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The stability of a gravity-driven film flow on a porous inclined substrate is considered,
when the film is contaminated by an insoluble surfactant, in the frame work of Orr-
Sommerfeld analysis. The classical long-wave asymptotic expansion for small wave
numbers reveals the occurrence of two modes, the Yih mode and the Marangoni mode
for a clean/a contaminated film over a porous substrate and this is confirmed by the
numerical solution of the Orr-Sommerfeld system using the spectral-Tau collocation
method. The results show that the Marangoni mode is always stable and dominates
the Yih mode for small Reynolds numbers; as the Reynolds number increases, the
growth rate of the Yih mode increases, until, an exchange of stability occurs, and
after that the Yih mode dominates. The role of the surfactant is to increase the critical
Reynolds number, indicating its stabilizing effect. The growth rate increases with an
increase in permeability, in the region where the Yih mode dominates the Marangoni
mode. Also, the growth rate is more for a film (both clean and contaminated) over
a thicker porous layer than over a thinner one. From the neutral stability maps, it is
observed that the critical Reynolds number decreases with an increase in permeability
in the case of a thicker porous layer, both for a clean and a contaminated film over it.
Further, the range of unstable wave number increases with an increase in the thickness
of the porous layer. The film flow system is more unstable for a film over a thicker
porous layer than over a thinner one. However, for small wave numbers, it is possible
to find the range of values of the parameters characterizing the porous medium for
which the film flow can be stabilized for both a clean film/a contaminated film as
compared to such a film over an impermeable substrate; further, it is possible to
enhance the instability of such a film flow system outside of this stability window, for
appropriate choices of the porous substrate characteristics. C⃝ 2013 American Institute
of Physics. [http://dx.doi.org/10.1063/1.4789459]

I. INTRODUCTION

The flow of a thin liquid film down an inclined plane or a vertical wall in the presence of a free
surface displays a variety of spatio-temporal patterns. The wave structures that occur on the surface
of such films have attracted the attention of several investigators and there has been a significant
amount of theoretical, computational, and experimental studies on the dynamics and stability of
such flow systems under the influence of several factors that have technological and industrial
applications.1–4 The occurrence of such waves is a desirable feature in cooling of films. On the other
hand, in coating flows, the presence of surface waves is not desired, since a smooth surface is usually
desired as a finished product. In view of different applications of such flows, one should look for
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strategies to control or suppress the free surface instabilities. It has been shown that, one can suppress
the free-surface instabilities by choosing appropriately the amplitudes and the frequencies of the
forced oscillations of the bottom wall5 and outside these windows of stability, one can enhance the
instability of the film. Demekhin et al.6 have shown that by heating the substrate over which the film
flows, one can control the instabilities of the film. Shankar and Sahu,7 Gaurav and Shankar8 have
shown that by taking the substrate as a deformable solid, one can suppress the perturbations of any
wavelength at the free surface, by utilizing the elasto-hydrodynamic coupling between the liquid
film and the solid deformation, without introducing any additional instability in the system. Blyth
and Pozrikidis,9 and Wei10 have shown that the presence of an insoluble surfactant at the free surface
of a thin film down an impermeable substrate suppresses the free surface instability and therefore
this can be thought of as another strategy to control/suppress the free surface instability.

In fact, the Marangoni instability that arises due to the surface-tension driven convection in
a pure fluid layer11 has been considered by several investigators. One of the factors that can be
important in the stability problems is the role of the surface-active agents and in view of this, the
hydrodynamics of the surfactant has been addressed in the literature both from a fundamental and
applied point of view. The convective motion of the surfactant leads to a heterogeneous surfactant
distribution on the interface. Additional tangential stresses arise due to nonuniform distribution of
the surfactant concentration which generates the surface-tension gradients and these have significant
influence on convection. The investigations by Benjamin12 and Whitaker13 reveal that the presence
of the surfactant at the surface of a film raises the critical Reynolds number for instability and
hence stabilizes the film flow system. Whitaker and Jones14 and Lin15 have also shown that in the
surfactant-laden flow of a film down an inclined plane, as the surfactant elasticity increases, the
critical Reynolds number associated with the Yih-mode for a long-wave instability increases and
that the role of the surfactant is to stabilize the film flow system. The analysis by Pozrikidis16 on the
stability of a film flow down a periodic wall in the presence of an insoluble surfactant for Stokes flow
has shown the existence of a Marangoni normal mode whose rate of decay is lower than that of the
usual mode for a clean surface. The study of the stability of a vertically falling film in the presence
of a soluble surfactant by Ji and Setterwall17 has revealed the existence of an unstable normal mode
associated with the Marangoni stresses at small Reynolds numbers and for perturbations of short
and moderate wavelengths.

There are also investigations on the effects of the surfactant on the stability of two-layer flows
in confined channels. A linear stability analysis on a two-layer Couette-Poisuille channel flow18, 19

in the limit of long-waves, has revealed that a quiescent interface subjected to a local shear flow
is unstable, due to periodic accumulation of the surfactant and the resulting spatial variations in
the surface tension. The regions of instability in the parameter space of the ratio of viscosities and
the layer thickness have been determined for Stokes flow by Halpern and Frankel20 by extending the
analysis of Frenkel and Halpern18 to perturbations of arbitrary wavelength. Blyth and Pozrikidis21

have considered the role of an insoluble surfactant on the interfacial stability of a two-layer viscous
flow in an inclined channel confined by two parallel walls. The results of the linear stability analysis
of a lubrication-flow model applicable to long-waves and low Reynolds number flow reveal the
presence of the Marangoni instability in certain regions of the parameter space determined by the
viscosity ratio and the layer thickness, thus confirming the results of Frenkel and Halpern18 and
Halpern and Frenkel.19 In the subsequent investigations, Pozrikidis22 and Blyth and Pozrikidis23

have investigated the effects of inertia on the linear and nonlinear stages of instability. The structure
and the dynamics of the film flow are influenced by the presence of the surfactant.

The investigations on the stability of a film down a porous inclined substrate, where a slip
condition has been imposed at the substrate include the studies by Pascal,24, 25 Sadiq and Usha,26

Sadiq, Usha, and Joo,27 and Pascal and D’Alessio.28 Pascal24 has examined the linear stability
of a thin Newtonian film down a permeable inclined plane which is modeled by the Navier-slip
condition. The dimensionless slip coefficient accounts for the local geometry of the interface of the
porous and the liquid layers. This one-domain model is based on the assumption that the superficial
velocity in the porous medium is very small compared to the velocity in the liquid layer. Following
the assumptions of Pascal,24, 25 there have been investigations on the stability of a Newtonian film
flow down a permeable inclined substrate by Sadiq and Usha26 (weakly nonlinear stability analysis
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and evolution of nonlinear waves based on Benney’s long wave expansion), Sadiq, Usha, and Joo27

(heated porous substrate), and by Pascal and D’Alessio28 (uneven surface). The results show that
the effect of the slip coefficient is to destabilize the film flow system over a permeable substrate.
Samanta et al.29 have recently revisited the problem of a falling film down a slippery inclined plane
within the framework of long-wave analysis and boundary layer approximations and have performed
the linear stability analysis of the coupled depth-averaged equations derived for the local flow rate
and the film thickness. They have observed that the effect of slip is to promote the onset of instability
and thus has a destabilizing effect by lowering the critical Reynolds number. At larger Reynolds
numbers, the effect is stabilizing. This effect has been observed for the cases, when the Reynolds
number is based on the velocity at the free surface or the averaged velocity across the flow.

A slip condition at the substrate is a limiting form of a boundary condition at the interface of
a fluid-porous medium. This suggests that an investigation on the stability of a flow of a thin film
over a porous medium, by incorporating the momentum transport in the porous medium, might add
additional information on the influence of the characteristics of the porous medium on the film above
it. Further, in several practical applications, the bottom substrate is a porous substrate and a study
of the dynamics of a thin film over a porous substrate gains significance in such applications. In
view of this, Liu and Liu30 have considered the Darcy model for the porous medium with Beavers-
Joseph31 boundary condition at the interface of the liquid and the porous layers and have examined
the linear stability of a Newtonian film over it in the frame work of Orr-Sommerfeld analysis. The
volume averaging technique developed by Whitaker32 questions the validity of the Beavers-Joseph
boundary condition at the interface of the porous/liquid layers and a stress-jump condition that
accounts for the spatial heterogeneity of the interfacial region has been proposed.33–36 Thiele et al.37

have incorporated the momentum transport in the porous medium described by the Darcy-Brinkman
equations33, 38, 39 and the shear stress-jump condition (Whitaker32) at the interface of the porous
and the liquid layers and have obtained the evolution equation for the film thickness based on
Benney’s40 long-wave expansion. They have observed a destabilizing influence of the presence of
the porous medium on the film flow system. An increase in the stress-jump co-efficient enhances
this destabilizing effect.

The above investigation by Thiele et al.37 and the results by Blyth and Pozrikidis,9 on the
stability of a thin film flow over an inclined impermeable substrate in the presence of an insoluble
surfactant have motivated the present study in which the influence of the presence of an insoluble
surfactant at the free surface of a thin film over an inclined porous substrate on the stability of
the film flow system is examined. Such an investigation might also provide some information on the
effects of the coupling of the forces due to the flow in the porous medium and the hydrodynamics of
the contaminated film above it on the free surface instability, so that having the substrate as a porous
medium rather than as an impermeable substrate can be thought of as another strategy to control or
suppress the free surface instability.

The objective of the investigation is twofold: (i) to examine the linear stability of a clean
film (Nusselt base flow) over a porous substrate incorporating the momentum transport in the
porous medium with the stress-jump boundary condition at the interface, within the framework of
Orr-Sommerfeld analysis and (ii) to investigate the above problem in the presence of an insoluble
surfactant. It is of interest (a) to examine if the presence of the surfactant at the free surface suppresses
the instability in a film over a porous substrate; (b) to find the range of parameters characterizing the
porous medium for which the flow of a clean/contaminated film can be stabilized; and (c) to analyze
the possibility of enhancing the instability of the film flow system outside the windows of stability
for appropriate choices of the porous medium characteristics.

In view of the above, in this investigation, the stability of a gravity-driven flow of a thin viscous
film over a porous substrate in the presence of an insoluble surfactant with surfactant concentration
! at the air-film interface is considered. The general problem of a film over a porous substrate
is formulated in Sec. II A; the base state solution corresponding to parallel uniform flow over a
porous substrate is obtained in Sec. II B; using the stream function formulation, the Orr-Sommerfeld
system of equations (PS) for the amplitudes of the perturbations in the stream-function, the surfactant
concentration and the deflection of the free-surface are derived in Sec. II C. A linear stability analysis
of the base state is performed in the long-wavelength limit and the effects of the presence of the
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surfactant at the free surface are examined in Sec. II D. In Sec. II E, the Orr-Sommerfeld system (SS)
is presented for the gravity-driven flow of a contaminated film over a slippery inclined substrate and
the long-wavelength analysis of the system is performed. In Sec. III, the Orr-Sommerfeld systems
(PS and SS) are solved numerically by the spectral-Tau collocation method and the solutions of
the linear stability problem are presented for different parameter values governing the film flow
system. From the results on the neutral stability curves in the wave number/Reynolds number space,
it is observed that the presence of the surfactant has a stabilizing effect on the film flow system;
the influence of the porous medium characteristics is interesting in the sense that by appropriate
choice of the parameters governing the porous substrate such as the permeability, the porosity, the
stress-jump coefficient, and the thickness of the porous layer, it is possible to find k-Re windows in
which one can stabilize a clean/a contaminated film over a porous substrate as compared to such a
film over a rigid substrate; further, outside these windows, it is possible to enhance the destabilizing
effects of the porous medium on a clean/a contaminated film flow system.

II. MATHEMATICAL FORMULATION

A. The governing equations

A two-dimensional incompressible Newtonian fluid flowing over an inclined porous substrate
saturated by the same liquid is considered (Fig. 1). The porous layer is of finite constant thickness
d and is on a rigid wall, which is inclined at an angle θ to the horizontal as shown in Fig. 1. The
surface of the film is occupied by an insoluble surfactant with surface concentration !(x, t), which is
convected. The surfactant diffuses freely over the film surface, but does not penetrate into the bulk
of the fluid. The local surface tension σ (x, t), at each point on the free surface, varies according to
the local surfactant concentration. A linear relation between the surface tension and the surfactant
concentration may be assumed, when the surfactant concentration is below the saturation level. It
is, according to Gibbs, given by σ c−σ = !RT, where R is the ideal gas constant, T is the absolute
temperature, and σ c is the surface tension of a clean interface that is devoid of surfactant.41 This
yields the linear equation of state σ = σ c(1 − β !

!0
), where β = !0 RT

σc
is a dimensionless constant

related to the surface elasticity E employed in the surfactant literature by E = βσc
!0

, !0 is a reference
surfactant concentration. When the surfactant concentration has small variations around the reference
value !0, then, a Taylor expansion gives

σ = σ0 − E(! − !0). (1)

θ

Porous Layer

z  b

Liquid Layer 

x  

x  

b

z  = 0 = z  b

z = h 0

z  = −db

z

z = h(x, t)

FIG. 1. Schematic diagram for a Newtonian film flow over a porous substrate.
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The governing equations in the liquid film (0 < z < h(x, t)) are

ux + wz = 0, (2)

ut + uux + wuz = − 1
ρ

px + ν[uxx + uzz] + g sin θ, (3)

wt + uwx + wwz = − 1
ρ

pz + ν[wxx + wzz] − g cos θ, (4)

where ρ, ν are the density and the kinematic viscosity of the fluid, respectively, u, w are the
components of velocity in the x and z increasing directions, respectively, g is the acceleration due to
gravity, and p is the pressure. The boundary conditions at the free surface z = h(x, t) are the kinematic
free-surface boundary condition, the balance of the tangential and the normal stresses given by

w = ht + uhx on z = h(x, t), (5)

µ[−4ux hx + (uz + wx )(1 − h2
x )] = σx (1 + h2

x )
1
2 on z = h(x, t), (6)

p = 2µ

(1 + h2
x )

[ux h2
x − (uz + wx )hx + wz] − σhxx

(1 + h2
x )

3
2

on z = h(x, t). (7)

The momentum transport in the porous layer is described using the Darcy-Brinkman equations33, 38, 39

given by

Uxb + Wzb = 0, (8)

1
χ

Utb = − 1
ρ

Pxb + µe

ρ
[Uxb xb + Uzbzb ] + g sin θ − ν

K
U, (9)

1
χ

Wtb = − 1
ρ

Pzb + µe

ρ
[Wxb xb + Wzbzb ] − g cos θ − ν

K
W, (10)

where (U, V ) denote the filtration velocity components, K is the permeability, χ is the porosity, and
µe is the effective viscosity (Whitaker38) and µe

µ
= 1

χ
. A subscript denotes the partial derivative

with respect to that variable. The flow in the porous region is assumed to be slow enough to neglect
inertia.42 The theoretical development of the momentum transfer at the boundary between a porous
medium and a homogeneous fluid described by Ochoa-Tapia and Whitaker34 suggests the following
conditions at the interface (z = 0) between the liquid layer and the porous layer. They are given by

u = U at z = zb = 0, (11)

w = W at z = zb = 0, (12)

µeUzb − µuz = ξ
√

K
U at z = zb = 0, (13)

− P + 2µeWzb = −p + 2µwz at z = zb = 0. (14)

Equations (11) and (12) correspond to the conditions for the continuity of velocity at the interface
and Eq. (14) describes the continuity of the normal stress at the interface. Equation (13) represents
a shear stress-jump condition at the interface, where the jump coefficient ξ accounts for the spatial
heterogeneities of the interfacial region and depends on the characteristics of the continuous spatial
variations of the effective properties like the porosity and the permeability of the porous layer. It
represents a macroscopic description of the momentum transport in a finite mesoscopic interfacial
transition layer. At the bottom of the porous substrate supported by a rigid wall,

U = 0 at zb = −d, (15)

W = 0 at zb = −d. (16)
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The evolution of the surface surfactant concentration !(x, t) is governed by9, 43

∂!

∂t
+ ∇s.(!us) + !(∇s.n̂)(û.n̂) = Ds∇2

s !, on z = h(x, t), (17)

where ∇s.n̂ is the mean curvature of the surface, ∇s is the surface gradient operator, ∇s = (Ī − n̂n̂).∇,
ūs represents the velocity along the surface, ūs = (Ī − n̂n̂).ū, n̂ is the local unit normal, (ū.n̂) is the
component of velocity along the normal to the surface, and Ds is the surface surfactant diffusivity.
The dimensionless forms of Eqs. (1)–(17) are obtained using the following dimensionless variables:

x̄ = x
h0

, z̄ = z
h0

, t̄ = tV
h0

, ū = u
V

, w̄ = w

V
, p̄ = p

ρV 2
,

h̄ = h
h0

, !̄ = !

!0
, σ̄ = σ

σ0
, x̄b = xb

d
, z̄b = zb

d
, t̄b = tbν

d2
,

Ū = Ud
ν

, W̄ = W d
ν

, P̄ = Pd2

ρν2
,

where h0 is the mean film thickness of the fluid layer and V is the characteristic velocity scale. The
characteristic velocity scale V for the fluid layer is chosen as the maximum velocity of a uniform
Nusselt film on a rigid substrate (occurs at the free surface) given by V = gh2

0sinθ

2ν
. The present

study is motivated by the investigations by Liu and Liu,30 Thiele et al.,37 and Blyth and Pozrikidis9

and hence, in order to compare the results with these investigations, the formulation is in terms
of the Reynolds number based on the Nusselt film free surface velocity for a clean film over an
impermeable substrate.9, 30, 37 It is also noted that in the porous layer, the velocity scale related to the
fluid viscosity ν (namely ν

d ) has been used (as in Thiele et al.,37 Liu and Liu30).
The dimensionless governing equations and the boundary conditions (after suppressing the over

bars) are obtained as

ux + wz = 0, (18)

Re[ut + uux + wuz] = −Repx + [uxx + uzz] + GRe, (19)

Re[wt + uwx + wwz] = −Repz + [wxx + wzz] − GRe cot θ, (20)

w = ht + uhx , on z = h(x, t), (21)

− 4ux hx + (uz + wx )(1 − h2
x ) = −Ma

Ca
!x (1 + h2

x )
1
2 , on z = h(x, t), (22)

p = 2
Re

1
(1 + h2

x )
[ux h2

x − (uz + wx )hx + wz] − 1
Ca Re

[1 − Ma(! − 1)]hxx

(1 + h2
x )

3
2

, on z = h(x, t),

(23)

Uxb + Wzb = 0, (24)

1
χ

Utb = −Pxb + 1
χ

[Uxb xb + Uzbzb ] + G
Re2

d̂3 − U
δ2

, (25)

1
χ

Wtb = −Pzb + 1
χ

[Wxb xb + Wzbzb ] − G
Re2

d̂3 cot θ − W
δ2

, (26)

u = d̂
Re

U, at z = zb = 0, (27)

w = d̂
Re

W, at z = zb = 0, (28)
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1
χ

Uzb − Re

d̂2
uz = λ

δ
U, at z = zb = 0, (29)

− p + 2
Re

wz = − d̂2

Re2
P + 2

χ

d̂2

Re2
Wzb , at z = zb = 0, (30)

U = 0, at zb = −1, (31)

W = 0, at zb = −1, (32)

∂!

∂t
+ ∇s.(!us) + !(∇s.n̂)(û.n̂) = Ds∇2

s !, at z = h(x, t), (33)

where Re = V h0
ν

is the Reynolds number of the flow, Ma = E!0
σ0

is the Marangoni number, Ca = µV
σ0

is the Capillary number, α = σ0h0
Dsµ

is a dimensionless number related to the surfactant surface Péclet

number Pe = h0V
Ds

= αCa, G = gh0sinθ
V 2 is the modified Galileo number, d̂ = h0

d is the ratio of mean

film thickness of the liquid layer to the porous layer thickness, δ =
√

K
d is the Darcy number

representing the dimensionless permeability of the porous medium, and λ = ξ
µ

is the dimensionless
stress-jump coefficient. In the following computations, G ≃ O(1), χ is such that 0 < χ < 1 and
λ ≃ O(1), Ma = O(1) and δ is such that 0 ≤δ < ∞.

B. The base flow

The equations and the boundary conditions corresponding to a plane-parallel flow of a thin
Newtonian film with uniform film thickness over a porous substrate are given by Eqs. (A1)–(A11) in
Appendix A and these are obtained from Eqs. (18)–(33). The solutions of (A1) and (A5) satisfying
the boundary conditions are given by

uB = [−GRez
2

2

+ GRez + M̄], (34)

UB = C1e( −√
χ

δ
)zb + C2e(

√
χ

δ
)zb + GRe2δ2

d̂3
, (35)

where

M̄ = GReδ

d̂2-
[δ(E+ + E− − 2) + d̂

√
χ (E+ − E−)],

C1 = −GRe2δ

d̂3-
[δB− + (δλ + d̂)

√
χ E−], C2 = −GRe2δ

d̂3-
[δB+ − (δλ + d̂)

√
χ E+],

- = B+E− + B−E+, B+ = 1 + λ
√

χ , B− = 1 − λ
√

χ , E+ = exp(
√

χ

δ
), E− = exp( −√

χ

δ
).

It is observed that the balance of stream-wise gravitational acceleration and the viscous forces has
resulted in a parabolic velocity profile in the liquid layer. Since GRe = 2, uB(1) = 1 +M̄ , u′

B(1)
= 0, u′′

B(1) = −2.

C. The Orr-Sommerfeld eigenvalue problem

The stability of the base state (34)–(35) with respect to infinitesimal perturbations is considered.
Substituting

u(x, z, t) = uB(z) + ũ(x, z, t), w(x, z, t) = w̃(x, z, t), p(x, z, t) = pB(z) + p̃(x, z, t),
U (xb, zb, tb) = UB(zb) + Ũ (xb, zb, tb), W (xb, zb, tb) = W̃ (xb, zb, tb),
P(xb, zb, tb) = PB(zb) + P̃(xb, zb, tb),
h(x, t) = 1 + h̃(x, t), !(x, t) = 1 + !̃(x, t),

into the equations of motion and the surfactant transport equation (18)–(33) and lineariz-
ing for ũ, w̃, Ũ , W̃ , p̃, P̃ , h̃, !̃ ≪ 1, the equations for the perturbed quantities are
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obtained as

ũx + w̃z = 0, (36)

Re[ũt + uBũx + w̃u′
B] = −Re p̃x + [ũxx + ũzz], (37)

Re[w̃t + uBw̃x ] = −Re p̃z + [w̃xx + w̃zz], (38)

w̃ = h̃t + uBh̃, on z = 1, (39)

h̃u′′
B = −Ma

Ca
!̃x − ũz − w̃x , on z = 1, (40)

Re p̃ = GReh̃ cotθ + 2w̃z − 1
Ca

h̃xx , on z = 1, (41)

Ũxb + W̃zb = 0, (42)

1
χ

Ũtb = −P̃xb + 1
χ

[Ũxb xb + Ũzbzb ] − Ũ
δ2

, (43)

1
χ

W̃tb = −P̃zb + 1
χ

[W̃xb xb + W̃zbzb ] − W̃
δ2

, (44)

ũ = d̂
Re

Ũ , at z = zb = 0, (45)

w̃ = d̂
Re

,̃ at z = zb = 0, (46)

1
χ

Ũzb − Re

d̂2
ũz = λ

δ
Ũ , on z = zb = 0, (47)

− p̃ + 2
Re

w̃z = − d̂2

Re2
P̃ + 2

χ

d̂2

Re2
W̃zb , on z = zb = 0, (48)

Ũ = 0, at zb = −1, (49)

W̃ = 0, at zb = −1, (50)

!̃t + ũx + !̃x uB = 1
αCa

!̃xx , on z = 1. (51)

Since the interface boundary conditions are evaluated at z = 1 + h̃, the boundary conditions
(39)–(41) and (51) have been obtained using Taylor expansion at the undeformed free surface
h = 1. The perturbation equations have been obtained in terms of w̃, !̃, and h̃ and are given
by

Re
[
∇2w̃t − u′′

Bw̃x + uB∇2w̃x

]
− ∇4w̃ = 0, (52)

w̃ = h̃t + uBh̃x , on z = 1, (53)

GRe cotθ h̃xx − h̃xxxx

Ca
+ 3w̃xxz + w̃zzz − Rew̃zt − ReuB(1)w̃xz = 0, on z = 1, (54)

h̃x u′′
B = −Ma

Ca
!̃xx + w̃zz − w̃xx , on z = 1, (55)
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!̃t − w̃z + !̃x uB = 1
α Ca

!̃, on z = 1, (56)

1
χ

∇2
b [∇2

b W̃ − W̃tb ] − ∇2
b W̃
δ2

= 0, (57)

u′
Bw̃x + 3

Re
w̃xxz + 1

Re
w̃zzz − w̃zt − uBw̃xz − 3

χ

d̂4

Re2 W̃xb xbzb − 1
χ

d̂4

Re2 W̃zbzbzb ,

+ d̂4

Re2δ2
W̃zb + d̂4

χRe2 W̃zbtb = 0, on z = zb = 0, (58)

d̂3

Reχ
W̃zbzb − w̃zz = λ

δ

d̂3

Re
W̃, on z = zb = 0, (59)

w̃z = d̂2

Re
W̃zb , on z = zb = 0, (60)

w̃ = d̂
Re

W̃ , on z = zb = 0, (61)

W̃zb = 0, on zb = −1, (62)

W̃ = 0, on zb = −1. (63)

Note that Db = d
dzb

= 1
d̂

d
dz = 1

d̂
D, d̂z = zb, d̂x = xb, t = Re

d̂2 tb.

Using the stream functions ψ̃ , ψ̃b where ũ = ψ̃z , w̃ = −ψ̃x , Ũ = ψ̃b
zb

, W̃ = −ψ̃b
xb

and seek-
ing solutions of (52)–(63) in the form of normal modes ψ̃(x, z, t) = φ(z)eik(x−ct), ψ̃b(xb, zb, tb)
= φb(zb)eikb(xb−cbtb), h̃(x, t) = ζ̃eik(x−ct), !̃(x, t) = !∗eik(x−ct) where k, kb are wave numbers
(k = d̂kb) c, cb are the complex wave velocities (c = d̂

Re cb), the Orr-Sommerfeld system is ob-
tained as

(D2 − k2)2φ − Re
[
ik(u B − c)(D2 − k2)φ − iku′′

Bφ
]

= 0, (64)

φ + ζ̃ (uB − c) = 0, on z = 1, (65)

− ik D3φ +
[
Rek2(c − uB) + 3ik3

]
Dφ −

[
GRek2cotθ + k4

Ca

]
ζ̃ = 0, on z = 1, (66)

u′′
B ζ̃ + ikMa

Ca
!∗ + D2φ + k2φ = 0, on z = 1, (67)

φ′ + !∗

[
(uB − c) − ik

αCa

]
= 0, on z = 1, (68)

[
1 − ikcReδ2

d̂2χ
− δ2

χ
(Db

2 − k2

d̂2
)
][

Db
2 − k2

d̂2

]
φb = 0, (69)

Re
[
u′

Bikφ − ik(u B − c)Dφ
]

+ (D3 − 3k2 D)φ

= d̂3

Re

[ 1
χ

(Db
3 − 3

k2

d̂2
Db)φb − 1

δ2
Dbφ

b + ikcRe

d̂2χ
Dbφ

b
]
, on z = zb = 0, (70)

Reφ = φb, on z = zb = 0, (71)

ReDφ = d̂ Dbφ
b, on z = zb = 0, (72)

D2φ − d̂2

Reχ
Db

2φb = −λd̂2

δRe
Dbφ

b, on z = zb = 0, (73)
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Dbφ
b = 0, on zb = −1, (74)

φb = 0, on zb = −1. (75)

Equations (64)–(75) describe a generalized eigenvalue problem and the values of the parameter
c = cr + is for which a non-trivial solution exists are obtained. Here, cr denotes the wave speed and
s is the growth rate. When the bottom substrate is taken as an impermeable substrate, (i) the above
system, in the absence of an insoluble surfactant at the free surface, reduces to the Orr-Sommerfeld
equations for a Newtonian flow down an impermeable inclined substrate given by Yih44 and Olsson
and Henningson;45 (ii) in the presence of an insoluble surfactant, the system reduces to that derived
by Blyth and Pozrikidis.9

D. Long-wavelength stability analysis

A linear stability analysis of the base state (Eqs. (34) and (35)) is performed in the limit of
long-wavelength (k → 0), by following the regular perturbation technique proposed by Yih44 and
Benjamin46 for the case of a contaminated film over a porous substrate. According to long-wave
analysis, the amplitudes of the perturbations φ(z), φb(zb), ζ̃ , !∗, and c are expanded in powers of the
wave number k as

φ = φ0 + kφ1 + O(k2), (76)

with similar expansions for the other variables. Substituting the above in the Orr-Sommerfeld
equations and the boundary conditions (64)–(75) and collecting the terms at O(1), the zeroth order
equations and the boundary conditions are obtained (Eqs. (B1)–(B12) in Appendix B). The solutions
to (B1) and (B7) satisfying the boundary conditions are given by

φ0 = A2
z2

2
+ A3z + A4, (77)

φb
0 = B1 + B2e

√
pzb + B3e−√

pzb , (78)

where

A2 = 2ζ0, A3 =
2δ

√
χ

d̂

(E+ − E−)ζ0

-
,

A4 = 2δ2

d̂2

(E+ + E− − 2)ζ0

-
,

p = χ

δ2
, B1 = 2Reδ2

d̂2

u′′
B(1)ζ0

-
, B2 = −Reδ2

d̂2

u′′
B(1)ζ0 E+

-
, B3 = −Reδ2

d̂2

u′′
B(1)ζ0 E−

-
.

Substitution of (77) in (B2) and (B5) yields
[
c0 − uB(1)

]
ζ0 = φ0(1), (79)

[
c0 − uB(1)

]
!0 = −u′′

B(1)
[
1 +

δ
√

χ

d̂

(E+ − E−)
-

]
ζ0. (80)

There are two modes, namely, the Yih mode-associated with the interfacial deflection and the
surfactant mode-associated with the presence of the surfactant. For ζ ̸= 0 (interface mode), c0 and
!0 are given by

c0 = 2(1 + M̄), (81)

!0 = 2ζ0

1 + M̄

[
1 +

δ
√

χ

d̂

(E+ − E−)
-

]
. (82)
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It is observed from (81) that the long waves travel at twice the surface velocity and that it depends
on the porous medium characteristics. The surface velocity for a film over a porous substrate is more
than that for a film over an impermeable substrate. Equation (82) reveals that, at this order, the
surfactant concentration perturbation is in phase with the interfacial deflection. This means that the
surfactant concentration is higher(lower) at the interface’s crest(trough). As a result of the gradient
in surfactant concentration, Marangoni stresses are generated which push the fluid away from the
crest and pull it towards the trough. This indicates that at this leading order, free surface deflections
are suppressed.

In addition to the Yih mode, there is a surfactant mode that is associated with the surfactant
concentration perturbation (!0 ̸= 0). For this mode

ζ0 = 0,

[
c0 − uB(1)

]
!0 = 0, (83)

which gives c0 = 1+M̄ as !0 ̸= 0.
The solutions to the equations at O(k) given by (B13) and (B18) in Appendix B, satisfying the

boundary conditions are given by

φ1 = 2iRe!0

[
uB(1) − c0

][
− 1

120
z5 + 1

24
z4

]
+ a1

6
z3 + a2

2
z2 + a3z + a4, (84)

φb
1 = b1e

√
pzb + b2e−√

pzb + b3zb + b4 − ic0Reδ

2d̂2√χ

[
B3e

√
pzb − B4e−√

pzb

]
zb, (85)

where ai, bi, i = 1 to 4, A and K are as in (B25) in Appendix B. Substituting (84), (85) and (B25) in
(B14), the wave speed at the first order is determined as

c1 =−i cot θ
[2

3
+

2δ
√

χ

d̂

(E+−E−)
-

+ 2δ2

d̂3

(
1 − δ

√
χ

(E+−E−)
-

)
+ 4δ2

d̂3-
(E++E− − 2)(λδ+d̂)

]

− iMa
Ca

[
1 +

δ
√

χ

d̂

(E+ − E−)
-

]
+ iRe

[( 8
15

+ 4
3

M̄ + M̄2
)(

1 +
δ
√

χ

d̂

(E+ − E−)
-

)

−2(1 + M̄)δ3

d̂3√χ

(E+ − E−)
-

− 4(1 + M̄)δ3

d̂4√χ-2

(2d̂
√

χ

δ
− λ

√
χ (E+ + E− − 2) + (E+ − E−)

)

+ M̄(1 + M̄)δ2

d̂2-

( 2
χ

(E+ + E−) − λ
√

χ
(E+ − E−)

)]
. (86)

In the absence of the porous substrate, (86) reduces to the asymptotic solution obtained by
Blyth and Pozrikidis.9 In the absence of the surfactant (Ma = 0), the results of Benjamin46and
Yih,44confirmed by the experimental results by Liu et al.47 are recovered. The first term arises due
to the transverse component of gravity, the second term appears as a result of the presence of an
insoluble surfactant at the interface and the last term appears due to the inertial effects. Further, the
expressions for the speed of the small amplitude surface waves given by c0 (Eq. (81)) and the growth
rate c1 (Eq. (86)) are analogous to those presented by Thiele et al.37 for the isothermal problem in
the absence of an insoluble surfactant at the free surface (differences in the expressions are due to
the choice of scales for the variables).

E. Contaminated film over a slippery inclined substrate: Long-wavelength analysis

By a film over a slippery inclined substrate, it is meant that a liquid film is flowing down a
saturated porous substrate which is modeled by an impermeable substrate (say at z = 0) with a
Navier-slip boundary condition u =

√
K

α
uz (dimensional variables) at the substrate z = 0. Here, α is

the empirical dimensionless parameter appearing in the Beavers-Joseph boundary condition. Such a
modeling is valid when the superficial velocity in the porous medium is small in comparison to the
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fluid velocity above the porous medium.25, 26 As mentioned in the Introduction, this model has been
used in a number of investigations24–29 and the effects of slip on the stability of the film flow system
have been examined.

In this section, the Orr-Sommerfeld system is derived for a gravity-driven film on a slippery
inclined substrate in the presence of an insoluble surfactant and the long-wavelength analysis is
performed. The Orr-Sommerfeld system in this case reduces to Eqs. (64)–(68) along with the
boundary conditions

φ = 0, on z = 0, (87)

φ′ = βφ′′, on z = 0, (88)

where β =
√

K
αh0

is the dimensionless slip length. A long-wavelength analysis similar to that described
in Sec. II D is performed and the results show that there are two modes, namely, the Yih/the
interface mode and the Marangoni mode. For the interface mode, the wave speed and the surfactant
concentration at the leading order are given by

c0 = 2(1 + 2β), (89)

!0 = 2ζ0

1 + 2β
[1 + β]. (90)

For the surfactant mode,

ζ0 = 0,

c0 = 1 + 2β. (91)

From the solution at O(k), the growth rate c1 for the interface mode is obtained as

c1 = −(
2
3

+ 2β)i cot θ − (1 + β)i
Ma
Ca

+ 4
15

iRe
[
2 + 10β + 15β2

]
(1 + β). (92)

Comparison of Eqs. (89), (90), and (92) with Eqs. (81), (82), and (86) shows that the expressions in
the leading order terms (up to terms proportional to dimensionless slip length) are identical, when the
dimensionless slip length β is identified with δ

√
χ

d̂
(E+−E−)

-
, which again represents a dimensionless

length expressed in terms of the porous medium characteristics. From Eq. (92), it is observed that
the transverse component of gravity and the presence of surfactant tend to stabilize, while the inertial
effects tend to destabilize the system.

In what follows, the equations (PS) given by (64)–(75) are solved numerically and the pa-
rameter regimes of flow instability are determined. Further, the Orr-Sommerfeld system (SS) for
the contaminated film flow over a slippery inclined plane (Eqs. (64)–(68), (87), and (88)) is also
solved numerically and the results of this one-domain model are compared with the results of the
Orr-Sommerfeld system (PS).

III. NUMERICAL RESULTS

A spectral-Tau collocation method based on Chebyshev polynomials is used for discretizing the
generalized eigenvalue problem described by Eqs. (64)–(75).45 The solution of this system yields
complex phase velocity c = cr + is, from which the dimensionless growth rate s is obtained. The
range of k (wave number) for which s > 0 is determined. The accuracy of the eigenvalues is tested
by varying the number of polynomials used in the computation and the spurious eigenvalues are
eliminated in the process. In order to validate the code employed in the computations, the numerical
results for the growth rate of a clean film over an impermeable inclined substrate (θ = 4◦) have been
obtained for Re = 2500 (Ma = 0, solid curve, Fig. 2(a) in this paper) and the results agree with
those presented by Blyth and Pozrikidis (Fig. 3 in Blyth and Pozrikidis9) and by Chin et al. (Fig. 5
in Chin et al.48). Based on the confidence gained by the accuracy of the above results, the developed
code has been used to compute the results for a clean/contaminated film over an impermeable/porous
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FIG. 2. (a) The growth rate of the dominant mode as a function of wave number when θ = 4◦, Ca = 0.017716, α = 1, and
Re = 2500 for a film over an impermeable substrate (solid curve) and over a porous substrate (dashed curve) with d̂ = 0.01,
χ = 0.1, λ = 0, and δ = 10−3. (b) The growth rate of the dominant mode as a function of wave number for different d̂ values,
when θ = 45◦, Ca = 0.017716, α = 1, and Re = 6, for a clean (Ma = 0; solid curve)/a contaminated film (Ma = 1; dashed
curve) over a porous substrate with λ = 0 and χ = 0.1. (c) The growth rate of the dominant mode as a function of wave
number for different Darcy number δ, when θ = 45◦, Ca = 0.017716, α = 1 and Re = 6, for a clean (Ma = 0; solid curve)/a
contaminated film (Ma = 1; dashed curve) over a porous substrate with λ = 0 and χ = 0.1.
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FIG. 3. (a) Effects of inertia on the growth rates when k = 0.5, α = 100, and Ca = 2, for different values of the Darcy
number δ with λ = 0, d̂ = 0.05, and χ = 0.1. (b) Effects of inertia on the growth rates as the Darcy number δ varies when χ

= 0.5, for λ = 0.5, d̂ = 0.05 and k = 0.5, α = 100, and Ca = 2.

substrate. The effects of the characteristics of the porous layer such as the ratio of the thickness
of the liquid layer to the porous layer (d̂), the porosity (χ ), the Darcy number (δ), the stress-jump
coefficient (λ) on the growth rate, and the stability of the film are examined. In what follows, a clean
film is identified with Ma = 0 and a contaminated film with Ma = 1.

Figure 2(a) shows the growth rate (s) of the most dangerous mode as a function of the wave
number (k) for a clean (Ma = 0) and a contaminated film (Ma = 1), when the Darcy number
δ = 10−3 and the thickness parameter d̂ = 0.01. The other parameters are taken as χ = 0.1, λ = 0,
and α = 1. The results for a film over an impermeable (porous) substrate are represented by solid
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(dashed) curves, respectively. As k increases, the growth rate initially increases, attains a maximum,
and then it decays. The maximum growth rate is slightly increased for a clean/a contaminated film
over a porous substrate (inset figures, dashed lines). Beyond a certain k, where the growth rate attains
its maximum, the growth rate of a contaminated film over an impermeable/a porous substrate is less
than that of a clean film. This indicates that the presence of the surfactant at the free surface tends
to suppress the growth rate of a contaminated film over an impermeable/a porous substrate. Also,
beyond a certain k, the effect of the presence of the porous substrate is to enhance the growth rate
of a clean/a contaminated film over it. Further, the range of k where the growth rate is positive for a
clean/a contaminated film over a porous substrate is larger than that over an impermeable substrate.

Figure 2(b) presents the growth rate of the dominant mode for a film over a porous substrate
for three different values of the dimensionless thickness parameter d̂ (d̂ = 0.005 in (i), d̂ = 0.008
in (ii), and d̂ = 0.01 in (iii)). The figure shows the effects of the Darcy number δ on the growth rate
at each d̂ value considered. The other parameters are fixed at θ = 45◦, λ = 0, χ = 0.1, α = 1, and
Ca = 0.017716. Here, the results for a clean film over a porous substrate (a contaminated film over
a porous substrate) are represented by solid (dashed) curves, respectively.

In the case of a clean film (solid curves 1, 2, and 3 in Fig. 2(b) (i), (ii), and (iii)), the growth rate
for the Darcy number δ = 10−3 (solid curve 1) is less than that for the other values of δ considered
(solid curves 2 and 3). The growth rate for δ = 7 × 10−3 is more than that for δ = 4 × 10−3 up to
a certain k, and beyond this k, the trend is reversed (solid curves 2, 3 in Fig. 2(b) (i), (ii), and (iii)).
For a fixed wave number k, the growth rate is more for a thicker porous layer (d̂ = 0.005, Fig. 2(b)
(i)) for the values of δ considered.

The growth rate for a contaminated film over a porous substrate with Darcy number
δ = 7 × 10−3 (dashed curve 3 in Fig. 2(b) (i), (ii), and (iii)) is more than that for the other
values of the Darcy numbers considered. For a fixed k, the growth rate of a contaminated film over
a thicker porous layer (Fig. 2(b) (i), dashed curve 3 for d̂ = 0.005, δ = 7 × 10−3) is more than
that for d̂ = 0.008 and d̂ = 0.01 when δ = 7 × 10−3 (Fig. 2(b) (ii), dashed curves for d̂ = 0.008,
δ = 7 × 10−3 and d̂ = 0.01, δ = 7 × 10−3). The results show that the growth rate of a clean/a
contaminated film over a porous substrate is more when it flows over a thicker porous layer.

Figure 2(c) presents the growth rate of the dominant mode for a film over a porous substrate,
for three different values of the Darcy number δ (δ = 10−3 in Fig. 2(c) (i); δ = 4 × 10−3 in
Fig. 2(c) (ii); and δ = 7 × 10−3 in Fig. 2(c) (iii)). It shows the effects of the dimensionless porous
layer thickness (d̂) on the growth rate at each δ considered. The other parameter values are taken
as θ = 45◦; Ca = 0.017716, Re = 6, λ = 0, χ = 0.1, and α = 1. Here, the solid (dashed curves)
represent the results for a clean (a contaminated) film over a porous substrate, respectively. The
growth rate increases with a decrease in d̂ for δ = 10−3 and δ = 4 × 10−3 as in Fig. 2(c) (i) and
(ii). It exhibits a non-monotonic behaviour for δ = 7 × 10−3 (Fig. 2(c) (iii)). It is observed from
Fig. 2(c) (i) (δ = 10−3) that the growth rate is negative for a contaminated film (dashed curves 1, 2,
3) for d̂ = 0.008, d̂ = 0.005 and d̂ = 0.01. As δ increases, the growth rate becomes positive beyond
a certain small k (Fig. 2(c) (ii) and (iii)). After this k, the growth rate increases with a decrease in d̂
for δ = 4 × 10−3 (Fig. 2(c) (ii)), dashed curves 1, 2, 3) and exhibits a non-monotonic behaviour for
δ = 7 × 10−3 (Fig. 2(c), dashed curves 1, 2, 3).

The results from Fig. 2(c) show that the growth rate of a clean/a contaminated film over a
porous substrate is maximum for a thicker porous layer and this is observed for all the Darcy
numbers considered in this investigations.

Figure 3 presents the effects of inertia on the growth rates of the Yih and the Marangoni modes
for a clean/a contaminated film over an impermeable/a porous substrate. The effects of permeability
are analyzed for d̂ = 0.05, λ = 0, Ca = 2, and θ = 45◦ when k = 0.5 (Fig. 3(a); χ = 0.1, λ = 0) and
(Fig. 3(b); χ = 0.5, λ = 0.5). The results for a film over an impermeable substrate are represented
by thick solid curves and that over a porous substrate by dashed curves. The notation Y(Ma = 0)
and Y(Ma = 1) denote the results for the Yih mode for a clean and a contaminated film over an
impermeable substrate, respectively, and Y(Ma = 0, δ), Y(Ma = 1, δ) denote the corresponding
results for a clean and a contaminated film over a porous substrate with Darcy number δ. Similar
notations are used to represent the Marangoni mode so that M (Ma = 1) corresponds to the results
for the Marangoni mode for a contaminated film over an impermeable substrate and M (Ma = 0,
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FIG. 4. Effects of inertia on the growth rates for a film over a porous substrate for different values of the thickness parameter
d̂, when k = 0.5, α = 100, Ca = 2, λ = 0, and δ = 4 × 10−3. (a) χ = 0.1, (b) χ = 0.5.

δ) and M (Ma = 1, δ) denote the results for the Marangoni mode for a clean and a contaminated
film over a porous substrate with Darcy number δ. The curve described by (Ma = 0, δ = 10−2, δ

= 4 × 10−3 in Fig. 3(a)) shows that the results of the Marangoni mode for a clean film over an
impermeable substrate and the results on a porous substrate with Darcy numbers δ = 10−2, δ = 4
× 10−3 are very close to each other. The results for Y(Ma = 0) over an impermeable substrate agrees
with the results obtained by Yih44 and Blyth and Pozrikidis.9 Also the results Y(Ma = 1) and M(Ma
= 1) for a contaminated film over an impermeable substrate agree with those presented by Blyth
and Pozrikidis9 (Fig. 4(a) in their paper for Re ̸= 0) and Pozrikidis22 (for Re = 0).

It is observed from Figs. 3(a) and 3(b) that the Marangoni mode dominates only when the
Reynolds number is sufficiently small. There is an increase in the growth rate of the Yih mode with
an increase in the Reynolds number. As the Reynolds number is further increased, the growth rate
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TABLE I. Critical Reynolds number values for different values of χ when λ = 0, Ca = 2, α = 1, θ = 45◦.

d̂ = 0.01 d̂ = 0.05 d̂ = 0.1
↓δ χ → 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5

4 × 10−3 Ma = 0 4.111 4.791 4.511 1.531 1.491 1.391 1.251 1.231 1.191
Ma = 1 4.251 4.951 4.671 2.331 2.231 2.071 2.131 2.091 2.011

7 × 10−3 Ma = 0 1.571 2.211 2.791 1.991 1.891 1.671 1.331 1.291 1.211
Ma = 1 1.591 2.251 2.831 2.651 2.511 2.211 2.131 2.071 1.931

1 × 10−2 Ma = 0 0.631 0.971 1.431 2.331 2.251 1.931 1.411 1.351 1.251
Ma = 1 0.631 0.971 1.451 2.851 2.731 2.351 2.171 2.071 1.891

of the Yih mode passes through the zero value and at the corresponding Reynolds number, there is
an exchange of stability and the film flow becomes unstable and the Yih mode becomes dominant
from then on. On the other hand, there is hardly any change in the growth rate of the Marangoni
mode as the Reynolds number is increased and the corresponding perturbations remain stable. This
behaviour is observed for a clean film/a contaminated film over both an impermeable and a porous
substrate. It is to be noted that, in the presence of an insoluble surfactant, inertia delays the onset of
instability for films over an impermeable as well as a porous substrate. The presence of the surfactant
raises the critical Reynolds number for the occurrence of instability.

It is interesting to note that the critical Reynolds number where the instability first occurs
for a contaminated film over a porous substrate is less than that for a contaminated film over an
impermeable substrate. The above trend is noticed for all values of the Darcy numbers (δ)(δ = 4
× 10−3, 10−2) considered. At a fixed Reynolds number, in the region where the Yih mode dominates,
an increase in δ increases the growth rate; but the critical Reynolds number, at which the growth rate
is zero decreases with an increase in δ. This indicates the destabilizing effect of the permeability
of the porous substrate (δ) on a clean/a contaminated film at this value of d̂(d̂ = 0.05) and λ = 0
(Fig. 3(a)). Figure 3(b) presents the results for χ = 0.5 and λ = 0.5 with the other parameters fixed
as that in Fig. 3(a). For all the values of δ considered in the present study, the Reynolds number at
which the growth rate is zero decreases with an increase in χ at this value of d̂(d̂ = 0.05). It is to
be noted that this is not the trend which is observed for all the values of d̂ considered, as is evident
from Table I.

It is of interest to examine the effects of the thickness of the porous layer on the growth
rate for a film over a porous substrate. Figure 4(a) (χ = 0.1, λ = 0) and Figure 4(b) (χ = 0.5,
λ = 0) show the effects of d̂ on the growth rate of the Yih and the Marangoni modes for a clean/a
contaminated film over a porous substrate, when δ = 4 × 10−3 for k = 0.5, α = 100, Ca = 2,
θ = 45◦. Here, the solid curves (dashed curves) represent the results for a clean (a contaminated)
film over a porous substrate. Y(Ma, d̂) and M(Ma, d̂) represent, respectively, the results for the Yih
and the Marangoni modes at this value of d̂ for a clean (Ma = 0) and a contaminated (Ma = 1)
film over a porous substrate. The solid curves (for Ma = 0, d̂ = 0.008, d̂ = 0.1) in Figs. 4(a) and
4(b) represent the results of the growth rate of the Marangoni mode for a clean film over porous
substrates with dimensionless thickness parameter d̂ = 0.008, d̂ = 0.1. As d̂ increases, the growth
rate for the Yih mode decreases in the region where the Yih mode dominates (where the growth rate
is positive), indicating that there is a decrease in the growth rate with decrease in the thickness of the
porous layer. Thus, the thicker the porous layer is, the more is the growth rate at any fixed Reynolds
number where the Yih mode dominates. Further, as the thickness of the porous layer increases, the
critical Reynolds number decreases. The above trend is exhibited by both clean and contaminated
films over a porous substrate. Further, as observed earlier, for any thickness of the porous layer, the
presence of the surfactant on the film over a porous layer delays the onset of instability. It is also
noted that, an increase in χ (Fig. 4(b), χ = 0.5) results in an increase in the growth rate of the Yih
mode for a clean/a contaminated film over a thicker porous layer in the region where the Yih mode
dominates.

Figure 5 presents the neutral stability curves for a clean (Fig. 5(a)) and a contaminated film
(Fig. 5(b)) for a flow down a slippery substrate. It is observed that as β, the dimensionless slip
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FIG. 5. Neutral stability curves for (a) a clean and (b) a contaminated film for flow over a slippery substrate when θ = 45◦,
Ca = 2. The solid curves represent the results of the long-wave analysis and dashed curves correspond to the solution of the
Orr-Sommerfeld system.

coefficient increases, the critical Reynolds number decreases (dashed curves), indicating the desta-
bilizing effect of β. The results of the long-wave analysis are incorporated in Fig. 5 (solid curves)
and for small wave numbers, a good agreement between the two results is observed (see the inset).

The neutral stability maps are presented in Figs. 6 and 7 for a clean film (Ma = 0; Figs. 6(a)–
6(c)) and for a contaminated film (Ma = 1; Figs. 7(a)–7(c)) over a porous substrate for different
dimensionless thickness of the porous layer d̂. They are presented in the cut-off wave number versus
Reynolds number plane. The effects of the permeability are examined at each d̂. The results for a
clean and a contaminated film over an impermeable substrate are also incorporated (solid curve) in
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FIG. 6. Neutral stability curves when α = 1.0, Ca = 2, θ = 45◦, for a clean film over an impermeable substrate (solid curve;
Blyth and Pozrikidis9) and over a porous substrate (dashed curves; λ = 0.0, χ = 0.1). (a) d̂ = 0.008, (b) d̂ = 0.03, and
(c) d̂ = 0.05.
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FIG. 7. Neutral stability curves when α = 1.0, Ca = 2, θ = 45◦, for a contaminated film over a rigid substrate (solid curve;
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Figs. 6 and 7, respectively. The porous substrate characteristics are taken as λ = 0, χ = 0.1, and the
other parameters are α = 1, Ca = 2, and θ = 45. The results help one to find the range of unstable
wave numbers for films over impermeable or porous substrates and also to find the critical Reynolds
number above which the system is unstable. In each figure in Figs. 6 and 7, the region above or to the
left of any curve is a stable region (where disturbances of wave number k decay with time) and the
region below or to the right of any curve is an unstable region (where disturbances of wave number
k are amplified with time) for the chosen parameter values. The point at which a curve meets the k
= 0 axis gives the value of the critical Reynolds number.

The results are presented for d̂ = 0.008, d̂ = 0.03, and d̂ = 0.05 in Figs. 6(a)–6(c), respectively.
When d̂ = 0.008 (Fig. 6(a)), the marginal stability curves are tugged towards the wave number axis
for small wave numbers. It is observed that, the critical Reynolds number decreases with an increase
in δ, showing the destabilizing effect of the presence of the porous substrate, for the flow of a clean
film over it. Thus, at this value of d̂, the effect of the permeability is to promote the instability close
to its onset. However, the range of unstable wave numbers is reduced as δ increases from δ = 7
× 10−3 to δ = 10−2 and is therefore stabilizing beyond certain values of the Reynolds numbers.
Further, a clean film over a porous substrate is more unstable than a clean film over an impermeable
substrate for larger values of the permeability parameter (δ = 10−2, δ = 7 × 10−3 curves 3 and 4),
at all the wave numbers considered. For δ = 10−3, a clean film over a porous substrate stabilizes the
modes which were unstable for a clean film over an impermeable substrate. The region of unstable
modes for δ = 10−3 is smaller than that for a clean film over an impermeable substrate. A clean film
over an impermeable substrate is more unstable than that over a porous substrate (δ = 4 × 10−3),
for small wave numbers, whereas beyond this value of k, the region of unstable modes is larger for
a clean film over a porous substrate than that over an impermeable substrate.

As d̂ increases to d̂ = 0.03 (Fig. 6(b)), the critical Reynolds number exhibits a non-monotonic
behaviour. As δ increases from δ = 10−3 to δ = 7 × 10−3, the critical Reynolds number increases
and therefore the presence of the porous substrate tends to stabilize but with further increase in δ

to δ = 10−2, the critical Reynolds number decreases and this is destabilizing. This effect occurs at
small wave numbers. Beyond a certain value of k, the range of unstable wave numbers is reduced
for δ = 4 × 10−3 than for δ = 10−3, and for a further increase in δ from δ = 4 × 103 to δ = 10−2,
the range of unstable wave numbers increases and is thus destabilizing. Further, there is a window
of stability for a clean film over a porous substrate for small values of wave numbers (in the sense
that the critical Reynolds number for a clean film over a porous substrate is larger than that for a
clean film over an impermeable substrate). In this window, the critical Reynolds number exhibits
a non-monotonic behaviour. Outside this window of stability, a clean film over a porous substrate
(δ = 7 × 10−3 and δ = 10−2) is more unstable than that for a clean film over an impermeable
substrate, and in this region, as δ increases, the region of unstable modes increases. With further
increase in d̂ to d̂ = 0.05 (Fig. 6(c)), the critical Reynolds number increases with increase in δ (from
δ = 10−3 to δ = 10−2; exhibits monotonic behaviour) for small wave numbers. Thus, the effect
of the Darcy number is to stabilize the film flow system for small wave numbers at this d̂ = 0.05.
Beyond a certain value of kc, at higher Reynolds numbers, as permeability increases, the range of
unstable wave number decreases (for an increase of δ from δ = 10−3 to δ = 7 × 10−3), but with a
further increase to δ = 10−2, the range of unstable wave number increases.

The above results reveal that for a thick porous layer, an increase in permeability tends to
destabilize the film flow system for a clean film. As the thickness of the porous layer reduces,
permeability tends to stabilize the film flow system for large permeability values at small wave
numbers but it is destabilizing at higher Reynolds numbers, although there is a non-monotonic
behaviour. With further increase in d̂ , that is, for a thin porous layer, permeability tends to stabilize
the film flow system at small wave numbers.

It is observed from Figs. 7(a)–7(c) that, when the film is contaminated, the critical Reynolds
number increases (compared to the corresponding critical Reynolds number for Ma = 0) and the
neutral curve is shifted to the right away from the wave number axis. This indicates the stabilizing
role played by the surfactant. The results for the contaminated film are analogous (Figs. 7(a)–7(c)) to
those for a clean film over a porous substrate for each d̂ value considered in Figs. 6(a)–6(c) for small
wave numbers. Beyond a certain value of kc, an increase in the Darcy number tends to reduce the
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FIG. 8. Neutral stability curves when α = 1.0, Ca = 2, θ = 45◦, for (a) a clean and (b) a contaminated film over a porous
substrate with δ = 7 × 10−3, λ = 0.0, χ = 0.5. The solid curve represents the results for a film over an impermeable substrate
(Blyth and Pozrikidis9).

range of unstable wave numbers and exhibits a monotonic behaviour. Thus, a clean/a contaminated
film over a thick porous layer is more unstable than over a thin porous layer for small wave numbers.
Also, for a fixed porous layer thickness, a decrease in d̂ corresponds to a decrease in the thickness of
the fluid layer. Therefore, the above results can also be interpreted as follows, namely, a thin liquid
film is more unstable than a thicker one over a porous substrate, of constant thickness, for small
wave numbers.

The neutral stability curves in the cut-off wave number-Reynolds number window are presented
for different values of d̂ in Figs. 8(a) and 8(b) for Ma = 0 and Ma = 1, respectively, when
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TABLE II. Values of critical Reynolds number as λ varies when d̂ = 0.01,χ = 0.1, θ = 45◦.

λ → 0 0.25 0.5 0.75 0.9

δ = 10−3 Ma = 0 2.691 2.651 2.611 2.571 2.551
Ma = 1 3.511 3.471 3.431 3.371 3.331

δ = 4 × 10−3 Ma = 0 4.111 3.711 3.291 2.851 2.571
Ma = 1 4.251 3.831 3.391 2.931 2.671

δ = 7 × 10−3 Ma = 0 1.571 1.371 1.171 0.991 0.871
Ma = 1 1.591 1.391 1.191 0.991 0.891

χ = 0.5, λ = 0, Ca = 2,α = 1, and θ = 45◦. The results show that the range of unstable wave
numbers increases with a decrease in d̂ , indicating that as the porous layer thickness increases,
the film flow system becomes more unstable at this value of δ = 7 × 10−3 and χ = 0.5. There
is a k-Re window for small wave numbers, where a different scenario is observed, namely, the
critical Reynolds number for d̂ = 0.01 is more than that for d̂ = 0.008 showing the stabilizing effect
with increase in d̂ . But, with further increase to d̂ = 0.05, the critical Reynolds number decreases
indicating the destabilizing effect in this k-Re window. Thus, in this k-Re window, a contaminated
film over a thinner porous layer is more unstable. In the presence of the surfactant (Fig. 8(b)), the
same trend as in Fig. 8(a) is observed but the contaminated film is more stable than a clean film at
all d̂ values considered. By comparing the results for χ = 0.1 (Fig. 6(a)), χ = 0.5 (Fig. 8(a)) when
d̂ = 0.008 for δ = 7 × 10−3 and Ma = 0, it is observed that the critical Reynolds number increases
with an increase in χ indicating the stabilizing effect for small wave numbers; however, the range
of unstable wave numbers increases with an increase in χ beyond a certain value of kc. The same
trend is observed for a contaminated film (Ma = 1; Figs. 7(a) and 8(b)). With further increase in χ ,
the trend is reversed (see Table I). The effects of the porosity (χ ) and the stress-jump coefficient (λ)
on the stability of the film flow system over an impermeable/a porous substrate are inferred from
Tables I and II.

Table I shows the values of the critical Reynolds number for different values of χ (parameter
describing the effects of porosity), as δ and d̂ vary when k = 0.02. As χ increases, there is a
decrease in the critical Reynolds number for d̂ = 0.05 and d̂ = 0.1 for the values of δ considered,
indicating the destabilizing effect of the porosity on the film over a thin porous layer. But for
d̂ = 0.01, as χ increases, from 0.1 to 0.2, the critical Reynolds number for a clean film over a porous
substrate increases for the values of δ considered and then with further increase in χ to χ = 0.5, the
critical Reynolds number decreases. For this value of d̂ , when Ma = 1, this trend is observed only for
δ = 4 × 10−3, whereas, for the other δ values, as χ increases, the critical Reynolds number increases.
This shows that, as the porosity of the porous substrate increases, the film flow system is in general
destabilized both for a clean and a contaminated film but at smaller permeability values, there is a
non-monotonic behaviour exhibited by the critical Reynolds number. The results, thus reveal that
by appropriate choice of the values of the porosity and the permeability parameters, it is possible to
obtain a k-Re window in which both a clean and a contaminated film over a porous substrate can be
stabilized and outside this window of stability, there is a possibility of enhancing the destabilizing
effect of the film flow system. The region of k-Re window where the film is stabilized can be enlarged
or decreased by properly choosing the thickness of the porous substrate.

The stress-jump coefficient λ is another parameter that plays a vital role in the stability of the
film flow system. Table II shows the critical Reynolds number values as λ varies, for different values
of δ, when d̂ = 0.01. The results show that, with an increase in λ, the critical Reynolds number
decreases, indicating the destabilizing effect of λ on a clean/a contaminated film over a thick porous
layer.

IV. CONCLUSIONS

The linear stability of a clean/a contaminated liquid film flowing down an inclined porous
substrate is examined and the Chebyshev-Tau spectral method is employed to obtain the results for
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the growth rate of the disturbances and the critical Reynolds number values for different values
of the parameters characterizing the porous medium. The growth rate of the Marangoni mode is
always negative and remains a constant for fixed values of δ, d̂ , and χ . The Yih mode is dominated
by the Marangoni mode for small Reynolds numbers. As Reynolds number increases, the growth
rate of the Yih mode increases, it overtakes the Marangoni mode, and from then on, the growth
rate of the Yih mode is positive and it becomes the dominant mode. This happens for both a clean
and a contaminated film over a porous/an impermeable substrate. It is observed that the presence
of the surfactant tends to stabilize the film flow over a porous substrate. The influence of the other
parameters characterizing the porous substrate such as the Darcy number δ, the porosity χ , the ratio
of the liquid layer to the porous layer thickness d̂ and the stress-jump coefficient λ, show that by
properly choosing the above parameter values, it is possible to find a k-Re window for small wave
numbers, where a clean/a contaminated film over a porous substrate can be stabilized in comparison
to that of a clean/a contaminated film over an impermeable substrate. Outside this window, the
destabilizing influence of the presence of the porous substrate on a clean/a contaminated film can
be enhanced. In view of the above, one can consider a clean/a contaminated film over a porous
substrate with appropriate values for the porous medium characteristics and use it as a strategy for
stabilizing/destabilizing the film flow system above it, in accordance with the application for which
this configuration is useful and relevant.
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APPENDIX A: PLANE-PARALLEL FLOW OF A FILM OVER A POROUS SUBSTRATE

The equations and the boundary conditions corresponding to the plane-parallel flow of a film
with uniform thickness over a porous substrate are obtained from Eqs. (18)–(33) and are given by

uzz + GRe = 0, (A1)

pz + GRe cot θ = 0, (A2)

uz = 0, on z = 1, (A3)

p = 0, on z = 1, (A4)

Uzbzb − χ

δ2
U = −GRe2

d̂3
χ , (A5)

Pzb + GRe2

d̂3
cot θ = 0, (A6)

uz = d̂
Re

U, on z = zb = 0, (A7)

Uzb − Reχ

d̂2
uz = λχ

δ
U, on z = zb = 0, (A8)

p = d̂2

Re2
P, on z = zb = 0, (A9)

! = 1, on z = 1, (A10)

U = 0, on zb = −1. (A11)
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The solutions uB of (A1) and UB of (A5) subject to the conditions (A3), (A7), (A8), and (A11)
are obtained and are given by Eqs. (34) and (35).

APPENDIX B: O(1) AND O(k) PROBLEMS

Substituting Eq. (76) in the Orr-Sommerfeld system of Eqs. (64)–(75), the equations at O(1)
and at O(k) are obtained. The equations at O(1) are given by

φ′′′′
0 = 0, (B1)

φ0(1) + ζ0

[
uB(1) − c0

]
= 0, on z = 1, (B2)

φ′′′
0 (1) = 0, on z = 1, (B3)

u′′
B(1)ζ0 + φ′′

0 (1) = 0, on z = 1, (B4)

φ′
0(1) + !0

[
uB(1) − c0

]
= 0, on z = 1, (B5)

φb
0
′′′′ − χ

δ2
φb

0
′′ = 0, (B6)

φ0
′′′ = d̂3

Reχ
φb

0
′′′ − d̂3

Reδ2
φb

0
′
, on z = zb = 0, (B7)

Reφ0 = φb
0 , on z = zb = 0, (B8)

Reφ0
′ = d̂φb

0
′
, on z = zb = 0, (B9)

φ0
′′ − d̂2

Reχ
φb

0
′′ = −λ

δ

d̂2

Re
φb

0
′
, on z = zb = 0, (B10)

φb
0 = 0, on zb = −1, (B11)

φb
0
′ = 0, on zb = −1. (B12)

The equations at O(k) are given by

φ′′′′
1 = iRe

[
uB − c0

]
φ0

′′ − iReu′′
Bφ0, (B13)

φ1(1) = c1ζ0 −
[
uB(1) − c0

]
ζ1, on z = 1, (B14)

φ′′′
1 = iRe

[
uB(1) − c0

]
φ0

′(1) + 2i cot θζ0, on z = 1, (B15)

φ′′
1 (1) + u′′

B(1)ζ1 + iMa
Ca

!0 = 0, on z = 1, (B16)

φ′
1(1) − !0(c1 + i

αCa
) + !1

[
uB(1) − c0

]
= 0, on z = 1, (B17)

φb
1
′′′′ − χ

δ2
φb

1
′′ + ic0Re

d̂2
φb

0
′′ = 0, (B18)

φ1
′′′ + Reu′

B(0)iφ0 − iRe
[
u B(0) − c0

]
φ′

0 = d̂3

Re

[ 1
χ

φb
1

′′′
− 1

δ2
φb

1
′ + ic0Re

d̂2χ
φb

0
′]

,

on z = zb = 0, (B19)
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Reφ1 = φb
1 , on z = zb = 0, (B20)

Reφ1
′ = d̂φb

1
′
, on z = zb = 0, (B21)

φ1
′′ − d̂2

Reχ
φb

1
′′ = −λ

δ

d̂2

Re
φb

1
′
, on z = zb = 0, (B22)

φb
1
′ = 0, on zb = −1, (B23)

φb
1 = 0, on zb = −1. (B24)

The solutions to (B13) and (B18) are given by Eqs. (84) and (85) and the constants appearing in
(84) and (85) are given by

a1 = −iRe!0

[
uB(1) − c0

][
1 − (c0 − uB(1))

]
+ 2iζ0 cot θ,

a2 = iRe!0

[
uB(1) − c0

][1
3

− (c0 − uB(1))
]

+ 2ζ1 − iMa
Ca

!0 − 2iζ0 cot θ,

a3 = d̂
Re

[√
p(b1 − b2) + b3 + ic0Re2δ3

2d̂4√χ

u′′
B(1)(E+ − E−)ζ0

-

]
,

a4 = 1
Re-

[
A{−λ

√
χ(E+ + E− − 2) + (E+ − E−)}

]

+ K
-Re

(E+ + E− − 2) − 2i cot θζ0δ
2

d̂3
,

b1 = AB+ + K E+

-
, b2 = K E− − AB−

-
,

b3 = −2i cot θζ0 Reδ2

d̂3
, b4 = Rea4 − b1 − b2,

A = −2ic0Re2δ3ζ0

d̂4√χ-
+ 2i cot θζ0Reδ3

d̂3√χ
,

K = δ2Re

d̂2

[
a2 + λd̂2

δRe
b3 − ic0Reδ2u′′

B(1)ζ0

d̂2χ-
{(E+ + E−) −

λ
√

χ

2
(E+ − E−)}

]
. (B25)
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