
HAL Id: hal-00931142
https://hal.science/hal-00931142

Submitted on 15 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hydrascope: Creating Multi-Surface Meta-Applications
Through View Synchronization and Input Multiplexing

Björn Hartmann, Michel Beaudouin-Lafon, Wendy E. Mackay

To cite this version:
Björn Hartmann, Michel Beaudouin-Lafon, Wendy E. Mackay. Hydrascope: Creating Multi-Surface
Meta-Applications Through View Synchronization and Input Multiplexing. 2nd ACM Interna-
tional Symposium on Pervasive Displays, Jun 2013, Mountain View, United States. pp.43-48,
�10.1145/2491568.2491578�. �hal-00931142�

https://hal.science/hal-00931142
https://hal.archives-ouvertes.fr

HydraScope: Creating Multi-Surface Meta-Applications
Through View Synchronization and Input Multiplexing

Björn Hartmann
Computer Science Division

University of California
Berkeley, USA

bjoern@eecs.berkeley.edu

Michel Beaudouin-Lafon
in|situ|

Université Paris-Sud
Institut Universitaire de France

mbl@lri.fr

Wendy E. Mackay
in|situ|

INRIA Saclay
France

mackay@lri.fr

ABSTRACT

As computing environments that combine multiple displays
and input devices become more common, the need for ap-
plications that take advantage of these capabilities becomes
more pressing. However, few applications are designed to
support such multi-surface environments. We investigate
how to adapt existing applications without access to their
source code. We introduce HydraScope, a framework for
transforming existing web applications intometa-applications

that execute and synchronize multiple copies of applications
in parallel, with a multi-user input layer for interacting with
it. We describe the Hydra-Scope architecture, validated
with five meta-applications.

Categories and Subject Descriptors

H5.2 [Information Interfaces and Presentation]: User
Interfaces—Graphical User Interfaces

Keywords

Application architectures, Multi-screen displays, Toolkits

1. INTRODUCTION
The decreasing cost of technology has led to the rise of

multi-surface environments: In the home, newly interopera-
ble interactive TVs and tablets share content and distribute
control. In school and at work, smartphones, tablets and
laptops link to interactive whiteboards, video projectors and
tabletop displays. In labs, high-resolution wall-sized displays
offer a hundred times more pixels than a desktop computer.

Unfortunately, existing applications rarely scale to these
multi-surface environments for several reasons. First, few
are designed to run in a distributed environment, where dif-
ferent machines control different displays but offer the il-
lusion of a single interconnected display surface. Second,
many applications are restricted to single-user input even
though multi-surface environments encourage collaborative
work. Finally, they are written for a specific screen resolu-
tion, making it difficult to resize to significantly larger – or

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PerDis’13 June 4-5, 2013, Mountain View, CA, USA
Copyright 2013 ACM 978-1-4503-2096-2/13/06 ...$15.00.

Figure 1: HydraScope enables construction of multi-

display meta-applications, controlled by mobile devices.

smaller – displays. For example, when a web browser is dis-
played on a wall, the user must read excessively long lines of
text and traverse a long distance to reach the back button.

One solution is to rewrite applications using specially de-
signed user interface frameworks, such as jBricks [12]. This
offers maximum control but requires a major upfront invest-
ment to re-engineer common applications. An alternative is
to adapt existing applications to run in multi-surface en-
vironments – ideally, without modifying the applications’
source code. Users can thus leverage their existing expertise
instead of learning new, dedicated applications.

We introduce the concept of a meta-application, which as-
sembles and synchronizes existing applications to run across
multiple interactive surfaces. A meta-application coordi-
nates multiple application instances by sensing changes in
application state due to user input and propagating appro-
priate changes across applications according to specific co-
ordination rules. Prior work has identified several promising
patterns of use that meta-applications should support [1]:

• Viewing a large section of a document, e.g., a map, at
full resolution, with no pixel scaling;

• Viewing “small multiples” or coordinated views from
one document or related documents, e.g., several stock
quotes or slides from a presentation (see Fig. 1);

• Compositing related documents, e.g., a list of search
results and a subset of the resulting documents; and

• Sharing content with remote users, e.g., extending a
multi-surface environment to include several locations.

To enable these scenarios, meta-applications can either
present multiple synchronized instances of a single applica-
tion, or orchestrate the state of different applications.

Figure 2: HydraScope applications: (A) Presentation viewer; (B) Stock viewer; (C) Tiled map viewer with pan and

zoom. (D) Multi-screen search: left two screens show search results, right four screens load corresponding pages.

This paper presents HydraScope, our meta-application
framework for web applications. HydraScope uses DOM in-
spection and event injection methods to coordinate web ap-
plications without having access to application source code.
Any approach that does not modify source code can only
control or modify some aspects of an application. To in-
vestigate what can be achieved, we focus on multiple view

interfaces [14], which display several views of a single docu-
ment, and on compositing related documents from different
applications. By building several meta-applications (see Fig.
2), we demonstrate that our approach can be used to rapidly
produce a useful range of applications.

2. HYDRASCOPE
HydraScope supports web-based meta-applications by ex-

ecuting multiple copies of one or more web applications in
parallel and keeping the copies synchronized. HydraScope
leverages the fact that many web applications already sup-
port data synchronization across multiple clients, and adds
view synchronization logic to create a meta-application out
of individual application instances.

Users manage and control meta-applications using the Hy-
draScope mobile controller (Fig. 3A), delivered over the web
to mobile devices. The application manager (Fig. 3B) lets
users launch meta-applications and assign them to a sub-
set of the available display surfaces (Fig. 3C). Several users
can interact simultaneously with the meta-applications us-
ing HydraScope’s extensible architecture: First, users can
provide standard desktop input events (mouse pointing,
scrolling, and text entry) to any application and display
surface (Fig. 3D). Second, meta-applications can provide a
dedicated interface to control specific features, such as nav-
igating search results in a web search application (Fig. 3E).

HydraScope meta-applications must assemble a coherent
user interface from multiple application instances, for multi-
ple users. Achieving this conceptual coherence requires: (1)
data synchronization, (2) view synchronization, (3) meta-
application management and (4) handling multi-user input.

2.1 Data Synchronization
Application instances need a coherent, shared model of

the data they present, e.g., the document being viewed or
edited. In cases such as maps, on-line catalogs and search
results, the underlying document is essentially static. The
necessary information is often encoded in the document’s
URL, which can simply be shared.

For meta-applications that support document editing, real-
time data synchronization among application instances is
required. Fortunately, an increasing number of web applica-
tions, such as Google Docs1, already support simultaneous
editing. HydraScope takes advantage of their synchroniza-
tion mechanisms to execute multiple copies of each.

HydraScope can also create meta-applications out of non-
collaborative web applications by using web frameworks for
real-time data sharing, such as ShareJS2. The developer first
adds data synchronization to the application, then uses Hy-
draScope to add view synchronization.

2.2 View Synchronization
View synchronization manages how the various instances

of an application are presented: together, they must present
a coherent view of the overall application. For example, view
synchronization for a tiled map may entail calculating ap-
propriate latitude and longitude offsets for each application
instance to generate a single large map. Similarly, a large
document may appear as a series of pages that are kept in
sync as the document is scrolled.

HydraScope features an application-specific interface in-
stance manager (IIM) that synchronizes different views us-
ing runtime interface inspection and event injection. When
a user interacts with an application, the IIM senses the cor-
responding view changes and tells the other applications to
update their views accordingly. Because these view synchro-
nization rules are unique to each application and encapsu-
late the multiple display logic, they must be created by the
meta-application developer. Rules can either be hardcoded

1http://docs.google.com
2http://sharejs.org

Figure 3: (A) Meta-applications can be controlled on mobile devices: (B) When users launch a new meta-application

in the manager UI, they can (C) assign available screens to that application. Users can then select an appropriate

control interface: either (D) a generic touch pad and text entry controller; or (E) application-specific controllers. The

search controller shown here enables users to “pin” search results to screens and to enter new query terms.

in the meta-application or controlled by users at runtime via
auxiliary user interfaces. For example, a meta-application
may enable users to switch between a large tiled map or di-
verse views of the same map at runtime. Communication
among interface instance managers on different machines is
coordinated by a single, application-agnostic synchroniza-
tion server.

2.3 Meta-Application Management and Input
Large-screen displays and multi-surface environments are

especially well-suited for co-located collaboration. While
traditional pointing devices can be scaled to multiple users
working across multiple displays [9], users may also need to
physically move in the room, e.g., to see detail on a wall
display. Handheld input devices that support such move-
ment complement desk-bound devices and offer additional
displays for auxiliary interactions. Hydrascope’s mobile in-
put controllers unify two key functions:

(1) managing meta-applications (start, close, and man-
age display real estate), and (2) providing input to running
meta-applications.

The HydraScope application manager lists the available
meta-applications and lets the user choose on which displays
they should run. It also lets users switch between a meta-
application-specific mobile control interface and a generic
interface to control cursor and text input.

Meta-application developers can define mobile control in-
terfaces to deliver specific events to their applications. For
example, a slideshow controller may provide buttons to nav-
igate the slide deck, while a search controller may provide a
search box on the mobile device so users need not point to
a search box on the multi-screen display. To manage input
conflicts, we use stateless commands such as next/previous
slide, or temporary locks for commands that require contin-
uous control, such as a slider to adjust the scale of a map.

Providing cursor and text input to a meta-application is
challenging because it requires controlling the system cursors
and keyboard foci of each computer running a display sur-
face, allowing several users to interact simultaneously with
the same or different meta-applications. HydraScope ex-
tends prior work on remote cursor control schemes to move
input across different computers [9] by sharing a single sys-
tem cursor among several simulated cursors, one per user,
using optimistic locking: the system cursor is used only when

absolutely necessary, essentially for clicks and drags, there-
fore minimizing (but not entirely avoiding) conflicts.

3. ARCHITECTURE & IMPLEMENTATION
The HydraScope architecture comprises four distinct com-

ponents (Fig. 4): (1) application specific interface instance
managers (IIM) that run on each display server3 to monitor
view changes and update views; (2) a system input man-
ager (SIM) that runs on each display server to permit use of
multiple cursors across multiple machines; (3) mobile meta-
application managers to assign applications to displays and
control them; (4) a master synchronization server that mar-
shals messages across display servers and mobile controllers.

Developers write individual meta-applications by provid-
ing (1) a brief meta-application definition in the synchro-
nization server; (2) interface instance manager code; and,
optionally, (3) a mobile control user interface for their meta-
application.

Our implementation uses the Google Chrome browser run-
ning on OS X, however the architectural principles are not
tied to this browser or operating system. Each display
server runs one or more Chrome windows. Interface instance
managers (IIM) are written as browser extensions. Sys-
tem input managers (SIM) are native applications written in
Objective-C to directly interact with the operating system’s
input APIs. The synchronization server is implemented in
Javascript using the node.js event-driven I/O server4. The
mobile devices, synchronization server and browser exten-
sions communicate using socket.io5.

Our test setup comprises two MacPro display servers, each
with six screens, with a total display resolution of 11520px
× 2160px.

3.1 Interface Instance Manager
On starting the meta-application, the IIM launches one

or more browsers per screen, positions their windows to fill
each screen, and initializes each view by loading appropri-
ate application URLs, possibly with different parameters for
each window. Because each display server can have multiple

3A display server is any computer in the environment that
controls one or more display surfaces.
4http://nodejs.org
5http://socket.io, uses web sockets when available

Figure 4: (Left) Global architecture of HydraScope; (Right) Local architecture on a single HydraScope display server.

screens running multiple windows, the IIM is split into a host

component with one instance per display server, and win-

dow wrappers with one instance per browser window (Fig. 4
Right). Wrappers observe as users interact with the applica-
tion. When actions change the application view, they pass a
message to the IIM host, which then determines the proper
steps for view synchronization. The IIM host then issues
update commands to the other IIM wrappers on the same
machine. In our implementation, the IIM host is imple-
mented as a Chrome background page and the IIM wrappers
are written as Chrome content scripts.

For multi-display environments that involve multiple dis-
play servers, HydraScope uses an additional synchronization
server: IIM hosts forward the view update messages they
receive from an IIM wrapper to the synchronization server,
which in turn broadcasts it to all other display servers.

View Synchronization involves several strategies. Some
web applications implement a stateless design: all param-
eters needed to determine the view are passed from the
browser to the web application server, usually through URL
parameters. For such applications, IIM wrappers can simply
monitor the URL for changes. Other web applications main-
tain internal state. For these, a meta-application developer
must reverse-engineer relevant state through inspection. We
have had success in identifying relevant DOM elements and
watching them for changes. For example, in a slide presenta-
tion, sensing which slide an application is currently showing
can be done by parsing a label that states Slide x of y.

IIM wrappers must also actuate the interface program-
matically to change the view. For stateless applications, an
appropriate URL can be constructed and loaded, but this
causes a complete reload of the view at each change. Alter-
natively, a view can be controlled by injecting appropriate
input events into the application. For example, the IIM
wrapper of a slideshow viewer can synthesize clicks on the
next / previous slide navigation elements. Finally, an ap-
plication could also expose an API to explicitly support its
integration into meta-applications.

3.2 System Input Manager
The System Input Manager (SIM) manages multiple cur-

sors across multiple display servers and allows users to send
mouse and text input to the meta-applications. It is com-
posed of a native OS X application running on each display
server (OScontrol), a web interface running on each mobile
device, and glue code running in the synchronization server.

The mobile interface features a touchpad to control the
cursor, a vertical bar to control scrolling, and an input field
to send text input (Fig. 3D). Since the touchpad can be

quite small relative to the available display surfaces, our
cursor control features both a traditional gain and a less tra-
ditional cursor inertia: when lifting the finger at the end of
a quick flicking gesture, the cursor continues with an amor-
tized motion, therefore anticipating the subsequent move-
ment.OScontrol can also be used with a regular mouse and
keyboard for a result similar to, e.g., PointRight [9].

OScontrol uses optimistic locking to acquire the system
cursor for button and drag events: If the system cursor is
not locked, the request succeeds and the events are relayed
to the system cursor; If the system cursor is locked, which
happens only if another user is performing a drag operation
on the same display server, the operation fails silently. In
practice, conflicts are rare because web applications rarely
use dragging, especially since scrolling is handled separately.
Applications that use dragging extensively should probably
use an application-specific control interface.

3.3 Mobile Meta-Application Manager
The synchronization server maintains a global configura-

tion of all displays in a multi-display wall or multi-surface en-
vironment, which it delivers to the mobile meta-application
manager (Fig. 3B). When the user chooses a set of displays
on which to run an application (Fig. 3C), the configuration is
broadcast to all IIM hosts, which then load the application’s
URL if their screens are affected by the launch.

4. SAMPLE APPLICATIONS
We developed five meta-applications to demonstrate the

HydraScope design space (see Fig. 2 and the accompanying
video). These projects show that meta-applications are more
like scripts than system programs and can be implemented
with only a few hundred lines of JavaScript (Fig. 5).

4.1 Slide Presenter (Fig. 2A)
Users can give or review presentations on the multi-screen

display, with one slide per monitor. They can navigate
through the slide deck by pressing two buttons on a mo-
bile controller or clicking on navigation controls inside each
application instance. Advancing beyond the last currently
visible slide shifts all the slides to the left.

The Slide Presenter builds on Google Documents’ Presen-
tation Viewer. Each monitor runs one Chrome window with
one presentation page. Since each slide has a unique id, the
user can start the deck at a specified slide by passing the
slide’s id as a URL parameter, which is used to initialize the
views. For efficient updating, we inject mouse events on the
“previous”and“next”buttons inside the player whenever the
user presses the corresponding mobile controller buttons.

Figure 5: Code size for five meta-applications.

4.2 Stock Viewer (Fig. 2B)
Users can compare the financial performance of several

stocks over time, with one stock chart per monitor. With
the system cursor, the user can pan the graph or use its slider
widget to change the time interval shown in one window; all
other windows update to show the same time interval.

The Stock Viewer builds on Google Finance. Unlike the
Slide Viewer, the stock chart is an embedded Flash object,
with no easily accessible way to inject events. Instead, we
reload the page with new URL parameters, which precludes
interactive data “scrubbing”. We take advantage of an em-
bedded link designed to let users share their current view,
checking the URL to monitor if the graph was scrolled.

4.3 Tiled Map (Fig. 2C)
Users control a tiled map that spans all monitors, using

the mobile controller to pan and zoom. Users can view a
single large map or “small multiples” with different data,
such as roads, satellite images and topographic views.

The Tiled Map builds on Google Maps. Like the Stock
Viewer, we take advantage of an embedded link that se-
rializes the view state into URL parameters. For smooth
scrolling, we use Google’s JavaScript Maps API to get and
set map parameters and a separate HTML page that stores
map boundary and zoom information in the DOM.

4.4 Wall Search (Fig. 2D)
Users can build up a set of Google search results: The

two left screens synchronize scrolling to create the illusion
of a single, tall window; the four right screens each show
a top search result. The user can type new terms into the
query box on the mobile controller or pin search result pages
onto its display by tapping the corresponding screen icon
(see Fig.3E). The previous and next buttons switch between
results, displaying them on screens not yet pinned.

Wall Search builds on Google Search. The interface in-
stance manager maintains two types of screens: result list-
ings and individual results pages. The IIM wrapper parses
Google’s results listing and extracts links to external sites.
When a user searches for a new term, the IIM wrappers for
both results listing screens construct the appropriate search
URL, reload the page, and adjust the scroll position. A sim-
ilar synchronization occurs when users arrive at the end of
one results page and advance to the next.

4.5 Document Editor
Multiple users can edit a single document simultaneously,

by manipulating different text carets in different windows
(albeit only one text caret per window) using multiple cur-
sors from the System Input Manager. The Document Editor
builds on HackPad6, a real-time collaborative editor that
already performs the necessary data synchronization. We

6http://hackpad.com/

synchronize scroll positions so that scrolling one document
window updates the other windows.

5. LIMITATIONS AND GUIDELINES
We encountered a few anticipated limitations when de-

veloping meta-applications with HydraScope. Generally,
reverse engineering state can be both limited and brittle.
It may not be possible to detect internal application state
changes that do not result in user interface changes. Web ap-
plications can also change their interface layout frequently.
Such changes can break both detection and injection code
written by meta-application authors. Event injection code
can also fail because the web application interfaces may have
different latencies based on network traffic. Finally, appli-
cations may not fully support concurrent interactions.

To support re-use as meta-applications, web applications
should follow several design guidelines:

1. give access to the view state for use by a remote con-
troller: a) encode the application’s state in the URL to
facilitate initial loading or latecomer synchronization; and
b) store important state in documented DOM elements for
monitoring by the meta-application.

2. separate the interface from the rest of the application

using well-known patterns such as MVC. The Stock Viewer
shows how opaque containers such as Flash make it impos-
sible to finely monitor interaction and synchronize views if
such separation is absent.

3. allow meta-applications to replicate application widgets

for direct use on a remote controller. For example, Google
search’s query box, the Stock Viewer’s slider and the Slide
Presenter’s navigation should be easy to migrate, instead of
requiring reverse-engineering and reimplementation.

6. RELATED WORK
HydraScope builds on three main research areas: multi-

display environments, multi-user input, and reverse engi-
neering of existing applications.

6.1 Multi-Display Environments
Creating interactive applications that span multiple dis-

plays and multiple computers has been studied primarily in
the context of large tiled displays and immersive environ-
ments. Early work focused on rendering performance and
used OpenGL, e.g. Chromium [8]. More recent work sim-
ply runs a copy of the application on each display server,
using different viewports to compose part of the overall im-
age. jBricks [12] runs the Java-based ZVTM toolkit on a
visualization cluster, while Shiffman’s Most Pixels Ever7 ex-
tends Processing programs to multiple screens. Shared Sub-
stance [5] provides sharing mechanisms to create distributed
applications on wall-sized displays. In Google Earth’s8 Liq-
uidGalaxy mode, a master instance controls several slaves to
generate high-resolution interactive maps on tiled displays.

Another common approach, e.g., the SAGE environment9,
runs the application on a single machine and moves pixels
to the display servers using protocols such as VNC [13]. The
drawback is that scaling pixels creates blocky images, losing
the benefits of high-resolution wall-size displays.

7http://github.com/shiffman/Most-Pixels-Ever/
8http://earth.google.com
9http://www.sagecommons.org

HydraScope uses a version of the distributed rendering
approach by running a copy of the application on each dis-
play server. Unlike previous work, it does not require access
to the source code of the application.

6.2 Multi-User Input
Distributing input across multiple computers and man-

aging input from multiple users is a long-standing problem
in collaborative applications. MMM [2] is an early single-
display groupware system that supports multiple mice, while
PointRight [9] distributes mouse and keyboard input to mul-
tiple displays across multiple computers. FourBySix [6] sup-
ports multiple cursors on a tabletop driven by a single ma-
chine by drawing simulated cursors and multiplexing access
to the system cursor. HydraScope uses a similar approach,
except that it works with multiple computers.

While HydraScope manages a simple 2D geometry of the
display surfaces, PointRight [9] manages a 2D-manifold and
the Perspective Cursor [11] can manage arbitrary 3D geom-
etry. We may consider these approaches in the future.

6.3 Reverse-Engineering Interfaces
Our work is based on reverse-engineering web applications

to extract view state information. This is closely related to
prior work that uses similar DOM-based reverse engineer-
ing, such as d.mix [7], or the early Multibrowser [10], which
moved web content across multiple displays. To facilitate
the work of meta-application developers, Hydrascope could
leverage existing tools that simplify or automate access to
web applications, such as ChickenFoot [3].

Other approaches use pixels instead of the DOM struc-
ture. For example, Sikuli [15] monitors application state by
applying computer vision to screen pixels. Such approaches
could be used to create meta-applications without access to
the application source code nor the introspection facilities
of web applications, enhancing the scope of HydraScope.

Another way to modify existing applications without ac-
cess to their source code is code injection. Scotty [4] com-
bines this approach with reflection in Objective-C to pro-
grammatically query the state of desktop applications. Scotty
has been used to remote control applications and to teleport
their display to a remote computer, and could be used by
HydraScope to create meta-applications on Mac OS X.

7. CONCLUSION
Today’s applications do not readily scale to multi-surface

environments in which collections of display surfaces are
run by different computers. Rather than rewriting appli-
cations from scratch, we introduce the concept of a meta-

application: a collection of application instances with coor-
dinated contents and views that are accessible to multiple
users via mobile interfaces. We present HydraScope, a first
step towards building and deploying meta-applications from
existing web applications and demonstrate its effectiveness
through five meta-applications.

Realizing the full potential of meta-applications requires
important future work. First, we need to expand beyond
multiple view interfaces and improve the tools used by devel-
opers to create meta-applications. Second, we need to bet-
ter understand how meta-applications can meet user needs
by deploying them in real settings, including remote col-
laboration scenarios. Finally, we need to investigate meta-
applications that include native as well as web applications.

8. ACKNOWLEDGMENTS
We thank Viraj Kulkarni, Yun Jin, and Hong Wu for

their contributions. This work was supported by NSF award
OISE-1157574.

9. REFERENCES
[1] M. Beaudouin-Lafon, S. Huot, M. Nancel, W. Mackay,

E. Pietriga, R. Primet, J. Wagner, O. Chapuis, C. Pillias,
J. R. Eagan, T. Gjerlufsen, and C. Klokmose. Multisurface
interaction in the WILD room. IEEE Computer, 45:48–56,
2012.

[2] E. A. Bier and S. Freeman. MMM: a user interface
architecture for shared editors on a single screen. In Proc.
User Interface Software and Technology, UIST ’91, 79–86.
ACM, 1991.

[3] M. Bolin, M. Webber, P. Rha, T. Wilson, and R. C. Miller.
Automation and customization of rendered web pages. In
Proc. User Interface Software and Technology, UIST ’05,
163–172. ACM, 2005.

[4] J. R. Eagan, M. Beaudouin-Lafon, and W. E. Mackay.
Cracking the cocoa nut: user interface programming at
runtime. In Proc. User Interface Software and Technology,
UIST ’11, 225–234. ACM, 2011.

[5] T. Gjerlufsen, C. N. Klokmose, J. Eagan, C. Pillias, and
M. Beaudouin-Lafon. Shared Substance: developing flexible
multi-surface applications. In Proc. Human Factors in
Computing Systems, CHI ’11, 3383–3392. ACM, 2011.

[6] B. Hartmann, M. R. Morris, H. Benko, and A. D. Wilson.
Augmenting interactive tables with mice & keyboards. In
Proc. User Interface Software and Technology, UIST ’09,
149–152. ACM, 2009.

[7] B. Hartmann, L. Wu, K. Collins, and S. R. Klemmer.
Programming by a sample: rapidly creating web
applications with d.mix. In Proc. User Interface Software
and Technology, UIST ’07, 241–250. ACM, 2007.

[8] G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern,
P. D. Kirchner, and J. T. Klosowski. Chromium: a
stream-processing framework for interactive rendering on
clusters. In Proc. Computer Graphics and Interactive
Techniques, SIGGRAPH ’02, 693–702. ACM, 2002.

[9] B. Johanson, G. Hutchins, T. Winograd, and M. Stone.
PointRight: experience with flexible input redirection in
interactive workspaces. In Proc. User Interface Software
and Technology, UIST ’02, 227–234. ACM, 2002.

[10] B. Johanson, S. Ponnekanti, C. Sengupta, and A. Fox.
Multibrowsing: Moving web content across multiple
displays. In Proc. Ubiquitous Computing, UbiComp ’01,
346–353. Springer-Verlag, 2001.

[11] M. A. Nacenta, S. Sallam, B. Champoux, S. Subramanian,
and C. Gutwin. Perspective cursor: perspective-based
interaction for multi-display environments. In Proc. Human
Factors in Computing Systems, CHI ’06, 289–298. ACM,
2006.

[12] E. Pietriga, S. Huot, M. Nancel, and R. Primet. Rapid
development of user interfaces on cluster-driven wall
displays with jBricks. In Proc. Engineering Interactive
Computing Systems, EICS ’11, 185–190. ACM, 2011.

[13] T. Richardson, Q. Stafford-Fraser, K. Wood, and
A. Hopper. Virtual network computing. Internet
Computing, IEEE, 2(1):33 –38, jan/feb 1998.

[14] M. Q. Wang Baldonado, A. Woodruff, and A. Kuchinsky.
Guidelines for using multiple views in information
visualization. In Proc. Advanced Visual Interfaces, AVI ’00,
110–119. ACM, 2000.

[15] T. Yeh, T.-H. Chang, and R. C. Miller. Sikuli: using GUI
screenshots for search and automation. In Proc. User
Interface Software and Technology, UIST ’09, 183–192.
ACM, 2009.

