
HAL Id: hal-00931221
https://hal.science/hal-00931221v1

Submitted on 15 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decidability and Undecidability Results for
Propositional Schemata

Vincent Aravantinos, Ricardo Caferra, Nicolas Peltier

To cite this version:
Vincent Aravantinos, Ricardo Caferra, Nicolas Peltier. Decidability and Undecidability Results
for Propositional Schemata. Journal of Artificial Intelligence Research, 2011, 40, pp.599-656.
�10.1613/jair.3351�. �hal-00931221�

https://hal.science/hal-00931221v1
https://hal.archives-ouvertes.fr

Decidability and Undecidability Results for Propositional

Schemata

Vincent Aravantinos Vincent.Aravantinos@imag.fr

Ricardo Caferra Ricardo.Caferra@imag.fr

Nicolas Peltier Nicolas.Peltier@imag.fr

Université de Grenoble (LIG/CNRS)

Bât. IMAG C, 220, rue de la Chimie

38400 Saint Martin d’Hères, France

Abstract

We define a logic of propositional formula schemata adding to the syntax of proposi-
tional logic indexed propositions (e.g., pi) and iterated connectives

∨

or
∧

ranging over
intervals parameterized by arithmetic variables (e.g.,

∧n
i=1 pi, where n is a parameter).

The satisfiability problem is shown to be undecidable for this new logic, but we introduce a
very general class of schemata, called bound-linear, for which this problem becomes decid-
able. This result is obtained by reduction to a particular class of schemata called regular,
for which we provide a sound and complete terminating proof procedure. This schemata
calculus (called stab) allows one to capture proof patterns corresponding to a large class
of problems specified in propositional logic. We also show that the satisfiability prob-
lem becomes again undecidable for slight extensions of this class, thus demonstrating that
bound-linear schemata represent a good compromise between expressivity and decidability.

1. Introduction

Being able to solve classes of problems – possibly efficiently and elegantly – strongly depends
on the language in which they are specified. This commonsense remark becomes decisive
in a lot of applications of Artificial Intelligence. One language (abstraction) long used by
humans (see, e.g., (Corcoran, 2006) and Section 3) is that of schemata. As very general
characterizations of the notion of schema would be useless to deal in solving concrete prob-
lems, we have focused on a particular class of schemata arising naturally in practice, quite
expressive and (as will be shown) with “good” computational properties. These schemata
are those generated by unbounded repetitions of patterns, we call them ‘iterated schemata’.

We motivate our approach via an example, frequently used and well known of the
AI community: circuit verification. Circuit verification problems are often modeled as
sequences of propositional problems parameterized by a natural number n that encodes the
size of the data (e.g., the number of bits, number of layers in the circuit, etc.). We call these
sequences iterated schemata, or simply schemata. A typical example is an n-bits sequential
adder circuit i.e. a circuit which computes the sum of two bit-vectors of length n. Such a
circuit is built by composing n 1-bit adders. The ith bits of each operand are written pi
and qi. ri is the ith bit of the result and ci+1 is carried over to the next bit (thus c1 = 0).
We set the notations (⊕ denotes the exclusive or):

Sumi(p, q, c, r)
def
= ri ⇔ (pi ⊕ qi) ⊕ ci

1

Aravantinos, Caferra & Peltier

and
Carryi(p, q, c)

def
= ci+1 ⇔ (pi ∧ qi) ∨ (ci ∧ pi) ∨ (ci ∧ qi).

Then the formula:

Adder(p, q, c, r)
def
=

n
∧

i=1

Sumi(p, q, c, r) ∧
n
∧

i=1

Carryi(p, q, c) ∧ ¬c1

with the constraint n ≥ 1, schematises the adder circuit (it states that r encodes the sum of
p and q). Adder contains iterations ranging on intervals depending on n. If n is instantiated
by a natural number then the expression reduces to a propositional formula. Therefore
each instance of this schema can be solved in propositional logic. However, proving that
the schema is unsatisfiable (or satisfiable) for every instance of n is much harder. This
problem cannot be specified in propositional logic and, as we shall see, this is even out of
the scope of first-order logic. It can be expressed in higher order logics but it is well-known
that such languages are less suitable for automation (see Section 3 for details).

Such iteration schemata are ubiquitous in formalized reasoning. Problems over finite
domains can be specified as generic propositional formulae fitting the same pattern, the
parameter being the (finite but unbounded) size of the domain. Among these patterns,
those corresponding to the pigeonhole principle, Ramsey theory, coloring graphs problems or
constraint programming specifications such as the n-queens problem (Marriott, Nethercote,
Rafeh, Stuckey, Garćıa de la Banda, & Wallace, 2008) should be mentioned. Iterated
schemata are also extremely useful for the formalization of mathematical proofs, because
they allow one to express infinite proof sequences, which can avoid for instance explicit use
of the induction principle. This idea has been used for instance in (Hetzl, Leitsch, Weller,
& Woltzenlogel Paleo, 2008).

In this paper we present the first (to the best of our knowledge) thorough analysis of
propositional iterated schemata. We define a logic handling arithmetic variables, indexed
propositions and iterated connectives. The satisfiability problem is obviously semi-decidable
in the sense that a (straightforward) algorithm exists to enumerate all satisfiable schemata
(i.e. all schemata with a satisfiable instance). However the set of (unrestricted) unsatisfiable
schemata is not recursively enumerable. Thus we restrict ourselves to a particular class of
schemata, called bound-linear and we provide a decision procedure for this class. This
procedure is based on a reduction to a very simple class of schemata, called regular, for
which a tableaux-based proof procedure is presented. Then we provide some undecidability
results for (rather natural) extensions of this class.

The rest of the paper is structured as follows.

• In Section 2 we introduce a logic (syntax and semantics) for handling propositional
schemata and we establish some of its basic properties. The propositional symbols are
indexed by arithmetic expressions (e.g., pn+1) containing arithmetic variables. These
variables can be either parameters (i.e. free variables) or bound variables, introduced

by generalized connectives of the form
∨b
i=a or

∧b
i=a. These connectives can be read as

∃i ∈ [a, b] or ∀i ∈ [a, b], where a, b are arithmetic expressions possibly containing (free
or bound) variables. We restrict ourselves to monadic schemata (i.e. the propositions
are indexed by at most one expression) and to linear arithmetic expressions1. We then

1. If one of these two conditions does not hold then the satisfiability problem is trivially undecidable.
For instance, the Post correspondence problem can be easily encoded into schemata with non monadic

2

introduce a particular subclass of schemata, called bound-linear. Intuitively, a schema
is bound-linear if every arithmetic expression occurring in it contains at most one
bound variable. Furthermore, the coefficient of this variable in the expression should
be ±1 (or 0). Thus expressions such as 1, n, 2n − i or i + 2 are allowed (where n is
the parameter and i a bound variable), but 2i or i+ j (where i, j are both bound) are
not. The coefficient of the parameter n is not constrained.

• Section 3 contains a brief survey of existing work on propositional schemata as well
as (informal) comparisons with related logics.

• In Section 4 we introduce a simpler class of schemata, called regular, and we provide
an algorithm to transform every bound-linear schema into a (sat-)equivalent regular
schema.

• In Section 5 a tableaux-based proof procedure, called stab (standing for schemata
tableaux), is introduced for reasoning with propositional schemata. This proof pro-
cedure is sound and complete (w.r.t. to satisfiability) and terminates on every regular
schema. Together with the results in Section 4 this implies that the class of bound-
linear schemata is decidable.

• Section 6 shows that relaxing very slightly the conditions on bound-linear schemata
makes the satisfiability problem undecidable. Thus this class can be seen as “canon-
ical”, with a good trade-off between expressivity, simplicity of the definition and
decidability.

• Finally, Section 7 summarizes the results and provides some lines of future work.

Some parts of this paper, mainly Section 5, have already been presented in (Aravantinos
et al., 2009b).

2. Schemata of Propositional Formulae

2.1 Syntax

The set of linear arithmetic expressions (denoted by N) is built as usual on the signature
0, s,+,− and on a fixed and countably infinite set of arithmetic variables V, quotiented
by the usual properties of the arithmetic symbols (e.g., n + s(0) + n + s(s(s(0))) and
n + n + s(s(s(s(0)))) are assumed to be equivalent). As usual, sκ(0) is denoted by κ and
i + . . . + i (κ times) is κ.i. If n is an arithmetic variable we denote by N×n the set of
arithmetic expressions of the form α.n + β where α, β ∈ Z (with possibly α = 0) and by
Nn the set of expressions of the form n + β where β ∈ Z. Obviously Nn ⊂ N×n ⊂ N . If
n+ α, n+ β ∈ Nn we write n+ α ≤ n+ β iff α ≤ β.

For the sake of readability, we adopt the following conventions. Integers are denoted
by Greek letters α, β, γ, δ2, natural numbers by κ or ι, arithmetic variables by i, j, k, n,
propositional variables by p, q, r (with indices). Arithmetic expressions are denoted by

variables (Aravantinos, Caferra, & Peltier, 2009b). Similarly, if non linear arithmetic expressions are
considered then the 10th Hilbert’s problem can be encoded.

2. This slightly unusual convention is used to avoid confusion between arithmetic variables and integers.

3

Aravantinos, Caferra & Peltier

a, b, c, d. Schemata are denoted by φ, ψ. Π and Γ denote generic iteration connectives
∨

or
∧

.

Definition 2.1 (Indexed propositions)
Let P be a fixed and countably infinite set of propositional symbols. An indexed proposition
is an expression of the form pa where p ∈ P and a is a linear arithmetic expression (the
index). An indexed proposition pa s.t. a ∈ Z is called a propositional variable. A literal is
an indexed proposition or its negation.

In contrast to (Aravantinos et al., 2009b) we only consider monadic propositions, i.e.
every proposition has only one index.

Definition 2.2 (Schemata)
The set of formula schemata is the smallest set satisfying the following properties.

• ⊤, ⊥ are formula schemata.

• If a, b are integer expressions then a < b is a formula schema.

• Each indexed proposition is a formula schema.

• If φ1, φ2 are schemata then φ1 ∨ φ2, φ1 ∧ φ2 and ¬φ1 are formula schemata.

• If φ is a formula schema not containing <, and if a, b ∈ N , and i is an arithmetic
variable, then

∧b
i=a φ and

∨b
i=a φ are formula schemata.

Schemata of the form a < b, pa or ⊤,⊥ are called atoms. Schemata of the form
∧b
i=a φ

and
∨b
i=a φ are called iterations, a and b are the bounds of the iteration and b − a is its

length (notice that b − a may contain variables). A schema is an arithmetic formula iff it
contains no iteration and if every atom occurring in it is of the form ⊤,⊥ or a < b. Notice
that, by definition, every schema must be finite.

In particular, every boolean combination of arithmetic atoms is a schema. a ≤ b (or
b ≥ a) and a = b are used as abbreviations for ¬(b < a) and ¬(b < a)∧¬(a < b) respectively.
As for arithmetic expressions, arithmetic formulae are taken up to arithmetic equivalence,
e.g., n = 1 and n < 2 ∧ n > 0 are considered identical. The usual priority rules apply to
disambiguate the reading of formula schemata. Analogously to first-order logic quantifiers,
the iteration operators have the highest priority (e.g.,

∧n
i=1 pi ∨ pn ∧ ¬p1 should be read as

(
∧n
i=1 pi) ∨ (pn ∧ ¬p1)).

Example 2.3

φ = q1 ∧
n
∧

i=1

pi+2n ∧
2n+1
∨

j=n

(¬qn−j ∨ qj+1)

 ∧ n ≥ 0 is a formula schema.

q1, pi, qj and qj+1 are indexed propositions.
∧n
i=1

(

pi+2n ∧
∨2n+1
j=n (¬qn−j ∨ qj+1)

)

and
∨2n+1
j=n (¬qn−j ∨ qj+1) are the only iterations occurring in S.

4

Remark 2.4
Notice that the arithmetic atoms of the form a < b can only occur outside the iterations,
i.e. n ≥ 1 ⇒

∨n
i=1 pi is allowed, but neither

∨n
i=1(i ≤ 3 ∨ pi) nor

∨n
i=1(n ≥ 1 ⇒ pi). This

restriction is only used to simplify technicalities. As we shall see in Definition 2.5 (semantics

of schemata), an arithmetic atom of the form a < b is equivalent to the schema
∨b
i=a+1 ⊤.

A variable i is bound in φ if φ contains an iteration of the form Πb
i=aψ (Π ∈ {

∨

,
∧

}),
it is free (or is a parameter of φ) if it has an occurrence in φ which is not in the scope of
an iteration Πb

i=aψ. From now on, we assume that no variable is simultaneously free and
bound in a schema φ (thus schemata such as pn ∧

∨10
n=1 ¬pn are not well-formed) and that

if Πb
i=aψ and Γdj=cψ

′ (where Π,Γ ∈ {
∨

,
∧

}) are two distinct iterations occurring in φ then
i and j are distinct.

A substitution is a function mapping every arithmetic variable to a linear arithmetic
expression. We write [α1/i1, . . . , ακ/iκ] for the substitution mapping respectively i1, . . . , iκ
to α1, . . . , ακ. The application of a substitution σ to a schema (or arithmetic expression) φ
is defined as usual and denoted by φσ. Notice that if a is an arithmetic expression and σ
a substitution mapping every variable in a to a ground term (i.e. a term with no variable)
then aσ is an integer (since we identify, e.g., 2 − 1 and 1).

The previous notation is also used to denote the replacement of subexpressions: If φ is
a schema, ψ is an expression (schema or arithmetic expression) occurring in φ and ψ′ is an
expression of the same type as ψ, then φ[ψ′/ψ] denotes the formula obtained by replacing
all the occurrences of ψ in φ by ψ′.

2.2 Semantics

An interpretation of the schemata language is a function mapping every integer variable to
an integer and every propositional variable to a truth value T or F. If I is an interpretation
and σ a substitution, we denote by Iσ the interpretation defined as follows: Iσ and I

coincide on every propositional variable and for every variable n, Iσ(n)
def
= I(nσ). Consider

for instance the following interpretation I:

n 7→ 5

m 7→ 2

p1 7→ T

p2 7→ F

p3 7→ F

p4 7→ F

and whose definition is unsignificant for other (integer or propositional) variables. Let also
be σ the substitution {n 7→ n− 1,m 7→ m− 2}. Then Iσ is:

n 7→ 4

m 7→ 0

p1 7→ T

p2 7→ F

p3 7→ F

p4 7→ F

5

Aravantinos, Caferra & Peltier

If I is an interpretation, we denote by σI the restriction of I to V, i.e. the substitution
mapping every variable n to I(n). If a is an arithmetic expression, we denote by JaKI the
expression aσI . Since aσI is ground, it is (equivalent to) an integer.

Definition 2.5 (Semantics)
The truth value JφKI of a propositional schema in an interpretation I is inductively defined
as:

• J⊤KI = T, J⊥KI = F

• Ja < bKI = T iff JaKI < JbKI .

• JpaKI = I(pJaKI) for p ∈ P.

• J¬ΦKI = T iff JΦKI = F.

• JΦ ∨ Φ′KI = T iff JΦKI = T or JΦ′KI = T.

• JΦ ∧ Φ′KI = T iff JΦKI = T and JΦ′KI = T.

• J
∨b
i=a φKI = T iff there is an integer α s.t. JaKI ≤ α ≤ JbKI holds and JφKI[α/i] = T.

• J
∧b
i=a φKI = T iff for every integer α s.t. JaKI ≤ α ≤ JbKI holds: JφKI[α/i] = T.

A schema φ is satisfiable iff there is an interpretation I s.t. JφKI = T. I is called a model of
φ (written I |= φ). Two schemata φ, ψ are equivalent (written φ ≡ ψ) iff I |= φ ⇔ I |= ψ.
φ and ψ are sat-equivalent (written φ ≡S ψ) iff φ and ψ are both satisfiable or both
unsatisfiable.

In the following, we assume that for every free variable n in φ and for every model I of
φ, I(n) ∈ N. This can be ensured by explicitly adding the arithmetic atom n ≥ 0 to φ3.

Let S be the following system of rewrite rules.

S =

∨β
i=α φ → ⊥ if α, β ∈ Z, β < α

∧β
i=α φ → ⊤ if α, β ∈ Z, β < α

∨β
i=α φ → (

∨β−1
i=α φ) ∨ φ[β/i] if α, β ∈ Z, β ≥ α

∧β
i=α φ → (

∧β−1
i=α φ) ∧ φ[β/i] if α, β ∈ Z, β ≥ α

For instance the following formula:

¬p1 ∧
3

∧

i=1

(pi ⇒ pi+1)

is rewritten into:
¬p1 ∧ (p1 ⇒ p2) ∧ (p2 ⇒ p3) ∧ (p3 ⇒ p4).

3. Thus we assume that parameters are mapped to natural numbers. This convention is convenient because
it allows one to use mathematical induction on the parameters (see Section 5.2). It is not restrictive since
a schema φ where n ∈ Z could be replaced by the (equivalent) disjunction of the schemata φ ∧ n ≥ 0
and φ[−m/n] ∧ m ≥ 0 (i.e. in the case in which n is negative, every occurrence of n is simply replaced
by −m).

6

Notice that no rule of S applies on ¬p1∧
∧n
i=1(pi ⇒ pi+1) as the upper bound of the iteration

contains a parameter. S is actually designed to be used only on schemas whose parameters
have been instantiated by a number.

Proposition 2.6
S is convergent and preserves equivalence.

Proof

Termination is immediate since the length of an iteration strictly decreases at each step.
Confluence is obvious since the critical pairs are trivially joinable. The fact that the obtained
schema is equivalent to the original one is a straightforward consequence of Definition 2.5.�

We denote by φ↓S the (unique) normal form of φ. If σ is a substitution mapping every
free variable in φ to a natural number, φσ↓S is called a propositional realization of φ.

It is trivially semi-decidable to know if a schema is satisfiable:

Proposition 2.7
The set of satisfiable schemata is recursively enumerable.

Proof

By Definition 2.5, for every interpretation I and for every schema φ, we have (I |= φ) ⇔
(I |= φσ), where σ = σI . Thus φ is satisfiable iff there exists a substitution σ such that
φσ is satisfiable. We now prove that there exists an algorithm for checking the satisfiability
of φσ. By Proposition 2.6, we have φσ ≡ φσ ↓S . By definition of σ, φσ contains no free
variable. Let Πb

i=aφ be an outermost iteration in φ. By definition a and b must be ground,
thus one of the rules in S applies which is impossible. Thus φσ ↓S contains no iteration
hence φσ↓S is a propositional formula (in the usual sense) built on the set of propositional
variables. Consequently, there exists an algorithm to check whether the formula φσ↓S≡ φσ
is satisfiable or not. Since the set of ground substitutions is recursively enumerable, and
since φ is satisfiable iff φσ is satisfiable for at least one substitution σ, this implies that it
is semi-decidable to check whether φ is satisfiable or not.

For every schema φ and for every substitution σ we denote by [φ]σ the formula φσ↓S .

For every arithmetic expression a (possibly containing bound variables) in a schema φ,
we compute an interval [minφ(a),maxφ(a)] where minφ(a),maxφ(a) are arithmetic expres-
sions only containing variables that are free in φ. The intuition is that a always “belongs”
to this interval. Lemma 2.8 formalizes this property.

• If a is an integer or a variable that is free in φ then minφ(a)
def
= maxφ(a)

def
= a.

• If a is of the form b+ c then minφ(a)
def
= minφ(b) + minφ(c) and maxφ(a)

def
= maxφ(b) +

maxφ(c).

• If a is of the form −b then maxφ(a)
def
= −minφ(b) and minφ(a)

def
= −maxφ(b).

• If i is a bound variable, occurring in an iteration of the form Πb
i=aφ then minφ(i)

def
=

minφ(a) and maxφ(i)
def
= maxφ(b).

7

Aravantinos, Caferra & Peltier

A ground substitution σ′ is a φ-expansion of another ground substitution σ for a formula
ψ iff for every variable i that is bound in ψ, σ′(i) ∈ [σ(minφ(i)), σ(maxφ(i))] (since σ, σ′ are
ground, the expressions σ′(i), σ(minφ(i)), σ(maxφ(i)) are considered as integers). Intuitively,
a substitution σ does not affect the bound variables of a schema. So the values given by σ
to such bound variables are unsignificant. On the contrary, the definition of a φ-expansion
σ′ imposes that:

1. the value given to a variable i bound in φ indeed falls in the set of values that i can
take in the context of φ ;

2. the value given by σ′ to a variable free in φ is the same as the one given by σ.

W.r.t. substitution application, there is no difference between σ and σ′. The next lemma
shows the importance of φ-expansions. We write IC (φ) (standing for “Interval Constraints”)
for the conjunction of arithmetic constraints of the form minφ(i) ≤ i ∧ i ≤ maxφ(i) where
i is a variable that is bound in φ. IC (φ) can be extended to sets of schemata by handling
them as conjunctions.

Lemma 2.8
Let φ be a schema and let i be a variable (possibly bound) occurring in φ. The expressions
minφ(i) and maxφ(i) are well-defined. Moreover, for every ground substitution σ and for
all atoms pα occurring in [φ]σ there exist an atom pa occurring in φ and a φ-expansion σ′

of σ for pa s.t. σ′(a) = α.

Proof

This is an immediate consequence of Definition 2.5 (by a straightforward induction on the
depth of the schema). �

Consider, e.g., φ = p0 ∧
∧n−1
i=1 (pi+1 ∧ ¬qi). We have: minφ(i) = 1 and maxφ(i) = n− 1.

Consider furthermore σ = {n 7→ 4} and pα = p3. Then we can take pa = pi+1 (which indeed
occurs in φ) and σ′ = {n 7→ 4, i 7→ 2}.

We see informally the use of φ-expansions: they allow, in some sense, to make the
connection between a propositional variable occurring in the instance of a schema and the
indexed proposition where it “comes from”.

2.3 The Class of Bound-Linear Schemata

As we shall see (in, e.g., Theorem 6.2) the satisfiability problem is undecidable for schemata.
In order to characterize a decidable subclass, we introduce the following definition:

Definition 2.9
A schema φ is bound-linear iff the following conditions hold:

1. φ contains at most one free arithmetic variable n (called the parameter of φ).

2. Every non arithmetic atom in φ is of the form pα.n+β.i+γ where p ∈ P and i is a bound
variable, α, γ ∈ Z and β ∈ {−1, 0, 1}.

3. If Πb
i=aψ is an iteration in φ (where Π ∈ {

∨

,
∧

}) then a, b are respectively of the form
α.n+β and γ.n+ δ+ ǫ.j where α, β, γ, δ ∈ Z, ǫ ∈ {−1, 0, 1} and j is a bound variable.

8

This class is comprehensive enough with respect to decidable satisfiability. The key
point is that all the indices and iteration bounds contain at most one bound variable.
Furthermore, the coefficient of this variable must be 1 (or 0).

2.4 Expressiveness of bound-linear schemata

In order to show evidence that the class of bound-linear schemata is not an artificial or too
narrow one, we provide in this section some examples of problems that can be naturally
encoded into bound-linear schemata.

It is easy to check that the schema Adder(p, q, c, r) defined in the Introduction (formal-
izing a sequential adder) is bound-linear. Various properties of this circuit can be encoded.
For instance, the following schema checks that 0 is a (left) neutral element:

(Adder(p, q, c, r) ∧
n
∧

i=1

¬pi) ⇒
n
∧

i=1

(ri ⇔ qi)

The schema below checks that the adder is a function i.e. that the sum of two operands is
unique.

(Adder(p, q, c, r) ∧ Adder(p, q, c′, r′)) ⇒
n
∧

i=1

(ri ⇔ r′i)

The next one checks that it is commutative:

(Adder(p, q, c, r) ∧ Adder(q, p, c′, r′)) ⇒
n
∧

i=1

(ri ⇔ r′i)

Many similar circuits can be formalized in a similar way, such as a carry look-ahead
adder (a faster version of the n-bit adder that reduces the amount of time required to
compute carry bits):

CLA-Adder(p, q, c)
def
=

n
∧

i=1

(ri ⇔ ((pi ⊕ qi) ⊕ ci)) ∧
n
∧

i=1

(ci+1 ⇔ (pi ∧ qi) ∨ (ci ∧ (pi ∨ qi)))

The equivalence of the two definitions is encoded as follows:

(Adder(p, q, c, r) ∧ CLA-Adder(p, q, c′, r′)) ⇒
n
∧

i=1

(ri ⇔ r′i)

Comparison between two natural numbers can easily be formalized, e.g. rn holds iff p ≥ q:

r0 ∧
n
∧

i=1

(ri ⇔ (ri−1 ∧ (pi ⇔ qi) ∨ pi ∧ ¬qi))

By composing the previous schemata, any (quantifier-free) formula of Presburger arithmetic
can be encoded.

9

Aravantinos, Caferra & Peltier

More generally, one can formalize every circuit composed by serially putting together n
layers of the same basic circuit. These circuits are usually defined inductively, which can
be easily encoded into our formalism with a formula of the form:

(p0 ⇔ φbase) ∧
n−1
∧

i=0

(pi+1 ⇔ φind),

where φbase and φind are the formulae corresponding to the base case and inductive case,
respectively. φind contains some occurrences of pi and encodes the basic circuit to be
composed in sequence. Of course, for most complex circuits, pi may be replaced by a vector
of bits pi, qi, ri defined inductively from the pi−1, qi−1, ri−1,. . . . Such inductively-defined
circuits appear very frequently in practice, see, e.g., (Gupta & Fisher, 1993).

If the index of the proposition denotes the time, then various finite state sequential
systems can be encoded. The state of the system is described by a set of propositional
variables, and pi encodes the value of p at step i. The parameter n denotes the number of
steps in the transformation (which is assumed to be finite but unbounded). The transition
function from state i to i + 1 can easily be formalized by a bound-linear schemata. For
instance, the inclusion of two automata can be encoded (the parameter being the length
of the run). We provide another example. Consider a register with three cells p, q, r and
assume that there are two possible actions rl and rr that rotate the values of the cells to the
left and to the right respectively. The behavior of this system is modeled by the following
schema (the propositions rli and rri indicate which action is applied at step i). First L(i)
expresses the state of the registers at time i depending on their state at time i − 1, when
rli has been applied to it:

L(i) ≡ rli ⇔ ((pi ⇔ qi−1) ∧ (qi ⇔ ri−1) ∧ (ri ⇔ pi−1))

Then R(i) is similar for rr:

R(i) ≡ rri ⇔ ((pi ⇔ ri−1) ∧ (qi ⇔ pi−1) ∧ (ri ⇔ qi−1))

Finally, we state that this holds at any time:

φn ≡
n
∧

i=1

L(i) ∧
n
∧

i=1

R(i)

We can then express properties on such registers. For instance, the following formula states
that n rotations to the right followed by n rotations to the left are equivalent to identity:

(φ2n ∧
n
∧

i=1

rri ∧
2n
∧

i=n+1

rli) ⇒ (p0 ⇔ p2n) ∧ (q0 ⇔ q2n) ∧ (r0 ⇔ r2n)

3. Related Work

Different forms of schemata have been used by several authors, either in propositional logic
(Baaz & Zach, 1994) or in first order logic to obtain results in proof theory, in particular
related to the number of proof lines (Parikh, 1973; Baaz, 1999; Kraj́ıček, 1988; Orevkov,

10

1991). In (Parikh, 1973) schematic systems are presented, in (Baaz, 1999) the concept of
unification plays a key role, in (Kraj́ıček, 1988) the notion of ‘proof skeleton’, very similar
to that of schema is introduced, in (Orevkov, 1991) schemata in first-order Hilbert-type
system are studied. Pragmatically, schemata have been successfully used, e.g., in solving
open questions in equivalential calculus (i.e. the field of formal logic concerned with the
notion of equivalence) with the theorem-prover Otter (Wos, Overbeek, Lush, & Boyle,
1992). However, to the best of our knowledge, the formal handling of such schemata at the
object level has never been considered. Although the notion of ‘schema’ is recognized as
an important one, it deserves more applied works in our opinion. Sometimes schemata are
not sufficiently emphasized, e.g., in (Barendregt & Wiedijk, 2005) a nice and deep analysis
about the challenge of computer mathematics is given. The authors overview the state of
the art (by describing and comparing most powerful existing systems in use) but structuring
proofs is not explicitly mentioned (maybe this feature can be included in what they call
“mathematical style” or “support reasoning with gaps”). In our approach to schemata it
is clear that they are a way of structuring proofs and can also help to overcome one of
the obstacles to the automation of reasoning pointed out in (Wos, 1988), i.e. the size of
deduction steps.

There exist term languages expressive enough to denote iteration schemata as those
introduced in Definition 2.2: In particular, term schematisation languages can be used
to denote infinite sequences of structurally similar terms or formulae. For instance the
primal grammar (Hermann & Galbavý, 1997) f̂(n) → (p(n) ∨ f̂(n− 1)), f̂(0) → ⊥ denotes
the iteration

∨n
i=1 pi. It is worth mentioning that this iteration cannot be denoted by other

term schematisation languages (Chen, Hsiang, & Kong, 1990; Comon, 1995) because the
inductive context is not constant. However, term schematisation languages do not allow to
reason on such iterations (they are only useful to represent them).

Encoding schemata into first-order logic is a very natural idea, interpreting iterated
connectives as bounded quantifiers. Additional axioms can be added to express arithmetic
properties if needed. For instance the schema (

∨n
i=1 pi) ∧ (

∧n
i=1 ¬pi) can be encoded by

∃i.(1 ≤ i ∧ i ≤ n ∧ p(i)) ∧ ∀i.(1 ≤ i ∧ i ≤ n ⇒ ¬p(i)) which is obviously unsatisfiable.
However, since inductive domains cannot be defined in first-order logic, such a translation
necessarily introduces some unintended interpretations hence does not yield a complete
procedure (satisfiability is not always preserved, although the unsatisfiability of the obtained
formula necessarily entails the unsatisfiability of the original one). For instance, the schema
p0∧

∧n
i=1(pi−1 ⇒ pi)∧¬pn is translated into p(0)∧∀i.(1 ≤ i∧i ≤ n∧p(i−1) ⇒ p(i)∧¬p(n),

which is actually satisfiable (we do not know that n ∈ N and there is no way to express
this property). In order to obtain an unsatisfiable formula, some inductive axioms must
be added to allow (necessarily restricted) applications of the induction principle. In this
particular case, the proof can be obtained by a simple induction on i using the inductive
lemma ∀i.(i ≤ n⇒ p(i)), thus we could add the axiom: [q(0)∧∀i.(q(i) ⇒ q(i+1))] ⇒ ∀i.q(i)
where q(i) ≡ i ≤ n ⇒ p(i). With this axiom, it is easy to check that the previous formula
becomes unsatisfiable. However, in the general case it is hard to determine a priori the right
axiom (if there is one). Actually the termination proof in Section 5 implicitly provides a way
to determine candidate axioms (for the particular class of regular schemata): every looping
node in the tableaux constructed by the proof procedure stab (see Section 5) corresponds
to an application of the induction principle, hence to an induction axiom. The termination
proof precisely shows that the size of these inductive lemmata is bounded, thus the whole

11

Aravantinos, Caferra & Peltier

set of potential induction axioms could be in principle computed and added to the formula
before the beginning of the search. But the practical interest of this transformation is
obviously highly questionable.

Several procedures have been designed for proving inductive theorems, see, e.g.,
(Boyer & Moore, 1979; Bouhoula, Kounalis, & Rusinowitch, 1992; Comon, 2001; Bundy,
van Harmelen, Horn, & Smaill, 1990; Bundy, 2001). Since schemata can be seen as an
“explicit way” of handling mathematical induction, using such proof procedures for proving
them is a very natural idea. In general, induction is used to define terms (e.g., recur-
sive functions operating on inductive data structures), whereas in our case the formulae
themselves are defined inductively. Obviously this problem could be solved by using an
appropriate encoding of the formulae. However there are very few decidability results in
inductive theorem proving and known classes (Giesl & Kapur, 2001) are not expressive
enough to encode propositional schemata. Notice that most systems concentrate on uni-
versal quantifications, where we have to handle both iterated conjunctions (which can be
interpreted as universal quantification on a finite domain) and iterated disjunctions (i.e.
the analogous of existential quantifications). Adding existential quantification in inductive
theorem proving is known to be a difficult problem. Most inductive theorem provers are
designed to prove universal theorems of the form ∀~x.ψ where ψ is a quantifier-free formula
(usually a clause) and the variables in ~x range over the set of (finite) terms. In our context,
ψ would contain finite quantification (over intervals constrained by n), corresponding to
the iterated connectives. In particular, schemata may have several models, thus implicit
induction (Comon, 2001) (which explicitly requires that the underlying Herbrand model is
unique) cannot be (directly) used.

Of course, these problems can be overcome by encoding interpretations as terms (for
instance by vectors or ordered lists of truth values) and schemata as functions mapping
every interpretation to a truth value. Then inductive theorem provers may be used to prove
inductive properties of these functions (showing for instance that their value is ⊥ for every
interpretation). However these provers are not complete (due to well-known theoretical
limitations) thus the practical interest of this encoding is unclear. For instance, we have
tried to use the theorem prover Acl2 to prove the validity of some of the benchmarks
considered in Section 5, but it fails on all non trivial examples. We conjecture that this
is not only due to efficiency problems, but that additional inductive lemmata are needed,
which are very hard to determine in advance.

The above definitions should also remind the reader of fixed point logics. Indeed
iterated schemata are obviously particular cases of fixed points, e.g., the schema

∧n
i=1 pi

might be represented as (µX(i).i ≤ 0∨(p(i)∧X(i−1)))(n). The “standard” fixed point logic
is the (propositional) modal µ-calculus (Bradfield & Stirling, 2007) in which many temporal
logics can be encoded, e.g., LTL or CTL. However the involved logic is very different from
ours and actually simpler from a theoretical point of view. Indeed modal µ-calculus is
decidable (and thus complete) whereas – as we shall see in Section 6 – iterated schemata
are not (nor are they complete). Furthermore, our language allows one to use complex
(though carefully restricted) arithmetic operations in the definition of the iterations, both
in the indices and in the bounds. For instance we may relate the truth values of two
propositions whose index are arbitrary far from each other (such as pi and pn−i). As far as
we are aware, these operations cannot be directly encoded into propositional µ-calculus.

12

Actually iterated schemata share much more with least fixpoint logic (LFP, see (Im-
merman, 1982)), studied in finite model theory (Fagin, 1993; Ebbinghaus & Flum, 1999):
LFP is a logic allowing to iterate first-order formulae maintaining constant the number
of their variables. However we do no know any calculus for deciding the satisfiability in
LFP. We see two reasons for this: first, LFP is undecidable and not complete, second the
purposes of this logic are mainly theoretical, hence the fact that research in this field has
not focussed on decision procedures for some subclasses.

In contrast with propositional µ-calculus, first-order µ-calculus (Park, 1976) clearly
embeds iterated schemata (allowing for instance the above fixed-point expression of

∧n
i=1 pi),

but no published research seems to be focused on the identification of complete subclasses.
With a similar expressive power one also finds logics with inductive definitions (Aczel, 1977)
which are quite widespread in proof assistants (Paulin-Mohring, 1993), but again out of the
range of automated theorem provers. As far as we know the only study of a complete
subclass in such fixed point logics is in (Baelde, 2009), and iterated schemata definitely do
not lie in this class nor can be reduced to it.

As we shall see in Section 5.2, completeness of bound-linear schemata (or more precisely
regular schemata) lies in the detection of cycles during the proof search. This idea is not
new, it is used, e.g., in tableaux methods dealing with modal logics in transitive frames, see,
e.g., (Goré, 1999), or µ-calculi (Cleaveland, 1990; Bradfield & Stirling, 1992). However cycle
detection in our work is quite different because we use it to prove by induction. Notice in
particular that we cannot in general ensure termination (contrarily to the above methods).
It is more relevant to consider our method as a particular instance of cyclic proofs, which are
studied in proof theory precisely in the context of proofs by induction. Both (Brotherston,
2005) and (Sprenger & Dam, 2003) show that cyclic proofs seem as powerful as systems
dealing classically with induction. A particular advantage of cyclic proofs is that finding
an invariant is not needed, making them particularly suited to automation. However, once
again those studies are essentially theoretical and there are no completeness results for
particular subclasses.

To summarize, known decidable logics (such as propositional µ-calculus) or even semi-
decidable ones such as first-order logic are not expressive enough to directly embed iterated
schemata, whereas those that are sufficiently expressive (such as fixpoint or higher order
logics) are not suitable for automation. Together with the potential applications mentioned
in Section 2.4, this justifies to our opinion the interest of the considered languages.

4. Reduction to Regular Schemata

In this section we reduce the satisfiability problem for bound-linear schemata (see Definition
2.9) to a much simpler class of schemata, called regular. This class is defined as follows:

Definition 4.1
A schema φ is:

• flat if for every iteration Πb
i=aψ occurring in φ, ψ does not contain any iteration (i.e.

iterations cannot be nested in φ).

• of bounded propagation if every atom that occurs in an iteration Πb
i=aψ in φ is of the

form pi+γ for some γ ∈ Z. Since the number of atoms is finite, there exist α, β ∈ Z

13

Aravantinos, Caferra & Peltier

s.t. for every atom pi+γ occurring in an iteration we have γ ∈ [α, β]. α, β are called
the propagation limits.

• aligned on [c, d] if all iterations occurring in φ are of the form Πd
i=cψ (i.e. all iterations

must have the same bounds).

• regular if it has a unique parameter n and if it is flat, of bounded propagation and
aligned on [α, n− β] for some α, β ∈ Z.

As an example, the schema Adder defined in the Introduction is regular, but the last
example in Section 2.4 (three cells register with shift) is not. Obviously, every regular schema
is also bound-linear (see Definition 2.9). We now define an algorithm that transforms every
bound-linear schema into a sat-equivalent regular one. This result is somewhat surprising
because the class of regular schemata seems much simpler than bound-linear schemata. In
some sense, it points at regular schemata as a canonical decidable class of schemata.

4.1 Overview of the Transformation Algorithm

We first give an informal overview of the algorithm reducing every bound-linear schema
into a regular one, together with examples illustrating each transformation steps. This very
high level description is intended to help the reader to grasp the intuitive ideas behind
the formal definitions and more technical explanations provided in the next section. The
transformation is divided into several steps.

• The first step is the elimination of iterations occurring inside an iteration. Consider
for instance the following schema φ :

∨n
i=1(pi ⇒

∧n
j=1 qj). The reader can check

that φ is bound-linear but non regular. It is easy to transform φ into a sat-equivalent
regular schema: since

∧n
j=1 qj does not depend on the counter i, one can simply replace

this formula by a new propositional variable r and add the equivalence r ⇔
∧n
j=1 qj

outside the iteration. This yields the schema:
∨n
i=1(pi ⇒ r) ∧ (r ⇔

∧n
j=1 qj), which

is clearly regular and sat-equivalent (but not equivalent) to φ. This process can be
generalized; however, replacing an iteration by a proposition is only possible if the
iteration contains no variable that is bound in the original schema. Consider the
schema: φ′ :

∨n
i=1

∧n
j=1(pi ⇒ qj). Here

∧n
j=1(pi ⇒ qj) cannot be replaced by a

variable r, since it depends on i. The solution is to get the variable pi containing
i out of the iteration

∧n
j=1(pi ⇒ qj) by using case-splitting, indeed as pi does not

involve j it is easily seen that we can turn
∧n
j=1(pi ⇒ qj) into pi ⇒

∧n
j=1 qj . This

transformation can be generalized by using case-splitting: indeed, it is well-known that
every formula ψ is equivalent to (r ∧ ψ[⊤/r]) ∨ (¬r ∧ ψ[⊥/r]), for every propositional
variable r. Applying this decomposition scheme to

∧n
j=1(pi ⇒ qj) and pi we get:

∧n
j=1(pi ⇒ qj) ≡ (pi ∧

∧n
j=1(⊤ ⇒ qj)) ∨ (¬pi ∧

∧n
j=1(⊥ ⇒ qj)), i.e. (by usual

transformations):
∧n
j=1(pi ⇒ qj) ≡ (pi ∧

∧n
j=1 qj) ∨ ¬pi. Afterwards, the remaining

iteration
∧n
j=1 qj can be replaced by a new variable r.

The decomposition scheme just explained can be applied on every variable occurring
in an iteration, but not containing the counter of this iteration. By definition of
bound-linear schemata, the propositional symbols have only one index and this in-
dex contains at most one bound variable, thus this technique actually removes every

14

atom containing a counter variable distinct from the one of the considered iteration.
However, it does not remove the variables that occur in the bound of the iteration.

Consider for instance the following formula: φ′′
def
=

∨n
i=1

∧i
j=1 qj . Here i occurs in

the bound of the iteration thus cannot be removed by the previous technique. The
idea is then to encode the formula

∧i
j=1 qj by a new variable ri, that can be defined

inductively as follows: r0 is ⊤ and ri+1 is ri ∧ qi+1. This is expressed by the schema:
r0 ∧

∧n−1
i=0 (ri+1 ⇔ (ri ∧ qi+1)).

Notice that ri needs only to be defined for i = 0, . . . , n because i ranges over the
interval [1, n] in φ′′.

• In order to get a regular schema one has to guarantee that every iteration ranges over
the same interval of the form [α, n − β] (where β ∈ Z). This is actually simple to
ensure by unfolding the iterations. For instance a schema

∨2n
i=1 pi can be transformed

into
∨n
i=1 pi∨

∨2n
i=n+1 pi and then into

∨n
i=1 pi∨

∨n
i=1 pi+n. Similarly

∨n
i=2 pi∨

∨n−1
j=1 qj

can be reduced to
∨n−1
i=2 pi ∨ pn ∨ q1 ∨

∨n−1
j=2 qj to get iterations defined on the same

interval.

• A major difference between regular schemata and bound-linear ones is that in a regular
schema, the indexed variables occurring inside an iteration cannot contain parameters
(e.g., an iteration such as

∨n
i=1 pi+n is forbidden). Therefore we have to replace every

variable of the form pα.n+β±i by a new variable qi, depending only on i. The problem is
that in order to preserve sat-equivalence, one also has to encode the relation between
these variables. For instance, assume that pn+i is replaced by qi and that p2n−j

is replaced by rj . Then obviously, we must have qi ≡ rj iff n + i = 2n − j, i.e.
qi ≡ rn−i. This step may be problematic because in general there are infinitely many
such axioms. However, by defining the translation carefully, we will show that actually
only finitely many equivalences are required. To this aim, we have to assume that the
initial coefficient of the parameter is even in every index (see Definition 4.2), which is
easy to ensure by case splitting. Then the maximal number of overlaps between the
newly defined variable is actually bounded (this is shown by the crucial lemma 4.6).

For instance, a formula
∨n
i=0(¬pi ∨ p2n−i) is replaced by

∨n
i=0(¬pi ∨ qi) ∧ (pn ⇔ qn).

qi denotes the atom p2n−i and the equivalence encodes the fact that qn ≡ p2n−n = pn.
Since i ranges over the interval [0..n] this is the only equation which is relevant w.r.t.
φ (e.g. p0 ⇔ q2n is useless).

The algorithm for transforming every bound-linear schema φ into a sat-equivalent reg-
ular schema ψ is specified as a sequence of rewriting rules, operating on schemata and
preserving sat-equivalence. The rules are depicted in Figure 1. They must be applied in the
order of their presentation. As we shall see in Section 4.3, the rewrite system terminates (in
exponential time). Moreover satisfiability is preserved and irreducible schemata are regular
(see Section 4.4).

4.2 Formal Definition of the Algorithm

We now give a more detailed and precise description of the transformation algorithm (read-
ers not interested in technical details can skip this section). We assume that the initial
schema satisfies the following condition:

15

Aravantinos, Caferra & Peltier

τ1 Πb
i=aφ → (pc ∧ Πb

i=aφ[⊤/pc]) ∨ (¬pc ∧ Πb
i=aφ[⊥/pc])

If the variables in c are free in Πb
i=aφ, pc occurs in φ and does not contain i

and if for every iteration Γdj=cφ
′ containing Πb

i=aφ, pc contains either j or a
variable bound in Γdj=cφ

′.

τ2 ψ → (p⇔ Πb
i=aφ) ∧ ψ[p/Πb

i=aφ]
If p is a fresh symbol, ψ is the global schema, Πb

i=aφ occurs in an iteration in ψ
and contains no free variable except n.

τ3 φ →
∧a−b−1
j=minφ(j) ¬pj

∧
∧maxφ(j)
j=a−b (pj ⇔ (pj−1 ∨ ψ[b+ j/i])) ∧ (φ[pj/

∨b+j
i=a ψ])

If p is a fresh symbol,
∨b+j
i=a ψ occurs in an iteration of φ, j is bound in φ,

a, b and ψ contain no free variable except n, φ is the global schema.

τ ′3 φ →
∧a−b−1
j=minφ(j) ¬pj

∧
∧maxφ(j)
j=a−b (pj ⇔ (pj−1 ∧ ψ[b+ j/i])) ∧ (φ[pj/

∧b+j
i=a ψ])

If p is a fresh symbol,
∧b+j
i=a ψ occurs in an iteration of φ, j is bound in φ,

a, b and ψ contain no free variable except n, φ is the global schema.

τ4 φ →
∧maxφ(j)
j=b−a+1 ¬pj

∧
∧b−a
j=minφ(j)(pj ⇔ (pj+1 ∨ ψ[b− j/i])) ∧ (φ[pj/

∨b−j
i=a ψ])

If p is a fresh symbol,
∨b−j
i=a ψ occurs in an iteration of φ, j is bound in φ,

a, b and ψ contain no free variable except n, φ is the global schema.

τ ′4 φ →
∧maxφ(j)
j=b−a+1 pj

∧
∧b−a
j=minφ(j)(pj ⇔ (pj+1 ∧ ψ[)/b− j]) ∧ (φ[pj/

∧b−j
i=a ψ])

If p is a fresh symbol,
∧b−j
i=a ψ occurs in an iteration of φ, j is bound in φ,

a, b and ψ contain no free variable except n, φ is the global schema.

τ5 Πγ.n−δ
i=α.n+βφ → Π

(γ−α).n−δ
i=β φ[i+ α.n/i]

If α 6= 0, β ∈ Z.

τ6 ψ → [ψ]n 7→0 ∨ . . . ∨ [ψ]n 7→κ ∨ (n > κ ∧ ψ[⋄/Πα.n−β
i=γ φ])

If ψ contains Πα.n−β
i=γ φ, with α, β, γ ∈ Z, α < 0 and Π ∈ {

∧

,
∨

},

where κ = ⌈γ−β
α

⌉ and Π is
∨

then ⋄ = ⊥ and if Π =
∧

then ⋄ = ⊤.

τ7 ψ → ((α− 1).n− β ≥ γ ∧ ψ[ψ′/Πα.n−β
i=γ φ]) ∨ ([ψ]n 7→0 ∨ . . . ∨ [ψ]n 7→κ)

where ψ contains an iteration Πα.n−β
i=γ φ with α > 1,

ψ′ is Π
(α−1).n−β
i=γ φ ⋆Πn

i=1φ[i+ (α− 1).n− β/i], with Π ∈ {
∧

,
∨

},

where κ = ⌊γ−β
α−1 ⌋, Π =

∧

then ⋆ = ∧, if Π =
∨

then ⋆ = ∨.

τ8 Πn−β
i=γ φ → Πn−γ

i=−βφ[n− i/i]

If the indices of the variables in φ are of the form (2α+ 1).n+ c, where c ∈ Ni.

τ9 φ → φ ∧
∧

ψ∈Ψ(φ) ψ

If φ contains a variable p not occurring in V − ∪ V +,
and where Ψ(φ) is defined by Definitions 4.4, 4.5 and Lemma 4.6.

τ10 Πn−β
i=α φ → (n < α+ β ∧ ⋄) ∨

(n ≥ α+ β ∧ Πn−β−1+α′
−α

i=α′ φ[i− α′ + α/i] ⋆ φ[n− β/i])
where α′ is the maximal lower bound of an iteration occurring in the
whole formula and β′ is the minimal upper bound, α 6= α′ or β 6= β′,
and if Π is

∨

then ⋄ = ⊥, ⋆ = ∨ and if Π =
∧

then ⋄ = ⊤, ⋆ = ∧.

Figure 1: Transformation Into Regular Schemata

16

Definition 4.2
A bound-linear schema is normalized if the coefficient of the parameter n is even in any
expression occurring in the formula (either as the index of a symbol in P or as the bound
of an iteration).

Considering exclusively normalized schemata is not restrictive because a schema φ not
satisfying this property can be replaced by φ[2n/n] ∨ φ[2n + 1/n] (e.g. p3n is turned into
p6n ∨ p6n+3). The obtained schema is obviously sat-equivalent to φ and normalized4. The
use of normalized schemata will be explained later (see Remark 4.7).

Remark 4.3
The property of being normalized is only useful for the algorithm of Figure 1 to be well-
defined. As a side remark, notice that the schema obtained after application of this algo-
rithm is actually not normalized in general.

We now explain in more details the different steps of the transformation.

1. Elimination of Nested Iterations. As explained in Section 4.1, the first step is to
remove the iterations Πb

i=aφ occurring inside another iteration Γdj=cψ. This is done by
the rules τ1, τ2, τ3, τ4. τ2 moves a nested iteration out by introducing a new variable
p as explained before. This is possible only if φ does not contain any free variable
except i and the parameter n. Removing all other variables is precisely the role of τ1:

τ1 Πb
i=aφ → (pc ∧ Πb

i=aφ[⊤/pc]) ∨ (¬pc ∧ Πb
i=aφ[⊥/pc])

If the variables in c are free in Πb
i=aφ, pc occurs in φ and does not contain i

and if for every iteration Γdj=cφ
′ containing Πb

i=aφ, pc contains either j or a

variable bound in Γdj=cφ
′.

This rule aims at eliminating, in the body of an iteration Πb
i=aφ, every variable distinct

from the iteration counter i and from the (unique) parameter n. This is feasible
because no index can contain two variables distinct from n (by definition of bound-
linear schemata). This implies that the indexed variables containing an arithmetic
variable distinct from i and n cannot contain i thus they can be taken out of the
iteration Πb

i=aφ by case splitting. Notice that the rule τ1 can increase exponentially
the size of the formula.

Once φ contains no free variable except n and i, Πb
i=aφ may be taken out of the global

iteration Γdj=cψ by renaming. This is very easy if the bounds of the iteration only

depend on n, because in this case Πb
i=aφ contains no free variable except n, thus it

may be replaced by a fresh variable p and the equivalence p ⇔ Πb
i=aφ may be added

as an axiom. This is done by the rule τ2:

τ2 ψ → (p⇔ Πb
i=aφ) ∧ ψ[p/Πb

i=aφ]
If p is a fresh symbol, ψ is the global schema, Πb

i=aφ occurs in an iteration in ψ
and contains no free variable except n.

4. But the two formulae are not equivalent in general. For instance, if φ = pn, then the interpretation

defined by I(n)
def
= 1 and I(pκ)

def
= T iff κ = 1 validates pn but obviously not p2n ∨ p2n+1.

17

Aravantinos, Caferra & Peltier

Things get more complicated if the bounds of the iteration contain a variable j (e.g.,

the schema
∨n
j=1(qi ⇒

∨j
i=1 ri)) because in this case the iteration cannot be taken

out and j cannot be eliminated by τ1. Notice that, in this case, the lower bound a
cannot contain j and the coefficient of j in the upper bound b must be ±1. In this
case, Πb

i=aφ can be replaced by a new variable pj that can be defined inductively.

For instance in the previous example,
∨j
i=1 ri is replaced by a variable pj defined as

follows: ¬p0 ∧
∧n
j=1[pj ⇔ (rj ∨pj−1)]. The transformation is formally specified by the

rules τ3 (if the coefficient of j is 1) and τ4 (if the coefficient of j is −1). Notice that if ψ
denotes the global schema, then pj must be defined for every j ∈ [minψ(j),maxψ(j)].

τ3 φ →
∧a−b−1
j=minφ(j) ¬pj

∧
∧maxφ(j)
j=a−b (pj ⇔ (pj−1 ∨ ψ[b+ j/i])) ∧ (φ[pj/

∨b+j
i=a ψ])

If p is a fresh symbol,
∨b+j
i=a ψ occurs in an iteration of φ, j is bound in φ,

a, b and ψ contain no free variable except n, φ is the global schema.

τ4 φ →
∧maxφ(j)
j=b−a+1 ¬pj

∧
∧b−a
j=minφ(j)(pj ⇔ (pj+1 ∨ ψ[b− j/i])) ∧ (φ[pj/

∨b−j
i=a ψ])

If p is a fresh symbol,
∨b−j
i=a ψ occurs in an iteration of φ, j is bound in φ,

a, b and ψ contain no free variable except n, φ is the global schema.

The rules τ ′3 and τ ′4 for
∧

are defined in a similar way (see Figure 1).

2. Transforming every Iteration into Iterations over Intervals of the form
[α, n − β]. The next step is to ensure that for every iteration Πb

i=aφ, a is an integer
α and that b is of the form n− β, where β is a constant (initially both a and b must
be of the form 2.δ.n + γ (since the initial schema is normalized and no iteration is
contained inside another one so no bound variable occurs in the upper bound). The
first point is easily performed by an appropriate translation of the iteration counter
(rule τ5):

τ5 Πγ.n−δ
i=α.n+βφ → Π

(γ−α).n−δ
i=β φ[i+ α.n/i]

If α 6= 0, β ∈ Z.

Then we ensure that the coefficient of n in b is positive. Fortunately, if this coefficient
is negative then there is κ ∈ N s.t. for every interpretation I s.t. I(n) > κ, the
interval [I(a), I(b)] is empty, in which case Πb

i=aφ is either ⊤ or ⊥ (depending on Π).
Since the value of n is positive, there exist finitely many values for n s.t. the iteration
is non empty. One can eliminate the iteration by considering these cases separately.
This is done by the rule τ6:

τ6 ψ → [ψ]n7→0 ∨ . . . ∨ [ψ]n7→κ ∨ (n > κ ∧ ψ[⋄/Πα.n−β
i=γ φ])

If ψ contains Πα.n−β
i=γ φ, with α, β, γ ∈ Z, α < 0 and Π ∈ {

∧

,
∨

},

where κ = ⌈γ−βα ⌉ and Π is
∨

then ⋄ = ⊥ and if Π =
∧

then ⋄ = ⊤.

Finally, we obtain the desired result by (recursively) decomposing an iteration interval
of the form [γ, α.n+β] (where α > 1) into two smaller intervals [γ, (α− 1).n+β] and
[(α− 1).n+ β + 1, α.n+ β]. Obviously, this is possible only if (α− 1).n+ β ≥ γ, thus

18

the case where (α−1).n+β < γ must be considered separately. This is possible, since
in this case there are only finitely many possible values of n, namely 0, 1, . . . , ⌊γ−βα−1⌋.

τ7 ψ → ((α− 1).n− β ≥ γ ∧ ψ[ψ′/Πα.n−β
i=γ φ]) ∨ ([ψ]n7→0 ∨ . . . ∨ [ψ]n7→κ)

where ψ contains an iteration Πα.n−β
i=γ φ with α > 1,

ψ′ is Π
(α−1).n−β
i=γ φ ⋆Πn

i=1φ[i+ (α− 1).n− β/i], with Π ∈ {
∧

,
∨

},

where κ = ⌊γ−βα−1⌋, Π =
∧

then ⋆ = ∧, if Π =
∨

then ⋆ = ∨.

3. Removing the Parameter from the Indices in the Iterations. The next phase
consists in removing the indexed variables of the form pα.n+ǫ.i+β where β ∈ Z and
either α 6= 0 or ǫ = −1 (to get variables indexed by expressions of the form i+β only).
We first ensure that α is even. Although initially the coefficient of every occurrence
of n is even, this property does not hold anymore at this point because of the rule
τ7. Fortunately, suppose a variable p(2γ+1).n+c, where c does not contain n, occurs

in an iteration Πb
i=aφ. Then (since the schema is normalized) it must be by the rule

τ7 and i has been shifted by (α − κ).n for some κ (by definition of τ7). This shift
is applied to every index containing i (by definition of τ7), i.e. to every index of a
variable occurring in Πb

i=aφ (otherwise the iteration would be reducible by τ1). As a
consequence every index in this iteration has an odd coefficient for n. Hence if we
add n to each index we retrieve even coefficients in all the iteration. Fortunately by
commutativity of ∨ and ∧, any iteration Πb

i=aφ is equivalent to Πb−a
i=0φ[b− i/i]. In our

case b is of the form n + β for some β ∈ Z so applying this transformation precisely
adds n to each index (and a β). For instance, the iteration

∨n
i=1(pn+i ∨ pn−i) can be

replaced by
∨n−1
i=0 (p2n−i ∨ pi). This idea is formalized by the rule τ8:

τ8 Πn−β
i=γ φ → Πn−γ

i=−βφ[n− i/i]

If the indices of the variables in φ are of the form (2α+ 1).n+ c, where c ∈ Ni.

Once the coefficient of n in every indexed variable is even, we introduce, for every
variable p and for every integer κ, two new (fresh) variables pκ

+

and pκ
−

s.t. pκ
+

a and
pκ

−

a denote respectively p2.κ.n+a and p2.κ.n−a where a ∈ Ni ∪ Z i.e. a is of the form
β.i + γ where β ∈ {0, 1}, γ ∈ Z (rule τ9). Then the index of pκ

+

a does not contain n
anymore. Furthermore, the index of pκ

−

a now contains +i instead of −i. Thus this
transformation indeed achieves our goal however it does not preserve sat-equivalence
because two variables p2α.n+a and p2β.n−b (respectively p2α.n+a and p2β.n+b, p2α.n−a

and p2β.n−b) s.t. 2α.n+a = 2β.n− b (respectively 2α.n+a = 2β.n+ b and 2α.n−a =

2β.n−b) may be replaced by distinct variables pα
+

a and pβ
−

b (respectively pα
+

a and pβ
+

b ,

pα
−

a and pβ
−

b). Notice that it is important to distinguish the sign + or − in front of a
and b, as both are not only integers but expressions of Ni ∪ Z. In order to preserve
sat-equivalence one would have to explicitly add the following axioms to the schema:

2α.n+ γ = 2β.n− δ ⇒ (pα
+

γ ⇔ pβ
−

δ)

and
2α.n+ γ = 2β.n+ δ ⇒ (pα

+

γ ⇔ pβ
+

δ)

19

Aravantinos, Caferra & Peltier

and
2α.n− γ = 2β.n− δ ⇒ (pα

−

γ ⇔ pβ
−

δ)

for every tuple (α, β, γ, δ) ∈ Z
4.

This transformation is problematic, because there exist infinitely many such formulae.
Fortunately, we do not have to add all these equivalences, but only those concerning
propositional variables that occur in a propositional realization of the schema. As we
shall see, this set (denoted by Ψ(φ)) is finite, because each expression γ, δ ranges over
a set of the form [−ι, ι] ∪ [n− ι, n+ ι], where ι ∈ N.

More formally, let V + and V − be two disjoint subsets of P, distinct from the symbols
already occurring in the considered formula. We assume that every pair (p, α) where
p is a variable occurring in the formula and α an integer is mapped to two variables
pα

+

∈ V + and pα
−

∈ V −. pα
+

i and pα
−

i will denote the atoms p2α.n+i and p2α.n−i

respectively. We denote by φ the schema obtained from φ by replacing every variable
of the form p2α.n+a (where a ∈ Ni ∪ N for some bound variable i) by pα

+

a and each
variable of the form p2α.n−a by pα

−

a (in both cases we may have α = 0, moreover, if
a = 0 then the replacement may be done arbitrarily by pα

+

0 or pα
−

0). Notice that all
atoms in φ are of the form pα

+

a or pα
−

a , where a ∈ Ni ∪ Z for some bound variable i.
τ9 is defined as follows:

τ9 φ → φ ∧
∧

ψ∈Ψ(φ) ψ

If φ contains a variable p not occurring in V − ∪ V +,
and where Ψ(φ) is defined by Definitions 4.4, 4.5 and Lemma 4.6.

4. Aligning Iterations. Finally, it remains to ensure that all the iterations have the
same bounds. At this point every iteration is of the form Πn−β

i=α φ where α, β ∈ Z. Let
α′, β′ be the greatest integers α, β. If we have α 6= α′ or β 6= β′, then we unfold the
iteration once, yielding Πn−β−1

i=α φ ⋆ φ[n− β/i]. By translation of the iteration counter,

Πn−β−1
i=α is equivalent to Πn−β−1+α′−α

i=α′ φ[i−α′ +α/i]. The lower bound of the obtained
iteration is now identical to α′ and its upper lower bound have been decreased. This
is repeated until we obtain an iteration on the interval [α′, β′]. The rule τ10 formalizes
this transformation:

τ10 Πn−β
i=α φ → (n < α+ β ∧ ⋄) ∨

(n ≥ α+ β ∧ Πn−β−1+α′−α
i=α′ φ[i− α′ + α/i] ⋆ φ[n− β/i])

where α′ is the maximal lower bound of an iteration occurring in the
whole formula and β′ is the minimal upper bound, α 6= α′ or β 6= β′,
and if Π is

∨

then ⋄ = ⊥, ⋆ = ∨ and if Π =
∧

then ⋄ = ⊤, ⋆ = ∧.

The most difficult part of the transformation is the removal of the variable n in the
index performed by the rule τ9, and more precisely the definition of Ψ(φ). We now establish
the results ensuring the feasability of this transformation.

Definition 4.4
We denote by Ψ the set of schemata of the form:

2α.n+ a = 2β.n− b⇒ (pα
+

a ⇔ pβ
−

b)

20

or
2α.n+ a = 2β.n+ b⇒ (pα

+

a ⇔ pβ
+

b)

or
2α.n− a = 2β.n− b⇒ (pα

−

a ⇔ pβ
−

b)

where α, β ∈ Z, a, b ∈ Nn ∪ Z.

The set Ψ is infinite. Thus we add a further restriction:

Definition 4.5
Let φ be a schema containing a unique parameter n. A schema ψ ⇒ (p ⇔ q) occurring in
Ψ is said to be relevant w.r.t. φ iff the following conditions hold:

• p and q are not syntactically identical.

• There exists a natural number κ s.t. ψ[κ/n] is true and φ[κ/n] contains both p[κ/n]
and q[κ/n]

Notice that p and q do not necessarily occur in φ itself. For instance, take φ =
∧n
i=1 p2n−i ∨ ¬pn. So φ =

∧n
i=1 p

2−

i ∨ ¬p0+

n . Then 2n − n = 4 ⇒ (p2−

n ⇔ p0+

4) is easily

seen to be relevant, however both p2−

n and p0+

4 do not occur in φ.
The next lemma provides a very simple necessary condition on relevant equivalences in

Ψ. It also shows that for every schema φ the number of relevant equivalences in Ψ is finite
(up to equivalence).

Lemma 4.6
Let φ be a schema containing a unique parameter n. Assume that the coefficient of n is

even in every index in φ and that every iteration in φ is of the form Πn+ζ
i=ǫ ψ, where ǫ, ζ ∈ Z

(ǫ, ζ may depend on the iteration). Let ι be the greatest natural number occurring in φ
(possibly as a coefficient of n or in an expression of the form −ι).

For every relevant formula of the form 2α.n+ a = 2β.n− b⇒ (pα
+

a ⇔ pβ
−

b), 2α.n+ a =

2β.n + b ⇒ (pα
+

a ⇔ pβ
+

b) or 2α.n − a = 2β.n − b ⇒ (pα
−

a ⇔ pβ
−

b) in Ψ, we have, for every
κ ∈ N: α, β ∈ [−ι, ι] and a[κ/n], b[κ/n] ∈ [−2ι, 6ι] ∪ [κ− 2ι, κ+ 2ι].

Proof

Let σ stand for the substitution [κ/n]. By definition of a relevant formula, there must exist

κ ∈ N such that pα
+

a σ and pβ
−

b σ (respectively pβ
+

b σ) occur in [φ]σ (but notice that pα
+

a , pβ
−

b

and pβ
+

b do not necessarily occur in φ). Furthermore we must have 2α.κ+ aσ = 2β.κ− bσ
(resp. 2α.κ+ aσ = 2β.κ+ bσ).

Since the coefficient of n is even in every index in φ and since a, b ∈ Nn ∪ Z, 2α, 2β
necessarily occur in φ. Thus α, β ∈ [−ι/2, ι/2] ⊆ [−ι, ι].

Moreover, by Lemma 2.8, there exist two atoms pα
+

a′ and pβ
−

b′ (respectively pβ
+

b′) which

occur in φ and two φ-expansions σ′ and σ′′ of σ for pα
+

a′ and pβ
−

b′ (respectively pβ
+

b′) s.t.
we have aσ = a′σ′ and bσ = b′σ′′. By definition, a′, b′ come from the replacement of
some proposition p2α.n+a′ (resp. p2β.n−b′ and p2β.n+b′) by pk

+

a′ (resp. pk
−

b′ and pk
+

b′). Thus
a′ and b′ do not contain n. Thus a′ and b′ are either in Z (and in this case we must
have aσ, bσ ∈ [−ι, ι] ⊆ [−2ι, κ + 2ι]) or respectively of the form i + γ and i + δ where

21

Aravantinos, Caferra & Peltier

i is a bound variable and γ, δ ∈ Z. Then since σ′, σ′′ are φ-expansions of σ we have
iσ′, iσ′′ ∈ [minφ(i)σ,maxφ(i)σ]. We have minφ(i) = ǫ ≥ −ι and maxφ(i) = n + ζ ≤ n + ι.
Thus aσ, bσ ∈ [−2ι, κ+ 2ι].

Assume that we have 2α.κ+ aσ = 2β.κ− bσ. Then aσ + bσ = 2.(β − α).κ.

• If β ≤ α then aσ + bσ ≤ 0. Since aσ, bσ ≥ −2ι, we deduce aσ, bσ ≤ 2ι. Thus
aσ, bσ ∈ [−2ι, 6ι].

• If β > α then aσ + bσ ≥ 2κ. Since aσ ≤ κ + 2ι and bσ ≤ κ + 2ι we must have
aσ ≥ κ− 2ι and bσ ≥ κ− 2ι. Thus aσ, bσ ∈ [κ− 2ι, κ+ 2ι].

Now, assume that 2α.κ+ aσ = 2β.κ+ bσ. Then aσ − bσ = 2.(β − α).κ.

• If α = β then we must have aσ = bσ. This contradicts the first condition in Definition
4.5 (the indexed variables cannot be syntactically identical).

• If α < β then aσ − bσ > 2κ. This is possible only if aσ > 2κ + bσ > 2κ − 2ι, hence
κ+2ι > 2κ−2ι, i.e. 4ι > κ. Then since we must have aσ, bσ ∈ [−2ι, κ+2ι] we deduce
aσ, bσ ∈ [−2ι, 6ι].

• The proof is symmetric if α > β.

Finally if 2α.κ− aσ = 2β.κ− bσ then aσ − bσ = 2.(α− β).κ and the proof follows exactly
as in the previous case. �

Lemma 4.6 implies that the set of relevant formulae is finite (up to equivalence). Indeed,
it suffices to instantiate α, β by every integer in [−ι, ι] and a, b either by elements of [−ι, 6ι]
or by expressions of the form n + γ, where γ is an integer in [−2ι, 2ι]. Thus we denote by
Ψ(φ) a finite subset of Ψ containing all relevant formulae (up to equivalence). Such a set
can be easily computed by applying Lemma 4.6, but using refined criteria is possible, thus
we opt for a generic definition.

Remark 4.7
The fact that the coefficient of n is even (see Definition 4.2 of normalized schemata) is
essential at this point. If arbitrary coefficients are allowed for n, then the coefficients 2α
and 2β must be replaced by α and β respectively. Then in the second item in the proof
of Lemma 4.6 we obtain ασ + bσ ≥ κ (instead of aσ + bσ ≥ 2κ). Thus we get eventually
ασ, bσ > −2ι (instead of aσ ≥ κ − 2ι). This means that aσ, bσ range over the interval
[−2ι, κ+ 2ι] instead of [−ι, 6ι] ∪ [κ− 2ι, κ+ 2ι]. But this interval is unbounded, thus Ψ(φ)
is infinite (even up to equivalence).

For instance, suppose that we allow any coefficient for n (i.e. odd or even) and that
pα.n+β is turned into p1+

β . Consider then φ =
∨n
i=1(pi∨pn−i). We get: φ =

∨n
i=0(p

0+

i ∨p1−

i).

But the equivalence p0+

i ⇔ p1−

n−i is obviously needed for every i ∈ [1, n], which cannot be
expressed by a finite number of equivalences.

On the other hand, if we only allow normalized schemata, i.e. even coefficients for
n, then we first have to turn φ into ψ =

∨2n
i=1(pi ∨ p2n−i) hence (by τ7) ψ =

∨n
i=1(pi ∨

p2n−i) ∨
∨n
i=1(pn+i ∨ pn−i), and (by τ8) ψ =

∨n
i=1(pi ∨ p2n−i) ∨

∨n−1
i=0 (p2n−i ∨ pi). Then

ψ =
∨n
i=1(p

0+

i ∨ p1−

i) ∨
∨n−1
i=0 (p1−

i ∨ p0+

i). No equivalence is needed in this simple case.

22

Lemma 4.8
Let φ be a schema containing a unique parameter n s.t. every iteration in φ is of the form

Πn+β
i=α ψ, where α, β ∈ Z. φ is satisfiable iff φ ∪ Ψ(φ) is satisfiable.

Proof

Let I be an interpretation satisfying φ. Let κ = I(n). We define an interpretation J as

follows: J (n)
def
= κ and for every pair of integers (α, β): J (pα

+

β)
def
= ⊤ iff I(p2α.κ+β) = ⊤

and J (pα
−

β)
def
= ⊤ iff I(p2α.κ−β) = ⊤. By definition for all ψ ∈ Ψ, J |= ψ. φ is obtained

from φ by replacing every atom of the form p2α.n+a (respectively p2α.n−a) where a ∈ Ni ∪Z

(for some bound variable i) by pα
+

a (respectively pα
−

a). By definition of J , J |= pα
+

β iff

I |= p2α.n+β and J |= pα
−

β iff I |= p2α.n−β . Since I |= φ it is clear that we have J |= φ.

Thus J |= φ ∪ Ψ(φ).
Conversely, let I |= φ ∧ Ψ(φ). Let κ = I(n). Let J be the interpretation defined as

follows. J (n)
def
= κ, J (p2α.κ+β) = I(pα

+

β) if pα
+

β occurs in [φ]I , and J (p2α.κ−β) = I(pα
−

β)

if pα
−

β occurs in [φ]I . It is easy to check that J is well-defined since I |= Ψ(φ) and Ψ(φ)

contains all the necessary equivalences. By definition, pα
+

a (respectively pα
−

a) occurs in φ iff
p2α.n+a (respectively p2α.n+a) occurs in φ. Thus, since I |= φ we have J |= φ. �

4.3 Termination and Complexity

In this section, we investigate the complexity of the transformation algorithm and show
that it is exponential. For every schema φ, we denote by |φ| the size of φ, i.e. the number
of symbols occurring in φ. τ denotes the system of rewrite rule of Figure 1.

Theorem 4.9
Let φ be a normalized bound-linear schema. A normal form ψ of φ w.r.t. τ can be computed

in O(2|φ|) rewriting steps. Moreover, |ψ| = O(2|φ|).

Proof

We first notice that the rules are always applied sequentially: it is easy to check that a rule
cannot introduce a formula on which a previous rule applies. Thus we consider each rule in
sequence.

First, we consider the rule τ1. We call τ1-atoms the atoms pc on which the rule possibly
applies, i.e. the atom occurring in an iteration Πb

i=aψ but not containing the iteration
counter i. This rule removes an atom occurring in an iteration but not containing the
iteration counter. Due to the control (i.e. the application conditions of the rules), no atom
satisfying this condition can be introduced into the formula (indeed, if the atom pc occurs
in an iteration then, because of the second application condition of the rule, it must contain
the corresponding iteration counter of this iteration). Therefore, the number of applications
of this rule on an iteration is bounded by the number of τ1-atoms it contains. Since the rule
duplicates the considered iteration the total number of applications of the rule is bounded
by 2m, where m is the total number of τ1-atoms. Obviously m ≤ |φ|.

This is not sufficient to prove the second result, i.e. that the size of the formula is
O(2|φ|), since each application of the rule can double the size of the formula (which would
yield a double exponential blow-up since there are 2m rule applications). Consider the set
of leaf positions of the considered formula. For each position p in this set, we denote by |p|

23

Aravantinos, Caferra & Peltier

the length of p and by rp the number of possible applications of the rule τ1 along p. Each
application of the rule τ1 removes some positions p from this set (those corresponding to the
leaves of the subformula on which the rule is applied) and replaces them by new positions
p′1, . . . , p

′
κ. Both the number of these positions and their length possibly increase. However,

we remark that the rule can only increase the length of these positions by 2 (by adding a
disjunction of conjunctions), i.e. we have ∀ι ∈ [1, κ], |p′ι| ≤ |p|+2. Furthermore, the number
rp necessarily decreases: ∀ι ∈ [1, κ], rp′ι < rp. Consequently, the value |p| + 2 × rp cannot
increase (i.e. we have ∀ι ∈ [1, κ], |p′ι|+ 2× rp′ι ≤ |p|+ 2× rp), which implies that the length
of the final positions (when rp′ι = 0) are lower than |pmax| + 2 × rmax, where rmax denotes
the maximal number of possible applications of the rule τ1 along some position in the initial
formula (i.e. the max of the rp in the initial formula) and pmax is the position of maximal
length in the initial formula. Both |pmax| and rmax are O(|φ|), thus the depth of the final
formula is O(|φ|), which implies that it size is O(2|φ|).

We now consider the other rules. First we analyze the transformation due to a single
application of each of those rules (then we will analyze the number of such applications).
Each application of the rule τ2 only increases the size of the formula by a constant number
of symbols, since a fixed number of new connectives is added and no part of the formula
is duplicated. The application of the rules τ3, τ

′
3, τ4, τ

′
4, τ5, τ8 and τ10 adds a constant

number of new connectives in the formula and replaces each occurrence of the counter i
in the formula φ by an expression of the form b + j, b − j, i + α.n or n − i. The size of
these expressions is bounded by the size of the original formula, thus the size of the formula
increases quadratically (since the number of occurrences of i is also bound by the size of
the formula). Now consider the rules τ6 and τ7. These rules introduce a constant number
of new connectives and duplicate κ times a subformula ψ. The value of κ is bounded by
the natural number γ that occurs in φ, thus the size of the formula increases polynomially.

Thus we only have to show that the number of applications of each of these rules is
polynomially bounded by the size of the initial formula.

The rules τ2, τ3, τ
′
3, τ4, τ

′
4 only apply on iterations occurring inside another iteration.

During the application of the rule, this iteration is replaced by an atom, hence removed
from the outermost iteration. The rule introduces new iterations, however they only occur
at the root level, outside the scope of any iteration. Thus the total number of possible
applications of these rules is bounded by the number of iterations initially occurring inside
another iteration, hence by |φ|.

The rules τ5, τ6 and τ8 apply at most once on each iteration: τ5 applies on an iteration
in which the lower bound contain n and get rid of any occurrence of n in the lower bound.
τ6 applies on iterations in which the upper bound contains −n and replace these iterations
by purely propositional formulae. τ8 applies if the coefficient of n in every index is odd.
Since the rule adds n to each index, after the application of the rule, the coefficient of n
must be even and the rule cannot apply again on the same iteration.

The rule τ7 decreases the value of the coefficient α of n in the upper bound by 1. Thus
the number of applications of the rule τ7 on each iteration is lower than the initial value of α
(which is bound by the size of the formulae since integers are encoded as terms). Similarly,
since τ10 unfolds an iteration until an iteration of length n−β′−α′ is obtained, the number
of applications of the rule τ10 on each iteration is bound by the value of −β + α+ β′ − α′.

Finally, the rule τ9 applies only once on the whole schema. The rule adds a conjunction
of equivalence to the schema, but by Lemma 4.6, the size of the conjunction is polynomially

24

bounded by the greatest natural number ι occurring in the schema, hence by the size of the
formula. �

For every schema φ, we denote by φ ↓τ an (arbitrarily chosen) normal form of φ w.r.t.
the rules in τ .

4.4 Soundness and Completeness

We prove that the rules in τ preserve sat-equivalence and that every irreducible formula is
regular. We need the two propositions below:

Proposition 4.10
Let ψ, φ and φ′ be schemata. Let I be an interpretation such that for every ground
substitution σ of the parameters of ψ and for every ψ-expansion θ of σ for φ, φ′, we have:
JφθKI = Jφ′θKI . Then JψKI = Jψ[φ′/φ]KI .

Proof

The proof is by induction on ψ. If ψ does not contain φ the proof is trivial. If ψ = φ
then ψ[φ′/φ] = φ′. By definition JφKI = JφσIKI and Jφ′KI = Jφ′σIKI . But σI is a ground
substitution of the parameters of ψ = φ and thus is of course a ψ-expansion of itself for φ
and φ′. Thus JφσIKI = Jφ′σIKI hence JψKI = Jψ′KI .

Assume that ψ = ¬ψ′. We have Jψ[φ′/φ]KI = ¬Jψ′[φ′/φ]KI = ¬Jψ′KI (by induction).
Thus Jψ[φ′/φ]KI = JψKI . The proof is similar if ψ = (ψ1 ∨ ψ2) or if ψ = (ψ1 ∧ ψ2).

Now assume that ψ =
∧b
i=a ψ

′. I |= ψ iff for every integer κ ∈ [JaKI , JbKI] we have

I[κ/i] |= ψ′. Let σ′ be the substitution such that σ′(i) = κ and σ′(x)
def
= σ(x) if x 6= i.

Let θ be a ψ-expansion of σ′ for ψ′. By definition κ ∈ [Jminψ(i)KI , Jmaxψ(i)KI], thus θ is
also a ψ-expansion of σ. Therefore we have JφθKI = Jφ′θKI , hence JφθKI[κ/i] = Jφ′θKI[κ/i]

(since φθ and φ′θ do not contain i). Consequently, by the induction hypothesis, we have
Jψ′KI[κ/i] = Jψ′[φ′/φ]KI[κ/i]. Hence I |= ψ iff for every integer κ ∈ [JaKI , JbKI] we have

I[κ/i] |= ψ′[φ′/φ] i.e. iff I |= ψ[φ′/φ]. The proof is similar if ψ =
∨b
i=a ψ

′. �

Proposition 4.11
For every schema φ and for every indexed proposition p that does not contain any variable
bound in φ:

φ ≡ (p ∧ φ[⊤/p]) ∨ (¬p ∧ φ[⊥/p])

Proof

We have p ∨ ¬p ≡ ⊤ hence by distributivity φ ≡ (p ∧ φ) ∨ (¬p ∧ φ). We now show that for
every interpretation I, Jp∧φKI = Jp∧φ[⊤/p]KI . If JpKI = F then both p∧φ and p∧φ[⊤/p]
are false in I. Otherwise, by Proposition 4.10, we have JφKI = Jφ[⊤/p]KI . Similarly, we
have J¬p ∧ φKI = J¬p ∧ φ[⊥/p]KI . Hence φ ≡ (p ∧ φ[⊤/p]) ∨ (¬p ∧ φ[⊥/p]). �

Theorem 4.12
Let φ be a normalized bound-linear schema. φ is satisfiable iff φ ↓τ is satisfiable.

Proof

The proof is by inspection of the different rules (see the definition of the rules for the
notations):

25

Aravantinos, Caferra & Peltier

• τ1. The proof is a direct application of Proposition 4.11.

• τ2. For every model I of ψ, one can construct an interpretation J of (p ⇔ Πb
i=aφ) ∧

ψ[p/Πb
i=aφ] by interpreting p as JΠb

i=aφKI . By definition we have J |= (p ⇔ Πb
i=aφ).

Since I |= ψ we have J |= ψ. By Proposition 4.10 we deduce that I |= ψ[p/Πb
i=aφ].

Hence J |= (p⇔ Πb
i=aφ) ∧ ψ[p/Πb

i=aφ].

Conversely, if I is a model of (p⇔ Πb
i=aφ)∧ψ[p/Πb

i=aφ], then due to the first conjunct
Πb
i=aφ and p have the same truth value in I hence since I |= ψ[p/Πb

i=aφ], we deduce
I |= ψ, by Proposition 4.10.

• τ3. Assume that I |= φ. Let J be the extension of I obtained by interpreting pκ
as J

∨b+κ
i=a ψKI . By Proposition 4.10 we have J |= (φ[pj/

∨b+j
i=a ψ]). Furthermore by

definition of the semantics, we have J
∨b+κ
i=a ψKI = F if Jb+κ−aKI < 0 hence J |= ¬pκ

if κ < a − b. Thus J |= ¬pa−b−1 ∧
∧a−b−1
j=minφ(j)(pj ⇔ pa−b−1). Furthermore, for

every ι ≥ Ja − bKI , we have J
∨b+ι
i=a ψKI = T iff either J

∨b+ι−1
i=a ψKI = T or Jψ[b +

ι/j]KI = T. Hence JpιKI = T iff either Jpι−1KI = T or Jψ[b + ι/j]KI = T. Therefore

I |=
∧maxφ(j)
j=a−b (pj ⇔ (pj−1 ∨ ψ)).

Conversely, let I be a model of ¬pa−b−1 ∧
∧a−b−1
j=minφ(j)(pj ⇔ pa−b−1) ∧

∧maxφ(j)
j=a−b (pj ⇔

(pj−1 ∨ ψ[b + j/i])) ∧ (φ[pj/
∨b+j
i=a ψ]). We show by induction on ι that I |= (pι ⇔

∨b+ι
i=a ψ) for every ι ∈ [Jminφ(j)KI , Jmaxφ(j)KI]:

– If ι < Ja − bKI then by definition J
∨b+ι
i=a ψKI = F. Moreover by the first two

conjuncts in the previous formula we must have JpιKI = F.

– Otherwise, we have J
∨b+ι
i=a ψKI = J

∨b+ι−1
i=a ψ∨ψ[b+ι/i]KI . Hence by the induction

hypothesis: J
∨b+ι
i=a ψKI = Jpι−1KI ∨ ψ[b + ι/i], and by the third conjunct in the

formula above, we get: J
∨b+ι
i=a ψKI = JpιKI .

Then by Proposition 4.10 we deduce that I |= ψ. The proofs for the rules τ ′3, τ4 and
τ ′4 are similar.

• τ5. Assume that Π =
∨

(the case Π =
∧

is similar). By definition I |=
∨γ.n+ǫ
i=α.n+β φ iff

there exists κ ∈ [Jα.n+ βKI , Jγ.n+ ǫKI] such that I |= φ[κ/i], i.e. iff there exists κ ∈

[JβKI , J(γ−α).n+ǫKI] such that I |= φ[κ+Jα.nKI/i], i.e. iff I |=
∨(γ−α).n+ǫ
i=β φ[i+α.n/i].

• τ6. We assume that Π = ∨ and ⋄ = ⊥ (the case Π = ∧, ⋄ = ⊤ is similar). Since we
assume that I(n) ≥ 0 for every parameter n, we have I |= (n = 0∨ . . .∨n = κ∨n > κ)
hence ψ is equivalent to: (n = 0 ∨ . . . ∨ n = κ ∨ n > κ) ∧ ψ. By distributivity we

get ψ ≡ (n = 0 ∧ ψ) ∨ . . . (n = κ ∧ ψ) ∨ (n > κ ∧ ψ). But
∨α.n+β
i=γ φ is empty

(thus equivalent to ⊥) if I(n) > κ ≥ γ−β
α , hence, by Proposition 4.10, we have

ψ ≡ (n = 0 ∧ ψ) ∨ . . . (n = κ ∧ ψ) ∨ (n > κ ∧ ψ[⊥/
∨α.n+β
i=γ φ]). For every ι ∈ [0, κ], we

have n = ι∧ψ |= [ψ]n7→ι, hence ψ |= [ψ]n7→0 ∨ . . .∨ [ψ]n7→κ ∨ (n > κ∧ψ[⊥/
∨α.n+β
i=γ φ]).

Conversely, if I |= [ψ]n7→ι holds, then I can be straightforwardly extended into a model
of n = ι∧ψ by interpreting n as ι. Thus for any model of [ψ]n7→0∨ . . .∨ [ψ]n7→κ∨ (n >

κ ∧ ψ[⊥/
∨α.n+β
i=γ φ]) there exists a model of ψ, and τ6 preserves satisfiability.

26

• τ7. Again, we assume that Π =
∨

and ⋄ = ⊥. We have ((α−1).n+β < γ∨(α−1).n+
β ≥ γ) ≡ ⊤ hence ψ ≡ ((α−1).n+β < γ ∨ ((α−1).n+β ≥ γ)∧ψ ≡ ((α−1).n+β ≥
γ ∧ ψ) ∨ ((α − 1).n + β < γ ∧ ψ). Since the parameters are interpreted as natural
numbers, we have I |= (α − 1).n + β < γ iff I(n) ∈ [0, ⌈γ−βα−1⌉]. Then by definition

JψKI = J[ψ]n7→I(n)KI . If I |= (α − 1).n + β ≥ γ then, by unfolding, J
∨α.n+β
i=γ φKI =

J
∨(α−1).n+β
i=γ φ ∨

∨α.n+β
i=(α−1).n+β+1 φKI = J

∨(α−1).n+β
i=γ φ ∨

∨n
i=1 φ[i + (α − 1).n + β/i]KI .

Hence τ7 preserves satisfiability.

• τ8: the proof is similar to the one of τ6.

• The soundness of the rule τ9 is a direct consequence of Lemma 4.8.

• τ10. We assume that Π =
∨

and ⋄ = ⊥. We have
∨n−β
i=α φ ≡ (n < α+β∧

∨n−β
i=α φ)∨(n ≥

α + β ∧
∨n−β
i=α φ). For every interpretation I, if I(n) < α + β then J

∨n−β
i=α φKI = F

thus n < α + β ∧
∨n−β
i=α φ ≡ (n < α + β ∧ ⋄). If I(n) ≥ α + β, then J

∨n−β
i=α φKI ≡

Jφ[α/i] ∨
∨n−β
i=α+1 φKI . Furthermore by translation of the iteration counter we have

∨n−β
i=α+1 φ ≡

∨n−β′

i=α+1−β′+β φ[i+ β′ − β/i]. Hence τ10 preserves equivalence. �

Theorem 4.13
Let φ be a normalized bound-linear schema. φ ↓τ is regular.

Proof

Firstly, we remark that the application of the rules in τ on a bound-linear schema generates a
schema that is still bound-linear. Notice however that the obtained schema is not normalized
in general.

Let φ be a bound-linear formula, irreducible by τ . Assume that φ has been obtained
from a normalized schema by application of the rules in τ . We need to prove that φ is
regular.

We first prove that φ contains no nested iteration. Let ψ = Πb
i=aχ be an iteration

occurring in φ. Assume that χ contains an iteration Γdj=cγ. W.l.o.g. we assume that
γ contains no iteration (otherwise we could simply take ψ = χ). By irreducibility w.r.t.
the rule τ1, all the indices in γ must contain j. By definition of the class of bound-linear
schemata, this implies that these indices cannot contain i. If j occurs in d then one of the
rule τ3,τ

′
3, τ4 or τ ′4 applies. Consequently the only free variable in Γdj=cγ is n. Thus the rule

τ2 applies which is impossible by irreducibility.
Then we remark that for all iterations Πb

i=aψ in φ, a ∈ Z and b is of the form n + α
where α ∈ Z. Indeed, if a contains n then the rule τ5 applies and if the coefficient of n in b
is different from 1 then the rule τ6 or τ7 applies.

The rule τ8 eliminates all indexed propositions in which the coefficient of n is odd (since
the initial schema is normalized, these indexed variables have been necessarily introduced
by the rule τ7, thus they must occur in an iteration and all the indices in the iteration must
have an odd coefficient in front of n).

τ9 eliminates all the variables of the form p2α.n±a, where α ∈ Z and a ∈ Ni∪N, for some
bound variable i, and replaces them by variables indexed only by a.

Finally τ10 ensures that all the iterations have the same bounds. �

27

Aravantinos, Caferra & Peltier

5. STAB: A Decision Procedure for Regular Schemata

Now that we have shown how to transform a bound linear schema into a regular one, we show
that the satisfiability problem is decidable for regular schemata. This is done by providing
a set of block tableaux rules (Smullyan, 1968) that are complete w.r.t. satisfiability. Those
rules are concise and natural, and, compared to the naive procedure described in the proof
of Proposition 2.7, they are much more efficient and terminate more often (see the end of
Section 5.1). The procedure is called stab (standing for schemata tableaux).

We assume (w.l.o.g) that schemata are in negative normal form.

5.1 Inference Rules

Definition 5.1 (Tableau)
A tableau is a tree T s.t. each node N occurring in T is labeled by a set of schemata written
ΦT (N).

As usual a tableau is generated from another tableau by applying some extension rules.

Let r =
P

C1 . . . Cκ
be a rule where P denotes a set of schemata (the premises), and

C1, . . . , Cκ denote the conclusions. Let N be a leaf of a tree T . If a subset S of ΦT (N)
matches P then we can extend the tableau by adding κ children to N , each of them labeled
with Cισ ∪ (ΦT (N) \ S) where ι = 1, . . . , κ and σ is the matching substitution. A leaf N
is closed iff the set of arithmetic formulae (i.e. schemata containing only atoms of the form
. . . < . . . and no iteration) in ΦT (N) is unsatisfiable. This can be detected using decision
procedures for arithmetic without multiplication see, e.g., (Cooper, 1972).

Definition 5.2 (Extension rules)
The extension rules of stab are defined as follows.

• The usual rules of propositional tableaux:

(∧):
φ ∧ ψ

φ ψ
(∨):

φ ∨ ψ

φ ψ

• Rules proper to schemata (“iteration rules”)5:

(Iterated ∧):

∧b
i=a φ

b ≥ a
∧b−1
i=a φ ∧ φ[b/i]

b < a
(Iterated ∨):

∨b
i=a φ

b ≥ a
∨b−1
i=a φ ∨ φ[b/i]

• The closure rule adds the constraints needed for the branch not to be closed. The rule
is applied only if a 6= b does not already occur in the branch.

(Closure):

pa ¬pb

pa,¬pb, a 6= b

5. The right branch in the conclusion of the Iterated ∧ rule is required, e.g., to detect that
∧

n

i=1
⊥ is

satisfiable with n = 0.

28

stab without the loop detection rule described in the next section is already better than
the straightforward procedure introduced in the proof of Proposition 2.7. First, it termi-
nates in some cases where the schema is unsatisfiable (whereas the naive procedure never
terminates in such a case, unless the schema is just an unsatisfiable propositional formula).
This is trivially the case for any schema

∧n
i=1 φ with n ≥ 1, where φ is propositionally

unsatisfiable. Second, it can find a model much faster than the naive procedure. Consider,
e.g., (

∧10000
i=n p)∧(¬p∨φ) where φ is an unsatisfiable formula. In this case stab immediately

finds a model where n > 10000 and p is interpreted as F.

Remark 5.3
Using a tableaux-based system for deciding regular schemata may seem surprising, since
DPLL procedures (Davis, Logemann, & Loveland, 1962) are usually more efficient in propo-
sitional logic. However, extending such procedures to schemata is not straightforward. The
main problem is that evaluating an atom in a schema is not immediate, since this atom may
well appear in some realization of the schema without appearing in the schema itself. Thus,
in contrast to the propositional case, it is not sufficient to replace syntactically the atom
by its truth value. For instance, the atom p2 (implicitly) appears in the schema

∨n
i=1 pi if

n > 1. Thus evaluating p2 to, say, F would yield two distinct branches: (
∨n
i=1 pi) ∧ n ≤ 1

and (p1 ∨
∨n
i=3 pi)∧n > 1. Thus one would have to define rules operating at deep positions

in the schema in order to unfold the iterations and instantiate the counter variables when
needed. In contrast, the tableaux method operates only on formulae occurring at root level
and compares literals only after they have been instantiated (using unfolding). This makes
the procedure much easier to define and reason with (in particular the termination behavior
is easier to control). Actually a DPLL procedure for schemata is presented in (Aravanti-
nos, Caferra, & Peltier, 2009a, 2010), but it is much more complicated than the calculus
presented here.

Of course, one could combine the iteration rules of the tableaux procedure with a SAT-
solver used as a “black box” that could be in charge of the purely propositional part.
However this is also not straightforward, mainly due to the fact that a partial evaluation is
needed to propagate the values of the propositional variables into the iterations.

5.2 Discarding Infinite Derivations: the Looping Rule

stab does not terminate in general. The reason is that an iteration is, in general, infinitely
unfolded by the iteration rules. Assume for instance that φ is a propositional unsatisfiable
formula. Then starting from

∨n
i=1 φ one could derive an infinite sequence of formulae of the

form
∨n−1
i=1 φ, . . . ,

∨n−κ
i=1 φ, for every κ ∈ N. We now introduce a loop detection rule that

aims at improving the termination behavior of stab. Detecting looping is the most natural
way to avoid this divergence: if, while extending the tableau, we find a schema that has
already been seen, possibly up to a shift of arithmetic variables, then there is no need to
consider it again and we can stop the procedure. Such loopings can also be interpreted as
well-foundedness arguments in an inductive proof.

Definition 5.4 (Looping)
A shift is a substitution mapping every variable n to an expression of the form n− ι, where
ι ∈ N s.t. there is at least one variable n s.t. nσ < n (which is not always the case since we
may have ι = 0).

If I,J are two interpretations, we write I < J iff there exists a shift σ s.t. J = Iσ.

29

Aravantinos, Caferra & Peltier

Let φ, ψ be two schemata (or sets of schemata). We write φ |=s ψ iff for every model I
of φ, there exists J < I s.t. J |= ψ.

Let N,N ′ be two nodes of a tableau T . Then N ′ loops on N iff ΦT (N ′) |=s ΦT (N).

In existing work on cyclic proofs, N ′ is sometimes called a bud node and N is the
companion node of N ′ (Brotherston, 2005). When a leaf loops, it is treated as a closed
leaf (though it is not necessarily unsatisfiable). To distinguish this particular case of closed
leaf from the usual one, we say that it is blocked (blocked leaves are closed). Notice that
N and N ′ may be on different branches, thus looping may occur more often, allowing more
simplifications.

Example 5.5
Let Φ = {

∨n
i=1 pi} and Ψ = {

∨n
i=2 qi}. Intuitively, Φ and Ψ have the same “structure”:

stab will behave similarly on both formulae. The relation |=s is supposed to formalize
this notion. We show on this example that it is the case, as expected, i.e. that we have
Ψ |=s Φ. Indeed, consider a model I of Ψ. We construct an interpretation J as follows:

J (n)
def
= I(n) − 1 and for every κ ∈ [1,J (n)], J (pκ)

def
= I(qκ+1). Since I |= Ψ there exists

κ ∈ [2, I(n)] such that I(qκ) = T. Thus there exists κ ∈ [1, I(n)−1] such that I(qκ+1) = T,
i.e. there exists κ ∈ [1,J (n)] such that J (pκ) = T. Therefore J |= Φ.

Proposition 5.6
Let φ be a schema. If φ is satisfiable then φ has a model I that is minimal w.r.t. < (i.e.
for every interpretation J , if J < I then J 6|= φ).

Proof

Let V be the set of parameters of φ. Notice that V is finite. For every interpretation I we

denote by I(V) the integer: I(V)
def
= Σn∈V I(n). Since we assumed that I(n) ∈ N for every

variable n, we deduce that I(V) ≥ 0.

Let I be a model of φ such that I(V) is minimal. Since the truth value of φ does not
depend on the values of the variables that are not in V , we may assume that ∀n 6∈ V, I(n) =
0. Let J be a model of φ such that J < I. By definition there exists a shift σ such that
J = Iσ. For every arithmetic variable n, we have nσ = n− ιn, where ιn ∈ N; furthermore,
there exists at least one variable m such that ιm > 0. Thus J (n) = I(σ(n)) ≤ I(n) and
J (m) < I(m). Consequently we must have J (V) ≤ I(V), thus J (V) = I(V) (since I(V)
is minimal). By definition, this entails that ιn = 0 for every n ∈ V . Thus m 6∈ V , but in
this case I(m) = 0 hence J (m) < 0 which is impossible (since we assume that parameters
are interpreted by natural numbers). �

To apply the looping rule in practice one has to find a shift and check that the implication
holds. Unfortunately, the relation |=s is obviously undecidable (for instance if ψ = ⊥, then
it can be easily checked that φ |=s ψ iff φ is unsatisfiable, and as we shall see in Section 6 the
satisfiability problem is undecidable for propositional schemata). Thus, in the following, we
shall use a much stronger criterion that is sufficient for our purpose. An obvious solution
would be to use set inclusion: indeed, φ |=s ψ if there exists a shift σ s.t. φ ⊇ ψσ. However,
this criterion is too strong, as the following example shows.

30

Example 5.7
The schema φ = pn ∧ (pn ⇒ qn) ∧ ¬q0 ∧

∧n
i=1(qi ⇒ qi−1) is obviously unsatisfiable. The

reader can easily check that stab generates an infinite sequence of sets of schemata of the
form:

{pn, qn,¬q0, qn−1, . . . , qn−κ,

n−κ
∧

i=1

(qi ⇒ qi−1)}, where κ ∈ N

None of these sets contains a previous one up to a shift on n because of the indexed
proposition pn that must occur in every set.

Thus we introduce a refinement of set inclusion based on the purity principle. The pure
literal rule is standard in propositional theorem proving. It consists in evaluating a literal
L to ⊤ in a formula φ (in nnf) if the complement of L does not occur in φ. Such a literal
is called pure. It is well-known that this operation preserves satisfiability and may allow
many simplifications.

We show how to extend the pure literal rule to schemata. The conditions on L have
to be strengthened in order to take iterations into account. For instance, if L = pn and φ
contains

∨2n
i=1 ¬pi then L is not pure in φ, since ¬pi is the complement of L for i = n (and

since 1 ≤ n ≤ 2n). On the other hand p2n+1 may be pure in φ (since 2n+ 1 6∈ [1, 2n]).
For every set of schemata Φ we denote by ΦN the conjunction of purely arithmetic

formulae in Φ: ΦN
def
=

∧

φ∈Φ,φ is arithmetic φ
6

Definition 5.8 (Pure literal)
A literal pa (respectively ¬pa) is pure in a set of schemata Φ iff for every occurrence of a
literal ¬pb (respectively pb) in Φ, the arithmetic formula ΦN ∧IC (Φ)∧a = b is unsatisfiable7.

Definition 5.9
Let Φ,Ψ be two sets of schemata. We write Φ ⊇s Ψ iff there exists a shift σ for the set of
parameters in Φ and Ψ s.t. for every ψ ∈ Ψ:

• Either ψ is an arithmetic formula and ΦN |= ψσ.

• Or ψ is a pure literal in Ψ.

• Or ψσ ∈ Φ.

The first and third items correspond roughly to set inclusion (up to arithmetic proper-
ties). The second item only deals with Ψ and not with Φ. It corresponds to the informal
idea that a pure literal can be removed. Of course it is the most important one.

Example 5.10
Let Ψ = {n ≥ 0, pn+1, pn,

∧n
i=1(¬pi ∨ pi−1),¬p0} and Φ = {n ≥ 1, pn−1,

∧n−1
i=1 (¬pi ∨

pi−1),¬p0}. We have Φ ⊇s Ψ. Indeed, consider the shift σ = {n 7→ n − 1}. By defini-
tion ΦN = {n ≥ 1}. We have (n ≥ 0)σ = n − 1 ≥ 0 ≡ n ≥ 1, thus ΦN |= (n ≥ 0)σ. Since
n ≥ 0 and i ∈ [1, n], pi cannot be identical to pn+1, thus pn+1 is pure in Ψ. Finally, we have
pnσ = pn−1 ∈ Φ and

∧n
i=1(¬pi ∨ pi−1)σ =

∧n−1
i=1 (¬pi ∨ pi−1) ∈ Φ.

6. A possible improvement would be to add in ΦN formulae that are obvious logical consequences of Φ.
For instance, if Φ = {pn ∧ (n > 1),¬p1} then ΦN would contain n > 1. This would make the notion of
‘pure literal’ slightly more general, e.g., pn would be pure in Φ, which is not the case with our current
definition.

7. See page 8 for the definition of IC (Φ).

31

Aravantinos, Caferra & Peltier

We now show that ⊇s is decidable. First of all, it is trivial that syntactic equality is
decidable as shown by the following definition and proposition:

Definition 5.11
Let U(φ, ψ) be the arithmetic formula defined as follows:

• If φ = pa and ψ = pb then U(φ, ψ)
def
= (a = b).

• If φ = (a ⊳ b) and ψ = (c ⊳ d) then U(φ, ψ)
def
= (a = c) ∧ (b = d).

• If φ = ¬φ′ and ψ = ¬ψ′ then U(φ, ψ) = U(φ′, ψ′).

• If φ = (φ1πφ2) and ψ = (ψ1πψ2) then U(φ, ψ) = U(φ1, ψ1) ∧ U(φ2, ψ2).

• If φ = Πb
i=aφ

′ and ψ = Πd
i=cψ

′ then U(φ, ψ)
def
= (a = c) ∧ (b = d) ∧ U(φ′, ψ′).

• Otherwise U(φ, ψ)
def
= ⊥.

Proposition 5.12
Let φ, ψ be two schemata. For every substitution σ, U(φ, ψ)σ holds iff φσ and ψσ are
syntactically identical.

Proof

By a straightforward induction on the formulae. �

We can prove the decidability of ⊇s:

Proposition 5.13
⊇s is decidable.

Proof

Since linear arithmetic is decidable, it is possible to check whether a literal is pure or not
in a set of formulae Ψ. Then these pure literals can be simply removed from Ψ (since they
satisfy the second condition in Definition 5.9). One now has to find a shift σ such that every
remaining formula in Ψ satisfies the first or third condition. Let n1, . . . , nκ be the variables
in Φ,Ψ. Let σ be a substitution mapping every parameter nι (1 ≤ ι ≤ κ) to nι − lι, where
the lι are distinct variables not occurring in Φ,Ψ. One has to check that there exists a
substitution θ mapping every variable lι to an integer such that:

• ∀ι ∈ [1, κ], θ(lι) ≥ 0 and ∃ι ∈ [1, κ], θ(lι) > 0. Since κ is fixed, this condition can be
stated as an arithmetic formula.

• For every formula ψ ∈ Ψ, one of the following conditions hold:

– ψ is an arithmetic formula and ΦN |= ψσθ, i.e. the formula ∀n1, . . . , nκ.ΦN ⇒
ψσθ is true.

– ψσθ occurs in Φ. This holds iff Φ contains a formula φ, such that ψσθ and
φ are identical for every value of the parameters, i.e., by Proposition 5.12, iff
∀n1, . . . , nk.U(φ, ψσθ) holds.

32

Since every condition above is equivalent to an arithmetic formula, the whole condition can
be expressed as an arithmetic formula (taking the conjunction of the formulae corresponding
to each ψ ∈ Ψ). This formula is satisfiable iff there exists a substitution θ satisfying the
desired property. Then the proof follows straightforwardly from the decidability of linear
arithmetic. �

Now we prove that ⊇s is stronger than the relation |=s.

Proposition 5.14
Let Φ,Ψ be two sets of schemata. If Φ ⊇s Ψ then Φ |=s Ψ.

Proof

Let σ be the shift satisfying the conditions of Definition 5.9. Let I be an interpretation
satisfying Φ. Let θ = σI . We have to show that there exists J < I s.t. J |= ψ, i.e. that
there exists a shift σ s.t. J = Iσ and J |= ψ. Equivalently, we can show that there exists a
model J of ψσ. Let J be an interpretation s.t. J (L) = T if L is a literal that is pure in Ψσ

and J (L)
def
= I(L) otherwise. Let ψ ∈ Ψ. We have to show that J |= ψσ. We distinguish

three cases, according to the three items in Definition 5.9.

• If ΦN |= ψσ, then since I |= Φ and since J and I coincide on every arithmetic
variable we must have J |= ψσ.

• If ψ is a literal pure in Ψ then ψσ is pure in Ψσ, thus we have J |= ψσ by definition.

• If ψσ ∈ Φ, then I |= ψσ. Thus every literal that is pure in Φ must be pure in ψσ.
The complementary of these literals cannot occur in [ψσ]θ. Since I and J coincide
on all other literals and since ψ is in negative normal form, we must have J |= ψσ.

Consequently J |= ψσ, hence J σ |= ψ. �

⊇s is strictly less general than |=s as evidenced by the following:

Example 5.15
Let Φ = {

∨n
i=1 pi} and Ψ = {

∨n
i=2 pi}. We have shown that Ψ |=s Φ (see Example 5.5).

However, we have Ψ 6⊇s Φ, since there is no shift σ such that (
∨n
i=1 pi)σ =

∨n
i=2 pi (this is

obvious since 1σ cannot be equal to 2 whatever is σ).

5.3 Examples

Before proving the soundness, completeness and termination of stab, we provide some
examples of tableaux.

5.3.1 A Simple Example

Let φ be the following formula: (n ≥ 0) ∧ p0 ∧
∧n
i=1(¬pi−1 ∨ pi) ∧ ¬pn.

We construct a tableau for φ. First the ∧-rule applies to transform the conjunction into
a set of schemata. The closure rule applies on pn and p0, yielding the constraint n 6= 0.
Then the iteration rule applies on the schema

∧n
i=1(¬pi−1 ∨pi), yielding two branches. The

first one corresponds to the case in which the iteration is non empty and can be unfolded,

33

Aravantinos, Caferra & Peltier

(1)

(n ≥ 0) ∧ p0 ∧
∧

n

i=1(¬pi−1 ∨ pi) ∧ ¬pn

n ≥ 0, p0,
∧

n

i=1(¬pi−1 ∧ pi),¬pn

n 6= 0

n ≥ 1
∧

n−1
i=1

(¬pi−1 ∨ pi)

¬pn−1 ∨ pn

¬pn−1

	(1)

pn

n 6= n

×

n < 1

×

Figure 2: A Simple Example of Closed Tableau

yielding
∧n−1
i=1 (¬pi−1∨pi) and ¬pn−1∨pn and the second one corresponds to the case where

the iteration is empty (hence true), yielding the constraint n < 1. The latter branch can
be closed immediately due to the constraints n ≥ 0 and n 6= 0. In the former branch,
the ∨-rule applies on the formula ¬pn−1 ∨ pn, yielding two branches with ¬pn−1 and pn
respectively. The closure rule applies on the latter one, yielding the unsatisfiable constraint
n 6= n hence the branch can be closed. The last remaining branch loops on the initial one,
with the shift n 7→ n−1. The obtained tableau is depicted in Figure 2. Closed leaves (resp.
blocked leaves looping on α) are marked by × (resp. 	(α)). Only new (w.r.t. the previous
block) formulae are presented in the blocks.

5.3.2 n-bits Adder

In this section we provide a slightly more complicated example. We use stab to prove a
simple property of the n-bit Adder defined in the Introduction. We aim at proving that
A + 0 = A. A SAT-solver can easily refute this formula for a fixed n (say n = 10). We
prove it for all n ∈ N. This simple example has been chosen for the sake of readability and
conciseness, notice that commutativity or associativity of the n-bits adder could be proven
too (see Section 5.7).

We express the fact that the second operand is null:
∧n
i=1 ¬qi, and the fact that the

result equals the first operand:
∧n
i=1(pi ⇔ ri), which gives

∨n
i=1(pi ⊕ ri) by refutation. So

we want to prove that Adder ∧
∧n
i=1 ¬qi ∧

∨n
i=1(pi ⊕ ri) is unsatisfiable. Notice that this

schema is regular.

The corresponding tableau is sketched in Figure 3. Sequences of propositional extension
rules are not detailed.

Explanations. The first big step decomposes all the iterations. The branching is due
to

∨n
i=1 pi ⊕ ri: first we have pn ⊕ rn, then

∨n−1
i=1 pi ⊕ ri. The right branch loops after a

34

(1)

n ≥ 1
∧

n

i=1 Sumi

∨

n

i=1 pi ⊕ ri

¬c1
∧

n

i=1 Carry
i

∧

n

i=1 ¬qi

n ≥ 1 ¬c1
∧

n−1
i=1

Sumi Sumn

pn ⊕ rn
∧

n−1
i=1

Carry
i

Carry
n

∧

n−1
i=1

¬qi ¬qn

¬rn cn pn ¬qn

(2)

rn cn ¬pn ¬qn

(2’)

n ≥ 1 ¬c1
∧

n−1
i=1

Sumi Sumn

∨

n−1
i=1

pi ⊕ ri
∧

n−1
i=1

Carry
i

Carry
n

∧

n−1
i=1

¬qi ¬qn

	 (1)

(2)

n− 1 ≥ 1
∧

n−2
i=1

Carry
i

Carry
n−1

n ≥ 2

(pn−1 ∧ qn−1) ∨ (cn−1 ∧ pn−1) ∨ (cn−1 ∧ qn−1)

pn−1 ∧ qn−1

×

cn−1 ∧ pn−1

cn−1 pn−1 ¬rn−1

	 (2)

cn−1 ∧ qn−1

×

n ≥ 1 n− 1 < 1

cn ¬c1

×

(2′) is very similar to (2).

Figure 3: A Closed Tableau for A+ 0 = A

35

Aravantinos, Caferra & Peltier

few steps as all iterated conjunctions
∧n
i=1 . . . contain

∧n−1
i=1 . . . The left one is extended by

propositional rules (the reader can easily check that Sumn, Carryn, pn⊕ rn and ¬qn indeed
lead to the presented branches).

In (2) we start by decomposing all iterations a second time. Iterations are aligned on
[1, n − 1] so they all introduce the same constraints i.e. either n − 1 ≥ 1 (first branch)
or n − 1 < 1 (second branch). In the second case, the introduced constraint implies that
n = 1, thus Cn = C1 which closes the branch. In the first case we decompose Carryn−1 and
consider the various cases. Two of them are trivially discarded as they imply qn−1, whereas
we easily obtain ¬qn−1 by an unfolding of

∧n
i=1 qi. It only remains one case which is easily

seen to loop on (2).

5.4 Soundness and Completeness

A leaf is irreducible if no extension rule applies to it. A derivation is a (possibly infinite)
sequence of tableaux (Tι)ι∈I s.t. I is either [0, κ] for some κ ≥ 0, or N and s.t. for all
ι ∈ I \ {0}, Tι is obtained from Tι−1 by applying one of the extension rules. A derivation is
fair if either there is ι ∈ I s.t. Tι contains an irreducible not closed leaf or if for all ι ∈ I
and every not closed and not blocked leaf N in Tι there is λ ≥ ι s.t. a rule is applied on N
in Tλ (i.e. no leaf can be “freezed”).

Definition 5.16 (Tableau Semantics)
For every node N in a tableau T , ΦT (N) is interpreted as the conjunction of its elements.
T is satisfied in an interpretation I iff there exists a leaf N in T s.t. I |= ΦT (N).

Lemma 5.17
If T ′ is a tableau obtained by applying one of the extension rules on a leaf N of a tableau
T then I |= ΦT (N) iff there exists a leaf N ′ of T ′ s.t. N ′ is a child of N in T ′ and
I |= ΦT ′(N ′) (i.e. the rules are sound and invertible).

Proof

Obvious, by inspection of the extension rules. �

Lemma 5.18
If a leaf N in T is irreducible and not closed then T is satisfiable.

Proof

Let Ψ be the set of arithmetic formulae in ΦT (N) and Φ
def
= ΦT (N) \Ψ. As N is not closed

Ψ is satisfiable (by definition), so let σ be a solution of Ψ. If Φ contains a formula φ that
is not a literal, one of the extension rules applies and deletes φ, which is impossible. Let
cT (N) be the number of pairs pa, ¬pb ∈ ΦT (N) s.t. there is an interpretation I validating
Ψ s.t. JaKI = JbKI . If cT (N) 6= 0, then the closure rule applies on pa, pb which is impossible.
Hence cT (N) = 0 and in particular this implies that Φσ is propositionally satisfiable (i.e.
contains no pair of complementary literals). Thus ΦT (N)σ is satisfiable and by definition
T is satisfiable. �

Theorem 5.19 (Soundness and Completeness w.r.t. Satisfiability)
Let (Tκ)κ∈I be a derivation.

• If there exists ι ∈ I s.t. Tι contains an irreducible, not closed leaf then T0 is satisfiable.

36

• If the derivation is fair and if T0 is satisfiable then there exist ι ∈ I and a leaf in Tι
that is irreducible and neither closed nor blocked.

Proof

The first item (i.e. soundness) follows from Lemmata 5.17 and 5.18.
We now prove that the procedure is complete w.r.t. satisfiability (the second item). Let

I be an interpretation and φ a schema. We define mI(φ) as follows:

• mI(φ)
def
= 0 if φ is an arithmetic atom (i.e. an atom of the form . . . < . . .).

• mI(φ)
def
= 1 if φ is an indexed proposition or its negation, or φ is ⊤ or ⊥.

• mI(φ1 ⋆ φ2)
def
= mI(φ1) +mI(φ2) if ⋆ ∈ {∨,∧}.

• mI(Πb
i=aφ)

def
= 2 if JbKI < JaKI

• mI(Πb
i=aφ)

def
= β − α+ 2 + Σβ

ι=αmI[ι/ı](φ) where Π ∈ {
∧

,
∨

}, α = JaKI , β = JbKI , and
β ≥ α.

If Φ is a set, then mI(Φ)
def
= {mI(φ) | φ ∈ Φ}. If T is a tableau and N is a leaf in T then

mI(N, T)
def
= (mI(ΦT (N)), cT (N)) where cT (N) is defined in the proof of Lemma 5.18. This

measure is ordered using the multiset and lexicographic extensions of the usual ordering on
natural numbers. Thus, it is obviously well-founded. We need the following:

Lemma 5.20
Let I be an interpretation. Let T be a tableau. If T ′ is deduced from T by applying
an extension rule on a leaf N s.t. I |= ΦT (N), then for every child N ′ of N in T ′ s.t.
I |= ΦT ′(N ′), we have mI(N ′, T ′) < mI(N, T).

Proof

All the rules except the iteration rule and the closure rule replace a formula by simpler ones,
hence it is easy to see that mI(ΦT (N)) decreases. The iteration rules replace an iteration of
length ι either by ⊤ or by a disjunction/conjunction of an iterated disjunction/conjunction
of length ι− 1, and a smaller formula. Since ι > ι− 1, mI(ΦT (N)) decreases. The closure
rule does not affect mI(ΦT (N)) but obviously decreases cT (N). �

Let I be a model of T0. By Proposition 5.6, we can assume that I is minimal w.r.t the
ordering < introduced in Definition 5.4.

By Lemma 5.17, for all ι ∈ I, Tι contains a leaf Nι s.t. I |= ΦTι
(Nι). Let κ ∈ I s.t.

mI(Nκ, Tκ) is minimal (κ exists since mI(Ni, Ti) is well-founded). Assume a rule is applied
on Nκ in the derivation, on some tableau Tλ. By Lemma 5.17 there is a child N ′ of Nκ

s.t. I |= ΦTλ
(N ′). By Lemma 5.20 we have mI(N ′, Tλ) < mI(Nk, Tκ) which is impossible.

Thus no rule is applied on Nκ. Assume that Nκ is blocked. Then there exists a node N ′

s.t. Nκ loops on N ′. By Definition 5.4 there exists an interpretation J s.t. J |= N ′ and
J <V I. But then by Lemma 5.17 (“only if” implication), J |= T0, which contradicts the
minimality of I. Since the derivation is fair, Nκ is irreducible (or there is another leaf that
is irreducible). Furthermore, Nκ cannot be closed since it is satisfiable (I |= ΦTκ

(Nκ)).

It is worth emphasizing that stab is sound and complete (w.r.t. satisfiability) for any
schema, not only for bound-linear or regular ones. But the termination result in the next
section only holds for regular schemata.

37

Aravantinos, Caferra & Peltier

5.5 Termination on Regular Schemata

We consider the following strategy ST for applying the extension rules:

• The propositional extension rules, the looping and closure rules are applied as soon
as possible on all leaves, with the highest priority. These rules obviously terminate on
any schema.

• The iteration rules are applied only on iterations of maximal length (w.r.t. the nat-
ural partial ordering on arithmetic expressions). For instance if we have the schema
∧n
i=1 pi∨

∨n−1
j=1 qj then the iteration rules will only apply on the first iteration

∧n
i=1 pi.

• The relation ⊇s introduced in Section 5.2 is used to block looping nodes.

Theorem 5.21
ST terminates on every regular schema.

Proof

Let α, β, γ, δ ∈ Z and φ be a regular schema aligned on [α, n−β], of propagation limits γ, δ.
Assume that an infinite branch is constructed. By definition of the strategy, after some
time, the κ last ranks of every iteration have been unfolded by the iteration rules. Thus all
the remaining iterations are of the form Πn−β−κ

i=α φ′ and we have the arithmetic constraint
n− β − κ− α+ 1 ≥ 0, i.e. n ≥ β + κ+ α− 1.

From now on, we only consider nodes that are irreducible w.r.t. propositional rules.
We show that a finite set of formulae are generated by stab, up to a shift on n. As a
consequence the looping rule must apply, at worst when all possible formulae have been
generated.

The arithmetic formulae occurring in the initial formula must be of the form µ.n > ν
or µ.n < ν. After the last κ ranks have been unfolded, the constraint n ≥ β + κ + α − 1
must have been added. Thus if κ is sufficiently big, µ.n > ν is equivalent to ⊤ and µ.n < ν
is equivalent to ⊥. Thus every arithmetic formula occurring in the initial formula is either
false or redundant w.r.t. n ≥ β + κ + α − 1. The remaining arithmetic formulae must
have been introduced by the closure rule (since the iterations contain no occurrence of <).
They are necessarily of the form a 6= b where a, b are arithmetic expressions (appearing
as indices in some formula of the derivation). If a, b both contain n, or if a, b ∈ Z then
a 6= b is equivalent either to ⊥ or to ⊤. Thus we only consider the case in which a contains
n and b ∈ Z. If a occurs in the initial formula then it must be of the form µ.n + ν for
µ, ν ∈ Z. Since n ≥ β + κ + α − 1, if κ is sufficiently big, the disequation µ.n + ν 6= b
must be false. If a did not occur in the initial formula then it must come from the (κ− ι)th

unfolding of some iteration, for some ι ∈ [0, κ−1]. Since (by definition of a regular schema)
the indices are of the form i + λ, where λ ∈ [γ, δ], the disequation is actually of the form
n − β − κ + ι + λ 6= b, where λ ∈ [γ, δ], ι ∈ [0, κ − 1] (since the iteration counter i may be
replaced by n− β, n− β − 1, . . . , n− β − κ+ 1) and b occurs in the initial formula. If the
previous equation is not equivalent to ⊤, then, since we have the constraint n ≥ β+κ+α−1,
we must have ι ∈ [0, b− α+ 1− λ]. Hence there are finitely many such formulae, up to the
translation n 7→ n− κ.

Now, consider the non arithmetic formulae occurring in the branch. These schemata
must be either iterations or literals (by irreducibility w.r.t. the propositional extension
rules).

38

All the iterations are of the form Πn−β−κ
i=α φ′, where Πn−β

i=α φ
′ is an iteration occurring in

the initial formula. Obviously, the number of such iterations is finite up to the translation
n 7→ n− κ.

The literals occurring in the branch (but not in the scope of an iteration) are either
literals of the initial schema or literals introduced by previous applications of the iteration
rules. The former are indexed by expressions of the form µ× n+ ν for some µ, ν ∈ Z and
the latter by n− β − κ+ ǫ, where ǫ ∈ [γ + 1, δ + κ].

If a literal is indexed by an expression µ×n+ν that is outside [α+γ, n−β−κ+δ], then
it must be pure in every iteration, hence (by irreducibility w.r.t. the closure rule) must be
pure in the node. Actually, if κ is large enough then, by the above arithmetic constraints,
µ × n + ν cannot be in [α + γ, n − β − κ + δ] if µ 6= 0. Indeed, if µ is negative, then it
suffices to take κ > α+γ−ν

µ −β−α+ 1 to ensure µ×n+ ν < α+ γ, otherwise κ ≥ δ−β− ν

is enough to have µ × n + ν > n − β − κ + δ (as µ, n ≥ 1). Thus every literal indexed by
integer terms of this form are pure.

Similarly literals indexed by expressions of the form n− β− κ+ ǫ where ǫ > δ are pure,
thus we may assume that ǫ ∈ [γ, δ]. Consequently there are finitely many such literals up
to the shift n 7→ n− κ.

This implies that the number of possible schemata obtained after κ unfolding steps is
finite, up to a translation of n. By the pigeonhole principle, the looping rule necessarily
applies at some point in the branch, which contradicts our initial assumption that an infinite
branch is constructed. �

Termination of the strategy also ensures fairness:

Lemma 5.22
Any derivation constructed by ST (applied until irreducibility) is fair.

Proof

Let (Tι)ι∈I be a derivation constructed by ST. Since ST terminates, there cannot be any
infinite derivation, thus I is necessarily of the form [0, κ] for some κ ∈ N. By definition,
every node in Tκ is either blocked or closed or irreducible (the strategy is applied until
irreducibility). If Tκ contains a not closed irreducible leaf then the proof is completed (by
definition of the notion of fairness). Otherwise, consider Tι with ι ≤ κ. Let then N be a not
irreducible, not closed and not blocked leaf occurring in Tι. Assume that there is no λ ≥ ι
s.t. a rule is applied on N in Tλ (which would contradict our definition of fairness). This
means that no extension can possibly affect N , thus N must also occur in the final tableau
Tκ (and is labeled by the same set of schemata than in Tι). Thus N must be not closed and
not irreducible. Moreover it cannot be blocked in Tκ, since no rule can affect the nodes on
the branch behind N . But this is impossible since the nodes in Tκ must be either blocked
or closed or irreducible. �

As an immediate corollary, we have the following:

Theorem 5.23
The satisfiability problem is decidable for bound-linear schemata.

Proof

By Theorems 4.12 and 4.13, every bound-linear schema can be transformed into a sat-
equivalent regular one. Theorem 5.21 shows that stab terminates of every regular schema,

39

Aravantinos, Caferra & Peltier

hence by Theorem 5.19 and Lemma 5.22, stab can be used to decide the satisfiability
problem for regular schemata. �

A fine analysis of the previous termination proof ensures that we can solve the satis-
fiability problem for regular schemata in exponential time. As we have seen furthermore
(Theorem 4.9) that the translation of bound-linear schemata into regular ones was expo-
nential, we can conclude that the satisfiability problem for bound-linear schemata can be
solved in double exponential time.

5.6 Model Building

The existence of a non closed, irreducible, branch ensures that the root schema is satisfiable,
as shown in Theorem 4.12. The arithmetic constraints in the branch specify the possible
values of the parameter. The remaining formulae must be literals, since the extension rules
apply on any complex formula (in particular, there can be no iteration schema). These
literals specify the truth value of propositional variables exactly as in the usual case of
propositional logic (the value of the propositional variables that do not appear in the branch
may be chosen arbitrarily). Since the branch is not closed, it cannot contain any pair of
complementary literals.

We illustrate this construction by a simple example. We consider the following tableau:

pn,¬q2,¬r1,
∨

n

i=1(¬pi ∧ qi ∧ ri)

n ≥ 1,
∨

n−1
i=1

(¬pi ∧ qi ∧ ri)

n ≥ 1,
∨

n−2
i=1

¬pi ∧ qi ∧ ri

. . .

n− 1 ≥ 1,¬pn−1 ∧ qn−1 ∧ rn−1

¬pn−1, qn−1, rn−1

n− 1 6= n, n− 1 6= 2, n− 1 6= 1

(1)

n ≥ 1,¬pn ∧ qn ∧ rn

¬pn, qn, rn

n 6= n

×

The branch (1) is irreducible. It contains the following formulae: pn, ¬q2, ¬r1, n−1 ≥ 1,
¬pn−1, qn−1, rn−1, n− 1 6= n, n− 1 6= 2, n− 1 6= 1. The value of n can be determined by
finding a solution to the above arithmetic constraints. We choose for instance the solution
n = 4. After instantiation we get the remaining formulae: {p4,¬q2,¬r1,¬p3, q3, r3}, which
gives for instance the following interpretation of p, q and r: pκ is true iff κ = 4 and qκ, rκ
are true iff κ = 3. It is easy to check that the obtained interpretation satisfies the initial
schema.

A possible extension of this simple algorithm would be, from a given tableau, to compute
a symbolic representation of the whole set of models of the root schema. This set is infinite
and must be defined by induction. The closed irreducible branches correspond to concrete
models, or base cases, whereas the loops correspond to inductive construction rules. These

40

rules take a model I and construct a new model J of a strictly greater cardinality (the
values of the parameters increase strictly). This would require to define a formal language
for denoting sets of interpretations (one could use, e.g., automata recognizing sequences of
tuples of boolean values).

5.7 The System

The decision procedure has been implemented and the program (called RegStab) is freely
available on the web page http://regstab.forge.ocamlcore.org/. It is written in OCaml
and was successfully tested on MacOSX (10.5), Win32 (Windows XP SP3) and GNU Linux
(Ubuntu 9.04) x86 platforms. The system comes with a manual including installation and
usage instructions and a description of the input syntax. Functions can be defined to make
the input file more readable (see Sum(i) and Carry(i) below). Here is an input file for the
adder example in Section 5.3.2.

// A+0=A

let Sum(i) := S_i <-> (A_i (+) B_i (+) C_i) in

let Carry(i) := C_i+1 <-> (A_i /\ B_i \/ C_i /\ A_i \/ C_i /\ B_i) in

let Adder := /\i=1..n (Sum(i) /\ Carry(i)) /\ ~C_1 in

let NullB := /\i=1..n ~B_i in

let Conclusion := \/i=1..n (A_i (+) S_i) in

Adder() /\ NullB() /\ Conclusion()

The software simply prints the status of the schema (satisfiable or unsatisfiable). Options
are provided to get more information about the search space (number of inference rules,
depth of unfolding etc.), see the manual for details. An additional tool is offered to expand
the schema into a propositional formula in DIMACS format (by fixing the value of n).

Figure 4 gives some examples of problems that can be solved by RegStab and the
corresponding running times (please refer to the distribution for input files and additional
information).

Here is an example of output, proving that 0 is a neutral element for the carry-propagate
adder. We run the system in verbose mode, in which it prints some useful information about
the search: number of application of extension rules, number of closed and looping leaves,
unfolding depth and set of lemmata (companion nodes).

Conjecture:

(((/\i=1..n ((S_i <-> ((A_i (+) B_i) (+) C_i)) /\

(C_i+1 <-> (((A_i /\ B_i) \/ (C_i /\ A_i))

\/ (C_i /\ B_i))))) /\ ~C_1) /\ (/\i=1..n ~B_i)) /\

(\/i=1..n (A_i (+) S_i))

Applications of tableau rules:

/\: 67

\/: 84

(+): 38

41

Aravantinos, Caferra & Peltier

Ripple-carry adder

x+ 0 = x 0.002s
commutativity 0.016s
associativity 2.219s
3 + 4 = 7 0.197s

Carry-propagate adder

x+ 0 = x 0.002s
commutativity 0.008s
associativity 0.375s
equivalence between two different definitions of the same adder 0.008s
equivalence with the ripple-carry adder 0.011s

Comparisons between bit-vectors

x ≥ 0 0.001s
symmetry of ≤ (i.e. x ≤ ∧x ≥ y ⇒ x = y) 0.001s
totality of ≤ (i.e. x > y ∨ x ≤ y) 0.001s
transitivity of ≤ 0.001s
1 ≤ 2 0.002s

Presburger arithmetic with bit vectors

x+ y ≥ x 0.002s
x1 ≤ x2 ≤ x3 ⇒ x1 + y ≤ x2 + y ≤ x3 + y 3.651s
x1 ≤ x2 ∧ y1 ≤ y2) ⇒ x1 + y1 ≤ x2 + y2 0.057s
x1 ≤ x2 ≤ x3 ∧ y1 ≤ y2 ≤ y3 ⇒ x1 + y1 ≤ x2 + y2 ≤ x3 + y3 > 20min
1 ≤ x+ y ≤ 5 ∧ x ≥ 3 ∧ y ≥ 4 12.733s
same but with iterations factorized 8.696s

Other

automata inclusion 0.020s
∨n
i=1 pi ∧

∧n
i=1 ¬pi 0.001s

p1 ∧
∧n
i=1(pi ⇒ pi + 1) ∧ ¬pn+1 0.001s

Figure 4: Some Experimental Results

42

<->: 32

->: 0

Iterated /\: 12

Iterated \/: 3

Total propositional rules: 221

Total iterated rules: 15

Number of closed leaves: 137

Number of looping leaves: 30

Number of lemmas: 4

Maximum number of unfoldings: 3

(if this number is surprising, notice that the tableau is

constructed depth-first)

Lemmas:

[\/i=1..n (A_i (+) S_i) ; /\i=1..n ((S_i <-> ((A_i (+) B_i) (+) C_i))

/\ (C_i+1 <-> (((A_i /\ B_i) \/ (C_i /\ A_i)) \/ (C_i /\ B_i)))) ;

/\i=1..n ~B_i ; ~C_1]

[\/i=1..n-1 (A_i (+) S_i) ; /\i=1..n-1 ((S_i <-> ((A_i (+) B_i) (+) C_i))

/\ (C_i+1 <-> (((A_i /\ B_i) \/ (C_i /\ A_i)) \/ (C_i /\ B_i)))) ;

/\i=1..n-1 ~B_i ; ~C_n ; ~C_1] (n > 0)

[/\i=1..n-2 ((S_i <-> ((A_i (+) B_i) (+) C_i)) /\ (C_i+1 <-> (((A_i /\ B_i)

\/ (C_i /\ A_i)) \/ (C_i /\ B_i)))) ;

/\i=1..n-2 ~B_i ; C_n-1 ; ~C_1] (n > 1)

[\/i=1..n-2 (A_i (+) S_i) ; /\i=1..n-2 ((S_i <-> ((A_i (+) B_i) (+) C_i))

/\ (C_i+1 <-> (((A_i /\ B_i) \/ (C_i /\ A_i)) \/ (C_i /\ B_i)))) ;

/\i=1..n-2 ~B_i ; C_n-1 ; ~C_1] (n > 1)

UNSATISFIABLE

6. Undecidability Results

We provide some undecidability results for two natural extensions of the class of regular
schemata.

6.1 Homothetic Transformations on the Iteration Counters

We consider the class of schemata Ch defined as follows.

Definition 6.1
Ch (h stands for “homothetic”) is the set of schemata φ satisfying the following properties:

• φ contains at most one parameter n.

• Every iteration in φ is of the form
∧n
i=1 φ or

∨n
i=1 φ, where:

43

Aravantinos, Caferra & Peltier

– φ contains no iteration.

– Every atomic formula in φ belongs to {pi, p2i, pi±1, p2i±1} where p is a variable.

• The atomic formulae occurring in φ but not in the scope of an iteration are of the
form p0 or pn where p is a variable8.

Ch is rather simple and very close to the class of regular schemata. There is only one
parameter n, all the iterations have the same bounds 1 and n, there is no nested iteration
and the indices of the symbol in P must be affine images of the iteration counter. The only
difference with the regular class is that, in Ch the coefficient of the iteration counter in the
indexed variables may be equal to 2 whereas it must be equal to 0 or 1 in regular schemata.
Thus regular schemata only contain translations of the iteration counter, whereas Ch may
involve (very simple) homothetic transformations.

Due to this closeness, one could expect that the satisfiability problem is decidable for
Ch, but the next theorem shows that this is not the case.

Theorem 6.2
The set of unsatisfiable formulae in Ch is not recursively enumerable.

The proof of Theorem 6.2 is difficult and the remaining part of this section is devoted
to it. More precisely, we shall prove that the Post correspondence problem can be encoded
into Ch. Notice that this problem is easily encoded with general schemata (Aravantinos
et al., 2009b), whereas, here, the whole difficulty of the proof lies in the strong restrictions
imposed by Ch. Observe that the difficult proof is really worth it as one would easily believe
that just allowing multiplication by a constant is an unsignificant change.

Notation

We first recall some basic definitions and introduce some useful notations. Let A be an
alphabet. Let κ be a natural number. Let a = (a1, . . . , aκ) and b = (b1, . . . , bκ) be two
sequences of words in A∗. If w ∈ {a, b} and ι ∈ [1, κ], |wι| denotes the length of wι and wλι
denotes the λ-th character of the word wι (1 ≤ λ ≤ |wι|).

If ∆ = (∆1, . . . ,∆ι) is a sequence of indices in [1, κ] and if w = (w1, . . . , wκ) is a κ-tuple
of words in A∗ (where w ∈ {a, b}) we denote by w∆ the word w∆1

. · · · .w∆ι
(where “.”

denotes the concatenation operator). A solution of the Post correspondence problem is a
sequence ∆ s.t. a∆ = b∆. The witness of this solution is the word a∆.

For technical convenience, we assume (this is obviously not restrictive) that κ > 1,
∆ι = κ, ∆λ 6= κ if λ < ι and that aκ = bκ = ⊥ where ⊥ is a special character (not occurring
in a1, . . . , aι−1, b1, . . . , bι−1) denoting the end of the sequence.

Overview of the encoding

The intuition behind the encoding is the following. We show how to encode any instance
of the problem into a schema φ so that φ is satisfiable iff this instance has a solution. More
precisely we construct φ of parameter n s.t. for all κ ∈ N , φ[κ/n] is satisfiable iff there is a
solution of length κ.

8. Notice that p0 and pn can occur in the scope of a negation.

44

We first present the encoding used to represent the potential solutions a∆ and b∆; then
we will see how to check that those are really solutions. We represent the potential solution
w∆ (where w = a, b) by a one-dimensional array of length n. More precisely, we do not store
the characters themselves but rather, for each character, a pair containing the index ∆ν of
the word w∆ν

in which it occurs and its position in this word (as we shall see this is useful to
find the next character in w∆). For instance the first index should contain the pair (∆1, 1)
(first word, first character). Then the next index contains either (∆1, 2) (if |w∆1

| > 1, first
word, second character) or (∆2, 1) (if |w∆1

| = 1, second word, first character).
For example, if A = {∗, ◦, ⋆}, a = (∗◦, ⋆) and ∆ = (1, 2), then the obtained array would

be the following one:

Values (1, 1) (1, 2) (2, 1)

Indices 1 2 3

However, the word w∆ is not stored into consecutive indices in the array. Indeed,
as we shall see, we also need to store, for each character w∆λ

of the witness, the indices
∆λ+1, . . . ,∆ι of the remaining words, occurring after w∆λ

in w∆. This sequence is called the
tail of the potential solution. Since the length of this sequence is unbounded, it cannot be
encoded simply by indexed propositions: it must be stored into the array and the simplest
solution is to store these indices just after the character itself. Notice that only the indices
of words are stored in the tail i.e. there is no character position. Thus we get:

Values (1, 1) 2 (1, 2) 2 (2, 1)

Indices 1 2 3 4 5

The easiest way to proceed would be to store the first character of the witness at position
0, the indices of the remaining words at position 1, 2, . . . , ι, then the second character of the
witness at position ι + 1 etc. That way, the λ-th character of the witness would be stored
at position (λ − 1) × (ι + 1) and the tail of the sequence at positions (λ − 1) × (ι + 1) +
1, . . . , (λ−1)× (ι+1)+ ι. For any character stored in an index λ, the next character would
be stored at the index λ+ ι+1. But this simple solution is not suitable because it is outside
the considered class. Indeed, it requires the use of another parameter ι (the first parameter
being n: the length of the array) and also the use of this parameter in the indices (to relate
the character stored in index λ to the one at index λ + ι), which is forbidden in the class
Ch.

Thus we need to find another encoding of the previous array. The idea is to store the first
character at some index µ (where µ is assumed to be greater than ι), the second character
at the index 2 × µ, . . . and more generally the λ-th character at the index µ × 2λ−1. The
tail of the sequence is then stored at the indices (µ + 1) × 2λ−1, . . . , (µ + ι) × 2λ−1. This
encoding ensures that the index of the next character after the one at index i is simply 2.i,
and such homethetic transformations are precisely those allowed for the indices in Ch.

Finally, the array corresponding to our recurrent example is the following one (with
µ = 2):

Values (1, 1) 2 (1, 2) 2 (2, 1)

Indices 1 2 3 4 5 6 7 8

The witness is obtained by considering the characters stored at the indices 2,4 (= 2×2)
and 8 (= 2×22), namely ∗ (first character of the first word), ◦ (first word, second character)

45

Aravantinos, Caferra & Peltier

and ⋆ (second word, first character). Obviously there are “holes” in the array, they are
simply ignored.

The Signature

The array is encoded by two indexed propositions: car(w, ν, λ) and t(w, ν) (t stands for
“tail”) where w ∈ {a, b}, 1 ≤ ν ≤ κ, 1 ≤ λ ≤ |wν |. The intuition behind car(w, ν, λ)l is that
it holds iff the index l in the array corresponding to w∆ contains the pair (ν, λ) (representing
the character wλν). t(w, ν)l states that the index l of the array corresponding to w∆ contains
ν.

Formal definition of the encoding

Let n be a variable (intended to denote the unique parameter of the schema).
As explained in the previous section, we store the characters in an array, at the indices

µ, 2µ, 4µ, etc. Intuitively, µ should be encoded as another parameter, but only one param-
eter n is allowed. However, we can encode µ with a new proposition symbol in P. We first
define two symbols p, q s.t. pν holds iff ν = µ and s.t. qν holds iff ν ∈ [0, µ − 1]. The first
schema defines q in such a way that it holds exactly on an interval of the form [0, µ− 1]:

q0 ∧ ¬qn ∧
n
∧

i=1

(qi+1 ⇒ qi)

The last formula obviously implies that if qν holds for some ν ∈ [1..n] then it must also
hold for every λ ∈ [1..ν]. Then µ is simply the first index ν such that qν does not hold (this
element necessarily exists, since qn does not hold).

The second schema defines p such that it holds exactly on the successor of the maximal
element of the interval (i.e. µ). Notice that due to the previous formula we must have µ 6= 0
and µ ≤ n:

n
∧

i=1

[pi ⇔ (qi−1 ∧ ¬qi)]

For the sake of clarity, we shall denote by (λ = µ) the atom pλ and by (λ < µ) the atom
qλ (this makes the formulae much more readable).

We then define a variable wt s.t. wtν holds iff there exists λ ∈ N s.t. ν = µ.2λ: wt stands
for “witness”, because wtν holds iff ν is the index of a character in the witness of a solution,
as explained before:

∧n
i=1[((i = µ) ⇒ wti) ∧ ((i < µ) ⇒ ¬wti) (1)

∧(¬(2i+ 1 = µ) ⇒ ¬wt2i+1) ∧ (¬(2i < µ) ∧ ¬(2i = µ)) ⇒ (wti ⇔ wt2i)]

The first line states that wtµ holds and that wti is false if i < µ. The second line defines
that value of wti for i > µ: wt2i+1 is always false (except if 2i+1 = µ) and wt2i is equivalent
to wti if 2i > µ. By an easy induction on the set of natural numbers, these properties imply
that wtν holds iff ∃λ.ν = µ.2λ. Notice the crucial use of the homothetic transformation
here.

46

The following formula states that an index cannot represent two distinct characters
(pairs) in the same sequence:

n
∧

i=1

(¬car(w, ν, λ)i ∨ ¬car(w, ν′, λ′)i)

for every w ∈ {a, b}, (ν, ν ′) ∈ [1, κ]2, λ ∈ [1, |wν |], λ
′ ∈ [1, |wν′ |] s.t. (ν, λ) 6= (ν ′, λ′)

Similarly, we state that every index contains at most one word in each sequence:

n
∧

i=1

(¬t(w, ν)i ∨ ¬t(w, ν′)i) for every w ∈ {a, b}, ν, ν ′ ∈ [1, κ]2, ν 6= ν ′

Both initial elements of the sequences corresponding to a and b must be of the form
(ν, 1) (ν is the same in both sequences and is distinct from κ, since the word |wκ| marks
the end of the sequence):

n
∧

i=1

((i = µ) ⇒ ∃ν ∈ [1, κ− 1](car(a, ν, 1)i ∧ car(b, ν, 1)i))

We use existential quantification over intervals of natural numbers for the sake of clarity,
but these quantifiers can be easily eliminated and transformed into finite (not iterated)
disjunctions.

The next formula defines e(w) to mark the end of the sequence corresponding to w.
e(w)l should hold iff l is of the form µ.2λ for some λ > 0 and if the character stored at the
index l is the first character of the word κ (remember that by convention aκ = bκ = ⊤ where
⊤ marks the end of the witness). Besides, we must ensure that the end of the sequence is
eventually reached i.e. that there exists an index l such that e(a)l and e(b)l both hold:

n
∨

i=1

(e(a)i ∧ e(b)i) ∧
n
∧

i=1

((wti ∧ car(w, κ, 1)i) ⇔ e(w)i) (⋆)

for every w ∈ {a, b}

We also have to ensure that the two sequences (i.e. the words a∆ and b∆) are identical.
It suffices to check that for every index l s.t. wtl holds (i.e. for every index l of the form
µ× 2λ), the character stored in l is the same in the sequences of a and b:

n
∧

i=1

(wti ⇒ (¬car(a, ν, λ)i ∨ ¬car(b, ν ′, λ′)i)) (⋆)

for every ν, ν ′ ∈ [1, κ]2, λ ∈ [1, |aν |], λ
′ ∈ [1, |bν′ |] s.t. aλν 6= bλ

′

ν′

So far, we have ensured that at most one character and word index can be stored in
every index. We have defined the starting point and the end of the two sequences and
ensured that the two represented words are identical. The next (and most difficult) step is
to ensure that these sequences really encode two words of the form a∆ and b∆ respectively.
To this aim, we shall relate the value of the character stored in every index µ.2λ+1 to the
one stored in µ.2λ, to ensure that the former is really the successor of the latter in the

47

Aravantinos, Caferra & Peltier

witness. Since each character c is represented by a pair (ν, ι) where ν denotes the index of
a word in w and ι is the position of c in wν , it is easy to find the next character: if ι < |wν |
(i.e. if c is not the last character in wν) then the next character is simply (ν, ι + 1) (same
word wν , next position ι+ 1). If ι = |wν | (i.e. if c is the last character in wν) then the next
character is (ν ′, 1) where ν ′ denotes the next word index in the solution sequence (word wν′ ,
first position).

In order to determine the index word ν ′ we use the fact that (as explained in the
informal overview above) the remaining indices in the solution are stored in the index
µ.2λ + 1, µ.2λ + 2, Thus, we simply need to pick up the first element of this sequence.

After checking that the character stored at µ.2λ+1 is the successor of the one in µ.2λ

it remains to ensure that the indices stored at µ.2λ+1 + 1, µ.2λ+1 + 2,. . . correspond to the
remaining part of the solution. If ι < |wν | then the sequence must actually be identical to
the one stored at µ.2λ + 1, µ.2λ + 2,. . . If ι = |wν | then the first element of the sequence
must be deleted (since we have entered into a new word).

The next formula states that if an index l of the form µ.2λ (i.e. an index s.t. wtl holds)
contains a pair (ν, ι) and if wν contains more that ι characters then µ.2λ+1 should encode
the next character in the word wν , namely (ν, ι+1). Moreover the tail of the sequence does
not change, which is expressed using the variable c(w)l (c stands for “copy”) that will be
specified thereafter:

n
∧

i=1

[(wti ∧ car(w, ν, λ)i) ⇒ (car(w, ν, λ+ 1)2i ∧ c(w)i+1)] (2)

for every w ∈ {a, b}, ν ∈ [1, κ], λ ∈ [1, |wν | − 1].

Now we define the formula encoding the copy of the tail. The most simple way to proceed
would be to copy the values stored into the indices l, l+1, . . . , l+µ−1 into 2l+1, . . . , 2l+µ−1.
Unfortunately this cannot be done in this simple way because expressions of the form l+ j
would be required in the indices, which is forbidden in our class (only ±1 can be added).
As explained before, we overcome this problem by copying the indices l + 1, . . . , l + µ − 1
into 2l + 2, 2l + 4, . . . , 2l + 2µ − 2, which can be done by doubling the iteration counter.
The indices 2l+1, 2l+3, . . . , 2l+2µ− 1 are left empty (holes). This is not disturbing since
such empty indices will simply be ignored. An important consequence is that the length of
the sequence is doubled each time it is copied (we assume that the value of the parameter
n and the natural number µ are sufficiently large to ensure that there is enough “space” in
the array).

This is expressed by the following formula:

n
∧

i=1

(c(w)i ⇒ [¬t(w, ν)2i−1 ∧ (t(w, ν)i ⇔ t(w, ν)2i) ∧ (¬wti+1 ⇒ c(w)i+1)]) (3)

for every ν ∈ [1, κ], w ∈ {a, b}

We illustrate this construction by an example. Let A = {∗, ◦, ⋆, ⋄}, a = (∗◦, ⋆, ⋄◦) and
∆ = (1, 2, 3). In the second line, we provide for every index l the pair (ν, ι) such that
car(a, ν, ι)l holds (if any). The third line gives the represented character (∗,◦,⋆ or ⋄). In the

48

fourth line we provide the integer ν such that t(a, ν)l holds. The fifth line gives the value
of c(a). The indices between µ+ 2 and 2µ are empty (we assume that µ = 3).

i µ µ+ 1 µ+ 2 2µ 2µ+ 1 2µ+ 2 2µ+ 3 2µ+ 4

car (1, 1) (1, 2)

character ∗ ◦
t 2 3 2 3

c(a) T T

By formula (2) we must have cµ+1. By formula (3), the value of c(a)µ+1 is propagated
to c(a)µ+2,. . . , c(a)2µ−1 (it is not propagated to c(a)2µ since wt2µ holds). Still by (2), if
c(a)l holds then we have t(a, ν)l ⇔ t(a, ν)2l, and the cells corresponding to odd indices are
left empty. Thus we get the array above.

If an index µ.2λ contains a pair (ν, ι) where |wν | = ι (such as 2µ in the previous example),
then one must proceed to the next word. To this aim, we need to know what is the first
character of the next word (after the current one). Because of the holes introduced by the
special copying mechanism, the next word is not necessarily at index l+1. A simple solution
is to change the contents of the tail so that each element contains not only the index of a
word but also its first character. This is stated by the following formula:

n
∧

i=1

[¬wti ⇒ (t(w, ν)i ⇒ car(w, ν, 1)i)] (4)

Furthermore, we copy this character into all the holes preceding the element. As a
particular case we get what we wanted for the first non-empty word.9 This is stated by the
following formula:

n
∧

i=1

[(¬wti−1 ∧ ¬wti ∧ ∀λ ∈ [1, κ] ¬t(w, λ)i−1) ⇒ (car(w, ν, 1)i ⇔ car(w, ν, 1)i−1)] (5)

for every ν ∈ [1, κ], w ∈ {a, b}

Now, if the pair stored in ι is (ν, |wν |) and if this word is not the final word in the
sequence (i.e. e(w)ι does not hold) then one has to store into 2ι the first character of the
next word, which is, due to the two previous formulae, the character represented by ι+ 1.
The previous picture must thus be completed as follows:

i µ µ+ 1 µ+ 2 2µ 2µ+ 1 2µ+ 2 2µ+ 3 2µ+ 4

car (1, 1) (2, 1) (3, 1) (1, 2) (2, 1) (2, 1) (3, 1) (3, 1)

character ∗ ⋆ ⋄ ◦ ⋆ ⋆ ⋄ ⋄
t 2 3 2 3

By the formula (4) above, if t(a, ν)i holds then car(a, ν, 1)i also holds. Then by the
formula (5), the value of car(a, ν, 1)l is recursively propagated to car(a, ν, 1)l−1 until we

9. Notice that we could have as well copied the word’s index instead of its first character, since the index
contains all the information we need to retrieve the corresponding character. However it will be useful
in the following to know that there is no word index stored in a particular cell, so we store only the
information that is useful for the problem we want to solve at this point, i.e. the first character of the
word.

49

Aravantinos, Caferra & Peltier

have l − 1 = µ.2λ or t(a, ν)l−1 holds for some ν. Notice that a character is now stored in
every index l but only the characters in the indices µ.2λ form the witness.

Thanks to this trick, finding the next character after the one stored in µ.2λ is now
trivial: this is simply the one stored in µ.2λ + 1, which, by the previous formula, actually
corresponds to the first position of the word stored in (µ+ 1).2λ (of course, we also need to
check that the character is not final). This is expressed by the following formula:

n
∧

l=1

[(wtl ∧ ¬e(w)l ∧ car(w, ν, |sν |)l) ⇒ (car(w, λ, 1)2l ⇔ car(w, λ, 1)l+1) ∧ s(w)l+1]

for every ν, λ ∈ [1, κ], w ∈ {a, b}

The propositional variable s(w)l+1 (s stands for “shift”) indicates that the tail at 2l is
obtained by removing the first word in the tail at l. This is done as follows: the indices
2l + 2, . . . , 2l + 2µ − 1 are obtained by copying the indices l + 1, . . . , l + µ − 1, except the
first one, that is left empty. As for c(w), the indices 2l− 1, . . . , 2l+ 2µ− 3 are empty. s(w)
is defined by the three following formulae.

s(w) actually erases everything until it finds a non-empty index, which is expressed by
the first formula: if s(w)l holds then the indices stored at 2l and 2l − 1 must be empty
(furthermore, we also check that the end of the tail has not been reached):

n
∧

l=1

(s(w)l ⇒ ¬wtl ∧ ¬t(w, ν)2l ∧ ¬t(w, ν)2l−1) for every ν ∈ [1, κ], w ∈ {a, b} (6)

The second one propagates the erasure if the current index is empty:

n
∧

l=1

[(s(w)l ∧ ¬wtl+1 ∧ ∀ν ∈ [1, κ] ¬t(w, ν)l) ⇒ s(w)l+1] for every w ∈ {a, b} (7)

The third one states that once we have reached a non-empty index then we go on by
copying everything (which is done by using the previous variable c(w)):

n
∧

l=1

(s(w)l ∧ ∃λ ∈ [1, κ] t(w, λ)l ⇒ c(w)l+1) for every w ∈ {a, b} (8)

We illustrate this construction by showing how the erasure works on the previous ex-
ample:

i 2µ 2µ+ 1 2µ+ 2 2µ+ 3 2µ+ 4

car (1, 2) (2, 1) (2, 1) (3, 1) (3, 1)

character ◦ ⋆ ⋆ ⋄ ⋄
t 2 3

c(a) T T

s(a) T T

50

i 4µ 4µ+ 1 4µ+ 2 4µ+ 3 4µ+ 4 4µ+ 5 4µ+ 6 4µ+ 7 4µ+ 8

car (3, 1) (3, 1) (3, 1) (3, 1) (3, 1) (3, 1) (3, 1) (3, 1) (3,1)

character ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄
t 3

The character stored in 2µ is the last one of the first word thus we have to remove the first
word in the tail of the solution. As explained before, the character stored in 4µ is the same as
the one stored in 4µ+1, namely (2, 1), i.e. ⋆ (since we have car(a, ν, 1)4µ ⇔ car(a, ν, 1)2µ+1).
Furthermore, s(a)2µ+1 holds. This implies by (6) that the indices 4µ + 2 and 4µ + 1 of t
must be empty. Since t is empty for ι = 2µ + 1 (i.e. there is no ν such that t(a, ν)2µ+1

holds), the value of s(a)2µ+1 is propagated to s(a)2µ+2, by (7). Thus by (6), the indices
4µ + 4 and 4µ + 3 of t must also be empty. This time, however, t(a, 2)2µ+2 holds. Thus
the value of s(a) is not propagated and c(a)2µ+3 must hold (by (8)). As before, this implies
that the remaining part of the sequence (i.e. the cells 2µ+ 3, 2µ+ 4 of t) is copied (in the
cells 4µ+ 6, 4µ+ 8, leaving the cells 4µ+ 5, 4µ+ 7 empty) until 4µ is reached. This implies
in particular that t(a, 3)4µ+8 holds (since t(a, 3)2µ+4 holds). Hence we have car(a, 3, 1)4µ+8.
Since t is empty for l ∈ [4µ + 1, . . . , 4µ + 7], this value of car(a, 3, 1) is propagated to the
indices 4µ + 7, . . . , 4µ + 1 as explained before. We obtain the desired result, i.e. the first
word in the sequence (namely 2) have been erased and the first character of the next word
is stored into 4µ+ 1.

Finally, in order to ensure that the obtained sequence is really a solution to the Post
correspondence problem, it only remains to check that the two sequences are identical, i.e.
that the words contained in µ+ 1, · · · , 2µ− 1 are the same for both sequences a and b. To
this purpose we define a variable rl that is true iff l < 2µ.

r0 ∧ ¬rn ∧
n
∧

l=1

[(rl ⇒ rl−1) ∧ (l = µ) ⇒ (r2l−1 ∧ ¬r2l)] (⋆)

n
∧

l=1

[(rl ∧ ¬(l < µ)) ⇒ (t(a, ν)l ⇔ t(b, ν)l)] (⋆)

for every ν ∈ [1, κ]

It is straightforward to check that the obtained formula is in Ch. The reader acquainted
with Post’s correspondence problem shall now be convinced that the obtained formula is
satisfiable iff there exists a solution to the above Post problem, and can thus skip the end
of this section. Otherwise we give in the following a sketch of the formal steps to this proof.

We denote by φ the conjunction of the above formulae, except the formulae marked (⋆).
We first notice that φ is satisfiable (for every value of n). Indeed, as explained before, the
formulae above impose that:

• There exists a unique natural number µ such that pν holds iff ν = µ and qν holds iff
ν ∈ [0, µ− 1].

• car(w, ν, λ) and t(w, ν) encode (partial) functions fw, gw mapping every index in [1, n]
to a pair (ν, λ) (where ν ∈ [1, κ], λ ∈ [1, |wν |]) and to a word index in [1, κ] respectively.
Moreover we must have fa(µ) = (ν, 1) and fb(µ) = (ν, 1) for some ν ∈ [1..κ− 1].

51

Aravantinos, Caferra & Peltier

• wtν holds iff there exists λ ∈ N s.t. ν = µ.2λ.

This obviously defines a partial interpretation. Then the remaining formulae in φ sim-
ply give the values of car(w, ν, λ)ι, t(w, ν)ι, c(w)ι, s(w)ι for ι ≥ 2µ. It is easy to check
that distinct formulae cannot give distinct values to the same propositional variable, hence
satisfiability is guaranteed.

Let I be an interpretation of φ. Let ι ∈ [1..n]. We define the following sequences.

• hw(ι) is a sequence of word indices defined as follows: If wtι+1 holds then hw(ι) is

empty. Otherwise, if gw(ι) = ν then hw(ι)
def
= ν.hw(ι + 1) and if gw(ι) is undefined

then hw(ι)
def
= hw(ι+ 1). Intuitively, hw(ι) is the sequence of word indices stored juste

after ι (i.e. the tail) ignoring empty cells.

• jw(ι) is a word defined as follows: if ι > n then jw(ι) is empty. Otherwise, jw(ι)
def
=

wλν .jw(2ι) if fw(ι) is a pair (ν, λ) distinct from (κ, 1), jw(ι)
def
= ⊤ if fw(ι) = (κ, ι) and

jw(ι)
def
= jw(2ι) if fw(ι) is undefined. jw(ι) denotes the word stored at the cells ι, 2ι . . .

in the array corresponding to w ((κ, 1) marks the end of the word).

• If fw(ι) = (ν, ν ′) then kw(ι) denotes the suffix of length |wν | − ν ′ + 1 of the word wν
(notice that by construction we must have ν ′ ≤ |ν|).

By definition of the copying/erasing mechanism above, if fw(µ.2λ) is of the form (ν, |wν |)
(i.e. we are at the end of the word ν) then hw(µ.2λ) = ν ′.hw(µ.2λ+1), where fw(µ.2λ+1) =
(ν ′, 1) (i.e. the tail is equal to the next word followed by the next tail). Otherwise (i.e. if we
are in the middle of a word) we have hw(µ.2λ) = hw(µ.2λ+1) and fw(µ.2λ+1) = (ν, ν ′ + 1)
where fw(µ.2λ) = (ν, ν ′) (ν ′ 6= |wν |)). By an easy induction on the length of jw(µ.2λ), we
deduce that jw(µ.2λ) is a prefix of kw(µ.2λ).whw(µ.2λ): kw(µ.2λ) represents the end of the
word considered at the character λ, and whw(µ.2λ) is the concatenation of all words in the
tail.

For λ = 0 we get in particular that jw(µ) is a prefix of kw(µ).whw(µ). But by definition
kw(µ) = wν for some ν (not depending on w). Thus jw(µ) is a prefix of wν.hw(µ).

The formulae occurring in the conjunction but not in φ check that ha(µ) = hb(µ) (same
sequence of word indices for a and b), that ja(µ) = jb(µ) and that ja(µ) ends with a
character ⊤ (marking the end of the witness).

If I is a model of the whole formula, then jw(µ) is a prefix of wν.hw(µ), ending with ⊤,
thus must be of the form wν.∆ where ∆ is a prefix of hw(µ). Hence ν.∆ is a solution to the
Post’s correspondence problem.

Conversely, if such a solution ν.∆ exists, then we simply consider a model I of φ such
that ha(µ) = hb(µ) = ∆ (this implies that µ > |∆|, notice that the values of fw(l) and gw(l)
can be fixed arbitrarily for l < 2µ) and I(n) > µ.2λ, where λ = |aν.∆|. jw(µ) is a prefix of
wν.hw(µ). Since the length jw(µ) cannot be greater than the one of wν.∆, jw(µ) must end
with ⊤. Thus we must have jw(µ) = wν.∆ (since ⊤ is the last character in wν.∆). Moreover
since ν.∆ is a solution we have ja(µ) = jb(µ). Thus I validates all the formulae above.

6.2 Unbounded Translation

One can wonder whether the decidability of the class of regular schemata still holds when
unbounded translations are allowed in the indices, i.e. translations of the form i+m where

52

i denotes the iteration counter and m a parameter (the case m ∈ Z is covered by the regular
class). The following definition and theorem show that the answer is negative.

Definition 6.3
Ct (t stands for “translation”) is the set of schemata S satisfying the following properties.

• S contains at most two parameters n,m.

• Every iteration in S is of the form
∧n
i=1 φ or

∨n
i=1 φ, where:

– φ contains no iteration.

– Every atomic formula in φ is of the form pα.i+β+γ.m, where p is a variable,
α, γ ∈ {0, 1} and β ∈ {−1, 0, 1}.

• The atomic propositions occurring in φ but not in the scope of an iteration are of the
form p0 or pn where p is a variable.

Theorem 6.4
The set of unsatisfiable formulae in Ct is not recursively enumerable.

Proof

(Sketch) We do not detail the proof since it is very similar to the previous one. We reuse
the same encoding as in the proof of Theorem 6.2, except that the pairs (ν, λ) in the array
are stored in indices of the form µ+m× ι instead of µ.2ι. Formally, the formulae (1), (2),
(3) and (6) are replaced by the following ones, respectively:

n
∧

l=1

[((l = µ) ⇒ wtl) ∧ ((l < µ) ⇒ ¬wtl) ∧ (¬(l < µ) ∧ ¬(l = µ)) ⇒ (wtl ⇔ wtl+m)]

(i.e. wtl holds now iff there exists ι s.t. l = µ+mι).

n
∧

l=1

[wtl ∧ car(w, ν, λ)l ⇒ (car(w, ν, λ+ 1)l+m ∧ c(w)l+1)]

(i.e. the index 2l is now replaced by l +m).

n
∧

l=1

(c(w)l ⇒ [(t(w, ν)l ⇔ t(w, ν)l+m) ∧ (¬wti+1 ⇒ c(w)l+1)])

n
∧

l=1

(s(w)l ⇒ ¬wtl ∧ ¬t(w, ν)l+m) �

53

Aravantinos, Caferra & Peltier

7. Conclusion

We introduced the first (to the best of our knowledge) logic for reasoning with iterated
propositional schemata. We defined a class of schemata called bound-linear for which the
satisfiability problem is decidable. The decidability proof is constructive and divided into
two parts: first we show how to transform every bound-linear schema into a sat-equivalent
schema of a simpler form, called regular. Then a proof procedure is defined to decide
the satisfiability of regular schemata. This proof procedure is sound and complete w.r.t.
satisfiability for every schema (even if it is not regular or not bound-linear) and terminates
on every regular schema. Termination relies on a special looping detection rule. This
procedure has been implemented in the software RegStab.

The class of bound-linear schemata is expressive enough to capture specifications of
many important problems in AI, especially in automated (or interactive) theorem prov-
ing (e.g., parameterized circuit verification problems). We proved that even a very slight
relaxation of the conditions on bound-linear schemata makes the satisfiability problem un-
decidable (this is shown by a tricky reduction to the Post correspondence problem). As
a consequence, bound-linear schemata can be considered as a “canonical” decidable class,
providing a good compromise between expressivity and tractability.

As for future work, two ways are the most promising. Firstly, the extension of the
previous results to particular classes of non monadic schemata (i.e. schemata containing
symbols with several indices, e.g.,

∨n
i=1

∧n
j=1 pi,j) would enlarge considerably applications

of propositional schemata. Secondly, extending our approach to more expressive logics,
such as first-order logic, description logics or modal logics, also deserves to be considered.
The presented results should extend straightforwardly to many-valued propositional logic
(provided the number of truth values is fixed and finite). This would allow to capture
infinite constraint satisfaction languages.

References

Aczel, P. (1977). An Introduction to Inductive Definitions. In Barwise, K. J. (Ed.), Handbook
of Mathematical Logic, pp. 739–782. North-Holland, Amsterdam.

Aravantinos, V., Caferra, R., & Peltier, N. (2009a). A DPLL proof procedure for propo-
sitional iterated schemata. In Workshop “Structures and Deduction 2009” (ESSLI),
pp. 24–38.

Aravantinos, V., Caferra, R., & Peltier, N. (2009b). A schemata calculus for propositional
logic. In TABLEAUX 09 (International Conference on Automated Reasoning with
Analytic Tableaux and Related Methods), Vol. 5607 of LNCS, pp. 32–46. Springer.

Aravantinos, V., Caferra, R., & Peltier, N. (2010). A Decidable Class of Nested Iterated
Schemata. In IJCAR 2010 (International Joint Conference on Automated Reasoning),
LNCS, pp. 293–308. Springer.

Baaz, M. (1999). Note on the generalization of calculations. Theoretical Computer Science,
224, 3–11.

Baaz, M., & Zach, R. (1994). Short proofs of tautologies using the schema of equivalence.
In Computer Science Logic (CSL’93), Vol. 832 of LNCS, pp. 33–35. Springer-Verlag.

54

Baelde, D. (2009). On the proof theory of regular fixed points. In Proceedings of the 18th

International Conference on Automated Reasoning with Analytic Tableaux and Related
Methods (TABLEAUX 2009), Vol. 5607 of LNCS, pp. 93–107. Springer.

Barendregt, H., & Wiedijk, F. (2005). The challenge of computer mathematics. Philosophical
Transactions of the Royal Society A, 363, 2351–2375.

Bouhoula, A., Kounalis, E., & Rusinowitch, M. (1992). SPIKE, an automatic theorem
prover. In Proceedings of the International Conference on Logic Programming and
Automated Reasoning (LPAR’92), Vol. 624, pp. 460–462. Springer-Verlag.

Boyer, R. S., & Moore, J. S. (1979). A computational logic. Academic Press.

Bradfield, J., & Stirling, C. (1992). Local model checking for infinite state spaces. In
Selected papers of the Second Workshop on Concurrency and compositionality, pp.
157–174 Essex, UK. Elsevier Science Publishers Ltd.

Bradfield, J., & Stirling, C. (2007). Modal Mu-Calculi. In Blackburn, P., Benthem, J. F.
A. K. v., & Wolter, F. (Eds.), Handbook of Modal Logic, Volume 3 (Studies in Logic
and Practical Reasoning), pp. 721–756. Elsevier Science Inc., New York, NY, USA.

Brotherston, J. (2005). Cyclic Proofs for First-Order Logic with Inductive Definitions. In
Beckert, B. (Ed.), Automated Reasoning with Analytic Tableaux and Related Methods:
Proceedings of TABLEAUX 2005, Vol. 3702 of LNAI, pp. 78–92. Springer-Verlag.

Bundy, A. (2001). The automation of proof by mathematical induction. In Robinson, J. A.,
& Voronkov, A. (Eds.), Handbook of Automated Reasoning, pp. 845–911. Elsevier and
MIT Press.

Bundy, A., van Harmelen, F., Horn, C., & Smaill, A. (1990). The Oyster-Clam system.
In Proceedings of the 10th International Conference on Automated Deduction, pp.
647–648 London, UK. Springer-Verlag.

Chen, H., Hsiang, J., & Kong, H. (1990). On finite representations of infinite sequences
of terms. In Conditional and Typed Rewriting Systems, 2nd International Workshop,
pp. 100–114. Springer, LNCS 516.

Cleaveland, R. (1990). Tableau-based model checking in the propositional mu-calculus.
Acta Inf., 27 (9), 725–747.

Comon, H. (2001). Inductionless induction. In Robinson, A., & Voronkov, A. (Eds.),
Handbook of Automated Reasoning, chap. 14, pp. 913–962. North-Holland.

Comon, H. (1995). On unification of terms with integer exponents. Mathematical System
Theory, 28, 67–88.

Cooper, D. (1972). Theorem proving in arithmetic without multiplication. In Meltzer, B.,
& Michie, D. (Eds.), Machine Intelligence 7, chap. 5, pp. 91–99. Edinburgh University
Press.

Corcoran, J. (2006). Schemata: the concept of schema in the history of logic. The Bulletin
of Symbolic Logic, 12 (2), 219–240.

Davis, M., Logemann, G., & Loveland, D. (1962). A Machine Program for Theorem Proving.
Communication of the ACM, 5, 394–397.

55

Aravantinos, Caferra & Peltier

Ebbinghaus, H.-D., & Flum, J. (1999). Finite Model Theory. Perspectives in Mathematical
Logic. Springer. Second Revised and Enlarged Edition.

Fagin, R. (1993). Finite-Model Theory - A Personal Perspective. Theoretical Computer
Science, 116, 3–31.

Giesl, J., & Kapur, D. (2001). Decidable classes of inductive theorems. In Goré, R., Leitsch,
A., & Nipkow, T. (Eds.), IJCAR, Vol. 2083 of Lecture Notes in Computer Science,
pp. 469–484. Springer.

Goré, R. (1999). Chapter 6: Tableau Methods for Modal and Temporal Logics. In M
D’Agostino, D Gabbay, R Hähnle, J Posegga (Ed.), Handbook of Tableau Methods,
pp. 297–396. Kluwer Academic Publishers. http://arp.anu.edu.au/~ rpg (draft).

Gupta, A., & Fisher, A. L. (1993). Representation and symbolic manipulation of linearly
inductive boolean functions. In Lightner, M. R., & Jess, J. A. G. (Eds.), ICCAD, pp.
192–199. IEEE Computer Society.

Hermann, M., & Galbavý, R. (1997). Unification of Infinite Sets of Terms schematized by
Primal Grammars. Theoretical Computer Science, 176 (1–2), 111–158.

Hetzl, S., Leitsch, A., Weller, D., & Woltzenlogel Paleo, B. (2008). Proof analysis with
HLK, CERES and ProofTool: Current status and future directions. In Sutcliffe G.,
Colton S., S. S. (Ed.), Workshop on Empirically Successful Automated Reasoning for
Mathematics (ESARM), pp. 21–41.

Immerman, N. (1982). Relational queries computable in polynomial time (Extended Ab-
stract). In STOC ’82: Proceedings of the fourteenth annual ACM symposium on
Theory of computing, pp. 147–152 New York, NY, USA. ACM.

Kraj́ıček, J. and Pudlák, P. (1988). The number of proof lines and the size of proofs in first
order logic. Archive for Mathematical Logic, 27, 69–84.

Marriott, K., Nethercote, N., Rafeh, R., Stuckey, P. J., Garćıa de la Banda, M., & Wallace,
M. (2008). The design of the Zinc modelling language. Constraints, 13 (3), 229–267.

Orevkov, V. P. (1991). Proof schemata in Hilbert-type axiomatic theories. Journal of
Mathematical Sciences, 55 (2), 1610–1620.

Parikh, R. J. (1973). Some results on the length of proofs. Transactions of the American
Mathematical Society, 177, 29–36.

Park, D. M. (1976). Finiteness is Mu-ineffable. Theoretical Computer Science, 3, 173–181.

Paulin-Mohring, C. (1993). Inductive Definitions in the system Coq - Rules and Properties.
In TLCA ’93: Proceedings of the International Conference on Typed Lambda Calculi
and Applications, pp. 328–345 London, UK. Springer-Verlag.

Smullyan, R. M. (1968). First-Order Logic. Springer.

Sprenger, C., & Dam, M. (2003). On the Structure of Inductive Reasoning: Circular and
Tree-shaped Proofs in the mu-Calculus. In Proc. FOSSACS’03, Springer LNCS, pp.
425–440.

Wos, L. (1988). Automated Reasoning: 33 Basic Research Problems. Prentice Hall.

Wos, L., Overbeek, R., Lush, E., & Boyle, J. (1992). Automated Reasoning: Introduction
and Applications (Second edition). McGraw-Hill.

56

