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Abstract

We present a new Curry-Howard correspondence for classical first-order natural deduction. We

add to the lambda calculus an operator which represents, from the viewpoint of programming,

a mechanism for raising and catching multiple exceptions, and from the viewpoint of logic, the

excluded middle over arbitrary prenex formulas. The machinery will allow to extend the idea of

learning – originally developed in Arithmetic – to pure logic. We prove that our typed calculus

is strongly normalizing and show that proof terms for simply existential statements reduce to

a list of individual terms forming a Herbrand disjunction. A by-product of our approach is a

natural-deduction proof and a computational interpretation of Herbrand’s Theorem.

1998 ACM Subject Classification F.4.1

Keywords and phrases classical first-order logic, natural deduction, Herbrand theorem, delim-
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1 Introduction

In the midst of an age of baffling paradoxes and contradictions, during the heat of a harsh

controversy between opposed approaches to foundations of mathematics – infinitism vs.

constructivism – it must have been required a new and really penetrating insight to see a way

out. Hilbert’s proposed solution, at the beginning of twentieth century, was certainly deep and

brilliant. According to him, there was no contradiction between classical and intuitionistic

mathematics, because the ideal objects and principles that appear in classical reasoning can

always be eliminated after having proved some concrete, incontestably meaningful statement.

Hilbert’s idea was made precise in its epsilon substitution method (see[25]), a systematic

procedure to eliminate ideal objects from classical proofs and reduce every logical step to

a concrete calculation. Hilbert’s program was to show the termination of his method, or

variants thereof, initially for first-order classical logic, then Peano Arithmetic and finally

Analysis. As it turned out, Hilbert was right, and the termination proofs have been provided

for example by Ackermann (for a modern proof see [25]) and Mints [26].
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Agency (ANR)
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2 Natural Deduction in Classical First-Order Logic

1.1 Herbrand’s and Kreisel’s Theorems

After Hilbert, two other seminal results clearly stated in logical terms that it is always

possible to eliminate non-constructive reasoning in two important logical systems.

The first one is Herbrand’s Theorem [11], which says that if a simply existential statement

∃α P is derivable in classical first-order logic from a set of purely universal premises,

then there is sequence of terms m1, m2, . . . , mk such that the Herbrand disjunction

P[m1/α] ∨ P[m2/α] ∨ . . . ∨ P[mk/α] is provable in classical propositional logic from a set

of instances of the premises.

The second one is Kreisel’s Theorem [23], which says that if a simply existential formula

∃α P is derivable in classical first-order Arithmetic, then it is derivable already in intu-

itionistic first-order Arithmetic. Using Kreisel’s modified realizability [24] (or many other

techniques), one can compute out of the intuitionistic proof a number n – a witness –

such that P[n/α] is true, whenever P[n/α] it is closed.

Both Herbrand’s and Kreisel’s proof techniques are now obsolete, but the meaning of

their results is as valid as ever, because it provides a theoretical justification for an important

quest: the search for the constructive content of classical proofs. Herbrand’s Theorem tells

us what is the immediate computational content of classical first-order logic: the list of

witnesses contained in any Herbrand disjunction. Kreisel’s Theorem tells us what is the

immediate computational content of first-order Arithmetic: the numeric witness for any

provable existential statement. What is of great interest, in the light of those results, is

to automatically transform proofs into programs in order to compute from any proof of

any existential statement a suitable list of witnesses, in first-order logic, a single witness,

in Arithmetic. In this paper, we shall address the first-order version of the problem – and

propose a new solution. It would be also interesting to tackle the problem in full classical

Arithmetic, but we leave this topic open.

1.2 Natural Deduction and Sequent Calculus

The two most successful and most studied deductive systems for first-order logic are Gentzen’s

natural deduction [27] and Gentzen’s sequent calculus [19, 15]. The first elegant constructive

proof of Herbrand’s Theorem was indeed obtained as a corollary of Gentzen’s Cut elimination

Theorem. Today, that proof is still the most cited and the most used. On the contrary,

we even failed to find in the literature a complete proof of Herbrand’s Theorem using

classical natural deduction. This is no coincidence, but yet another instance of the legendary

duality between the two formalisms: as a matter of fact, some results are much more easily

discovered and proved in the sequent calculus, while other are far more easily obtained

in natural deduction. Since the time of Gentzen, natural deduction worked seamlessly for

intuitionistic logic, and led to the discovery of the Curry-Howard correspondence [28], while

sequent calculus was much more technically convenient in classical logic (Gentzen was not

able to prove a meaningful normalization theorem for classical natural deduction, whilst

he was for the intuitionistic case [29]). It indeed took a surprisingly long time to discover

suitable reduction rules for classical natural deduction systems with all connectives [21].

The great advantage of using natural deduction instead of sequent calculus is no mystery:

it is natural! When logically solving non-trivial problems, humans adopt forward reasoning,

which is more adapted to proof-construction: one starts from some observations, draws some

consequences and gradually combine them so to reach the goal. On the other hand, sequent

calculus is more suitable for machine-like proof-search: one start from the final goal and

applies mechanically logical rules to reach axioms. As a consequence, when analyzing real
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mathematical proofs so to investigate their constructive content, one likes it better to use

natural deduction. Moreover, the reduction of a proof into normal form is nothing but the

evaluation of a functional program, and so very easy to understand. The cut-elimination

process, instead, is far more involved and difficult to follow. For example, the proof of

Herbrand’s Theorem by cut-elimination is deceptively simple: while it is rather obvious

that the final cut-free proof contains an Herbrand disjunction, it is very painful to gain a

step-by-step and clear understanding of how the corresponding list of witnesses has been

produced.

1.3 Classical Natural Deduction: an Exception-Based Curry-Howard

Correspondence

We would like to endow classical first-order natural deduction with a natural set of reduction

rules that also allows a natural, seamless proof of Herbrand’s Theorem. As a corollary, this

system would also have a simple and meaningful computational interpretation. Indeed, we

believe that one can say to really understand a theorem when one is able to construct a proof

of it that, a posteriori, appears completely natural, almost obvious. Usually, that happens

when one has created a framework of concepts and methods that explain the theorem.

1.3.1 EM1 and Exceptions in Arithmetic

If one want to understand how is it possible that a classical proof as any computational

content in the first place, the concept of learning is essential. It was a Hilbert discovery that

from classical proofs one can extract approximation processes, that learn how to constructs

non-effective objects by an intelligent process of trial and error. More recently, Interactive

realizability [2, 9, 3, 4, 5] has been developed, which is a framework that finally combines the

learning idea with the formulae-as-types tradition. In [7] a Curry-Howard correspondence

for a classical system of Arithmetic is introduced: namely, Heyting Arithmetic HA with the

excluded middle schema EM1, ∀αP ∨ ∃α¬P, where P is any atomic, and hence decidable,

predicate. Classical programs are described as programs that make hypotheses, test them

and correct them when they are learned to be wrong. In particular, EM1 is treated as an

elimination rule:

Γ, a : ∀α P ⊢ u : C Γ, a : ∃α ¬P ⊢ v : C

Γ ⊢ u ‖a v : C

This inference is nothing but a familiar disjunction elimination rule, where the main premise

EM1 has been cut, since, being a classical axiom, it has no computational content in itself.

The proof terms u, v are both kept as possible alternatives, since one is not able to decide

which branch is going to be executed at the end.

The informal idea expressed by the associated reductions is to assume ∀α P and try to

produce some proof of C out of u by reducing inside u. Whenever u needs the truth of an

instance P[n/α] of the assumption ∀α P, it checks it, and if it is true, it replaces it by its

canonical proof which is just a computation. If all instances P[n/α] of ∀α P being checked

are true, and no assumption ∀αP is left (this is the non-trivial part), then the normal form

u′ of u is independent from ∀α P and we found some u′ : C. If instead some assumption of

∀αP is left in u, one may encounter some instance P[n/α] which is false, and thus refute the

assumption ∀α P. In this case the attempt of proving C from ∀αP fails, one obtains ¬P[n/α]

and u raises the exception n; from the knowledge that ¬P[n/α] holds, a canonical proof term
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∃α ¬P is formed and passed to v: a proof term for C has now been obtained and it can be

executed.

1.3.2 EMn and Exceptions in Classical Logic

Our goal is to extend the learning methods developed for HA + EM1 to classical first-order

logic. There is a catch: the reductions we have just described do no longer work! The obvious

obstacle is that it is not possible to check the truth of formulas, even of atomic ones: there is

no such a thing as a standard model for classical first-order logic, let alone an absolute notion

of truth. Is the whole idea of learning bound to fail and be abandoned or it can be rescued in

some way? The problem is that, even though classical first-order logic is proof-theoretically

much weaker than first-order Arithmetic, in a sense, it is harder to interpret and gives rise

to different issues. The programs extracted from proofs in HA + EM1 explore many possible

computational paths, due to the bifurcations produced by EM1. When the proven formula is

a simply existential statement, either a path will succeed in finding a correct witness or will

fail and throw some information which will activate another path. At the very end, a single

computational path will find a witness. Herbrand’s Theorem for classical first-order logic,

instead, asserts only the existence of a list of possible witnesses for the proven existential

formula. This must be due to the fact that it is often impossible to solve the dilemmas that

are posed by the use of the exclude middle, and several alternatives computational paths are

to be kept forever in parallel.
Let us consider again the rule for EM1, but now in pure first-order logic:

Γ, a : ∀α P ⊢ u : C Γ, a : ∃α ¬P ⊢ v : C
Γ ⊢ u ‖a v : C

EM1

The idea is still to start reducing inside u in order to produce a proof of C. But the first time

one needs an instance P[m/α] of the hypothesis ∀α P to hold, where m is now a first-order

term, an exception is automatically thrown. Since one is not able to decide whether P[m/α]

holds, the current universe doubles and a new pair of parallel, mutually exclusive universes

is generated. In the first one, P[m/α] is supposed to hold, in the second one, ¬P[m/α] is

supposed to. What is the correct universe? One shall never know, and one continues to

make reductions in parallel in these two universes. In the first one, inside u, a small progress

has been made, because a use of the universal hypothesis ∀α P can be eliminated: P[m/α]

holds by the very hypothesis that generated the universe, and it is no longer necessary to

justify it as a consequence of ∀α P. Hence u can reduce to the term u− obtained by erasing

the premise ∀α P of all eliminations of ∀α P having as conclusion P[m/α]. In the second

one, inside v, a considerable progress has been made, since a witness m for ∃α ¬P has been

learned, again by the very hypothesis that generated the universe. Hence v can reduce to the

term v+ obtained by replacing all occurrences of the hypothesis ∃α ¬P with a proof of it by

an introduction rule with premise ¬P[m/α]. The generation of the two universes is logically

supported by the use of the excluded middle EM0 over propositional formulas, which has the

general form:
Γ, b : ¬Q ⊢ w1 : C Γ, b : Q ⊢ w2 : D

Γ ⊢ w1 | w2 : D
EM0

The resulting conversion for the conclusion u ‖a v of EM1 is the following:

Γ, b : ¬P[m/α] ⊢ v+ : C

Γ, a : ∀α P, b : P[m/α] ⊢ u− : C Γ, a : ∃α ¬P ⊢ v : C
EM1

Γ, b : P[m/α] ⊢ u− ‖a v : C
EM0

Γ ⊢ v+ | (u− ‖a v) : C
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We see that in the term v+ | (u− ‖a v), there is a single bar | separating forever v+ and

(u− ‖a v): the two terms will give rise to two different and independent computations. In the

first, a universal hypothesis has been confirmed, in the second, the same universal hypothesis

has been refuted and a counterexample learned: the idea of learning has been saved!

The term u |||a v decorating the conclusion of excluded middle EM2

Γ, a : ∀α ∃β P ⊢ u : C Γ, a : ∃α ∀β ¬P ⊢ v : C
Γ ⊢ u |||a v : C

EM2

will reduce, in a completely equivalent fashion, to

Γ, b : ∀β¬P[m/α] ⊢ v+ : C

Γ, a : ∀α ∃β P, b : ∃β P[m/α] ⊢ u− : C Γ, a : ∃α ∀β ¬P ⊢ v : C
EM2

Γ, b : ∃β P[m/α] ⊢ u− |||a v : C
EM1

Γ ⊢ v+ ‖b (u− |||a v) : C

u− is now obtained from u by erasing the premise ∀α ∃β P of all eliminations of ∀α ∃β P

having as conclusion ∃β P[m/α]; v+ is obtained by replacing all occurrences of the hypothesis

∃α ∀β ¬P with a proof of it by an introduction rule with premise ∀β ¬P[m/α]. This time the

generation of the new pair of universes in the term v+ ‖b (u− |||a v) is logically supported by

EM1, so the number of bars in the last application of EM is two, decreasing by one. Therefore,

the two universes are parallel, but can still communicate with each other: an exception may

at any moment by raised by v+ and a term be passed in particular to u−. This will be very

useful, since the hypothesis b : ∃β P[m/α] may block the computation inside u−.

The reduction rules for the excluded middle on prenex formulas with n alternating

quantifiers – EMn – are the obvious generalization of what we have just explained: for full

details see section §2. The general idea is that the right ∃-branch of the excluded middle

always waits for a witness coming from the left ∀-branch. These two universes are completely

separated, but inhabitants of the second can receive “divine gifts” from the first, under the

form of possible witnesses. The inhabitants of the second universe cannot see how these

godsends are produced, and may accept them as manifestation of divine providence. This

should remind the reader the copycat strategy for EMn in Coquand’s game semantics [12].

In order to implement our reductions we shall use constant terms of the form H
∀αA
a , whose

task is to automatically raise an exception: the notation raise∀αA
a would also have been just

fine. We shall also use a constant W
∃αA⊥

a denoting some unknown proof term for ∃αA⊥

(A⊥ is the usual involutive negation), whose task is to catch the exception raised by H
∀αP
a .

Actually, these terms will occur only through typing rules of the form

Γ, a : ∀αA ⊢ H
∀αA
a : ∀αA Γ, a : ∃αA⊥ ⊢ W

∃αA⊥

a : ∃αA⊥

where a is used just as a name of a communication channel for exceptions: if in u occurs a

subterm of the form H
∀αA
a m, then in an exception is raised in u ||||||||a v and passed to v ( |||||||| stands

for a sequence of n + 1 bars in the case of EMn). From the viewpoint of programming, that is

a delimited exception mechanism (see de Groote [20] and Herbelin [22] for a comparison). The

scope of an exception has the form u ‖a v : C, with u the “ordinary” part of the computation

and v the “exceptional” part. Similar mechanism are expressed by the constructs raise

and try . . . with . . . in the CAML programming language. There is a substantial difference,

however, with the exception handling mechanism used in [7]. Here, the ordinary part of the

computation goes on after the first exception, and in fact can raise multiple exceptions, one

after another, which are all passed to the exception handler; in [7], instead, the ordinary part

of the computation is aborted as soon as the first exception is raised.
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1.3.3 Permutation Rules

A problem arises when the conclusion C of the excluded middle is employed as the main

premise of an elimination rule to obtain some new conclusion. For example, already with

EM0, when C = A → B, and Γ ⊢ w : A, one may form the proof term (w1 | w2)w of type B.

In this case, one may not be able to solve the dilemma of choosing between w1 and w2, and

the computation may not evolve further: one is stuck.

As in [7], the problem is solved by adding permutation rules, as usual with disjunction.

For example, (u ‖a v)w reduces to uw ‖a vw. In this way, one obtains two important results:

first, one may explore both the possibilities, ∀αP holds or ∃α¬P holds, and evaluate uw and

vw; second, one duplicates the applicative context [ ]w. If C = A∧B, one may form the proof

term π0(u ‖a v), which reduces to π0u ‖a π0v, and has the effect of duplicating the context

π0[ ]. Similar standard considerations hold for the other connectives. Thus permutation rules

act similarly to the rules for µ in the λµ-calculus, but are only used to duplicate step-by-step

the context and produce implicitly the continuation. Anyway, ‖ behaves like a control-like

operator.

1.3.4 Herbrand’s Disjunction Extraction and Strong Normalization

The computational content of a classical first-order proof of a simply existential statement

is the list of witnesses appearing in a Herbrand disjunction. Why in intuitionistic logic the

result of the normalization process is a single witness, while in classical logic it is just a list

of possibilities? The reduction rules for EM provide an intuitive explanation of why this

list is produced and highlight each of the moments when a piece of it is built. During the

normalization of a proof term, the computation is first purely intuitionistic and heading

towards a single witness. In other terms, only redexes of the standard lambda calculus are at

first contracted. However, the computation may be blocked by an instance of a universal

hypothesis H
∀αA
a m which the program cannot to decide. At that time, the universe doubles,

but in each of new pair of universes, the computation goes on and stays intuitionistic. In

each of the two universes, new universe duplications can occur and so on . . . . At the very

end, there will be several different intuitionistic computations: each of them will produce, as

expected, a witness, and the collection of all of them will form the Herbrand disjunction.

This intuitive description will be formalized in a normal form property that we shall prove.

We shall also prove a strong normalization result stating that every reduction path gener-

ated by any proof term will terminate in a normal form. We shall employ a non-deterministic

technique introduced in [6], in turn inspired by [8]. While the strong normalization result in

[7] was obtained by means of a special notion of realizability, we had considerable troubles

generalizing that technique. At the end, the non-deterministic approach revealed much more

simple to generalize. We thus leave open the interesting problem of defining a realizability or

a proof-theoretic semantics for our natural deduction system.

1.4 Plan of the Paper

This is the plan of the paper. In Section §2 we introduce a type-theoretical version of

intuitionistic first-order logic IL extended with EMn. In Section §3 we prove the strong

normalization of a non-deterministic variant IL + EM⋆ of IL + EM, which immediately implies

the strong normalization of the latter. In Section §4, we prove that from any quasi-closed

term having as type a simply existential formula, one can extract a correspondent Herbrand

disjunction.
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2 The System IL + EM

In this section we describe a standard natural deduction system for intuitionistic first-order

logic IL, with a term assignment based on Curry-Howard correspondence (see [28] e.g.). We

extend the system with an operator which formalizes the excluded middle principle EMn.

We start with the standard first-order language of formulas.

� Definition 1 (Language of IL + EM). The language L of IL + EM is defined as follows.

1. The terms of L are inductively defined as either variables α, β, . . . or constants c or

expressions of the form f(t1, . . . , tn) with f function constant of arity n and t1, . . . , tn ∈ L.

2. There is a countable set of predicate symbols. The atomic formulas of L are all the

expressions of the form P(t1, . . . , tn) such that P is a predicate symbol of arity n and

t1, . . . , tn are terms of L. We assume to have a 0-ary predicate symbol ⊥ which represents

falsity.

3. The formulas of L are built from atomic formulas of L by the the logical constants

∨, ∧, →, ∀, ∃, with quantifiers ranging over variables α, β, . . .: if A, B are formulas, then

A ∧ B, A ∨ B, A → B, ∀α A, ∃α B are formulas. The logical negation ¬A can be

introduced, as usual, as an abbreviation of the formula A → ⊥

4. Propositional formulas are the formulas whose only logical constants are ∧, ∨, →; we

say that a propositional formula is negative whenever ∨ does not occur in it. Propos-

itional formulas will be denoted as P, Q . . . (possibly indexed). Formulas of the form

∀α1 . . . ∀αn P, with P propositional, will be denoted as ∀~α P and will be called purely

universal; if P is also negative, the formula will be called simply universal.

For deducing the axiom ⊥ → A (ex falso sequitur quodlibet), it is enough to have ⊥ → P,

where P is atomic, and the axioms of equality as well can be formulated as simply universal.

They will not appear explicitly in the logical rules, since at any rate we shall have to treat

a more general case: the computational interpretation of proofs having as assumptions an

arbitrary set of simply universal statements, as usual in Herbrand’s Theorem.

We now define in Figure 1 a set of untyped proof terms, then a type assignment for them.

We assume that in the proof terms three distinct classes of variables appear: one is made

by the variables for the terms themselves, denoted usually as x, y, . . .; one is made by the

quantified variables of the formula language L of IL + EM, denoted usually as α, β, . . .; one is

made by the hypothesis variables, for the pair of hypotheses bound by EMn, denoted usually

as a, b, . . ..

We formalize each instance of the Excluded Middle principle on prenex formulas EMn by

terms of the form u | | . . . |a
︸ ︷︷ ︸

n+1

v, where a is a hypothesis variable which explicitly appears in

the premisses bounded by the EMn rule. We will call a bar any symbol of the shape | . In

the following, we exploit the compact notation |||||||| in order to denote an arbitrary sequence of

n bars | . The symbol |||||||||| stands for n + 1 bars whenever |||||||| represents a sequence of n bars.

In the term u ||||||||a v, any free occurrence of a in u occurs in an expression of the shape

H
∀αA
a , and denotes an assumption ∀αA. Any free occurrence of a in v occurs in an expression

W
∃αA
a , and denotes an assumption ∃αA. All the free occurrences of a in u and v are bound

in u ||||||||a v. H
∀αA
a is the thrower of an exception m (related to the variable assumption a, see

Definition 2) and W
∃αA
a is the catcher of the same exception m. In the terms H

∀αA
a and W

∃αA
a

the free variables are a and those of A minus α.
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Grammar of Untyped Proof Terms

t, u, v ::= x | tu | tm | λx u | λα u | 〈t, u〉 | u π0 | u π1 | ι0(u) | ι1(u) | t[x.u, y.v] | (m, t) | t[(α, x).u]

| (u | v) | u | | . . . |a
︸ ︷︷ ︸

n

v | H
∀αA
a | W

∃αA
a | H

P

where m ranges over terms of L, x over proof-term variables, a over hypothesis variables and A is a
prenex formula with negative propositional matrix. We assume that in the term u | | . . . |a

︸ ︷︷ ︸

n

v, there is

some formula A, such that a occurs free in u only in subterms of the form H
∀αA
a and a occurs free in v

only in subterms of the form W
∃αA
a , and the occurrences of the variables in A different from α are free

in both u and v.

Contexts With Γ we denote contexts of the form e1 : A1, . . . , en : An, where each ei is either a proof-term
variable x, y, z . . . or a EM hypothesis variable a, b, . . ., and ei 6= ej for i 6= j.

Axioms Γ, x : A ⊢ x : A Γ, a : ∀α A ⊢ H
∀αA
a : ∀α A Γ, a : ∃α A ⊢ W

∃αA
a : ∃α A

Γ, a : P ⊢ H
P : P

Conjunction
Γ ⊢ u : A Γ ⊢ t : B

Γ ⊢ 〈u, t〉 : A ∧ B
Γ ⊢ u : A ∧ B
Γ ⊢ u π0 : A

Γ ⊢ u : A ∧ B
Γ ⊢ u π1 : B

Implication
Γ ⊢ t : A → B Γ ⊢ u : A

Γ ⊢ tu : B
Γ, x : A ⊢ u : B

Γ ⊢ λx u : A → B

Disjunction Introduction
Γ ⊢ u : A

Γ ⊢ ι0(u) : A ∨ B
Γ ⊢ u : B

Γ ⊢ ι1(u) : A ∨ B

Disjunction Elimination
Γ ⊢ u : A ∨ B Γ, x : A ⊢ w1 : C Γ, x : B ⊢ w2 : C

Γ ⊢ u [x.w1, x.w2] : C

Universal Quantification
Γ ⊢ u : ∀αA

Γ ⊢ um : A[m/α]
Γ ⊢ u : A

Γ ⊢ λα u : ∀αA

where m is any term of the language L and α does not occur free in any formula B occurring in Γ.

Existential Quantification
Γ ⊢ u : A[m/α]

Γ ⊢ (m, u) : ∃αA
Γ ⊢ u : ∃αA Γ, x : A ⊢ t : C

Γ ⊢ u [(α, x).t] : C

where α is not free in C nor in any formula B occurring in Γ.

EM0

Γ, a : ¬P ⊢ u : C Γ, a : P ⊢ v : C
Γ ⊢ u | v : C

(P negative)

EMn

Γ, a : ∀α A ⊢ u : C Γ, a : ∃α A⊥ ⊢ v : C
Γ ⊢ u | | . . . |a

︸ ︷︷ ︸

n+1

v : C

where A = ∃α0 ∀α1∃α2 . . . ∀αn−2∃αn−1 P, P is negative, and A⊥ = ∀α0 ∃α1∀α2 . . . ∃αn−2∀αn−1 ¬P

Figure 1 Term Assignment Rules for IL + EMn

In our formulation, the excluded middle is restricted to negative propositional formulas,

in the case of EM0, and to prenex normal forms whose propositional matrix is negative, in

the case of EMn. From the logical viewpoint, however, this is not at all a restriction, since

we claim that any arbitrary instance A ∨ ¬A of the excluded middle can be proved in our

system by standard, but tortuous, logical manipulations. The fact that our system captures

full classical first-order logic is not surprising, of course, since every formula is classically
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equivalent to a prenex one. From the computational viewpoint, in fact, we have directly

modeled the most difficult cases of EM. It is quite clear that similar reduction rules for the

less interesting cases of propositional connectives can be easily given, since ∧ is just a finitary

counterpart of ∀ and ∨ of ∃. For economy of presentation, we delay the treatment to future

work.

In the following, we assume the usual renaming rules and alpha equivalences to avoid

capture of variables in the reduction rules that we shall give. We also observe that every

typed term which has been obtained by an elimination as a last rule, can be written as

r t1 t2 . . . tn (n > 0), where r is either a variable xi or a term H
∀αAi

ai
or H

P or a redex and each

ti is either a term (when r t1 . . . ti is obtained by an →-elimination rule or by a ∀-elimination

rule) or a constant πi (when r t1 . . . ti is obtained by an ∧-elimination rule) or an expression

[x0.u0, x1.u1] (when r t1 . . . ti is obtained by an ∨-elimination rule) or an expression [(α, x).u]

(when r t1 . . . ti is obtained by an ∃-elimination rule).

We are now going to explain the reduction rules for the proof terms of IL + EM, which

are given in Figure 2 (with 7→∗ we shall denote the reflexive and transitive closure of the

one-step reduction 7→).

Reduction Rules for IL

(λx.u)t 7→ u[t/x] (λα.u)t 7→ u[t/α]

〈u0, u1〉πi 7→ ui, for i=0,1

ιi(u)[x1.t1, x2.t2] 7→ ti[u/xi], for i=0,1

(n, u)[(α, x).v] 7→ v[n/α][u/x], for each numeral n

Permutation Rules for EM0

(u | v)w 7→ uw | vw

(u | v)πi 7→ uπi | vπi

(u | v)[x.w1, y.w2] 7→ u[x.w1, y.w2] | v[x.w1, y.w2]

(u | v)[(α, x).w] 7→ u[(α, x).w] | v[(α, x).w]

Permutation Rules for EMn

(u ||||||||a v)w 7→ uw ||||||||a vw, if a does not occur free in w

(u ||||||||a v)πi 7→ uπi ||||||||a vπi

(u ||||||||a v)[x.w1, y.w2] 7→ u[x.w1, y.w2] ||||||||a v[x.w1, y.w2], if a does not occur free in w1, w2

(u ||||||||a v)[(α, x).w] 7→ u[(α, x).w] ||||||||a v[(α, x).w], if a does not occur free in w1, w2

Reduction Rules for EMn

u ||||||||a v 7→ u, if a does not occur free in u

u ||||||||||a v 7→ v[a := n] ||||||||b (u[a := n] ||||||||||a v), whenever u has some closed subterm H
∀αA
a m, n = (m, b) and b is fresh

Figure 2 Reduction Rules for IL + EM

We find among them the ordinary reductions of intuitionistic logic for the logical con-

nectives. Permutation Rules for EMn are an instance of Prawitz’s permutation rules for

∨-elimination [27]. The reduction rules for EMn model the exception handling mechanism

explained in Section §1. Raising an exception n in u ||||||||a v removes some (actually, the “active”

ones) occurrences of hypotheses H
∀αA
a in u and all occurrences of hypotheses W

∃αP
a in v,

introducing simpler hypotheses; we define first an operation removing them, and denoted

v[a := n].
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� Definition 2 (Exception Substitution). Suppose v is any term and n = (m, b), where m is

a term of L and b an EM-hypothesis variable. Then:

1. If every free occurrence of a in v is of the form W
∃αA
a , we define

v[a := n]

as the term obtained from v by replacing (without capture of b) each subterm W
∃αA
a

corresponding to a free occurrence of a in v by (m, H
A[m/α]
b ), if A is not propositional, by

(m, H
A[m/α]) otherwise.

2. If every free occurrence of a in v is of the form H
∀αA
a , we define

v[a := n]

as the term obtained from v by replacing (without capture of b) each subterm H
∀αA
a m

corresponding to a free occurrence of a in v by W
A[m/α]
b , if A is not propositional, by

(m, H
A[m/α]) otherwise.

In the term u | v, the subterms u and v are forever divided and represent disjoint

computational paths: communication between them is not even possible, because there is no

associated exception mechanism. The rules for EMn instead translate the informal idea of

exception handling we sketched in the introduction:

1. The first EMn-reduction: u ||||||||a v 7→ u (a does not occur free in u). This rule says that no

free hypothesis of the shape H
∀αA
a : ∀αA occurs in u and thus it is unnecessary in the

proof and in the computation; consequently, the proof term u ||||||||a v may be simplified to

u and the computation carry on following only the reduction tree of u. In this case the

exceptional part v of u ||||||||a v is never used.

2. The second EMn-reduction: u ||||||||||a v 7→ v[a := n] ||||||||b (u[a := n] ||||||||||a v) (where u has some

closed subterm H
∀αA
a m and n = (m, b)). This rule says that the “active” hypothesis

H
∀αA
a m : A[m/α], automatically raises in u ||||||||a v the exception n. The raise of the exception

(remember that it is related to the hypothesis variable a) has the following effects:

i) we perform the witness substitution [a := n] in v (Definition 2). This means that we

replace each occurrence of the term W
∃αA⊥

a corresponding to a free occurrence of a in

v by (m, H
A⊥[m/α]
b ) or (m, H

A⊥[m/α]), according as to whether A is propositional or not.

This way, we add the exceptional part v[a := n] of u ||||||||||a v to the computation as the left

side of the sequence of bars ||||||||b . The new variable b (which is guarantee to be “fresh”

by definition) corresponds to the newly made hypothesis A⊥[m/α] that ensures, in this

“universe”, that m is a correct witness for ∃αA⊥.

ii) on the right side of the ||||||||b we have the term (u[a := n] ||||||||||a v) obtained from u ||||||||||a v by

performing the substitution [a := n] in u. The substitution removes all the occurrences

of H
∀αA
a m in u, which are consumed by the raise of the correspondent exception n, and

replace them with a new simpler hypothesis H
A[m/α]
b , which confirms, in this “universe”,

the stronger ∀αA. Notice that after the substitution u[a := n] some free occurrence of

a in u may still be there (the replaced occurrences of a are only the ones of the form

H
∀αA
a m); as a consequence, in the possible further reduction of the subterm u[a := n] ||||||||||a v

an exception corresponding to the variable a may be raised again.

Notice that ||||||||b is a strictly shorter sequence of bars with respect to the sequence ||||||||||a ; on

the other hand, we also remark that the complexity of the formula A[m/α] is strictly

lower with respect to the complexity of the hypothesis ∀αA).

� Definition 3 (Normal Forms and Strongly Normalizable Terms).
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A 7→-redex is a term u such that u 7→ v for some v. A term t is called an 7→-normal form

(or simply normal form) if t does not contain as subterm any 7→-redex. We define NF to

be the set of normal untyped proof terms.

A sequence (finite or infinite) of proof terms u1, u2, . . . , un, . . . is said to be a reduction of

t, if t = u1, and for all i, ui 7→ ui+1. A proof term u of IL + EM is strongly normalizable

if there is no infinite reduction of u. We denote with SN the set of strongly normalizable

terms of IL + EM.

Assume that Γ is a context, t an untyped proof term and A a formula, and Γ ⊢ t : A: then

t is said to be a typed proof term. Typing assignment satisfies Weakening, Exchange and

Thinning, as usual. We claim that the reduction defined in Figure 2 satisfy the important

Subject Reduction Theorem: reduction steps at the level of proof terms correspond to

logically sound transformations at the level of proofs.

� Theorem 4 (Subject Reduction).

If Γ ⊢ t : A and t 7→ u then Γ ⊢ t : A.

Proof. The proof is by induction over t and is completely standard except for the EMn

reductions: we have sketched in the introduction how they should be typed. ◭

We now introduce the concept of quasi-closed term, which intuitively is a term behaving

as a closed one, in the sense that it can be executed, but that contains some free simply

universal hypotheses on which its correctness depends.

� Definition 5 (Quasi-Closed terms).

1. An untyped proof term t said to be quasi-closed, if it contains as free variables only

hypothesis variables a1, . . . , an, such that each occurrence of them is of the form H
∀~αPi

ai
,

where ∀~αPi is simply universal.

The class of quasi-closed terms is meaningful from a computational viewpoint, as explained

in Section 4.

3 The System IL + EM
⋆: a jump into Non-Determinism

The aim of this section is to prove that each well-typed term of IL+EM is strongly normalizing.

To this end, we make a pit stop into the magic world of non-determinism. The idea is to

map IL + EM to a carefully defined non-deterministic variant IL + EM⋆, for which strong

normalization is proven. The Strong Normalization Theorem for IL + EM will plainly follow

as a corollary. A similar proof technique, inspired to [8], has been exploited in [6].

We now introduce the non-deterministic system IL + EM⋆, which is still a standard

natural deduction system for intuitionistic first-order logic with excluded middle. The only

syntactical difference with the system IL + EM lies in the shape of proof terms, and is really

tiny: the proof terms for EM and EM-hypotheses lose the hypothesis variables used to name

them. Thus the grammar of untyped proof terms of IL + EM⋆ is defined to be the following:

Grammar of Untyped Terms of IL + EM⋆

t, u, v ::= x | tu | tm | λx u | λα u | 〈t, u〉 | u π0 | u π1 | ι0(u) | ι1(u) | t[x.u, y.v] | (m, t) | t[(α, x).u]
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| (u || . . . |
︸ ︷︷ ︸

n

v) | H
∀αA | W

∃αA

where m ranges over terms of L and x over proof terms variables.

The term assignment rules of IL + EM⋆ are exactly the same of IL + EM, but for the ones for

EM-hypotheses and EM, which (obviously) become:

Axioms Γ, a : ∀αA ⊢ H
∀αP : ∀αA Γ, a : ∃αA ⊢ W

∃αA : ∃αA

EM⋆

Γ, a : ∀αA ⊢ w1 : C Γ, a : ∃αA⊥ ⊢ w2 : C

Γ ⊢ w1 || . . . |
︸ ︷︷ ︸

n+1

w2 : C

The reduction rules for the terms of IL + EM⋆ are defined in Figure 3 and are those of

the first two groups for IL + EM1, plus new non-deterministic rules for EM⋆ (with  ∗ we

shall denote the reflexive and transitive closure of the one-step reduction  ).

We explain now the non-deterministic part of the reduction rules. The reduction rule

for H
∀αA says that, when the constant is “active” (i.e. applied to a closed term m ∈ L)

it is possible to replace an universal hypothesis ∀αA with an hypothesis A[m/α], denoted

by the constant W
A[m/α], when A[m/α] is not propositional and thus of the shape ∃βB for

some variable β and some universal formula B. The intuition behind the reduction rule

for W
∃αA is the following: the term W

∃αA behaves as a “search” operator, which spans non-

deterministically all first-order terms as possible witnesses of ∃αA⊥ and makes the hypothesis

that they are correct (these branches correspond to all the possible pairs (m, H
A[m/α])). The

first and the second rule for the operator |||||||| are standard reductions for the non deterministic

choice operator (see [14, 13]). The third rule, in joint with the reductions for H
∀αA and

W
∃αA, is able to “simulate” the reductions of the deterministic u ||||||||a v and, in particular, the

exception substitution mechanism [a := n].

In the following, we define SN⋆ to be the set of strongly normalizing proof terms with

respect to the non-deterministic reduction  . The reduction tree of a strongly normalizable

term with respect to  is no more finite, but still well-founded. It is well-known that it

is possible to assign to each node of a well-founded tree an ordinal number, in such a way

it decreases passing from a node to any of its sons. We will call the ordinal size of a term

t ∈ SN⋆ the ordinal number assigned to the root of its reduction tree and we denote it by h(t);

thus, if t u, then h(t) > h(u). To fix ideas, one may define h(t) := sup{h(u) + 1 | t 7→ u}.

We now define the obvious translation mapping untyped proof terms of IL + EM into

untyped terms of IL + EM⋆, which just erases every occurrence of every EM-hypothesis

variable a.

� Definition 6 (Translation of untyped proof terms of IL + EM into IL + EM⋆). We define a

translation _∗ mapping untyped proof terms of IL+EM into untyped proof terms of IL+EM⋆:

t∗ is defined as the term of IL + EM⋆ obtained from t by erasing every EM hypothesis variable

a.

We now show that the reduction relation  for the proof terms of IL + EM⋆ can easily

simulate the reduction relation 7→ for the terms of IL + EM. This is trivial for the proper

reductions of IL and the permutative reductions for EM, while the reduction rules for the
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Reduction Rules for IL

(λx.u)t u[t/x] (λα.u)t u[t/α]

πi〈u0, u1〉 ui, for i = 0, 1

ιi(u)[x1.t1, x2.t2] ti[u/xi], for i = 0, 1

(n, u)[(α, x).v] v[n/α][u/x], for each numeral n

Permutation Rules for EM⋆

(u |||||||| v)w  uw |||||||| vw

(u |||||||| v)πi  uπi |||||||| vπi

(u |||||||| v)[x.w1, y.w2] u[x.w1, y.w2] |||||||| v[x.w1, y.w2]

(u |||||||| v)[(α, x).w] u[(α, x).w] |||||||| v[(α, x).w]

Reduction Rules for EM⋆

(H∀αA)m W
A[m/α], for every closed term m of L and non-propositional A

(H∀αP)m H
A[m/α], for every closed term m of L

W
∃αA

 (m, H
A[m/α]), for every closed term m of L

u |||||||| v  u

u |||||||| v  v

u |||||||||| v  v |||||||| (u− |||||||||| v)

where u− is the term obtained from u by replacing some occurrences of a subterm (H∀αA)m with

W
A[m/α] (or with H

A[m/α] when A is propositional)

Figure 3 Reduction Rules for IL + EM
⋆

terms of the form u ||||||||a v can be plainly simulated by  with non-deterministic guesses. In

particular, each reduction step between terms of IL + EM corresponds to at least a step

between their translations:

� Proposition 7 (Preservation of the Reduction Relation 7→ by ). Let v be any untyped proof

term of IL + EM. Then v 7→ w =⇒ v∗  + w∗

Proof. It is sufficient to prove the proposition when v is a redex r. We have several possibilities,

almost all trivial, and we choose only some representative cases:

1. r = (λx u)t 7→ u[t/x]. We verify indeed that

((λx u)t)
∗

= (λx u∗)t∗
 u∗[t∗/x] = u[t/x]

∗

2. r = (u |||||||| v)w 7→ uw |||||||| vw. We verify indeed that

((u |||||||| v)w)
∗

= (u∗ |||||||| v∗)w∗
 u∗w∗ |||||||| v∗w∗

 (uw |||||||| vw)
∗

3. r = u ||||||||||a v 7→ v[a := n] ||||||||b (u[a := n] ||||||||||a v) (where u has some closed subterm H
∀αA
a m and

n = (m, b)).

We verify indeed – by choosing the appropriate reduction rule for |||||||||| and applying the EM⋆

reduction rules (H∀αA)m W
A[m/α] (or (H∀αP)m H

P[m/α]) and W
∃αA  (m, H

A[m/α]) –

that
(u ||||||||||a v)

∗
= u∗ |||||||||| v∗

 v∗ |||||||| ((u∗)− |||||||||| v∗)

 
∗ (v[a := n])

∗
|||||||| ((u[a := n])∗ |||||||||| v∗)

 
∗ (v[a := n] ||||||||b (u[a := n] ||||||||||a v))

∗

(where u− is the term obtained from u by replacing some occurrences of a subterm

(H∀αA)m with W
A[m/α] or H

A[m/α])
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3.1 Reducibility

We now want to prove the strong normalization theorem for IL + EM⋆: every term t which is

typed in IL + EM⋆ is strongly normalizable. We use a simple extension of the reducibility

method of Tait-Girard [16].

� Definition 8 (Reducibility). Assume t is a term in the grammar of untyped terms of

IL + EM⋆ and C is a formula of L. We define the relation t r C (“t is reducible of type C”)

by induction and by cases according to the form of C:

1. t r P if and only if t ∈ SN⋆

2. t r A ∧ B if and only if t π0 r A and t π1 r B

3. t r A → B if and only if for all u, if u r A, then tu r B

4. t r A ∨ B if and only if t ∈ SN⋆ and t ∗
ι0(u) implies u r A and t ∗

ι1(u) implies u r B

5. t r ∀αA if and only if for every term n of L, tn r A[n/α]

6. t r ∃αA if and only if t ∈ SN⋆ and for every term n of L, if t ∗ (n, u), then u r A[n/α]

3.2 Properties of Reducible Terms

In this section we prove that the set of reducible terms for a given formula C satisfies the

usual properties of a Girard reducibility candidate.

Following [16], neutral terms are terms that are not “values” and need to be further

computed.

� Definition 9 (Neutrality). A proof term is neutral if it is not of the form λx u or λα u or

〈u, t〉 or ιi(u) or (t, u) or u |||||||| v or H
∀αA.

� Definition 10 (Reducibility Candidates). Extending the approach of [16], we define four

properties (CR1), (CR2), (CR3), (CR4) of reducible terms t:

(CR1) If t r A, then t ∈ SN⋆.

(CR2) If t r A and t ∗ t′, then t′ r A.

(CR3) If t is neutral and for every t′, t t′ implies t′ r A, then t r A.

(CR4) t = u |||||||| v r A if and only if u r A and v r A.

We now prove, as usual, that every term t possesses the reducibility candidate properties.

The arguments for establishing (CR1), (CR2), (CR3), are standard (see [16]).

� Proposition 11. Let t be a term of IL + EM⋆. Then t has the properties (CR1), (CR2),

(CR3), (CR4).

Proof. By induction on C.
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C is atomic. Then t r C means t ∈ SN⋆. Therefore (CR1), (CR2), (CR3) are trivial.

(CR4). Suppose u, v r C. Then, by definition, u ∈ SN⋆, v ∈ SN⋆. We have to show that

u |||||||||| v ∈ SN⋆. We proceed by triple induction on the number of bars in |||||||||| and the ordinal

heights of the reduction trees of u, v. We show that if u |||||||||| v  z implies z ∈ SN⋆. If z = u

or z = v the thesis is trivial. If z = u′ |||||||||| v or z = u |||||||||| v′, by induction hypothesis, z ∈ SN⋆.

If z = v |||||||| (u− |||||||||| v), where u− is the term obtained from u by replacing some occurrences

of a subterm (H∀αA)m with W
A[m/α] (or H

A[m/α]), then u u−, therefore by induction

hypothesis (u− |||||||||| v) ∈ SN⋆; we conclude, again by induction hypothesis, that z ∈ SN⋆.

C = A → B.

(CR1). Suppose t r A → B. By induction hypothesis (CR3), for any variable x, we

have x r A. Therefore, tx r B, and by (CR1), tx ∈ SN⋆, and thus t ∈ SN⋆.

(CR2). Suppose t r A → B and t t′. Let u r A: we have to show t′u r B. Since tu r B

and tu t′u, we have by the induction hypothesis (CR2) that t′u r B.

(CR3). Assume t is neutral and t t′ implies t′ r A → B. Suppose u r A; we have to

show that tu r B. We proceed by induction on the ordinal height of the reduction tree of

u (u ∈ SN⋆ by induction hypothesis (CR1)). By induction hypothesis, (CR3) holds for

the type B. So assume tu z; it is enough to show that z r B. If z = t′u, with t t′,

then by hypothesis t′ r A → B, so z r B. If z = tu′, with u u′, by induction hypothesis

(CR2) u′ r A, and therefore z r B by the induction hypothesis relative to the size of the

reduction tree of u′. There are no other cases since t is neutral.

(CR4). ⇒). Suppose t = u |||||||| v r A → B. Since t u, t v, by (CR2), u r A → B and

v r A → B.

⇐). Suppose u r A → B and v r A → B. Let w r A. We show by quadruple induction on

the number of bars in |||||||| , the ordinal heights of the reduction trees of u, v, w (they are all

in SN⋆ by (CR1)) that (u |||||||||| v)w r B. By induction hypothesis (CR3), it is enough to

assume (u |||||||||| v)w  z and show z r B. If z = uw or vw, we are done. If z = (u′ |||||||||| v)w or

z = (u |||||||||| v′)w or (u |||||||||| v)w′, with u u′, v  v′ and w  w′, we obtain z r B by (CR2)
and induction hypothesis. If z = (uw |||||||||| vw), by induction hypothesis (CR4), z r B.

If z = v |||||||| (u− |||||||||| v), where u− is the term obtained from u by replacing some occurrences

of a subterm (H∀αA)m with W
A[m/α] (or H

A[m/α]), then u u−, therefore by (CR2) and

induction hypothesis, for all r r A, we have (u− |||||||||| v)r r B and thus (u− |||||||||| v) r A → B. We

conclude by induction hypothesis that z r A → B.

C = ∀αA or C = A ∧ B. Similar to the case C = A → B.

C = A0 ∨ A1.

(CR1) is trivial.

(CR2). Suppose t r A0 ∨ A1 and t  ∗ t′. Then t′ ∈ SN⋆, since t ∈ SN⋆. Moreover,

suppose t′  ∗
ιi(u). Then also t ∗

ιi(u), so u r Ai.

(CR3). Assume t is neutral and t t′ implies t′ r A0 ∨ A1. Since t t′ implies t′ ∈ SN⋆,
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we have t ∈ SN⋆. Moreover, if t  ∗
ιi(u), then, since t is neutral, t  t′  ∗

ιi(u) and

thus u r Ai.

(CR4). ⇒). Suppose t = u |||||||| v r A0 ∨ A1. Since t  u, t  v, by (CR2), u r A0 ∨ A1

and v r A0 ∨ A1.

⇐). Suppose u r A0 ∨ A1 and v r A0 ∨ A1. We have to show that u |||||||||| v r A0 ∨ A1. By

(CR1), u, v ∈ SN⋆; therefore, as shown in the case C = P , u |||||||||| v ∈ SN⋆. Moreover,

suppose u |||||||||| v  ∗
ιi(w). It is enough to show that either u ∗

ιi(w) or v  ∗
ιi(w); this

implies w r Ai, and we are done. We proceed by triple induction on the number of bars

in |||||||||| and the ordinal heights of the reduction trees of u, v. Let us consider the first

reduction step: u |||||||||| v  z  ∗
ιi(w). If z = u or v, we are done. If z = u′ |||||||||| v or z = u |||||||||| v′,

with u  u′ and v  v′, we obtain u  ∗
ιi(w) or v  ∗

ιi(w) by induction hypothesis

applied to z. If z = v |||||||| (u− |||||||||| v), where u− is the term obtained from u by replacing some

occurrences of a subterm (H∀αA)m with W
A[m/α] (or H

A[m/α]), then u u−. Therefore,

by induction hypothesis applied to z, either u ∗
ιi(w) or u− |||||||||| v  ∗

ιi(w). In the first

case, we are done; in the second, by induction hypothesis applied to u− |||||||||| v, we obtain

either u u−  ∗
ιi(w) or v  ∗

ιi(w), which completes the proof.

C = ∃αNA. Similar to the case t = A0 ∨ A1.

The next task is to prove that all introduction and elimination rules of IL + EM⋆ define

a reducible term from a list of reducible terms for all premises (Adequacy Theorem 13).

In some case that is true by definition of reducibility; we list below some non-trivial but

standard cases we have to prove.

� Proposition 12.

1. If for every t r A, u[t/x] r B, then λx u r A → B.

2. If for every term m of L, u[m/α] r B[m/α], then λα u r ∀αNB.

3. If u r A0 and v r A1, then 〈u, v〉πi r Ai.

4. If t r A0 ∨ A1 and for every ti r Ai it holds ui[ti/xi] r C, then t[x0.u0, x1.u1] r C.

5. If t r ∃αA and for every term n of L and v r A[n/α] it holds u[n/α][v/x] r C, then

t[(α, x).u] r C.

Proof.

1. As in [16].

2. As 1.

3. As in [16].

4. Suppose t r A0 ∨ A1 and for every ti r Ai it holds ui[ti/xi] r C. We observe that by

(CR3), xi r Ai, and so we have ui r Ai. Thus, in order to prove t[x0.u0, x1.u1] r C, by

(CR1), we can reason by triple induction on the ordinal sizes of the reduction trees

of t, u0, u1. By (CR3), it suffices to show that t[x0.u0, x1.u1]  z implies z r C. If

z = t′[x0.u0, x1.u1] or z = t[x0.u′
0, x1.u1] or z = t[x0.u0, x1.u′

1], with t t′ and ui  u′
i,

then by (CR2) and by induction hypothesis z r C. If t = ιi(ti) and z = ui[ti/xi], then

ti r Ai; therefore, z r C. If t = w0 |||||||| w1 and

z = (w0[x0.u0, x1.u1]) |||||||| (w1[x0.u0, x1.u1])

then, since t = w0 |||||||| w1  wi, by induction hypothesis wi[x0.u0, x1.u1] r C for i = 0, 1.

By (CR4), we conclude z r C.
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5. Similar to 4.

3.3 The Adequacy Theorem

� Theorem 13 (Adequacy Theorem). Suppose that Γ ⊢ w : A in the system IL + EM⋆, with

Γ = x1 : A1, . . . , xn : An, ∆ (∆ not containing declarations of proof-term variables), and that

the free variables of the formulas occurring in Γ and A are among α1, . . . , αk. For all terms

r1, . . . , rk of L, if there are terms t1, . . . , tn such that

for i = 1, . . . , n, ti r Ai[r1/α1 · · · rk/αk]

then

w[t1/x1 · · · tn/xn r1/α1 · · · rk/αk] r A[r1/α1 · · · rk/αk]

Proof.

Notation: for any term v and formula B, we denote

v[t1/x1 · · · tn/xn r1/α1 · · · rk/αk]

with v and

B[r1/α1 · · · rk/αk]

with B. We proceed by induction on w and cover only the case not already treated in [16].

Consider the last rule r in the derivation of Γ ⊢ w : A:

1. We prove simultaneously the cases r = Γ ⊢ W
∃αB : ∃αB and r = Γ ⊢ H

∀αB i.e. we want to

prove that w = W∃αB = W
∃αB r ∃αB = A and w = H∀αB = H

∀αB r ∀αB = A respectively.

Let us consider the terms w = W
∃αB: we have that, for all term z such that W

∃αB  z,

z = (m, H
B[m/α]) for some m ∈ L . It is possible to apply the induction hypothesis on

H
B[m/α]: thus H

B[m/α] r B[m/α] holds and we can conclude W
∃αB r ∃αB by Definition 8.

Now, let us apply H
∀αB to an arbitrary term m ∈ L. Since H

∀αBm  W
B[m/α] or

H
∀αBm H

B[m/α] and by induction hypothesis H
B[m/α], W

B[m/α] r B[m/α], we can con-

clude by (CR3)that H
∀αBm r B[m/α].

2. If r is a ∨I rule, say left (the other case is symmetric), then w = ι0(u), A = B ∨ C

and Γ ⊢ u : B. So, w = ι0(u). By induction hypothesis u r B. Hence, u ∈ SN⋆.

Moreover, suppose ι0(u) ∗
ι0(v). Then u ∗ v and thus by (CR2) v r B. We conclude

ι0(u) r B ∨ C = A.

3. If r is is a ∨E rule, then

w = u[x.w1, y.w2]

and Γ ⊢ u : B ∨ C, Γ, x : B ⊢ w1 : D, Γ, y : C ⊢ w2 : D, A = D. By induction hypothesis,

we have u r B ∨ C; moreover, for every t r B, we have w1[t/x] r B and for every t r C, we

have w2[t/y] r C. By proposition 12, we obtain w = u[x.w1, y.w2] r C

4. The cases r = ∃I and r = ∃E are similar respectively to ∨I and ∨E.
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5. If r is the ∀E rule, then w = ut, A = B[t/α] and Γ ⊢ u : ∀αB. So, w = ut. By inductive

hypothesis u r ∀αB and so ut r B[t/α].

6. If r is the ∀I rule, then w = λαu, A = ∀αB and Γ ⊢ u : B (with α not occurring free in

the formulas of Γ). So, w = λαu, since we may assume α 6= α1, . . . , αk. Let t be a term

of L; by proposition 12), it is enough to prove that u[t/α] r B[t/α], which amounts to

show that the induction hypothesis can be applied to u. For this purpose, we observe

that, since α 6= α1, . . . , αk, for i = 1, . . . , n we have

ti r Ai = Ai[t/α]

7. If it is the EM⋆ rule, then w = u |||||||| v, Γ, a : ∀αB ⊢ u : C and Γ, a : ∃αB⊥ ⊢ v : C and

A = C. By induction hypothesis, u, v r C. By (CR4), we conclude w = (u |||||||| v) r C.

3.4 Strong Normalization of IL + EM
⋆ and IL + EM

As corollary, one obtains strong normalization for IL + EM⋆.

� Corollary 14 (Strong Normalization for IL + EM⋆). Suppose Γ ⊢ t : A in IL + EM⋆. Then

t ∈ SN⋆.

Proof. Assume Γ = x1 : A1, . . . , xn : An, ∆ (∆ not containing declarations of proof-term

variables). By (CR1), one has xi r Ai, for i = 1, . . . , n. From Theorem 13, we derive that

t r A. From (CR1), we conclude that t ∈ SN⋆.

The strong normalization of IL + EM⋆ is readily turned into a strong normalization result

for IL + EM, since the reduction 7→ can be simulated by  .

� Corollary 15 (Strong Normalization for IL + EM). Suppose Γ ⊢ t : A in IL + EM. Then t is

strongly normalizable.

Proof. By Proposition 7, any infinite reduction t = t1 7→ t2 7→ . . . 7→ tn 7→ . . . in IL + EM

gives rise to an infinite reduction t∗ = t∗
1  

+ t∗
2  

+ . . .  + t∗
n  

+ . . . in IL + EM⋆. By

the strong normalization Corollary 15 for IL + EM⋆ and since clearly Γ ⊢ t∗ : A, infinite

reductions of the latter kind cannot occur; thus neither of the former.

4 Back to IL + EM: Normal Form Property and Herbrand’s Disjunction

Extraction

In this section, we finally show that our exception-based Curry-Howard correspondence for

classical logic is very meaningful from the computational perspective. That is, not only

every execution of every program we extract always terminates, but in the case of simply

existential formulas ∃α P, any closed program of that type produces a complete finite sequence

m1, m2, . . . , mk of possible witnesses for ∃α P. This means that whatever first-order model

we consider, there will be an i such that P[mi/α] is true in it. The result still holds whenever

the program t is quasi-closed, which is to say, whenever ∃α P is proven by means of a simply

universal theory:

a1 : ∀~α P1, . . . , an : ∀~α Pn ⊢ t : ∃α P

In this case, for any first-order model of the formulas a1 : ∀~α P1, . . . , an : ∀~α, there will be

an i such that P[mi/α] is true in it. Furthermore, by Subject Reduction, t will contain also
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a correctness certificate, in the sense that in the normal form of t one finds a proof-term

for the formula P[m1/α] ∨ · · · ∨ P[mk/α]. In other terms, we have provided a new proof

and a new Curry-Howard computational interpretation of Herbrand’s Theorem. The fact

that we consider as hypotheses only simply universal ones, i.e. universal formulas without

occurrences of ∨, is by no means restrictive: by EM0, one can easily prove any propositional

formula to be equivalent to a negative one, and thus to derive the former from the latter.

In order to prove our results, we first carry out a simple inspection of the normal forms of

the quasi-closed terms having propositional or simply existential type. The crucial observation

is that every such term contains an exception ready to be raised: more precisely, it has a

subterm of the form H
∀αA
a m, for some closed m ∈ L. From the logical point of view, this

means that when one proves a formula of minimal complexity by means of a universal theory,

one must use actively one of the universal hypotheses and obtain some concrete consequence

of it. Such statements in first-order logic are usually drawn as typical consequences of the

Subformula Property, but a much more primitive argument suffices here. This is indeed

providential, since without permutation rules for ∨ and ∃, there will be no Subformula

Property. Of course, we do have some permutation rules, namely those for the excluded

middle: what is remarkable is that they are going to be enough. Nevertheless, if we think

that in intuitionistic Logic or fragments of classical Arithmetic [7] general permutation rules

are not needed to compute witnesses, it should not entirely come as a surprise that this is

still the case in our framework.

� Proposition 16 (Normal Form Property). Let P, P1, . . . , Pn be negative propositional for-

mulas. Suppose that

Γ = x1 : P1, . . . , xn : Pn, a1 : ∀α1A1, . . . , am : ∀αmAm,

and Γ ⊢ t : ∃α P or Γ ⊢ t : P, with t ∈ NF and having all its free variables among

x1, . . . , xn, a1, . . . , am. Then:

1. Either every of occurrence in t of every constant H
∀αiAi

ai
is of the closed form H

∀αiAi

ai
m,

where m term of L; or t has a closed subterm of the form H
∀αiAi

ai
m, for some non simply

universal formula Ai and term m of L.

2. Either t = (m, u) or t = λx u or t = 〈u, v〉 or t = u | v or t = u ||||||||a v or t = H
P or

t = xi t1 t2 . . . tn or t = H
∀αAi

ai
m t2 . . . tn.

Proof. We prove 1. and 2. simultaneously and by induction on t. There are several cases,

according to the shape of t:

t = (m, u), Γ ⊢ t : ∃α P and Γ ⊢ u : P[m/α]. We immediately get 1. by induction

hypothesis applied to u, while 2. is obviously verified.

t = λx u, Γ ⊢ t : P = Q → R and Γ, x : Q ⊢ u : R. We immediately get 1. by induction

hypothesis applied to u, while 2. is obviously verified.

t = 〈u, v〉, Γ ⊢ t : P = Q ∧ R, Γ ⊢ u : Q and Γ ⊢ v : R. We immediately get 1. by induction

hypothesis applied to u, while 2. is obviously verified.

t = u | v, Γ, a : Q ⊢ u : ∃α P (resp. u : P) and Γ, a : ¬Q ⊢ v : ∃α P (resp. v : P).

We immediately get the thesis by induction hypothesis applied to u and v, while 2. is
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obviously verified.

t = u ||||||||a v, Γ, a : ∀β A ⊢ u : ∃α P (resp. u : P) and Γ, a : ∃β A⊥ ⊢ v : ∃α P (resp. u : P).

We first observe that a must occur free in u: otherwise, t = u ||||||||a v 7→ u, which would

yield a contradiction, for t ∈ NF. Now, by induction hypothesis, 1. holds with respect

to u. Moreover, it cannot be that every occurrence in u of every constant H
∀αiAi

ai
is of

the form H
∀αiAi

ai
m, where m ∈ L: otherwise, in particular, u would have a subterm of

the form H
∀αA
a m, for some m ∈ L, and thus t = u ||||||||||a v 7→ v[a := n] ||||||||b (u[a := n] ||||||||||a v),

with n = (m, b): but t ∈ NF. Therefore, u has a subterm of the form H
∀αiAi

ai
m, for some

non-propositional formula Ai and m ∈ L. We have thus established 1. for t, while 2. is

obviously verified.

t = H
∀αAi

ai
. This case is not possible, for Γ ⊢ t : ∃α P or Γ ⊢ t : P.

t = H
P. In this case, 1. and 2. are trivially true.

t is obtained by an elimination rule and we write it as r t1 t2 . . . tn (this notation has been

explained in Section 2). Notice that in this case r cannot be a redex neither a term of the

form u ||||||||a v nor u | v because of the permutation rules and t ∈ NF). We have now two cases:

1. r = xi (resp. r = H
P). Then, since Γ ⊢ xi : Pi (resp. Γ ⊢ H

P : P), we have that for

each i, either ti is πj or Γ ⊢ ti : Q, where Q is a propositional formula. By induction

hypothesis, each ti satisfies 1. and thus also t. 2. is obviously verified.

2. r = H
∀αiAi

ai
. Then, t1 is m, for some closed term of L. If Ai is not simply universal,

we obtain that t satisfies 1., for t = H
∀αAi

ai
m t2 . . . tn. If Ai = ∀γ1 . . . γk Q, with Q

propositional, we have that for each i, either ti is a closed term mi of L or ti is πj

or Γ ⊢ ti : R, where R is a propositional formula. By induction hypothesis, each ti

satisfies 1. and thus also t. 2. is obviously verified.

◭

If we omit parentheses, every normal proof-term can be written as v0 | v1 | . . . | vn, where

each vi is not of the form u | v; if for every i, vi is of the form (mi, ui), then we call the whole

term a Herbrand normal form, because it is essentially a list of the witnesses appearing in a

Herbrand disjunction. Formally:

� Definition 17 (Herbrand Normal Forms). We define by induction a set of proof terms,

called Herbrand normal forms, as follows:

Every normal proof-term (t, u) is a Herbrand normal form;

if u and v are Herbrand normal forms, u | v is a Herbrand normal form.

Our last task is to prove that all proofs of a simply existential statement ∃α P include an

exhaustive sequence m1, m2, . . . , mk of possible witnesses.

� Theorem 18 (Herbrand Disjunction Extraction). Let ∃α P be any closed formula where P is

negative. Suppose Γ ⊢ t : ∃α P, t is quasi-closed and t 7→∗ t′ ∈ NF. Then Γ ⊢ t′ : ∃α P and t′

is a Herbrand normal form

(m0, u0) | (m1, u1) | . . . | (mk, uk)

Moreover, Γ ⊢ P[m1/α] ∨ · · · ∨ P[mk/α].
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Proof. We proceed by induction on t′. By the Subject Reduction Theorem 4, t′ : ∃α P. By

Proposition 16, t′ can only have three possible shapes:

1. t′ = u ||||||||a v. We show that this cannot happen. First, a must occur free in u, otherwise

t′ /∈ NF. By Proposition 16, we have two possibilities. i) Every occurrence in u of every

constant H
∀αiAi

ai
is of the form H

∀αiAi

ai
m, where m ∈ L is closed; in particular this is true

when ai = a, which implies t′ /∈ NF. ii) u has a subterm of the form H
∀αiAi

ai
m, for some

non purely universal formula Ai and closed m ∈ L: since t′ is quasi-closed, ai = a, which

again implies t′ /∈ NF. In any case, we have a contradiction.

2. t′ = u | v; then, by induction hypothesis, u, v are Herbrand normal forms, and thus by

definition 17, t′ is an Herbrand normal form as well.

3. t′ = (m, u); then, we are done.

We have thus shown that t′ is a Herbrand normal form

(m0, u0) | (m1, u1) | . . . | (mk, uk)

Finally, we have that for each i, Γi ⊢ ui : P[mi/α], for the very same Γi that types (mi, ui)

of type ∃α P in t′. Therefore, for each i, Γi ⊢ u+
i : P[m1/α] ∨ · · · ∨ P[mk/α], where u+

i is of

the form ιi1
(. . . ιik

(ui) . . .). We conclude that

Γ ⊢ u+
0 | u+

1 | . . . | u+
k : P[m1/α] ∨ · · · ∨ P[mk/α]

◭

We suggest to interpret an Herbrand normal form (m0, u0) | (m1, u1) | . . . | (mk, uk) in

the following way. Each (mi, ui) represents the result of an intuitionistic computation of

a witness in a possible universe; each time in an intuitionistic computation an exception

is raised, a pair of alternative universes is generated. For each particular computation of

each of the parallel universes to go through, one need to replace symbols of the form W
∃αA
a

with actual terms of L (those are the only symbols that can really block the computation).

These witnesses have been obtained by communications coming from other intuitionistic

computations in other parallel universes. It is that process of interaction and dialogue

between different possible computations that generate the Herbrand normal forms.

References

1 Akama, Y. and Berardi, S. and Hayashi S. and Kohlenbach, U.. An Arithmetical Hierarchy

of the Law of Excluded Middle and Related Principles. LICS 2004, pages 192-201.

2 F. Aschieri, S. Berardi, Interactive Learning-Based Realizability for Heyting Arithmetic with

EM1, Logical Methods in Computer Science, 2010.

3 F. Aschieri, S. Berardi, A New Use of Friedman’s Translation: Interactive Realizability, in:

Logic, Construction, Computation, Berger et al. eds, Ontos-Verlag Series in Mathematical

Logic, 2012.

4 F. Aschieri, Interactive Realizability for Classical Peano Arithmetic with Skolem Axioms.

Proceedings of Computer Science Logic 2012, Leibniz International Proceedings in Inform-

atics, vol. 16, 2012.

5 F. Aschieri, Interactive Realizability for Second-Order Heyting Arithmetic with EM1 and

SK1, Mathematical Structures in Computer Science, 2013.

6 F. Aschieri, Strong Normalization for HA + EM1 by Non-Determinstic Choice, Proceeding

of First Workshop on Control Operators and their Semantics 2013 (COS 2013), Electronic

Proceedings in Theoretical Computer Science, vol. 127, 2013



22 Natural Deduction in Classical First-Order Logic

7 F. Aschieri, S. Berardi, G. Birolo, Realizability and Strong Normalization for a Curry-

Howard Interpretation of HA + EM1, Proceedings of Computer Science Logic 2013, Leibniz

International Proceeding in Computer Science, vol. 23, 2013.

8 F. Aschieri, M. Zorzi: Non-Determinism, Non-Termination and the Strong Normalization

of System T, Proceedings of TLCA 2013, vol. 7941, 31–47, 2013.

9 S. Berardi and U. de’ Liguoro, Interactive Realizers. A New Approach to Program Extraction

from Nonconstructive Proofs, Transaction of Computational Logic, vol. 13, n. 2, 2012.

10 G. Birolo: Interactive Realizability, Monads and Witness Extraction, Ph.D. thesis, April,

15, 2013, Università di Torino (http://arxiv.org/abs/1304.4091)

11 S. Buss, On Herbrand’s Theorem, in Logic and Computational Complexity, LNCS, n. 960,

Springer-Verlag, 1995.

12 T. Coquand, A Semantic of Evidence for Classical Arithmetic, Journal of Symbolic Logic,

vol. 60, pp. 325-337,1995.

13 U. Dal Lago, M. Zorzi, Probabilistic Operational Semantics for the Lambda Calculus.

RAIRO - Theoretical Informatics and Applications, DOI 10.1051/ita/2012012, vol. 46 ,

n. 03 , 2012 , pp. 413-450, CUP, (2012)

14 de’ Liguoro, U., Piperno, A.: Non-Deterministic Extensions of Untyped Lambda-Calculus.

Information and Computation 122 (1995) 149–177.

15 J.-Y. Girard: Proof theory and logical complexity. Vol. 1. Bibliopolis Press (1987)

16 J.-Y. Girard and Y. Lafont and P. Taylor.: Proofs and Types. Cambridge University Press

(1989).

17 H. Friedman, Classically and Intuitionistically Provable Recursive Functions, Lecture Notes

in Mathematics, 1978, Volume 669/1978, 21-27.

18 K. Gödel, Uber eine bisher noch nicht benutzte Erweiterung des finiten Standpunktes, Dia-

lectica 12, pp. 280-287 (1958).

19 G. Gentzen, Die Widerspruchsfreiheit der reinen Zahlentheorie. Mathematische Annalen,

1935.

20 P. de Groote, A Simple Calculus of Exception Handling, Proc. of TLCA 1995: 201–215.

21 P. de Groote, Strong Normalization for Classical Natural Deduction with Disjunction, Pro-

ceedings of TLCA 2001: 182–196.

22 H. Herbelin, An Intuitionistic Logic that Proves Markov’s Principle, Proceedings of LICS

2010: 50-56.

23 G. Kreisel, On the Interpretation on Non-Finitist Proofs: Part II, The Journal of Symbolic

Logic, vol. 17, n.1, 43–58, 1952.

24 G. Kreisel, On Weak Completeness of Intuitionistic Predicate Logic, Journal of Symbolic

Logic, vol. 27, 1962.

25 G. Mints, A Method of Epsilon Substitution for Predicate Logic with Equality, Journal of

Mathematical Sciences, vol. 87, n. 1, 1997.

26 G. Mints, S. Tupailo, W. Bucholz, Epsilon Substitution Method for Elementary Analysis,

Archive for Mathematical Logic, volume 35, 1996

27 D. Prawitz: Ideas and Results in Proof Theory. In Proceedings of the Second Scandinavian

Logic Symposiuum (1971).

28 M. H. Sorensen, P. Urzyczyn, Lectures on the Curry-Howard isomorphism, Studies in Logic

and the Foundations of Mathematics, vol. 149, Elsevier, 2006.

29 J. von Plato: Genzen’s Proof of Normalization for Natural Deduction, Bulletin of Symbolic

Logic, vol. 14, n. 2, 2008.


	Introduction
	Herbrand's and Kreisel's Theorems
	Natural Deduction and Sequent Calculus
	Classical Natural Deduction: an Exception-Based Curry-Howard Correspondence
	 EM 1 and Exceptions in Arithmetic
	 EM n and Exceptions in Classical Logic
	Permutation Rules
	Herbrand's Disjunction Extraction and Strong Normalization

	Plan of the Paper

	The System IL+ EM 
	The System IL+ EM : a jump into Non-Determinism
	Reducibility
	Properties of Reducible Terms
	The Adequacy Theorem
	Strong Normalization of IL+ EM  and IL+ EM 

	Back to IL+ EM : Normal Form Property and Herbrand's Disjunction Extraction

