata
is closed under replacement of n by n+ 1 and unfolding of the iterations.

Example 1. The following set L is a frame: {f(ai) ≈ bi, f(ai) ̸≈ g(bi+1), f(an) ≈
bn, f(an) ̸≈ g(bn+1), f(an+1) ≈ bn+1, f(an+1) ̸≈ g(bn+2), f(an+2) ≈ bn+2}. The literals
f(ai) ≈ bi, f(ai) ̸≈ g(bi+1), f(an) ≈ bn, f(an) ̸≈ g(bn+1) and f(an+1) ≈ bn+1, are
n-elementary, f(an+1) ̸≈ g(bn+2) and f(an+2) ≈ bn+2 are not.

φ : (
∨n

i=0
f(ai) ≈ bi)∧f(an) ̸≈ g(bn+1) and ψ : (

∧n

i=0
f(ai) ̸≈ g(bi+1))∨f(an+2) ≈

bn+2 are L-dominated. φ is n-elementary, ψ is not.

The de�nition of the simpli�cation function is divided into two steps: unfold-
ing and decomposition.

Unfolding The �rst step simply aims at unfolding iterations, for instance by
replacing

∨n+1
i=0 ϕ by

∨n

i=0 ϕ ∨ ϕ{i ← n + 1}. Obviously this is possible only if
the lower bound of the iteration is strictly lower than the upper bound.

De�nition 7. If ϕ is a schema, we denote by unfold(ϕ) the schema obtained

from ϕ by replacing every subschema of the form
∧n+k

i=0 ψ or
∨n+k

i=0 ψ occurring in
ϕ such that k > 0 by (respectively): (

∧n

i=0 ψ)∧ψ{i← n+1}∧· · ·∧ψ{i← n+k}
and (

∨n

i=0 ψ) ∨ ψ{i← n+ 1} ∨ · · · ∨ ψ{i← n+ k}.

The unfolding transformation does not a�ect the semantics of the considered
schema. It is useful only to extract (when possible) the last operands of the
iterations in order to pave the way for the elimination of the terms with greatest
indices, which is done in the next subsection.

Decomposing schemata The second step is more complex. It aims at elimi-
nating, in a schema ϕ, all the symbols whose index is greater than n + 1. This
is the crucial part of our procedure, since the elimination of those symbols will
ensure that only �nitely many distinct schemata can be generated, hence that
EΓ (ϕ) is �nite. We now introduce the conditions on L and T that ensure that
the elimination of literals whose indices are strictly greater than n+1 is feasible.

If I, J are two interpretations, we write I ∼L J i� I and J coincide on every
literal obtained from a literal in L by replacing i by a natural number lower
or equal to n. More precisely, I ∼L J if I and J coincide on n and on every
sort symbol in Sorts, and if for every literal λ ∈ L containing i and for every
k ∈ [0, ⟨n⟩I ] we have ⟨λ{i← k}⟩I = ⟨λ{i← k}⟩J .

De�nition 8. A frame L is stably decomposable, relatively to a function ∆ :
S→ S, i� for all ground non-n-elementary literals λ1, . . . , λk ∈ L the following
conditions hold:

� ∆(λ1 ∧ · · · ∧ λk) is a boolean combination of ground n-elementary literals in
L.

� For every interpretation I, I |= ∆(λ1 ∧ · · · ∧ λk) i� there exists an interpre-
tation J such that J ∼L I and J |= λ1 ∧ · · · ∧ λk.



In what follows, we assume the existence of a frame L and of a function ∆ s.t.
L is stably decomposable w.r.t. ∆. Both depend on the theory T . Thus, applying
our method to a theory T requires that T be accompanied with a frame L and
a function ∆. We shall provide in Section 4 some examples of such frames and
functions depending on T .

We now de�ne the simpli�cation function. It is de�ned by means of a tableaux
calculus, using the usual propositional decomposition rules. These rules are re-
stricted to apply only on non-n-elementary schemata. The goal is to decompose
the schema in order to get rid of all non-n-elementary literals occurring at non-
root level. Then a new rule is de�ned, the so-called Elimination rule, in order
to eliminate non-n-elementary literals at root level, by taking advantage of the
existence of a function ∆ satisfying the conditions of De�nition 8.

A branch is a conjunction of schemata and a tableau is a set of branches. As
usual, tableaux are constructed using a set of expansion rules that are written

in the form:
S

S1 . . . Sk
meaning that a branch that is of the form S ∧ S ′

(up to the AC-properties of the connective ∧) is deleted from the tableau and
replaced by the k branches S1 ∧S

′, . . . , Sk ∧S
′. If k = 0 the rule simply deletes

(or closes) the branch. This is written
S
⊥
. Initially, the tableau contains only

one branch, de�ned by the schema at hand. We denote by ρ the following set of
expansion rules:

∨-Elimination:
φ ∨ ψ
φ ψ

If φ ∨ ψ is not n-elementary.

Closure:
φ ∧ ¬φ
⊥

Elimination:
λ1 ∧ · · · ∧ λk

∆(λ1 ∧ · · · ∧ λk)
If {λ1, . . . , λk} ⊆ L is the set of all the non-
n-elementary literals occurring in the branch.

We do not need a speci�c rule for the connective ∧ since branches are consid-
ered as conjunctions (thus the ∧-rule is implicitly replaced by the associativity
of ∧).

Proposition 3. The non-deterministic application of the rules in ρ terminates
on any schema.

For every schema ϕ, we denote by ρ∗(ϕ) an arbitrarily chosen normal form of
the tableau {ϕ} by the rules in ρ. Since tableaux are de�ned as sets of schemata
(conjunctions), ρ∗(ϕ) is a set of (irreducible) schemata (i.e. the leaves).

Example 2. Let φ = {(an+2 ≽ 0 ∧ an+2 ≈ bn+1 ∨ pn+1 ∨ pn)∧¬pn+1 ∧ (pn ∨ qn+1)}. The
application of the rules ∨-Elimination and Closure yields the two following branches:

an+2 ≽ 0 ∧ an+2 ≈ bn+1 ∧ ¬pn+1 ∧ (pn ∨ qn+1)

and
pn ∧ ¬pn+1 ∧ (pn ∨ qn+1)

Notice that the schema (pn ∨ qn+1) is not decomposed, because it is n-elementary.
The second branch contains no non-n-elementary schema hence is irreducible. The



non-n-elementary conjuncts in the �rst branch are an+2 ≽ 0 and an+2 ≈ bn+1. The
rule Elimination applies, and the function ∆ replaces these conjuncts by some T -sat-
equivalent conjunction of n-elementary literals. In this case, it is intuitively obvious that
we should take: ∆(an+2 ≽ 0 ∧ an+2 ≈ bn+1) = bn+1 ≽ 0 (see Section 4 for the formal
de�nition). Thus ρ∗(φ) = {bn+1 ≽ 0 ∧ ¬pn+1 ∧ (pn ∨ qn+1), pn ∧ ¬pn+1 ∧ (pn ∨ qn+1)}.

Let S(L) be the class of schemata ϕ such that unfold(ϕ{n ← n + 1}) is
L-dominated and such that the upper bound of all iterations in ϕ is n.

Lemma 1. Let L be a stably decomposable frame. ρ∗ ◦ unfold is an S(L)-
preserving simpli�cation function2.

To ensure termination, we introduce a contraction operation: ϕ ∧ ϕ → ϕ

which is applied modulo the usual AC properties of the connective ∧. Obviously
this rule preserves equivalence. A set of schemata is �nite up to contraction if
its normal form by the previous rule is �nite.

Theorem 3. Let L be a stably decomposable frame. If ϕ ∈ S(L) then
Eρ∗◦unfold(ϕ) is �nite up to contraction3. Thus the satis�ability problem is decid-
able for S(L).

4 Examples of stably decomposable frames

Theorems 2 and 3 de�ne a procedure for deciding the satis�ability of schemata
in S(L). However, it relies on the fact that L is stably decomposable, and on the
existence of a function ∆ satisfying the conditions of De�nition 8. Thus, it would
be of no use if no concrete example of (reasonably expressive) stably decompos-
able frame could be exhibited. The purpose of the present section is precisely to
turn this abstract and generic result into concrete decision procedures.

4.1 Literals containing at most one index

The �rst example is independent of the theory T . Intuitively, it corresponds to
the case in which each literal contains at most one index. Let L⋄ be the set of
�attened literals λ such that Ind(λ) ∈ {{n}, {n+ 1}, {n+ 2}, {i}, {i+ 1}, {0}}.
It is easy to check that L⋄ is a frame (it is �nite if the signature is �nite). Let
∆⋄ be the function de�ned as follows:

∆⋄(λ1 ∧ · · · ∧ λk)
def

=

{

true if (λ1 ∧ · · · ∧ λk) {n← 0} is T -satis�able
false otherwise.

Theorem 4. L⋄ is stably decomposable w.r.t. ∆⋄.

For instance, any purely propositional schema (i.e. any schema in which all
atoms are non-equational) is in S(L⋄)

4. Such schemata are essentially equivalent
to the ones considered in [1]. The function ∆⋄ should be compared with the
pure literal rule in [1] that serves a similar purpose. The intuition is that the
interpretation of the non-n-elementary literals does not interfere with the one
of n-elementary literals. Notice that the analysis is much simpler in the present
paper due to the strong syntactic restrictions.

2 See De�nition 4 for the notion of S(L)-preserving function.
3 See De�nition 3 for the notation EΓ (φ).
4 Provided indices greater than n+ 2 or 0 are eliminated as explained in Section 2.3.



4.2 Ordered theories

The second example is more speci�c and also more complex. We assume that
the signature contains a predicate symbol ≼ interpreted as a non-strict ordering
(in T ). Let C≈, C≼ be two disjoint sets of indexed constant symbols. Intuitively,
the constants in C≼ will only occur at the root level in non-strict inequations
or equations, whereas the ones in C≈ only occur in equations of some particular
form. More precisely, we assume that every constant symbol a ∈ C≈ is mapped to
a �nite set of terms θ(a), intended to denote the set of terms u such that an+2 ≈ u
is allowed to occur in the considered schema. Furthermore, we assume that for
all u, v ∈ θ(a), there exists an iteration-free n-elementary schema τ(u ≈ v)
such that τ(u ≈ v) ≡T u ≈ v. The intuition is as follows. If u and v occur in
θ(a), then the considered schema will possibly contain a conjunction of the form
an+2 ≈ u∧an+2 ≈ v. As explained in Section 3.2, the symbol an+2 will have to be
eliminated (since it is non-n-elementary) by applying an appropriate function ∆.
But to this purpose, one necessarily has to ensure that the equation u ≈ v holds.
The existence of the function τ guarantees that this property can be expressed
as an n-elementary schema.

De�nition 9. Let L≼ be the set of literals λ satisfying one of the following
conditions:
� λ is of the form u ≼ v5, where each of the u, v is either a non-indexed term

or of the form aα where a ∈ C≼ and α ∈ {n, n+ 1, n+ 2, i, i+ 1}.
� λ is of the form an+2 ≈ u where a ∈ C≈ and u ∈ θ(a).
� λ is of the form ai+1 ≈ v (resp. an+1 ≈ v) where a ∈ C≈ and v{i← n+1} ∈
θ(a) (resp. v{n← n+ 1} ∈ θ(a)).

It is easy to check that L≼ is a frame. We assume furthermore that for every
a ∈ C≈ and for all terms u, v ∈ θ(a), τ(u ≈ v) is L≼-dominated.

Before proceeding, we give a concrete example of a theory T for which θ(a)
and τ can be de�ned (it will be used in forthcoming examples).

Example 3. Assume that Sorts contains in particular the sort symbols nat, int and
real with their usual meanings. We assume that the signature contains the usual
functions + and ≼6and built-in constant symbols 0, . . . , k of sort nat. If a : s ∈ C≈, we
de�ne θ(a) as the set containing all terms in 0, . . . , k (if s is nat) and all terms of the
form an+1 + u where u is either a non-indexed term or of the form bn+1 where b ∈ C≼.
Then the function τ can be de�ned as follows:

� τ(an+1 + u ≈ an+1 + v)
def

= u ≈ v.

� τ(l ≈ l′)
def

= l ≈ l′ if Ind(l ≈ l′) = ∅.

� τ(an+1 + u ≈ l)
def

=
∨

l1+l2=l
(an+1 ≈ l1 ∧ u ≈ l2) if l ∈ {0, . . . , k}. Note that the

number of pairs (l1, l2) such that l1 + l2 = l must be �nite since by de�nition of
θ(a), a (and thus l, l1 and l2) must be of sort nat. Hence this iteration is not a
formal one but belongs to the meta-language. This would not be the case if a was
of sort int or real.

5 Of course, equations u ≈ v can also be considered, as abbreviations for u ≼ v∧v ≼ u.
6 For readability, we use the same notation for the symbols + and ≼ whatever may
be the type of their arguments.



It is easy to check that this function τ satis�es the desired properties.

De�nition 10. Let ∆≼ be the function de�ned as follows. For every conjunction
of literals ϕ, we denote by E(ϕ) the smallest set of schemata such that:

� If ϕ contains two literals of the form an+2 ≈ u and an+2 ≈ v then τ(u ≈ v) ∈
E(ϕ).

� If ϕ |= u ≼ v, u ≼ v is an n-elementary literal in L≼ and u ̸= v then
u ≼ v ∈ E(ϕ).

We de�ne: ∆≼(ϕ)
def

=
∧

ψ∈E(φ) ψ. Notice that E(ϕ) is necessarily �nite.

Example 4. Let a : nat, b : int ∈ C≈, c : int, d : int ∈ C≼, e : int and f : int. Let
θ(a) = {an+1 + 1, 0, 1, 2} and θ(b) = {bn+1 + cn+1, bn+1 + e}.

Let φ be the conjunction of the following literals:

an+2 ≈ an+1 + 1 an+2 ≈ 2 bn+2 ≈ bn+1 + cn+1

bn+2 ≈ bn+1 + e cn+1 ≼ dn+2 dn+2 ≼ dn+1 dn+2 ≼ f + 1

Then ∆≼(φ) is the conjunction of the following schemata:
an+1 ≈ 1 cn+1 ≈ e cn+1 ≼ dn+1 cn+1 ≼ f + 1

Theorem 5. L≼ is stably decomposable w.r.t. ∆≼.

Another trivial example of stably decomposable sets of literals that we do not
develop here, is the one in which every constant symbol indexed by an expression
n+ l where l > 1, is of a �nite sort. Indeed, in this case all such constants can be
straightforwardly eliminated by replacing them by each possible value (yielding
a disjunction of n-elementary schemata).

5 Examples

We provide in this section some examples of application of our technique.

Example 5. Let φ be the schema considered in the Introduction:
∧n

i=0
(ai+1 ≽ ai) ∧∧n

i=0
(bi+1 ≼ bi) ∧ a0 ≽ b0 ∧ an+1 ≼ c ∧ bn+1 ≽ c+ 1.

We compute the set of schemata Eρ∗◦unfold(φ). According to the de�nition, n must
be instantiated by n + 1 and the iterations are unfolded, yielding:

∧n

i=0
(ai+1 ≽ ai) ∧

an+2 ≽ an+1 ∧
∧n

i=0
(bi+1 ≼ bi) ∧ bn+2 ≼ bn+1∧a0 ≽ b0 ∧ an+2 ≼ c ∧ bn+2 ≽ c + 1.

In order to get rid of the symbols indexed by n + 2, we apply the rules in ρ. Since
the schema is already a conjunction of iterations and literals, no rule applies, except
Elimination. The conjunction of literals that are not n-elementary is an+2 ≽ an+1 ∧
bn+2 ≼ bn+1 ∧ an+2 ≼ c ∧ bn+2 ≽ c + 1. Applying the function ∆≼ (see De�nition 10),
we obtain: c ≽ an+1 ∧ c + 1 ≼ bn+1. Replacing the previous conjunction by its image
by ∆≼ yields a schema that is actually identical to the �rst one. Hence the procedure
stops (no further schema is generated) and we get Eρ∗◦unfold(φ) = {φ}. By Theorem 2,
the T -satis�ability of φ is thus equivalent to the one of φ{n← 0} which can be easily
tested by any SMT-solver.

Example 6. Consider the algorithm below, counting the number of occurrences o of an
element e in an array t. We want to check that if the �nal value of o is 1 then the
formula ∀i, j, ai ≈ e ∧ aj ≈ e ⇒ i ≈ j holds. This is modeled by a schema φ de�ned
as follows (oi : nat denotes the value of o at step i and ti : int is t[i], notice that we
cannot use the theory of arrays, since no stably decomposable frame has been de�ned
for this theory � this is left to future work).



i← 0
o← 0
while i ≼ n do

if t[i] = e then

o← o+ 1
end if

i← i+ 1
end while

φ :

o0 ≈ 0∧n

i=0
(ti ≈ e⇒ oi+1 ≈ oi+1)∧n

i=0
(ti ̸≈ e⇒ oi+1 ≈ oi)

on+1 ≈ 1∨n

i=0
(i ≈ m ∧ ti ≈ e)∨n

i=0
(i ≈ k ∧ ti ≈ e)

m ̸≈ k

m, k are additional parameters interpreted as elements of [0, n]. These parameters and
the literals i ≈ m, i ≈ k and m ̸≈ k can be encoded in our language as explained in
Section 2.3 (we omit the translation for readability). t is in C≼ and o is in C≈. The
schema is in S(L≼). The reader can check that Eρ∗◦unfold(φ) = {φ, ψ1, ψ2, ψ3}, where
ψ1, ψ2 and ψ3 are de�ned respectively by:

ψ1 : ψ2 : ψ3 :
o0 ≈ 0∧n

i=0
ti ≈ e⇒ oi+1 ≈ oi+1∧n

i=0
ti ̸≈ e⇒ oi+1 ≈ oi
on+1 ≈ 0
tn+1 ≈ e
n+ 1 ≈ m∨n

i=0
i ≈ k ∧ ti ≈ e
m ̸≈ k

o0 ≈ 0∧n

i=0
ti ≈ e⇒ oi+1 ≈ oi+1∧n

i=0
ti ̸≈ e⇒ oi+1 ≈ oi
on+1 ≈ 0
tn+1 ≈ e
n+ 1 ≈ k∨n

i=0
i ≈ m ∧ ti ≈ e
m ̸≈ k

o0 ≈ 0∧n

i=0
ti ≈ e⇒ oi+1 ≈ oi+1∧n

i=0
ti ̸≈ e⇒ oi+1 ≈ oi
on+1 ≈ 0
tn+1 ≈ e∨n

i=0
i ≈ m ∧ ti ≈ e∨n

i=0
i ≈ k ∧ ti ≈ e
m ̸≈ k

In order to check that φ is T -unsatis�able, one only has to test the T -satis�ability of
the sentences φ{n← 0}, ψ1{n← 0}, ψ2{n← 0} and ψ3{n← 0}.

The next example is slightly more complex, hence we only show the encoding
(to give a taste of the expressive power of the class S(L≼)).

Example 7. Consider the algorithm to the right, inserting a new element in a sorted
sequence. We want to check that the obtained sequence a′ is sorted, which is modeled
by the schema on the left.

b0 ∧ ¬bn+1 ∧ (
∧n

i=0
φ) ∧ ψ, where:

� b is true inside the �rst loop, false otherwise.
� φ is de�ned as follows: (¬bi ∨ new + 1 ≼ ai ∨ a

′
i ≈

ai ∧ bi+1)∧ (¬bi ∨ ai ≼ new∨ a′i ≈ new∧¬bi+1)∧
(bi+1 ∨ a

′
i+1 ≈ ai) ∧ (bi ∨ ¬bi+1).

� ψ states the fact that a′ is not sorted:∨n

i=0
(a′i ≻ c ∧ a

′
i+1 ≼ c).

It can be checked that the obtained schema is in
S(L≼). a, a

′ both occur in C≼.

i← 0
while ai ≼ new∧ i ≼ n do

a′i ← ai
i← i+ 1

end while

a′i ← new
while i ≼ n do

a′i+1 ← ai
i← i+ 1

end while

6 Conclusion

A logic has been de�ned for reasoning on parameterized families of SMT-
problems and a sound and complete (w.r.t. satis�ability) proof procedure has
been designed. It does not terminate in general (the logic is proven to be unde-
cidable) but we have devised semantic conditions on the underlying theory and



on the considered class of formulae that ensure that this proof procedure can
be turned into a decision procedure by adding appropriate simpli�cation rules.
Then, concrete examples of theories and classes of schemata satisfying these con-
ditions have been provided. Some simple examples of application have also been
proposed. Our method relies on the use of an external decision procedure for
the underlying theory. It applies to a wide range of theories (provided they are
decidable). In the present work, we mainly focus on examples in veri�cation, but
one could also handle for instance schemata of formulae in (decidable) modal or
description logics.

The implementation of this technique is part of future work. Another obvi-
ous line of research is to identify other classes of stably decomposable frames
(see Section 3.2) in order to extend the scope of our results (in particular, the
important theory of arrays should be considered). Concerning potential applica-
tions in veri�cation, automatic procedures for extracting schemata modeling the
algorithms as the ones in Section 5 ought to be devised and comparison with the
numerous existing techniques should be provided. A longer term goal would be to
consider quanti�cation, either as standard quanti�cation such as ∀x, ∀y, p(x, y)
or of schemata of quanti�cations such as ∀x1, . . . , xn, p(x1, . . . , xn) (where the
indexed variables and dots are part of the language).
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A Proof of Proposition 1

The only iterations occurring in ϕ are of the form
∨k

i=0 ψ (resp.
∧k

i=0 ψ) where
k ∈ N. Such an iteration7 is equivalent to (hence can be replaced by): ψ{i← 0}∨
ψ{i← 1}∨· · ·∨ψ{i← k} (resp. ψ{i← 0}∧ψ{i← 1}∧· · ·∨ψ{i← k}). After all
iterations have been replaced, one obtains a schema containing no iteration and
no occurrence of n, i.e. a sentence. By hypothesis, the T -satis�ability problem is
decidable for sentences.

B Proof of Theorem 1

In this section, we assume that T simply contains all the interpretations on
the considered signature (i.e. there are no built-in symbols). Notice that the
signature contains indexed constant symbols and non-indexed function symbols
(see below). The proof is by reduction to the Post correspondence problem.
Let k ∈ N and let (Γ 1, . . . , Γ k), (Λ1, . . . , Λk) be two sequences of words over
an alphabet A. For every word w ∈ A∗, |w| denotes the length of w (i.e. the
number of characters). w · w′ denotes the concatenation of the words w and
w′. If Ω ∈ {Γ,Λ}, i ∈ [1, k] and j ∈ [1, |Ωi|], we denote by Ωi(j) the j-th
character of the word Ωi (we do not use indices to avoid confusion with indexed
symbols in the language). We recall that the aim of the Post problem is to
determine whether there exists a non-empty sequence of indices (δ1, . . . , δl) such
that Γ δ1 · . . . · Γ δl = Λδ1 · . . . · Λδl . It is well known that this problem is not
decidable. The sequence δ1, . . . , δl is the sequence solution and Γ δ1 · . . . · Γ δl (or
equivalently Λδ1 · . . . · Λδl) is the word solution.

Signature

We consider three di�erent sorts A (intended to be interpreted as elements of A),
ind (elements of [1, k]) and seq (sequences of elements of [1, k]). We assume that
all the symbols ♠ in A are mapped to pairwise distinct non-indexed constant
symbols of sort A. For the sake of readability, the image of ♠ is also denoted by ♠.
Similarly, each natural number in [1, k] is considered as a non-indexed constant
symbol of sort ind. We encode sequences of indices (i.e. elements of [1, k]∗) using
two non-built-in function symbols head : seq→ ind and tail : seq→ seq, which
return respectively the �rst element of the sequence and its tail. The constant
symbol d : seq denotes the sequence solution δ = (δ1, . . . , δl) and nil : seq

denotes the empty sequence.
We use two indexed constants solΩ : A and FΩ : seq for each Ω ∈ {Γ,Λ}.

solΩ is used to stored the word solution Ωδ1 · . . . · Ωδl , more precisely solΩi is
the i + 1-th character of the word Ωδ1 · . . . · Ωδl (if i ≥ |Ωδ1 | + · · · + |Ωδl |
then the value of solΩi is irrelevant). FΩ contains the su�xes of the sequence
solution corresponding to a given position in the word solution. More precisely,
if i is of the form |Ωδ1 | + · · · + |Ωδm | (for some m ∈ [0, l]) then FΩi contains
(δm+1, δm+2, . . . , δl). If i is not of this form then the value of FΩ is equal to a
special constant symbol ⊥ of sort seq. In particular, if i = 0 then FΩi contains
the whole sequence (corresponding to the case m = 0).

7 Notice that such an iteration is never empty because k ≥ 0.



Example 8. Let A = {α, β, γ, π}. Let Γ = {αβ, αγ, π}. In this example, we
have k = 3. Assume that the sequence solution δ is {1, 3, 2}. The corresponding
word solution is αβπαγ. The following array speci�es, for each index i, the
corresponding values of solΓ and FΓ .

i 0 1 2 3 4 5
sol α β π α γ •
F (1, 3, 2) ⊥ (3, 2) (2) ⊥ ()

Encoding

The problem is speci�ed by the following axioms (parameterized by k, Γ and
Λ). Notice that, for the sake of readability, arbitrary translations are used in the
indices (see for instance Axiom 4, index i+m). As explained in Section 2.3, they
can be easily encoded in the language. The parameter n encodes the length of
the word solution.

(1): FΩ0 ≈ d
for each Ω ∈ {Γ,Λ}

% The initial sequence of each word is the solution sequence.
(2): d ̸≈ nil ∧ d ̸≈ ⊥
% The solution sequence is not empty and distinct from ⊥.

(3):
∧n

i=0

(

FΩi ≈ ⊥ ∨ FΩi ≈ nil ∨ head(FΩi ) ≈ 1 ∨ · · · ∨ head(FΩi ) ≈ k
)

for each Ω ∈ {Γ,Λ}
% The �rst element of each (non-empty) su�x is in [1, k].

(4):
∧n

i=0

(

FΩi ≈ ⊥ ∨ head(FΩi ) ̸≈ l ∨ solΩi+m ≈ Ω
l(m+ 1)

)

for each Ω ∈ {Γ,Λ}, l ∈ [1, k] and m ∈ [0, |Ωl|[

% Relate the value of solΩi , sol
Ω
i+1, . . . to the value of FΩi

(5):
∧n

i=0

(

FΩi ≈ ⊥ ∨ head(FΩi ) ̸≈ l ∨ FΩi+m ≈ ⊥
)

for each Ω ∈ {Γ,Λ}, l ∈ [1, k] and m ∈ [0, |Ωl|[
% Store ⊥ at the indices not corresponding to a sequence.

(6):
∧n

i=0

(

FΩi ≈ ⊥ ∨ head(FΩi ) ̸≈ l ∨ FΩi+|Ωl| ̸≈ ⊥ ∧ FΩi+|Ωl| ≈ tail(FΩi )
)

for each Ω ∈ {Γ,Λ} and for each l ∈ [1, k]

% The next value of FΩ is equal to the tail of the previous sequence.

(7)
∧n

i=0 sol
Γ
i ≈ solΛi

% The word indices corresponding to each sequence are identical.

(8) FΩn+1 ≈ nil
for each Ω ∈ {Γ,Λ}

% Both sequences end at n.

We denote by ϕ(Γ,Λ) the conjunction of Axioms 1-8. Notice that the obtained
set of axioms is �nite (if the sequences Γ and Λ are �xed for a given instance of
the Post correspondence problem).



Lemma 2. ϕ(Γ,Λ) is satis�able i� there exists a non-empty sequence of indices
δ1, . . . , δl such that Γ δ1 . . . . .Γ δl = Λδ1 . . . . .Λδl .

Proof. This is easy to check from the previous explanations. ⊓⊔

C Proof of Theorem 2

Proposition 4. Let ϕ be a schema and let I be an interpretation. ⟨ϕ⟩I◦{n7→α}
=

⟨ϕ{n← α}⟩I .

Proof. By a straightforward induction on ϕ. ⊓⊔

Lemma 3. Let Γ be a simpli�cation function. For every schema ϕ, for every
ψ ∈ EΓ (ϕ) and for every interpretation I ∈ T validating ψ, there exists a schema
ψ′ ∈ EΓ (ϕ) such that I |= ψ′{n← 0}.

Proof. The proof is by induction on ⟨n⟩I . Assume that ⟨n⟩I = 0. Then I |=
ψ{n← 0}. Since ψ ∈ EΓ (ϕ), the desired result trivially holds for ψ

′ = ψ. Now, as-

sume that ⟨n⟩I > 0. By Property 2 in De�nition 3, Γ (ψ{n← n+1}) ⊆ EΓ (ϕ). Let

J = I◦{n 7→ ⟨n⟩I−1}. We have ⟨ψ{n← n+ 1}⟩J = ⟨ψ{n← n+ 1}⟩I◦{n 7→⟨n⟩I−1}
.

By Proposition 4, this is equal to ⟨ψ⟩I i.e. to true by hypothesis. So J |= ψ{n←
n+1}. By Point 1 in De�nition 1, we deduce that J |= ψ′ for some ψ′ ∈ Γ (ψ{n←

n + 1}). Thus by the induction hypothesis (since ⟨n⟩J < ⟨n⟩I) there exists a
schema ψ′′ ∈ EΓ (ϕ) such that J |= ψ′′{n ← 0}. Since ψ′′{n ← 0} contains no
occurrence of n, I and J coincide on ψ′′{n← 0}, hence I |= ψ′′{n← 0}. ⊓⊔

Assume that ϕ is T -satis�able. Let I ∈ T be an interpretation satisfying ϕ.
By Point 1 in De�nition 3, ϕ ∈ EΓ (ϕ). By Lemma 3, there exists ψ ∈ EΓ (ϕ) such
that I |= ψ{n← 0}.

Now, assume that EΓ (ϕ) contains a schema ψ such that ψ{n ← k} is T -
satis�able (for some arbitrary natural number k, in particular if k = 0). This

means that ψ has a model I ∈ T such that ⟨n⟩I = k. We prove, by induction
on the construction of the set EΓ (ϕ) that ϕ is T -satis�able. If ψ = ϕ then the
proof is straightforward. If ψ ∈ Γ (ψ′{n ← n + 1}) for some ψ′ ∈ EΓ (ϕ), then
by Point 2 in De�nition 1, there exists an interpretation J ∈ T such that J |=

ψ′{n ← n + 1} and ⟨n⟩J = ⟨n⟩I = k. Then by Proposition 4, the interpretation

J ′ = J ◦ {n 7→ ⟨n⟩I +1} must be a model of ψ′. Since ⟨n⟩J = k, ψ′{n← k+1} is
T -satis�able and by the induction hypothesis this implies that ϕ is T -satis�able.

D Proof of Proposition 3

The Closure and ∨-Elimination rules strictly decrease the number of logical sym-
bols occurring in the branches hence termination is obvious. The rule Elimination
applies at most once on every branch. Indeed, by de�nition, ∆(λ1∧· · ·∧λk) only
contains n-elementary literals. Thus by the application of the rule (and because
the Elimination rule is de�ned to apply on the set of all non-n-elementary lit-
erals in the branch), every literal in the obtained branch must be n-elementary.
Consequently, the branch obtained after applying Elimination is necessarily ir-
reducible.



E Proof of Lemma 1

Proposition 5. For every schema ϕ, unfold(ϕ) ≡T ϕ.

Proof. The replacement obviously preserves equivalence. ⊓⊔

Proposition 6. If ϕ Ψ ∪ {ψ} and ψ  Ψ ′ then ϕ Ψ ∪ Ψ ′.

Proof. Immediate. ⊓⊔

Lemma 4. Let L be a frame. Let I and J be two interpretations such that
I ∼L J . For all L-dominated n-elementary schemata ϕ irreducible by unfold we
have:

I |= ϕ i� J |= ϕ.

Proof. It su�ces to prove that for every k ∈ [0, ⟨n⟩I ] we have ⟨ϕ{i← k}⟩I =

⟨ϕ{i← k}⟩J . The proof is by induction on ϕ.

� If ϕ is a literal, then since ϕ is L-dominated, ϕ necessarily occurs in L. Since
k ∈ [0, ⟨n⟩I ], we have by the de�nition of ∼L: ⟨ϕ{i← k}⟩I = ⟨ϕ{i← k}⟩J .

� If ϕ is of the form ψ1 ⋆ ψ2 (for ⋆ ∈ {∨,∧}) then by the induction hypothesis
we have I |= ψi i� J |= ψi (for i = 1, 2) thus I |= ϕ i� J |= ϕ.

� Assume that ϕ is
∨n

i=0 ψ (notice that by irreducibility w.r.t. unfold, the upper

bound of the iterations must be n). ⟨ϕ⟩I = true i� there exists l ∈ [0, ⟨n⟩I ]

such that ⟨ψ{i← l}⟩I = true i.e. by Proposition 4, I ◦ {n 7→ l} |= ψ. Since

l ≤ ⟨n⟩I , by the induction hypothesis, ⟨ψ{i← l}⟩I = ⟨ψ{i← l}⟩J . Thus

⟨ψ⟩I = ⟨ψ⟩J .
� The proof is similar if ψ is an iterated conjunction.

⊓⊔

We �rst prove that ρ∗ ◦unfold is a simpli�cation function. Let ψ ∈ S(L). Let
ϕ = unfold(ψ). We have to prove that ψ  ρ∗(ϕ). By Proposition 5 we have ϕ ≡T

ψ thus ψ  {ϕ}. We prove that ϕ ρ∗(ϕ) (then the proof immediately follows
from Proposition 6). By de�nition, ρ∗(ϕ) is an irreducible tableau constructed
by the expansion rules in ρ from {ϕ}. The proof is by induction on the number
of rules applied to get ρ∗(ϕ). If no rule is applied then ρ∗(ϕ) = {ϕ} and the
proof is obvious. Otherwise, we distinguish several cases, according to the �rst
rule applied on ϕ.

� If this rule is the Closure rule, then ρ∗(ϕ) = ∅. In this case ϕ contains two
contradictory literals, hence is unsatis�able. Thus ϕ ρ∗(ϕ).

� If this rule is the ∨-Elimination rule, then ϕ is of the form (ϕ1∨ϕ2)∧ψ. The
two obtained branches are ϕ1∧ψ and ϕ2∧ψ. Thus ρ

∗(ϕ) = ρ∗(ϕ1∧ψ)∪ρ
∗(ϕ2∧

ψ). ϕ is equivalent to (ϕ1 ∧ψ)∨ (ϕ2 ∧ψ) hence ϕ {ϕ1 ∧ψ, ϕ2 ∧ψ}. By the
induction hypothesis, we have ϕ1∧ψ  ρ∗(ϕ1∧ψ) and ϕ2∧ψ  ρ∗(ϕ2∧ψ).
By Proposition 6, we deduce that ϕ ρ∗(ϕ1 ∧ ψ) ∪ ρ

∗(ϕ2 ∧ ψ) = ρ∗(ϕ).



� If this rule is the Elimination rule, then ϕ is of the form λ1 ∧ · · · ∧ λk ∧ ϕ
′

where ϕ′ contains no non-n-elementary literals and λ1, . . . , λk are non-n-
elementary literals. Moreover, the obtained branch is ∆(λ1 ∧ · · · ∧ λk) ∧ ϕ

′.
By de�nition, this branch must be irreducible, since ∆(λ1∧· · ·∧λk) contains
only n-elementary literals. Hence ρ∗(ϕ) = {∆(λ1 ∧ · · · ∧ λk)∧ϕ

′}. Let I ∈ T
be an interpretation satisfying ϕ. Since L is stably decomposable w.r.t. ∆,
we have I |= ∆(λ1 ∧ · · · ∧ λk). Thus I |= ∆(λ1 ∧ · · · ∧ λk) ∧ ϕ

′. Conversely,
let I ∈ T be an interpretation satisfying ∆(λ1 ∧ · · · ∧ λk)∧ ϕ

′. By de�nition
of ∆, there exists an interpretation J ∼L I such that J |= λ1 ∧ · · · ∧ λk.
By de�nition ϕ′ contains no non-n-elementary literals and is irreducible by
unfold. By Lemma 4, we have J |= ϕ′. Thus J |= ϕ. Moreover, ⟨n⟩I = ⟨n⟩J ,
by de�nition of ∼L.

Then we have to prove that ρ∗ ◦ unfold is S(L)-preserving. Let ϕ ∈ S(L).
Let ψ ∈ ρ∗(unfold(ϕ{n ← n + 1})). We have to show that ψ ∈ S(L), i.e. that
for every literal λ occurring in unfold(ψ{n ← n + 1}), we have λ ∈ L. Let λ be
a literal in unfold(ψ{n ← n + 1}). By de�nition of unfold, there exists a literal
λ′ occurring in ψ such that either λ = λ′{n← n+ 1} or λ = λ′{i← n+ 1}. We
distinguish two cases:

� If λ′ has been introduced by an application of the rule Elimination, then by
de�nition λ′ ∈ L. Moreover it is n-elementary and ground. Thus we must
have λ = λ′{n← n+1} (since λ′ contains no occurrence of i). By Condition
2 in De�nition 6 (de�nition of a frame), we deduce λ ∈ L.

� Otherwise, λ′ must occur in unfold(ϕ{n← n+1}). Furthermore, it must be n-
elementary. Since ϕ ∈ S(L), λ′ ∈ L. Thus λ′{n← n+1} ∈ L, by Condition 2
in De�nition 6. If λ = λ′{n← n+1} then the proof is completed. Otherwise,
by Condition 1 in De�nition 6 we have λ′{i← n+ 1} ∈ L, i.e. λ ∈ L.

F Proof of Theorem 3

The depth of a schema or an iteration body is de�ned as usual: depth(ϕ)
def

= 0

if ϕ is a literal, depth(ϕ ⋆ ψ)
def

= max(depth(ϕ), depth(ψ)) + 1 (if ⋆ = ∨,∧)

depth(¬ϕ)
def

= depth(ϕ + 1), depth(
∨α+k

i=0 ϕ)
def

= depth(
∧α+k

i=0 ϕ)
def

= depth(ϕ) + 1.
Then we de�ne the function depth∧(ϕ) as follows (it is identical to depth(ϕ),

except that all the conjunctions at root level are ignored): depth∧(ϕ)
def

= depth(ϕ)

if ϕ is not a conjunction, and depth∧(ϕ1 ∧ ϕ2)
def

= max(depth∧(ϕ1), depth∧(ϕ2)).
We have the following:

Proposition 7. Let L be a frame. Let d ∈ N. The set of schemata ϕ such that
ϕ ∈ S(L) and depth∧(ϕ) ≤ d is �nite up to contraction.

Proof. By de�nition, ϕ can be written as ϕ1 ∧ · · · ∧ ϕk where ϕ1, . . . , ϕk are
not conjunctions. Then we have depth∧(ϕ) = maxl∈[1,k] depth(ϕl), hence ∀l ∈
[1, k], depth(ϕl) ≤ d. Since the set of literals possibly occurring in ϕ1, . . . , ϕk is
�nite and since the depth of ϕ1, . . . , ϕk is bounded, the set of possible schemata
ϕ1, . . . , ϕk is �nite, and thus the set of possible schemata ϕ is �nite up to con-
traction. ⊓⊔



We write ψ ⊏ ϕ if ϕ is of the form ψ ∧ ψ′ (modulo the AC property of ∧).
Intuitively, a conjunction ψ1 ∧ · · · ∧ ψk is seen as a set � as it is the case in the
tableau calculus considered here � and ⊏ denotes the membership of this set.

Proposition 8. Let ψ be a schema in Eρ∗◦unfold(ϕ). Let Π
α
i=0ζ be an iteration

in ψ (where Π ∈ {
∧

,
∨

}). Then the following conditions hold:

1. If ψ ̸= ϕ then α = n.
2. ζ occurs in ϕ.
3. If ϕ ̸= ψ and ζ contains i+ 1 then Πn

i=0ζ ⊏ ψ.
4. If ϕ ̸= ψ and ζ does not contain i+1 then Πn

i=0ζ occurs in a schema of the
form Πn

i=0ζ π ζ{i← n+ 1} in ψ, where π ∈ {∨,∧}.
5. If ϕ ̸= ψ, ψ ̸∈ ρ∗(unfold(ϕ{n ← n + 1})) and ζ does not contain i + 1 then

Πn
i=0ζ π ζ{i← n+ 1} ⊏ ψ.

6. If λ ⊏ ψ and λ contains no iteration then depth(λ) ≤ depth(ϕ).

Proof. The proof is by induction on the construction of the set Eρ∗◦unfold(ϕ). It
is straightforward if ϕ = ψ. Otherwise, by de�nition of Eρ∗◦unfold(ϕ), ψ occurs in
a set ρ∗(unfold(ψ′{n← n+1})), where ψ′ is some schema in Eρ∗◦unfold(ϕ) (with
possibly ψ′ = ϕ).

Since the rules in ρ∗ do not introduce new iterations, Πα
i=0ζ must occur in

unfold(ψ′{n← n+1}). This implies that the iteration is irreducible by unfolding
hence α = n (1). Furthermore, Πα

i=0ζ cannot occur in a schema of the form
ψ′{n← n+ 1} (precisely because α = n) hence it must have been generated by
unfolding. Thus it occurs in a schema of the form (Πn

i=0ζ)π(ζ{i ← n + 1}) in
unfold(ψ′{n ← n + 1}) (where π = ∨ if Π =

∨

and π = ∧ if Π =
∧

). Then
necessarily an iteration of the form Πn+k

i=0 ζ must occur in ψ′. By the induction
hypothesis, ζ occur in ϕ (2).

Assume that ζ contains i + 1. Then (Πn
i=0ζ)π(ζ{i ← n + 1}) is necessar-

ily non-n-elementary. Hence it must be decomposed by the rules in ρ and we
must have Πn

i=0ζ ⊏ ψ (3). Now, assume that ζ does not contain i + 1. Then
(Πn

i=0ζ)π(ζ{i ← n + 1}) in unfold(ψ′{n ← n + 1}) is n-elementary, hence it
cannot be decomposed by the rules in ρ. Therefore, it must occur in ψ (4).

Assume that ψ ̸∈ ρ∗(unfold(ϕ{n ← n + 1})) and that ζ does not contain
i + 1. By the induction hypothesis, since ψ′ ̸= ϕ, Πn

i=0ζ occurs in a schema
Πn

i=0ζπ(ζ{i← n+1}) in ψ′. Then ψ′{n← n+1} containsΠn+1
i=0 ζπ(ζ{i← n+2})

which is reduced by unfolding to Πn
i=0ζπ(ζ{i← n+1})π(ζ{i← n+2}). ζ{i←

n+2} is non-n-elementary (since ζ contains i) hence the decomposition rules in
ρ apply on the previous schema and we must have Πn

i=0ζπ(ζ{i ← n + 1}) ⊏ ψ

(5).
Finally, let λ ⊏ ψ be an iteration-free schema. Since the rules in ρ cannot

increase the depth of the schema, there exists an iteration-free schema λ′ ⊏

unfold(ψ′{n← n+ 1}) such that depth(λ′) ≥ depth(λ). Then, since λ′ contains
no iteration it either occurs in ψ′{n← n+1} or in a schema ζ{i← n+1}, where ζ
is an iteration body in ψ′. In both cases we have obviously depth(λ′) ≤ depth(ϕ)
(by induction hypothesis) thus depth(λ) ≤ depth(ϕ) (6). ⊓⊔



Let ψ be a schema in Eρ∗◦unfold(ϕ) distinct from the ones in {ϕ} ∪
ρ∗(unfold(ϕ{n ← n + 1})). ψ can be written in the form ψ1 ∧ · · · ∧ ψk where
the ψ1, . . . , ψk are not conjunctions. If some ψl (for l ∈ [1, k]) contains an it-
eration then by the previous proposition (5) it is either an iteration in ϕ or of
the form Πn

i=0ζπ(ζ{i← n+ 1}) where Πn
i=0ζ is an iteration in ϕ. This implies

that the depth of ψl is bounded by depth(ϕ) + 1 (since the depth of Πn
i=0ζ is

lower or equal to the one of ϕ). If ψl is not an iteration, then by the previous
proposition (6) we know that depth(ψl) ≤ depth(ϕ). Thus by Proposition 7 we
conclude that the set Eρ∗◦unfold(ϕ) is �nite (up to contraction).

G Proof of Theorem 4

Lemma 5. Let λ1, . . . , λk be a set of ground literals such that, for every l ∈
[1, k], Ind(λl) is of the form {n +m + 1}, for some m ∈ N (possibly depending
on l). If λ1 ∧ · · · ∧λk is T -satis�able then (λ1 ∧ · · · ∧λk){n← l} is T -satis�able,
for any l ∈ N.

Proof. Let I ∈ T be a model of λ1 ∧ · · · ∧ λk. We obtain a model of
(λ1 ∧ · · · ∧ λk){n ← l + 1} by interpreting every indexed symbol fm such that

m ≥ l as ⟨fm−l+⟨n⟩I ⟩
I
(since the indexed symbols are non-built-in, the obtained

interpretation is still in T ). Notice that the interpretation of f0 is not a�ected.
It is easy to prove that for every expression ψ occurring in λ1∧ · · · ∧λk, we have
⟨ψ⟩I = ⟨ψ{n← l + 1}⟩J (by a straightforward induction on ψ). ⊓⊔

Let I be an interpretation satisfying ∆(λ1 ∧ · · · ∧ λk). Then we must have
∆(λ1 ∧ · · · ∧λk) = true hence λ1 ∧ · · · ∧λk is T -satis�able. Let J ∈ T such that

J |= λ1∧· · ·∧λk. By Lemma 5, we can assume that ⟨n⟩I = ⟨n⟩J . Since λ1, . . . , λk
are non-n-elementary, for every i ∈ [1, k], Ind(λi) contains an expression of the
form n+ l where l > 1. But then, since L is homogeneous, every index in Ind(λi)
must have this property. Thus the truth value of λi in J only depends on the
interpretation of the indexed symbols fα where α > ⟨n⟩J + 1. Thus we can

assume that J coincides with I on every indexed symbol fα where α ≤ ⟨n⟩J +1.
Then we have J ∼L⋄ I.

Now, assume that there exists an interpretation J ∼L⋄ I such that J |=
λ1 ∧ · · · ∧ λk. By Lemma 5, (λ1 ∧ · · · ∧ λk){n ← 0} is T -satis�able. Then by
de�nition ∆(λ1 ∧ · · · ∧ λk) = true and obviously I |= ∆(λ1 ∧ · · · ∧ λk).

H Proof of Theorem 5

Lemma 6. Let I, J be two interpretations such that I ∼L≼ J . If λ is a ground
n-elementary literal in L≼ then ⟨λ⟩I = ⟨λ⟩J .

Proof. By inspection of the di�erent cases in the de�nition of L≼, it is easy
to see that λ must be of the form λ′{i ← n}, for some λ′ ∈ L≼ (since λ

contains no occurrence of n + 2). Then by de�nition of ∼L≼ we deduce that

∀k ∈ [0, ⟨n⟩I ], ⟨λ′{i← k}⟩I = ⟨λ′{i← k}⟩J hence in particular (for k = ⟨n⟩I)

that ⟨λ⟩I = ⟨λ⟩J . ⊓⊔



Let ϕ be a conjunction of ground non-n-elementary literals in L≼. Let I be
an interpretation. Assume that there exists an interpretation J ∼L≼ I satisfying
ϕ. Then for every pair of literals an+2 ≈ u and an+2 ≈ v occurring in ϕ we must
have J |= u ≈ v, thus J |= τ(u ≈ v). Since by de�nition every literal in τ(u ≈ v)
is n-elementary and occurs in L≼, by Lemma 6, I and J coincide on τ(u ≈ v)
hence I |= τ(u ≈ v). Finally, if ϕ |= u ≼ v and if u ≼ v is n-elementary and is in
L≼, then we must have J |= u ≼ v (since J |= ϕ) and by Lemma 6: I |= τ(u ≼ v).
Thus I |= ∆≼(ϕ).

Now, assume that I |= ∆≼(ϕ). Let ≥ be the interpretation of ≽ in I. W.l.o.g.
we assume that for every constant symbol a ∈ C≼ there exists at least one term
ma without index such that an+2 ≽ ma occurs in ϕ. If it is not the case, it
su�ces to add to ϕ, for every a ∈ C≼, the literal an+2 ≽ m

a, where ma is a fresh
non-indexed constant symbol of the same sort as a. Then the interpretation I
is extended by interpreting ma as an arbitrary value lower or equal to all other
ground terms of the same sort in I.

Let J be the interpretation coinciding with I except for the interpretation of
the indexed constants of the form a⟨n⟩I+2 where a ∈ C≈ ∪ C≼, that are de�ned
as follows:

� If a ∈ C≼ then ⟨an+2⟩
J
is the maximal (according to the ordering ≤) value

⟨u⟩I such that u is an n-elementary term with ϕ |= an+2 ≽ u.

� If a ∈ C≈ and ϕ contains a literal an+2 ≈ u then ⟨an+2⟩
J def

= ⟨u⟩I . Since
I |= ∆≼(ϕ), we have I |= E(ϕ) (by de�nition of ∆≼) hence for every pair
of literals an+2 ≈ u and an+2 ≈ v occurring in ϕ we must have I |= τ(u ≈
v) ≡T u ≈ v. Therefore the interpretation of an+2 does not depend on the
choice of u. If no such term u exists the interpretation of an+2 is arbitrary.

By construction, it is clear that I ∼L≼ J (since I and J coincide on every

symbol whose index is in [0, ⟨n⟩I + 1]). Now we prove that J |= ϕ. Let λ be a
literal in ϕ. We distinguish several cases, according to the form of λ (see the
de�nition of L≼):

� λ is of the form an+2 ≽ u, where u is an n-elementary term. We have ϕ |=

an+2 ≽ u, hence ⟨an+2⟩
J ≽ ⟨u⟩I = ⟨u⟩J . Thus J |= λ.

� λ is of the form an+2 ≽ bn+2, where a, b ∈ C≼. We have ϕ |= bn+2 ≽ u⇒ ϕ |=

an+2 ≽ u, hence by de�nition ⟨an+2⟩
J ≥ ⟨bn+2⟩

J
. Thus J |= λ.

� λ is of the form an+2 ≼ u, where u is an n-elementary term. By de�nition,

there exists an n-elementary term v such that ⟨an+2⟩
J
= ⟨v⟩I = ⟨v⟩J and

ϕ |= an+2 ≽ v. Then we must have by transitivity ϕ |= v ≼ u. u and v

are both n-elementary. Moreover, by de�nition of L≼ the inequation v ≼ u

must occur in L≼. Thus E(ϕ) contains the literal v ≼ u, by de�nition of ∆≼.

Consequently we have I |= v ≼ u, hence ⟨v⟩I ≤ ⟨u⟩I . Since I and J coincide
on n-elementary terms, this implies that J |= λ.

� λ is of the form an+2 ≈ u. The proof is immediate by construction of J .


