
HAL Id: hal-00931383
https://hal.science/hal-00931383

Submitted on 15 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Software Product Lines for the development of Families
of DSLs for Robotics

Tewfik Ziadi, Tegane Saher, Selma Kchir, Serge Stinckwich

To cite this version:
Tewfik Ziadi, Tegane Saher, Selma Kchir, Serge Stinckwich. Software Product Lines for the develop-
ment of Families of DSLs for Robotics. 6ème Journée Lignes de Produits, Nov 2013, Paris, France.
pp.LDPIDM-3. �hal-00931383�

https://hal.science/hal-00931383
https://hal.archives-ouvertes.fr

Software Product Lines for the development

of Families of DSLs for Robotics

Tewfik Ziadi* — Saher Tegane** — Selma Kchir*** — Serge Stinckwich****

* LIP6-UPMC, Tewfik.Ziadi@lip6.fr. ** ESI, Algeria, s_tegane@esi.dz. *** LIP6-UPMC,
Selma.Kchir@lip6.fr. **** UMMISCO-IRD-UPMC, Serge.Stinckwich@ird.fr

RÉSUMÉ.

ABSTRACT. The development of robotics software must deal with a large amount of variabil-
ity. This position paper proposes a framework based on Software Product Line Engineering to
allow defining families of DSL in the context of robotics. This framework allows: 1) Manag-
ing variability when defining the domain model for a family of DSL. 2) Deriving specific DSL
according the user choices.

MOTS-CLÉS : Lignes de produits, DSL, Robotique

KEYWORDS: software product lines, DSL, Robotics

JLDP. Volume 2013 - n◦ -/-

2 JLDP. Volume 2013 - n◦ -/-

1. Introduction

Domain Specific Languages (DSLs) have emerged as a powerful mechanism for

managing complexity in software development. Designing and implementing DSL is

built on two main steps[MER 05] :

– Analysing the domain to capture the key concepts and their relationships. In the

context of Model Driven Engineering (MDE), these concepts can be defined in what

is called a domain model or a meta-model.

– Implementing related tools. This includes editors, compilers, and code genera-

tors.

As mentioned in [WHI 09], DSL are focused on very specific domain concerns and

this narrow scope makes it hard to reuse a DSL for a new set of requirements. This is

specially true in the context of robotics where the development of robotics software

must deal with a large amount of variability from at least two perspectives :

– Variability in sensors and actuators. There is a large number of families of sen-

sors and actuators. The choice of each type of sensors or actuators depending on the

type of task target and/or the type of the used robots.

– For the same task we can find a family of existing algorithms, e.g. the bug family

for the navigation task [LUM 90].

Defining a single DSL that considers these two kinds of variability can make it

complex to be used. Indeed, including all types of sensors, actuators and existing al-

gorithms overloads its domain model and makes it useless for end users that only use

a subset of these sensors, actuators and algorithms. In addition, any introduction of

new sensors and/or actuators needs an evolution of the domain model and its related

tools. Therefore, we believe that to consider this challenge of variability management

in robotics applications, we need not only to implement a single DSL but a family of

DSLs[SVE 10].

Implementing a family of software is known in the software engineering commu-

nity by the notion of software product lines. Software Product Line (SPL) focuses on

capturing commonality and variability between several software products belonging

to the same domain [CLE 01]. It introduces the notion of feature models to expli-

citly specify variability and proposes to automated what is called product derivation,

which consists of building product members based on the selection of features from

the feature model.

In this paper we propose to reuse the SPL approach to design and implement a

family of DSLs for robotics application. The objective is to propose a framework

that allows : 1) Specifying variability using feature models where designing the DSL

family. 2) Deriving specific DSL according to the user choices and/or requirements.

The reminder of this paper is organized as follows. Section 2 presents the mo-

tivations of our work. Section 3 present our approach ans illustrates it on a simple

example. Section 4 concludes this work and presents some perspectives.

SPL for DSLs for Robotics 3

2. Motivations

To illustrate the motivations of our approach, let’s consider a simple example of

DSL, called SearchRescueRobotics-DSL, in the context of search and rescue

robotics. This DSL should allow specifying two types of missions :

– Exploration. This type of task involves robot maneuvers within a disaster area.

The robot can sense the obstacles within its sensing area. To specify exploration mis-

sion, the DSL should allows defining distance sensors (e.g. ; Lidar, Camera) and

motion actuators (e.g. ; Differential Wheels).

– Human Detection. The objective of the robot in this kind of missions is to detect

the presence of human in a specific area. To specify human detection, the DSL should

specify specific sensors related to human detection such as Sound and CO2 sensors.

For human detection, we also need additional actuators such as ManipulatorArm

in order to manipulate the environement (opening doors, providing medical care for

victims, ...).

These two kinds of missions may reuse a set navigation algorithms. For instance,

we consider three navigation algorithms of the Bug family[LUM 90].

Figure 1 illustrates a part of domain model (meta-model) of SearchResscueRobotics-DSL1.

This includes four main concepts : Mission, Sensor, Actuator and NavigationAlgo.

To model the different variants of sensors and actuators that can be used to define

missions, we reused inheritance. For instance, Lidar, SoundSensor that inherit

from Sensor represent two examples of concrete existing sensors. In the same, we

modeled the different navigation algorithms using inheritance. We introduced the Na-

vigationAlgo meta class and all algorithm variants are modeled using inheritance. For

instance, Bug1, Bug2, and Alg1 represent meta-classes that implement Bug family

members.

In the second step, when we implement the code generator that is related to the

domain model of Figure 1, we need to identify each type of the concrete sensors and

actuators and generate the corresponding code. The following template 2 presents the

general structure of a code generator which generates the code for sensors.

/ / g e n e r a t i n g code from s e n s o r s

f o r (Se ns o r s : s e n s o r s)

~~ i f (s i n s t a n c e o f L i d a r)

~~~~ p r i n t " s p e c i f i c code f o r L i d a r

~~ i f ( s i n s t a n c e o f SoundSensor )

~~~~ p r i n t " s p e c i f i c code f o r SoundSensor

.

~~ i f (s i n s t a n c e o f CO2Sensor)

~~~~ p r i n t " s p e c i f i c code f o r CO2Sensor

1. We have only interested on Sensors, Actuators and Navigation algorithms.
2. We follow a EMF/Java like syntax.



4 JLDP. Volume 2013 - n◦ -/-

Figure 1. An example of a domain model

The design and the implementation of a single DSL for these two kinds of mis-

sions allows gathering the common concepts in the same domain model. However, it

can give rise to some problems concerning the usability and the evolution of DSL. By

including all concepts related to the both types of missions makes the domain model

overladen and useless for users that only use one kind of missions. Indeed, for the users

that only specify Exploration missions, why we include in the SearchRescueRobotics-DSL

DSL concepts such as CO2Sensors or SoundSensor that are only specific for Hu-
man Detection missions ? In addition, any introduction of new concrete sensors and/or

actuators needs the modification of the domain model and its related code generators.

For instance, we need to modify the template below to consider new sensors and/or

actuators.

In this position paper, we advocate the idea that for robotics applications, we

need an approach that allows designing not a single DSL but a family of DSLs.

To implement such approach, we propose to use the concepts of Software Product

Line Engineering[CLE 01]. In particular, we reuse the Common Variability Language

(CVL)[HAU 12] tool to implement our approach.

Next section present in detail our approach.

3. Our approach

Our aim is to propose a framework that allows designing a family of DSL rather

than a single DSL in a specific domain. For robotics applications, this enables to derive

specific DSL according to different variability factors. For instance, it is possible to



SPL for DSLs for Robotics 5

obtain a specific DSL for a specific kind of missions and/or for a specific types of

sensors or actuators. We identified two main requirements for such framework :

– Mechanisms to specify the variability in the domain model and in its related

tools.

– Mechanisms that allow the specialization of the domain model ans its related

tools to a specific user choices and/or needs.

To achieve these two requirements is to reuse Software Product Line Engineering

approaches. We particularly reuse a CVL (Common Variability Language)[HAU 12]

approach. Next subsections presents our framework.

3.1. Variability Management in the domain model

The Common Variability Language[HAU 12] is a generic and separate language

for modeling variability in models. The main idea is to allows defining families of

models. CVL is based on three based principals :

– The base model. It represent the model that gathers the basic elements among

the family.

– The variability model. It represents the core model that defines variability on

the base model.

– The resolution model. It is a model that defines how to resolve the variability

model to create a specific model in the base model.

– The CVL transformations. CVL proposes an engine to transform the base mo-

del according to a specific resolution model.

Our idea to manage variability in the domain model is to apply CVL on the meta-

models. The base model is thus defined as the meta-model part that gathers all basic

concepts in the DSL family where the variability model specifies the variability bet-

ween the DSL family members. Next subsections illustrates our use of CVL on the

example of SearchRescueRobotics-DSL.

3.1.1. The Base Domain Model

The base domain model is defined as the meta-model representing the basic concepts

in the DSL family. Figure 2 illustrates the base domain model for the family of DSL

concerning the MobileRobot-DSL. It only contains concepts of Mission, Sensor,

Actuator and NavigationAlg. We have omitted all variable concepts such as

concrete sensors and actuators because these concepts are variable and depend on

user choices and/or needs.



6 JLDP. Volume 2013 - n◦ -/-

Figure 2. The base model

3.1.2. The Variability Model

The Variability Model (VM) in CVL specifies the variability among the family.

To define the VM in CVL, two parts are specified : Feature Model and Fragment

Substitution.

3.1.2.1. Feature Model.

The feature model (FM) in CVL is inspired from feature modeling in SPLE[KAN ].

It allows specifying the variability in the User-Centric Layer. Figure 3 shows the fea-

ture model concerning the example of SearchRescueRobotics-DSL. In addi-

tion to root feature, we introduced two sub-features Mission and NavigationAlgo

to specify that we have two variation points. For Mission feature, we used the

âĂIJXORâĂİ operator to specify that the user have a choice between two kinds of

missions : Exploration and Human Detection. The NavigationAlgo features spe-

cify an "OR" choice between the different algorithm variants.

3.1.2.2. Fragment Substitution

. Where the feature model is defined, the next task is to specify the modification

that we want apply on the base model when a specific feature is chosen. CVL proposes

the use of what is called "Fragment Substitution" to define library models. This is

realized by defining two types of fragments :

– Placement Fragment (PF). It consists to select the element in the base model

that will be replaced when the feature is selected.

– Replacement Fragment (RF). It specifies the model fragment that will replace

the selected element in CFP.

Figure 4 shows the fragment substitutions for the SeachRescueRobotics-DSL

example. For each feature we define the two types of fragments. To illustrate this, let"s

consider the Exploration feature :

PFs definition. We defined two PFs, that are highlight in red in Figure 4, for the

Exploration feature. The PF ExplorationPFSensor specifies that where the



SPL for DSLs for Robotics 7

Exploration feature is selected we need to replace the element Sensor in the base mo-

del of Figure2. Indeed, to allow specifying exploration mission we need to replace the

Sensor meta-class in the base domain model to include specific distance sensors. In

the same, the ExplorationPFActuator PF specifies that we also need to replace

the Actuator element is the base model.

RFs definition We define for each PF an RF that specifies the model fragment that

will replace the selected element. As illustrated in the Figure 4, we define ExplorationRFSensor

as a RF associated with the ExplorationPFSensor. We add to the ExplorationRFSensor,

a fragment of model that will be replace the Sensor meta-class where the Explora-

tion feature is selected. This fragment model contains an inheritance hierarchy with

the meta-classes Lidar and Camera that are necessary to specify exploration mis-

sions.

Figure 4 also illustrates the PFs and RFs for the Humain Detection feature.

Here also, we replace the Sensor and Actuator meta-classes.

3.1.3. DSL derivation

Until now, the family of DSLs is specified, thanks to CVL, as a base domain model,

a feature model and a set of fragment substitutions. From this specification, we can

reuse the CVL transformation engine to derive a specific DSL from the user choices.

Indeed, CVL includes a set of transformations that allows creating a new model from

the base model by applying substitutions defined in CF and RPs. This derivation is

defined in two steps :

– Create a Resolution Model (RM). The RM can be seen as an instantiation of

the feature model. It specifies the user choice and/or needs. It can be defined as a set

of the selected. For instance, if we want a DSL that allows specifying only exploration

mission and that supports only the Bug1 navigation algorithm, the RM will be defined

with the set : Rm1= Exploration, Bug1.

– Apply CVL transformations. From the DSL family specification and a specific

RM, CVL creates a new meta-model by applying substitution rules on the base meta-

model. The idea is to replace each element in the PF that concerns a selected feature

in the RM with the fragment model defined in its RF.

Figure 5 illustrates the domain model automatically derived using CVL transfor-

mations for the Rm1 resolution model.

In the same way, can derive the domain model of different DSLs according to the

resolution model.

3.2. Variability Management in code generator

Above, we presented the use of CVL to manage varibiality in the metamodel. The

second challenge is to manage variability in the code generator. In this section, we

propose an approach, based on aspect oriented programming.



8 JLDP. Volume 2013 - n◦ -/-

Figure 3. The feature model

Figure 4. A part of the variability model

3.2.1. Code generator derivation

4. Conclusion and Perspectives

To handle variability in robotics application, this position paper proposes to define

a family of DSLs rather than a single DSL. The idea is to allow users to derive specific

DSLs according to their requirements and needs. We show that existing software pro-

duct line approach can be easily reused. In this context we present a framework based

on the CVL approach that allows :



SPL for DSLs for Robotics 9

Figure 5. The domain model of the DSL corresponding to the Rm1 resolution model

– Defining a family of DSLs. We only considered at this stage the domain model

of the DSL.

– Deriving specific DSL according to user requirements.

The framework is fully implemented, thanks to the CVL tool3. We used a simple

example to illustrate our framework. Our future work spans in managing variability in

the tools related to the domain model. In particular, we aim to investigate variability

management in code generators.

5. Bibliographie

[CLE 01] CLEMENTS P., NORTHROP L., Software product lines : practices and patterns,

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001.

[HAU 12] HAUGEN Ø., WASOWSKI A., CZARNECKI K., ń CVL : common variability lan-

guage ż, DE ALMEIDA E. S., SCHWANNINGER C., BENAVIDES D., Eds., SPLC (2),
ACM, 2012, p. 266-267.

[KAN ] KANG K., COHEN S., HESS J., NOVAK W., PETERSON S., ń Feature-Oriented Do-

main Analysis (FODA) Feasibility Study ż, rapport.

[LUM 90] LUMELSKY V. J., SKEWIS T., ń Incorporating range sensing in the robot navigation

function ż, IEEE Transactions on Systems, Man, and Cybernetics, , 1990, p. 1058-1069.

[MER 05] MERNIK M., HEERING J., SLOANE A. M., ń When and how to develop domain-

specific languages ż, ACM Comput. Surv., vol. 37, no 4, 2005, p. 316-344.

3. http://www.omgwiki.org/variability/doku.php?id=cvl_tool_from_

sintef



10 JLDP. Volume 2013 - n◦ -/-

[SVE 10] SVENDSEN A., ZHANG X., LIND-TVIBERG R., FLEUREY F., HAUGEN Ø.,

MØLLER-PEDERSEN B., OLSEN G. K., ń Developing a Software Product Line for Train

Control : A Case Study of CVL ż, BOSCH J., LEE J., Eds., SPLC, vol. 6287 de Lecture
Notes in Computer Science, Springer, 2010, p. 106-120.

[WHI 09] WHITE J., HILL J. H., GRAY J., TAMBE S., GOKHALE A. S., SCHMIDT D. C.,

ń Improving Domain-Specific Language Reuse with Software Product Line Techniques ż,

IEEE Software, vol. 26, no 4, 2009, p. 47-53.


