
HAL Id: hal-00931264
https://hal.science/hal-00931264v1

Submitted on 15 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modular Instantiation Schemes
Mnacho Echenim, Nicolas Peltier

To cite this version:
Mnacho Echenim, Nicolas Peltier. Modular Instantiation Schemes. Information Processing Letters,
2011, 111 (20), pp.989-993. �10.1016/j.ipl.2011.07.003�. �hal-00931264�

https://hal.science/hal-00931264v1
https://hal.archives-ouvertes.fr

Modular instantiation schemes

Mnacho Echenim1,∗, Nicolas Peltier1,∗

University of Grenoble & CNRS, Grenoble

Abstract

Instantiation schemes are proof procedures that test the satisfiability of clause
sets by instantiating the variables they contain, and testing the satisfiability of
the resulting ground set of clauses. Such schemes have been devised for several
theories, including fragments of linear arithmetic or theories of data-structures.
In this paper we investigate under what conditions instantiation schemes can
be combined to solve satisfiability problems in unions of theories.

Keywords: SMT, Instantiation-based methods, combination problems

1. Introduction

Instantiation schemes are employed to prove the (un)satisfiability of a set
of clauses. They are based on Herbrand’s theorem, which states that any un-
satisfiable set of clauses admits a finite set of ground instances that is also
unsatisfiable. Any instantiation scheme can be viewed as a function Θ that
maps a set of clauses S to a set of ground instances Θ(S) of clauses in S; such
a scheme is refutationally complete if for all sets of clauses S, Θ(S) is satisfiable
exactly when S is. Examples of refutationally complete instantiation schemes
include [14, 9, 3, 11]. Some incomplete – but efficient and practically successful
– schemes have also been defined, see e.g. [13, 10]. It is clear that an instantia-
tion scheme that is refutationally complete does not always terminate, as Θ(S)
may be infinite; however, terminating and refutationally complete instantiation
schemes have been defined for specific theories or classes of theories (see e.g.
[1, 4, 7, 6]). Such decision procedures can be very attractive, provided they do
not generate too many ground clauses, since it is much easier to test the satisfi-
ability of a ground set of clauses than that of a non ground set (see for instance
[2, 5] for surveys of existing approaches in Satisfiability Modulo Theories). Fre-
quently, one has to handle heterogeneous problems, defined on (possibly non
disjoint) unions of theories. Thus the idea of combining existing instantiation
schemes naturally arises. Most systems rely on the Nelson-Oppen or Shostak

∗Corresponding author
1Emails: Mnacho.Echenim@imag.fr and Nicolas.Peltier@imag.fr

Preprint submitted to Elsevier November 8, 2010

methods (with many refinments and extensions) to combine decision procedures
(see e.g. [15]). In this paper, we use a different and more upstream method by
showing how to combine directly the instantiation schemes to produce a unique
set of ground instances. Thanks to these results, combining instantiation-based
systems now becomes a straightforward task – provided they fulfill the con-
ditions of Section 4 – since the interactions between the theories are directly
handled by the decision procedure for ground clauses.

2. Preliminaries

We briefly review usual notions and notations (missing definitions can be
found in [8]). Let S be a set of sorts symbols and let F be a set of function

symbols together with a ranking function rnk : F → S∗ × S. For every f ∈ F ,
we denote rnk(f) by s1 × · · · × sn → s. If n = 0 then f is a constant symbol.
To every sort s ∈ S is associated a countably infinite set Xs of variables of sort

s, such that these sets are pairwise disjoint. Let X =
⋃

s∈S
Xs.

For every s ∈ S and F ⊆ F, the set of F-terms of sort s is denoted by Ts(F)
and built inductively as usual on X and F . The set of F-terms is defined by
T(F) =

⋃
s∈S

Ts(F). When no confusion is possible, we may simply mention
terms, instead of F-terms. An F-atom is an equality t ≃ s between F-terms of
the same sort; an F-literal is either an F-atom or the negation of an F-atom
(written t 6≃ s) and an F-clause is a disjunction (or multi-set) of F-literals.
The set of F-clauses is denoted by C(F). The set of variables occurring in an
F-expression (term, atom, literal or clause) E is denoted by Var(E); E is ground

if Var(E) = ∅. An F-substitution is a function that maps every variable to an F-
term of the same sort. The image of a variable x by a substitution σ is denoted
by xσ. The domain of a substitution σ is the set dom(σ) = {x ∈ X | xσ 6= x},
which is assumed to be finite. A substitution is extended to terms, atoms, literals
and clauses in the standard way. An F-substitution σ is ground if ∀x ∈ dom(σ),
Var(xσ) = ∅. A ground F-instance of an F-expression E is an F-expression of
the form Eσ, where σ is a ground F-substitution of domain Var(E).

We denote by SF the set of sort symbols occurring in the rank of a symbol
f ∈ F . An F-interpretation is a function I that maps every sort s ∈ SF to
a nonempty domain I(s) and every function f ∈ F of rank s1 × · · · × sn → s

to a function f I : I(s1) × · · · × I(sn) → I(s). We assume that the domains
of the sorts are pairwise disjoint. A valuation for an interpretation I and an
expression E is a function mapping every variable of sort s occurring in E to an
element of I(s). If I is an interpretation, E is an expression and σ is a valuation
for E and I(s), then [E]σI denotes the value of E in I and σ (defined inductively
as usual). An F-interpretation I satisfies an F-clause C if for every valuation
ν for I and C we have [C]νI = true. A set of F-clauses S is satisfied by I if I
satisfies every clause in S. If this is the case, I is a model of S and we write
I |= S. A set of clauses S is satisfiable if it has a model; two sets of clauses are
equisatisfiable if one is satisfiable exactly when the other is satisfiable.

2

Definition 1 A specification is a triple (F , I, C) where F is a set of function
symbols, I is a set of interpretations and C is a class of clause sets. Two
specifications (F , T , C) and (F ′, T ′, C′) are quasi-disjoint if all the symbols in
F ∩ F ′ are constants. A clause set S ∈ C is T -satisfiable if there exists I ∈ I
such that I |= S. S and S′ are T -equisatisfiable if they are both T -satisfiable
or both T -unsatisfiable. ♦

In many cases, I is simply the set of all F-interpretations, but our results also
apply to domain-specific instantiation schemes such as those for fragments of
Presburger arithmetic or of real numbers, for which the class of interpretations
must be restricted. Restricting the form of the clause sets in C is necessary
in some cases for defining instantiation schemes that are both terminating and
refutationally complete; that is why we do not assume that C = C(F). Axioms
may be included into C.

For instance the theory of arrays is modeled in our setting as a specification
(F , I, C) where F contains the function symbols select : array × ind → elem

and store : array×ind×elem → array (together with an infinite set of constant
symbols of each sort), I contains all F-interpretations and C is the set of clauses
of the form S ∪ {select(store(x , z , v), z) ≃ v , z ′ 6≃ z ∨ select(store(x , z , v), z ′) ≃
select(x , z ′, v)} where S is a finite set of ground clauses. Then the instantiation
scheme should simply instantiate the axioms in such a way that T -satisfiability
is preserved2.

The theory of Presburger arithmetic is modeled by a specification (F , I, C)
where F contains the function symbols 0 : nat,s : nat → nat, + : nat× nat →
nat ≤: nat× nat → bool (together with an infinite set of constant symbols of
sort nat), I is the set of interpretations such that I(nat) = N and such that
0, s,+,≤ are interpreted as usual, and C contains every finite set of F-clauses.
In this case an instantiation scheme shall instantiate the variables occurring
in the considered clause set in such a way that satisfiability is preserved (in
Presburger arithmetic).

Let T = (F , I, C) be a specification. An instantiation procedure for T is a
function Θ from C to C such that for every S ∈ C, Θ(S) is a set of ground F-
instances of clauses in S. Θ is complete for T if for every S ∈ C, S and Θ(S) are
T -equisatisfiable. If furthermore Θ(S) is finite for every S ∈ C and if there exists
a procedure for checking whether a ground (finite) clause set is satisfiable in I,
then the satisfiability problem is decidable for T . Several examples of complete
instantiation procedures are available in the literature [14, 9, 3, 11, 12, 1, 4, 7, 6]).
Our goal in this paper is to provide a general mechanism for constructing new
complete instantiation procedures by combining existing ones.

2Alternatively, we could assume that I is the set of models of the axioms
{select(store(x , z , v), z) ≃ v , z ′ 6≃ z ∨ select(store(x , z , v), z ′) ≃ select(x , z ′

, v)}, and that
C contains all finite sets of ground clauses, but then there would be no instantiation required.

3

3. Combining specifications

The most natural way of combining two specifications T and T ′ is to consider
the union of T and T ′:

Definition 2 Let T = (F , I, C) and T ′ = (F ′, I ′, C′) be two specifications.
T ∪ T ′ denotes the specification (F ∪ F ′, I ′′, C′′), where I ′′ denotes the set of
(F ∪F ′)-interpretations I such that the projection of I onto F (resp. onto F ′)
is in I (resp. in I ′), and C′′ is the class of clause sets of the form S ∪ S′ where
S ∈ C and S′ ∈ C′. ♦

The next definition shows how to construct an instantiation procedure for
T ∪ T ′ by combining instantiation procedures for T and T ′ respectively.

Definition 3 Let Θ, Θ′ denote two functions of profiles C → C and C′ → C′

respectively. Then (Θ⊔Θ′) denotes the function of profile C∪C′ → C∪C′ defined

by: (Θ ⊔ Θ′)(S)
def

= Θ(SC) ∪ Θ′(SC′), where SC = S ∩ C and SC′ = S ∩ C′. ♦

It is simple to find examples showing that Θ ⊔ Θ′ is not always complete
for T ∪ T ′, even if Θ and Θ′ are complete for T and T ′, respectively. We now
exhibit conditions that guarantee completeness. The first condition is on the
specifications, more precisely on the cardinality of the domains. Intuitively, the
cardinality of a sort domain cannot depend on the considered formula, nor on
the considered specification(this condition extends the notion of stably-infinite
theories [15] to the case – frequently encountered in practice – where the domain
of some sorts can be finite).

Definition 4 For every set D we denote by card(D) the cardinality of D (D
may be infinite hence card(D) is an ordinal). A specification T = (F , I, C)
is stable if there exists a function cardT mapping every sort s ∈ SF to an
ordinal such that every T -satisfiable clause set S ∈ C has a model I such that
∀s ∈ SF , card(I(s)) = cardT (s).

Two stable specifications T = (F , I, C) and T ′ = (F ′, I ′, C′) are structurally

equipotent if ∀s ∈ SF ∩ S′
F , cardT (s) = cardT ′(s). ♦

This condition is usually satisfied in practice: for instance two stably-infinite
theories [15] over a single sort are always structurally equipotent. The second
condition is on the instantiation procedures. It states that the addition of
new equations and disequations between constant symbols to a given clause set
should not affect the corresponding set of instances. This means that the in-
stantiation procedures are unaffected by the equalities and disequalities entailed
by the other specification.

Definition 5 Given a theory T = (F , I, C), a function Θ : C → C is base-

complete for T if for all sets of clauses S ∈ C and for all sets E only containing
equalities or disequalities between constants, the sets S ∪ E and Θ(S) ∪ E are
T -equisatisfiable. ♦

4

Notice that an instantiation procedure that is base-complete for T is also
complete for T (it suffices to take E = ∅).

Theorem 6 Let T , T ′ be two stable, structurally equipotent and quasi-disjoint

specifications. If Θ and Θ′ are base-complete for T and T respectively, then

Θ ⊔ Θ′ is base-complete for T ∪ T ′.

The remainder of this section is devoted to the proof of this result.

Definition 7 A set of clauses S is a connection for F and F ′ if for every pair
of constant symbols a, b ∈ F ∩ F ′, either a ≃ b ∈ S or a 6≃ b ∈ S. ♦

Lemma 8 Let T = (F , I, C) and T ′ = (F ′, I ′, C′) be two stable and structurally

equipotent specifications. If E is a connection for F and F ′ and if S ∪ E and

S′∪E are respectively T -satisfiable and T ′-satisfiable, then S∪S′∪E is (T ∪T ′)-
satisfiable.

Proof Let I and I ′ be two models of S ∪ E and S′ ∪ E respectively. Let
S = SF and S ′ = S′

F . Since T and T ′ are stable, we may assume that
∀s ∈ S, card(I(s)) = cardT (s) and ∀s ∈ S ′, card(I ′(s′)) = cardT ′(s′). Hence,
since T and T ′ are structurally equipotent, ∀s ∈ S∩S ′, card(I(s)) = card(I ′(s)).
Thus for every s ∈ S∩S ′ there exists a bijection φs from I ′(s) onto I(s). We may
assume that for every constant symbol a occurring in F ∩F ′, φs(I

′(a)) = I(a).
Indeed, if a, b are constant symbols in F ∩ F ′ such that I ′(a) = I ′(b) then
necessarily a ≃ b ∈ E because I ′ |= E and E is a connection; thus I(a) = I(b),
since I |= E. This implies that there exists a sort-preserving bijection φ from⋃

s∈S∩S′ I ′(s) onto
⋃

s∈S∩S′ I(s) such that ∀a ∈ F ∩ F ′, φ(I(a)) = I ′(a). The

bijection φ is then extended to the elements of
⋃

s∈(S∪S′)\(S∩S′) I(s) by φ(e)
def

= e,

and to truth values by φ(true)
def

= true and φ(false)
def

= false. Let J be the
(F ∪ F ′)-interpretation defined as follows.

• For every sort symbol s ∈ S, J(s)
def

= I(s) and for every sort symbol

s ∈ S ′ \ S, J(s)
def

= I ′(s).

• For all function symbols f ∈ F such that rnk(f) = s1×. . .×sn → s and for

every (e1, . . . , en) ∈ (J(s1) × . . . J(sn)), fJ(e1, . . . , en)
def

= f I(e1, . . . , en).
Note that by definition s1, . . . , sn, s ∈ S, thus for every i ∈ [1..n], ei ∈
I(si) = J(si) and f I(e1, . . . , en) ∈ I(s) = J(s).

• For all function symbols f ∈ F ′ with rnk(f) = s1 × . . . × sn →

s and for all (e1, . . . , en) ∈ (J(s1) × . . . J(sn)), fJ(e1, . . . , en)
def

=
φ(f I′

(φ−1(e1), . . . , φ
−1(en))). Note that by definition s1, . . . , sn, s ∈ S ′,

thus, since φ is a bijection from I ′(si) to J(si), φ−1(ei) is well-defined
and belongs to I ′(si). Furthermore, f I′

(e1, . . . , en) ∈ I ′(s), hence
fJ(e1, . . . , en) ∈ φ(I ′(s)). If s ∈ S then φ is a bijection from I ′(s)
to I(s) and by the first point above J(s) = I(s), thus we must have
φ(I ′(s)) = I(s) = J(s). If s 6∈ S then φ is the identity on I ′(s) and by
the first point above J(s) = I ′(s). Hence φ(I ′(s)) = I ′(s) = J(s). Thus
in both cases fJ(e1, . . . , en) ∈ J(s).

5

This interpretation is well-defined, since F and F ′ are quasi-disjoint and φ
is such that for all constants a occurring both in F and in F ′, φ(I ′(a)) = I(a).
Furthermore, J satisfies the following properties:

Proposition 9 Let E be an F-expression, and let σ be a valuation for I and t.
Then σ is a valuation for J and E and [E]σJ = [E]σI .

Proof We prove the result by induction on the size of E . If E is a vari-
able, then we have by definition [E]σJ = σ(x) and [E]σI = σ(x). If E is of the
form f(t1, . . . , tn) then [E]σJ = fJ([t1]

σ
J , . . . , [tn]σJ). By the induction hypoth-

esis, ∀i ∈ [1..n], [ti]
σ
J = [ti]

σ
I . Furthermore, since f ∈ F , by definition of fJ ,

fJ([t1]
σ
I , . . . , [tn]σI) = f I([t1]

σ
I , . . . , [tn]σI) = [E]σI . If E is an atom u ≃ v then

[E]σJ = true iff [u]σJ = [v]σJ . By the induction hypothesis we have [u]σJ = [u]σI
and [v]σJ = [v]σI , hence [E]σJ = true ⇔ ([u]σI = [v]σI) ⇔ [E]σI = true. The case
where E is of the form u 6≃ v is similar. If E is a clause then [E]σJ = true iff
∃l ∈ E , [l]σJ = true i.e. (by the induction hypothesis) iff ∃l ∈ E , [l]σI = true i.e.
iff [E]σI = true.

Proposition 10 Let E be an F ′-expression. Let σ be a valuation for I ′ and E.

Then φ ◦ σ is a valuation for J and E, and [E]φ◦σ
J = φ([E]σI′).

Proof Again, the proof is by induction on the size of E . If E ∈ X ,
then by definition [E]φ◦σ

J = φ(σ(x)) and [E]σI′ = σ(x). If E is of the form

f(t1, . . . , tn) then [E]φ◦σ
J = fJ([t1]

φ◦σ
J , . . . , [tn]φ◦σ

J). By the induction hypoth-

esis, ∀i ∈ [1..n], [ti]
φ◦σ
J = φ([ti]

σ
I′). Furthermore, f ∈ F ′ thus by definition

of fJ , fJ(φ([t1]
σ
I′), . . . , φ([tn]σI′)) = φ(f I′

(φ−1(φ([t1]
σ
I′)), . . . , φ−1(φ([tn]σI′)))) =

φ(f I′

([t1]
σ
I′ , . . . , [tn]σI′)) = φ([E]σI′). If E is an atom u ≃ v then [E]φ◦σ

J = true

iff [u]φ◦σ
J = [v]φ◦σ

J . By the induction hypothesis [u]φ◦σ
J = φ([u]σI) and [v]φ◦σ

J =

φ([v]σI), hence [E]φ◦σ
J = true ⇔ φ([u]σI) = φ([v]σI) i.e. (since φ is a bijection):

[E]φ◦σ
J = true ⇔ [u]σI = [v]σI ⇔ [E]σI′ = true. The proof is similar for u 6≃ v. If

E is a clause then [E]φ◦σ
J = true iff ∃L ∈ E , [L]φ◦σ

J = true i.e. (by the induction
hypothesis) iff ∃L ∈ E , φ([L]σI′) = true i.e. iff [E]σI′ = true.

We now complete the proof of Lemma 8. Let C be a clause in S ∪S′ and let
σ be a function mapping every variable of sort s in C to an element of J(s); we
prove that [C]σJ = true. Two cases are distinguished. If C ∈ S, then for every
variable x of sort s occurring in C, s ∈ S. Thus by definition J(s) = I(s) hence
σ(x) ∈ I(s). By Proposition 9 [C]σJ = [C]σI , and since I |= S, [C]σI = true.
Thus [C]σJ = true.

If C ∈ S′, then for every variable x of sort s occurring in C, s ∈ S ′. If
s ∈ S, then by definition J(s) = I(s) = φ(I ′(s)) (since φ is a bijection from
I ′(s) to I(s)); otherwise, s 6∈ S ′ and in this case J(s) = I ′(s), which implies
that σ(x) ∈ I ′(s). Furthermore, in the latter case, σ is the identity on I ′(s).
Thus in both cases σ(x) ∈ φ(I ′(s)). By Proposition 10 [C]σJ = [C]σ

′

I′ , where

σ′ = φ−1 ◦ σ. Since I |= S, [C]σ
′

I′ = true, thus [C]σJ = true.

6

Proof (of Theorem 6) Tc = T ∪T ′ is of the form (F ∪F ′, I ′′, C′′) where I ′′

and C′′ are defined as in Definition 2; let Sc ∈ C′′. By definition Sc is of the
form S∪S′ where S = Sc∩C, and S′ = Sc∩C′. Let Ec be a set of equalities and
inequalities between constants occurring both in F and F ′; we show that Sc∪Ec

and (Θ ⊔ Θ′)(Sc) ∪ Ec are Tc-equisatisfiable. Assume that (Θ ⊔ Θ′)(Sc) ∪ Ec is
Tc-satisfiable, and let Ic be a Tc-model of (Θ⊔Θ′)(Sc)∪Ec. Let Fc be the set of
equations and inequations between constant symbols occurring both in F and
F ′ that hold in Ic. Note that by definition, Ec ⊆ Fc, and by definition of ⊔,
(Θ ⊔ Θ′)(Sc) = Θ(Sc ∩ C) ∪ Θ′(Sc ∩ C ′) = Θ(S) ∪ Θ′(S′). Since Θ(S) ∪ Fc ⊆
(Θ⊔Θ′)(Sc)∪Fc, necessarily, Ic |= Θ(S)∪Fc. Hence, since Θ is base-complete
for T , S ∪ Fc is T -satisfiable. The same reasoning proves that S′ ∪ Fc is T ′-
satisfiable. By definition, Fc is a connection for F and F ′, and Lemma 8
guarantees that S ∪ S′ ∪ Fc is satisfiable. Therefore, Sc ∪ Fc and Sc ∪ Ec are
Tc-satisfiable.

Conversely, assume that Sc ∪ Ec is Tc-satisfiable; let Ic be a Tc-model of
Sc∪E. Let Fc be the set of equations and inequations between constant symbols
occurring both in F and F ′ that hold in Ic; again by definition, Ec ⊆ Fc. Since
S ∪ Fc ⊆ Sc ∪ Fc, necessarily, Ic |= S ∪ F ; and since Θ is base-complete for
T , Θ(S) ∪ Fc is T -satisfiable. Similarly, Θ′(S′) ∪ Fc is T ′-satisfiable. Thus by
Lemma 8, Θ(S) ∪ Θ′(S′) ∪ Fc is satisfiable.

4. Base-complete instantiation schemes

Theorem 6 applies only to instantiation procedures that are base-complete.
However, most existing instantiation procedures do not satisfy this require-
ment3. In this section we show how to transform any instantiation procedure
for a specific theory T into one that is base-complete for T . We assume that
the considered procedure satisfies the following properties:

Definition 11 A function θ : 2C(F) → 2C(F) is instantiation-complete for a
specification T = (F , I, C) if the following conditions hold:

1. If θ(S) is T -satisfiable then S is T -satisfiable.

2. Every clause in θ(S) is an instance of a clause in S.

3. For every set of clauses S and for every pair of constant symbols a, b we
have θ(S ∪ {a ≃ b}) ⊇ θ(S).

4. For every pair of constants a, b: θ(S ∪ {a 6≃ b}) = θ(S) ∪ {a 6≃ b}.

These conditions are quite natural: Conditions 1 and 2 are straightforward,
Condition 3 always holds if Θ is monotonic, and Condition 4 states that the set
of instances should not depend of disequations between constants.

If F is a set of function symbols, we denote by EF the set of equations and
disequations of the form a ≃ b where a, b are constant symbols of the same sort

3Although it is fulfilled for instance by the instantiation schemes in [7, 6, 11].

7

in F . If S is a set of F-clauses, ES
F (resp. ES

F) denotes the set of clauses in EF

that are instances of a clause in S (resp. that are not instances of a clause in
S). For every function θ : 2C(F) → 2C(F) we denote by θ⋄ the function defined

by: θ⋄(S)
def

= θ(S ∪ EF) \ ES
F . The function θ⋄ is quite simple to compute,

if θ is computable: it suffices to add all the clauses in EF to S (i.e. every
possible equations between constants) then to run the instantiation procedure
θ. Afterwards, the produced clauses that are not instances of a clause in S are
discarded.

Theorem 12 If θ is an instantiation-complete function for T , then θ⋄ is base-

complete for T .

Proof Let S denote a set of clauses, E denote a set of unit, ground, flat clauses
(i.e. of equations and disequations between constants), and let E+ (resp. E−)
be the set of positive (resp. negative) clauses in E. Assume that S ∪ E is T -
satisfiable, let I be a T -model of S∪E; we show that I is also a model of θ⋄(S).

Let C ∈ θ⋄(S), by definition, C ∈ θ(S ∪EF) and C 6∈ ES
F . Since C ∈ θ(S ∪EF),

by Condition 2 of Definition 11, C is an instance of a clause D ∈ S ∪ EF . If C
is an instance of a clause D in S, then obviously I |= D thus I |= C. Otherwise,
C must be an instance of a clause in EF , hence must occur in EF (since EF is
ground). Since C is not an instance of a clause in S, by definition, C 6∈ ES

F ,

hence C ∈ ES
F , which contradicts the assumption above. Thus I |= θ⋄(S) and

θ⋄(S) ∪ E is T -satisfiable.
Conversely, assume that θ⋄(S) ∪ E is T -satisfiable and let I be a T -model

of θ⋄(S) ∪ E. Let C be a clause in θ(S ∪ E), we prove that C ∈ θ⋄(S) ∪ E.
This is obvious if C ∈ E, now assume that C 6∈ E. By Condition 4 of Definition
11, θ(S ∪ E) = θ(S ∪ E+ ∪ E−) = θ(S ∪ E+) ∪ E−, thus C ∈ θ(S ∪ E+).
Since S ∪ E+ ⊆ S ∪ EF , by Condition 3 of Definition 11, C ∈ θ(S ∪ EF). We
show that C ∈ θ⋄(S). Assume the contrary. Then by definition of θ⋄, since

θ⋄(S)
def

= θ(S∪EF)\ES
F , necessarily, C ∈ ES

F , which means that C cannot be an
instance of a clause in S. By Condition 2 of Definition 11, since C ∈ θ(S ∪ E)
by hypothesis, C must be an instance of a clause in E, hence must occur in E
(since E is ground), which is impossible since we assumed C /∈ E. Consequently,
θ(S∪E) ⊆ θ⋄(S)∪E, hence θ(S∪E) is satisfiable. By Condition 1 of Definition
11, this implies that S ∪ E is T -satisfiable.

5. Conclusion

We have provided sufficient conditions that guarantee instantiation schemes
for distinct theories can be combined to act as an instantiation scheme for the
union of the theories. This result requires the instantiation schemes to be base-
complete. Since this property is not always satisfied by the existing procedures,
we also showed how existing instantiation schemes can be transformed to satisfy
the base-completeness requirement. We are currently investigating how these
results can be extended to types of theory combinations other than unions, such
as nested theory combinations.

8

[1] A. Abadi, A. Rabinovich, and M. Sagiv. Decidable fragments of many-sorted
logic. Journal of Symbolic Computation, 45(2):153 – 172, 2010.

[2] C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli. Satisfiability modulo theories.
In A. Biere, M. J. H. Heule, H. van Maaren, and T. Walsh, editors, Handbook of
Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications,
chapter 26, pages 825–885. IOS Press, 2009.

[3] P. Baumgartner and C. Tinelli. The Model Evolution Calculus. In F. Baader,
editor, CADE-19 – The 19th International Conference on Automated Deduction,
volume 2741 of LNAI, pages 350–364. Springer, 2003.

[4] A. R. Bradley, Z. Manna, and H. B. Sipma. What’s decidable about arrays? In
E. A. Emerson and K. S. Namjoshi, editors, Proc. VMCAI-7, volume 3855 of
LNCS, pages 427–442. Springer, 2006.

[5] L. M. de Moura and N. Bjørner. Satisfiability modulo theories: An appetizer.
In M. V. M. Oliveira and J. Woodcock, editors, SBMF, volume 5902 of Lecture
Notes in Computer Science, pages 23–36. Springer, 2009.

[6] M. Echenim and N. Peltier. Instantiation of SMT problems modulo Integers. In
AISC 2010 (10th International Conference on Artificial Intelligence and Symbolic
Computation), LNCS. Springer, 2010.

[7] M. Echenim and N. Peltier. An instantiation scheme for satisfiability modulo
theories. Journal of Automated Reasoning, 2010. Accepted, to appear.

[8] M. Fitting. First-Order Logic and Automated Theorem Proving. Texts and Mono-
graphs in Computer Science. Springer-Verlag, 1990.

[9] H. Ganzinger and K. Korovin. New directions in instantiation-based theorem
proving. In Proc. 18th IEEE Symposium on Logic in Computer Science,(LICS’03),
pages 55–64. IEEE Computer Society Press, 2003.

[10] Y. Ge, C. W. Barrett, and C. Tinelli. Solving quantified verification conditions
using satisfiability modulo theories. Annals of Mathematics and Artificial Intel-
ligence, 55(1-2):101–122, 2009.

[11] Y. Ge and L. M. de Moura. Complete instantiation for quantified formulas in
satisfiabiliby modulo theories. In A. Bouajjani and O. Maler, editors, CAV 2009,
volume 5643 of LNCS, pages 306–320. Springer, 2009.

[12] R. Loos and V. Weispfenning. Applying linear quantifier elimination. Comput.
J., 36(5):450–462, 1993.

[13] L. Moura and N. Bjørner. Efficient E-Matching for SMT Solvers. In CADE-21:
Proceedings of the 21st international conference on Automated Deduction, pages
183–198, Berlin, Heidelberg, 2007. Springer-Verlag.

[14] D. A. Plaisted and Y. Zhu. Ordered semantic hyperlinking. Journal of Automated
Reasoning, 25(3):167–217, October 2000.

[15] C. Tinelli and M. Harandi. A new correctness proof of the Nelson-Oppen combi-
nation procedure. In Frontiers of Combining Systems, volume 3 of Applied Logic
Series, pages 103–120. Kluwer Academic Publishers, 1996.

9

