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The goal of this survey is to present various results concerning the cohomology of pseudoeffective line bundles on compact Kähler manifolds, and related properties of their multiplier ideal sheaves. In case the curvature is strictly positive, the prototype is the well known Nadel vanishing theorem, which is itself a generalized analytic version of the fundamental Kawamata-Viehweg vanishing theorem of algebraic geometry. We are interested here in the case where the curvature is merely semipositive in the sense of currents, and the base manifold is not necessarily projective. In this situation, one can still obtain interesting information on cohomology, e.g. a Hard Lefschetz theorem with pseudoeffective coefficients, in the form of a surjectivity statement for the Lefschetz map. More recently, Junyan Cao, in his PhD thesis defended in Grenoble, obtained a general Kähler vanishing theorem that depends on the concept of numerical dimension of a given pseudoeffective line bundle. The proof of these results depends in a crucial way on a general approximation result for closed (1, 1)-currents, based on the use of Bergman kernels, and the related intersection theory of currents. Another important ingredient is the recent proof by Guan and Zhou of the strong openness conjecture. As an application, we discuss a structure theorem for compact Kähler threefolds without nontrivial subvarieties, following a joint work with F. Campana and M. Verbitsky. We hope that these notes will serve as a useful guide to the more detailed and more technical papers in the literature; in some cases, we provide here substantially simplified proofs and unifying viewpoints.

Introduction and statement of the main results

Let X be a compact Kähler n-dimensional manifold, equipped with a Kähler metric, i.e. a positive definite Hermitian (1, 1)-form ω = i 1≤j,k≤n ω jk (z) dz j ∧ dz k such that dω = 0. By definition a holomorphic line bundle L on X is said to be pseudoeffective if there exists a singular hermitian metric h on L, given by h(z) = e -ϕ(z) with respect to a local trivialization L |U ≃ U × C, such that the curvature form (0.1) i Θ L,h := i ∂∂ϕ is (semi)positive in the sense of currents, i.e. ϕ is locally integrable and iΘ L,h ≥ 0 : in other words, the weight function ϕ is plurisubharmonic (psh) on the corresponding trivializing open set U . A basic concept is the notion of multiplier ideal sheaf, introduced in [START_REF] Michael | Multiplier ideal sheaves and Kähler-Einstein metrics of positive scalar curvature[END_REF].

Definition.

To any psh function ϕ on an open subset U of a complex manifold X, one associates the "multiplier ideal sheaf " I(ϕ) ⊂ O X|U of germs of holomorphic functions f ∈ O X,x , x ∈ U , such that |f | 2 e -ϕ is integrable with respect to the Lebesgue measure in some local coordinates near x. We also define the global multiplier ideal sheaf I(h) ⊂ O X of a hermitian metric h on L ∈ Pic(X) to be equal to I(ϕ) on any open subset U where L |U is trivial and h = e -ϕ . In such a definition, we may in fact assume i Θ L,h ≥ -Cω, i.e. locally ϕ = psh + C ∞ , we say in that case that ϕ is quasi-psh.

Let us observe that a multiplier ideal sheaf I(ϕ) is left unmodified by adding a smooth function to ϕ ; for such purposes, the additional C ∞ terms are irrelevant in quasi-psh functions. A crucial and well-known fact is that the ideal sheaves I(ϕ) ⊂ O X|U and I(h) ⊂ O X are always coherent analytic sheaves; when U ⊂ X is a coordinate open ball, this can be shown by observing that I(ϕ) coincides with the locally stationary limit J = lim ↑ N→+∞ J N of the increasing sequence of coherent ideals J N = (g j ) 0≤j<N associated with a Hilbert basis (g j ) j∈N of the Hilbert space of holomorphic functions f ∈ O X (U ) such that U |f | 2 e -ϕ dV ω < +∞. The proof is a consequence of Hörmander's L 2 estimates applied to weights of the form

ψ(z) = ϕ(z) + (n + k) log |z -x| 2 .
This easily shows that I(ϕ) x + m k x = J x + m k x , and one then concludes that I(ϕ) x = J x by the Krull lemma. When X is projective algebraic, Serre's GAGA theorem implies that I(h) is in fact a coherent algebraic sheaf, in spite of the fact that ϕ may have very "wild" analytic singularities -e.g. they might be everywhere dense in X in the Euclidean topology. Therefore, in some sense, the multiplier ideal sheaf is a powerful tool to extract algebraic (or at least analytic) data from arbitrary singularities of psh functions. In this context, assuming strict positivity of the curvature, one has the following well-known fundamental vanishing theorem. 0.3. Theorem. (Nadel Vanishing Theorem, [START_REF] Michael | Multiplier ideal sheaves and Kähler-Einstein metrics of positive scalar curvature[END_REF], [Dem93b]) Let (X, ω) be a compact Kähler n-dimensional manifold, and let L be a holomorphic line bundle over X equipped with a singular Hermitian metric h. Assume that i Θ L,h ≥ εω for some ε > 0 on X. Then H q X, O(K X ⊗ L) ⊗ I(h) = 0 for all q ≥ 1,

where K X = Ω n X = Λ n T * X denotes the canonical line bundle.

The proof follows from an application of Hörmander's L 2 estimates with singular weights, themselves derived from the Bochner-Kodaira identity (see [START_REF] Hörmander | An introduction to complex analysis in several variables[END_REF], [START_REF] Demailly | Estimations L 2 pour l'opérateur ∂ d'un fibré vectoriel holomorphe semipositif au-dessus d'une variété kählérienne complète[END_REF], [START_REF] Demailly | Regularization of closed positive currents and intersection theory[END_REF]). One should observe that the strict positivity assumption implies L to be big, hence X must be projective, since every compact manifold that is Kähler and Moishezon is also projective (cf. [Moi66], [START_REF] Peternell | Algebraicity criteria for compact complex manifolds[END_REF], [Pet98a]). However, when relaxing the strict positivity assumption, one can enter the world of general compact Kähler manifolds, and their study is one of our main goals.

In many cases, one has to assume that the psh functions involved have milder singularities. We say that a psh or quasi-psh function ϕ has analytic singularities if locally on the domain of definition U of ϕ one can write (0.4)

ϕ(z) = c log N j=1 |g j | 2 + O(1)
where the g j 's are holomorphic functions, c ∈ R + and O(1) means a locally bounded remainder term. Assumption (0.4) implies that the set of poles Z = ϕ -1 (-∞) is an analytic set, locally defined as Z = g -1 j (0), and that ϕ is locally bounded on U Z. We also refer to this situation by saying that ϕ has logarithmic poles. In general, one introduces the following comparison relations for psh or quasi-psh functions ϕ and hermitian metrics h = e -ϕ ; a more flexible comparison relation will be introduced in Section 4. 0.5. Definition. Let ϕ 1 , ϕ 2 be psh functions on an open subset U of a complex manifold X. We say that (a) ϕ 1 has less singularities than ϕ 2 , and write ϕ 1 ϕ 2 , if for every point x ∈ U , there exists a neighborhood V of x and a constant C ≥ 0 such that ϕ 1 ≥ ϕ 2 -C on V .

(b) ϕ 1 and ϕ 2 have equivalent singularities, and write ϕ 1 ∼ ϕ 2 , if locally near any point of U we have

ϕ 1 -C ≤ ϕ 2 ≤ ϕ 1 + C.
Similarly, given a pair of hermitian metrics h 1 , h 2 on a line bundle L → X, (a') we say that h 1 is less singular than h 2 , and write h 1 h 2 , if locally there exists a constant C > 0 such that h 1 ≤ Ch 2 .

(b')we say that h 1 , h 2 have equivalent singularities, and write h 1 ∼ h 2 , if locally there exists a constant C > 0 such that

C -1 h 2 ≤ h 1 ≤ Ch 2 .
(of course when h 1 and h 2 are defined on a compact manifold X, the constant C can be taken global on X in (a') and (b')).

Important features of psh singularities are the semi-continuity theorem (see [START_REF] Demailly | Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds[END_REF]) and the strong openness property recently proved by Guan and Zhou [START_REF] Qi'an Guan | Strong openness conjecture for plurisubharmonic functions[END_REF], [START_REF] Qi'an Guan | strong openness conjecture and related problems for plurisubharmonic functions[END_REF], [START_REF] Qi'an Guan | Effectiveness of demailly's strong openness conjecture and related problems[END_REF]. Let U be an open set in a complex manifold X and ϕ a psh function on U . Following [START_REF] Demailly | Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds[END_REF], we define the log canonical threshold of ϕ at a point z 0 ∈ U by (0.6) c z 0 (ϕ) = sup c > 0 : e -2c ϕ is L 1 on a neighborhood of z 0 ∈ ]0, +∞] (Here L 1 integrability refers to the Lebesgue measure with respect to local coordinates). It is an important invariant of the singularity of ϕ at z 0 . We refer to [FEM03], [DH14], [START_REF] Demailly | Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds[END_REF],

[FEM10], [Kis94], [START_REF] Michael | Multiplier ideal sheaves and Kähler-Einstein metrics of positive scalar curvature[END_REF], [START_REF] Phong | On a conjecture of Demailly and Kollár[END_REF], [START_REF] Skoda | Sous-ensembles analytiques d'ordre fini ou infini dans C n[END_REF] for further information about properties of the log canonical threshold. In this setting, the semi-continuity theorem can be stated as follows.

0.7. Theorem. (cf. [START_REF] Demailly | Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds[END_REF]) For any given z 0 ∈ U , the map PSH(U ) → ]0, +∞], ϕ → c z 0 (ϕ) is upper semi-continuous with respect to the topology of weak convergence on the space of psh functions (the latter topology being actually the same as the topology of L 1 loc convergence).

The original proof of [START_REF] Demailly | Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds[END_REF] was rather involved and depended on uniform polynomial approximation, combined with a reduction to a semi-continuity theorem for algebraic singularities; the Ohsawa-Takegoshi L 2 extension theorem [START_REF] Ohsawa | On the extension of L 2 holomorphic functions[END_REF] was used in a crucial way. We will give here a simpler and more powerful derivation due to Hiep [Hiep14], still depending on the Ohsawa-Takegoshi theorem, that simultaneously yields effective versions of Berndtsson's result [Bern13] on the openness conjecture, as well as Guan and Zhou's proof of the strong openness conjecture for multiplier ideal sheaves. 0.8. Theorem. ( [START_REF] Qi'an Guan | Strong openness conjecture for plurisubharmonic functions[END_REF], [START_REF] Qi'an Guan | strong openness conjecture and related problems for plurisubharmonic functions[END_REF], [START_REF] Qi'an Guan | Effectiveness of demailly's strong openness conjecture and related problems[END_REF]) Let ϕ, ψ j , j ∈ N, be psh functions on an open set U in a complex manifold X. Assume that ψ j ≤ ϕ and that ψ j converges to ϕ in L 1 loc topology as j → +∞. Then for every relatively compact subset U ′ ⋐ U , the multiplier ideal sheaves I(ψ j ) coincide with I(ϕ) on U ′ for j ≥ j 0 (U ′ ) ≫ 1.

Before going further, notice that the family of multiplier ideals λ → I(λϕ) associated with a psh function ϕ is nonincreasing in λ ∈ R + . By the Noetherian property of ideal sheaves, they can jump only for a locally finite set of values λ in [0, +∞[, and in particular, there exists a real value λ 0 > 1 such that (0.9)

I + (ϕ) := lim ε→0+ I((1 + ε)ϕ) = I(λϕ), ∀λ ∈ ]1, λ 0 ].
We will say that I + (ϕ) is the upper semicontinuous regularization of the multiplier ideal sheaf.

Berndtsson's result [Bern13] states that the equality

I(ϕ) = O X implies I + (ϕ) = O X .
If we take ψ j = (1 + 1/j)ϕ and assume (without loss of generality) that ϕ ≤ 0, Theorem 0.8 implies in fact 0.10. Corollary. For every psh function ϕ, the upper semicontinuous regularization coincides with the multiplier ideal sheaf, i.e. I + (ϕ) = I(ϕ).

Now, if L is a pseudoeffective line bundle, it was observed in [Dem00] that there always exist a unique equivalence class h min of singular hermitian metrics with minimal singularities, such that i Θ L,h min ≥ 0 (by this we mean that h min is unique up to equivalence of singularities). In fact, if h ∞ is a smooth metric on L, one can define the corresponding weight ϕ min of h min as an upper envelope (0.11)

ϕ min (z) = sup ϕ(z) ; i Θ L,h ∞ + i ∂∂ϕ ≥ 0, ϕ ≤ 0 on X ,
and put h min = h ∞ e -ϕ min . In general, h min need not have analytic singularities.

An important fact is that one can approximate arbitrary psh functions by psh functions with analytic singularities. The appropriate technique consists of using an asymptotic Bergman kernel procedure (cf. [START_REF] Demailly | Regularization of closed positive currents and intersection theory[END_REF] and Section 1). If ϕ is a holomorphic function on a ball B ⊂ C n , one puts

ϕ m (z) = 1 2m log ℓ∈N |g m,ℓ (z)| 2
where (g m,ℓ ) ℓ∈N is a Hilbert basis of the space H(B, mϕ) of L 2 holomorphic functions on B such that B |f | 2 e -2mϕ dV < +∞. When T = α + dd c ϕ is a closed (1, 1)-current on X in the same cohomology class as a smooth (1, 1)-form α and ϕ is a quasi-psh potential on X, a sequence of global approximations T m can be produced by taking a finite covering of X by coordinate balls (B j ). A partition of unity argument allows to glue the local approximations ϕ m,j of ϕ on B j into a global potential ϕ m , and one sets T m = α + dd c ϕ m . These currents T m converge weakly to T , are smooth in the complement X Z m of an increasing family of analytic subsets Z m ⊂ X, and their singularities approach those of T . More precisely, the Lelong numbers ν(T m , z) converge uniformly to those of T , and whenever T ≥ 0, it is possible to produce a current T m that only suffers a small loss of positivity, namely T m ≥ -ε m ω where lim m→+∞ ε m = 0. These considerations lead in a natural way to the concept of numerical dimension of a closed positive (1, 1)-current T . We define (0.12) nd(T ) = max p = 0, 1, . . . , n ; lim sup

m→+∞ X Z m (T m + ε m ω) p ∧ ω n-p > 0 .
One can easily show (see Section 4) that the right hand side of (0.12) does not depend on the sequence (T m ), provided that the singularities approach those of T (we call this an "asymptotically equisingular approximation").

These concepts are very useful to study cohomology groups with values in pseudoeffective line bundles (L, h). Without assuming any strict positivity of the curvature, one can obtain at least a hard Lefschetz theorem with coefficients in L. The technique is based on a use of harmonic forms with respect to suitable "equisingular approximations" ϕ m of the weight ϕ of h (in that case we demand that I(ϕ m ) = I(ϕ) for all m); the main idea is to work with complete Kähler metrics in the open complements X Z m where ϕ m is smooth, and to apply a variant of the Bochner formula on these sets. More details can be found in Section 3 and in [START_REF] Demailly | Pseudo-effective line bundles on compact Kähler manifolds[END_REF]. 0.13. Theorem. ([DPS01]) Let (L, h) be a pseudo-effective line bundle on a compact Kähler manifold (X, ω) of dimension n, let Θ L,h ≥ 0 be its curvature current and I(h) the associated multiplier ideal sheaf. Then, the wedge multiplication operator ω q ∧ • induces a surjective morphism Φ q ω,h :

H 0 (X, Ω n-q X ⊗ L ⊗ I(h)) -→ H q (X, Ω n X ⊗ L ⊗ I(h)).
The special case when L is nef is due to Takegoshi [START_REF] Takegoshi | On cohomology groups of nef line bundles tensorized with multiplier ideal sheaves on compact Kähler manifolds[END_REF]. An even more special case is when L is semipositive, i.e. possesses a smooth metric with semipositive curvature. In that case the multiple ideal sheaf I(h) coincides with O X and we get the following consequence already observed by Enoki [START_REF] Enoki | Strong-Lefschetz-type theorem for semi-positive line bundles over compact Kähler manifolds[END_REF] and Mourougane [START_REF] Mourougane | Versions kählériennes du théorème d'annulation de Bogomolov-Sommese[END_REF]. 0.14. Corollary. Let (L, h) be a semipositive line bundle on a compact Kähler manifold (X, ω) of dimension n. Then, the wedge multiplication operator ω q ∧ • induces a surjective morphism

Φ q ω : H 0 (X, Ω n-q X ⊗ L) -→ H q (X, Ω n X ⊗ L).
It should be observed that although all objects involved in Th. 0.13 are algebraic when X is a projective manifold, there is no known algebraic proof of the statement; it is not even clear how to define algebraically I(h) for the case when h = h min is a metric with minimal singularity. However, even in the special circumstance when L is nef, the multiplier ideal sheaf is crucially needed.

Our next statement is taken from the PhD thesis of Junyan Cao [JC13]. The proof is a combination of our Bergman regularization techniques, together with an argument of Ch. Mourougane [START_REF] Mourougane | Versions kählériennes du théorème d'annulation de Bogomolov-Sommese[END_REF] relying on a use of the Calabi-Yau theorem for Monge-Ampère equations.

Theorem. ([JC13], [JC14]

) Let (L, h) be a pseudoeffective line bundle on a compact Kähler n-dimensional manifold X. Then

H q (X, K X ⊗ L ⊗ I(h)) = 0 for every q ≥ n -nd(L, h) + 1, where nd(L, h) := nd( i Θ L,h ).
Cao's technique of proof actually yields the result for the upper semicontinuous regularization (0.16)

I + (h) = lim ε→0 I(h 1+ε )
instead of I(h), but we can apply Guan-Zhou's Theorem 0.8 to see that the equality I + (h) = I(h) always holds. As a final geometric application of this circle of ideas, we present the following result which was obtained in [START_REF] Campana | Compact Kähler 3-manifolds without non-trivial subvarieties[END_REF].

0.17. Theorem. ([CDV13]) Let X be a compact Kähler threefold that is "strongly simple" in the sense that X has no nontrivial analytic subvariety. Then the Albanese morphism α : X → Alb(X) is a biholomorphism, and therefore X is biholomorphic to a 3-dimensional complex torus C 3 /Λ.

I would like to thank the referee wholeheartedly for numerous suggestions that led to substantial improvements of the exposition.

Approximation of psh functions and of closed (1,1)-currents

We first recall here the basic result on the approximation of psh functions by psh functions with analytic singularities. The main idea is taken from [START_REF] Demailly | Regularization of closed positive currents and intersection theory[END_REF] and relies on the Ohsawa-Takegoshi extension theorem, For other applications to algebraic geometry, see [Dem93b] and Demailly-Kollár [START_REF] Demailly | Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds[END_REF]. Let ϕ be a psh function on an open set Ω ⊂ C n . Recall that the Lelong number of ϕ at a point x 0 ∈ Ω is defined to be

(1.1) ν(ϕ, x 0 ) = lim inf z→x 0 ϕ(z) log |z -x 0 | = lim r→0 + sup B(x 0 ,r) ϕ log r .
In particular, if ϕ = log |f | with f ∈ O(Ω), then ν(ϕ, x 0 ) is equal to the vanishing order

ord x 0 (f ) = sup{k ∈ N ; D α f (x 0 ) = 0, ∀|α| < k}.
1.2. Theorem. Let ϕ be a plurisubharmonic function on a bounded pseudoconvex open set Ω ⊂ C n . For every m > 0, let H Ω (mϕ) be the Hilbert space of holomorphic functions f on Ω such that Ω |f | 2 e -2mϕ dV 2n < +∞ and let

ϕ m = 1 2m log |g m,ℓ | 2 where (g m,ℓ
) is an orthonormal basis of H Ω (mϕ). Then there are constants

C 1 , C 2 > 0 independent of m such that (a) ϕ(z) - C 1 m ≤ ϕ m (z) ≤ sup |ζ-z|<r ϕ(ζ) + 1 m log C 2
r n for every z ∈ Ω and r < d(z, ∂Ω). In particular, ϕ m converges to ϕ pointwise and in L 1 loc topology on Ω when m → +∞ and

(b) ν(ϕ, z) - n m ≤ ν(ϕ m , z) ≤ ν(ϕ, z) for every z ∈ Ω.
Proof. (a) Note that |g m,ℓ (z)| 2 is the square of the norm of the evaluation linear form ev z : f → f (z) on H Ω (mϕ), since g m,ℓ (z) = ev z (g m,ℓ ) is the ℓ-th coordinate of ev z in the orthonormal basis (g m,ℓ ). In other words, we have

|g m,ℓ (z)| 2 = sup f ∈B(1) |f (z)| 2
where B(1) is the unit ball of H Ω (mϕ) (The sum is called the Bergman kernel associated with H Ω (mϕ)). As ϕ is locally bounded from above, the L 2 topology is actually stronger than the topology of uniform convergence on compact subsets of Ω. It follows that the series |g m,ℓ | 2 converges uniformly on Ω and that its sum is real analytic. Moreover, by what we just explained, we have

ϕ m (z) = sup f ∈B(1) 1 2m log |f (z)| 2 = sup f ∈B(1) 1 m log |f (z)|.
For z 0 ∈ Ω and r < d(z 0 , ∂Ω), the mean value inequality applied to the psh function

|f | 2 implies |f (z 0 )| 2 ≤ 1 π n r 2n /n! |z-z 0 |<r |f (z)| 2 dV 2n (z) ≤ 1 π n r 2n /n! exp 2m sup |z-z 0 |<r ϕ(z) Ω |f | 2 e -2mϕ dV 2n .
If we take the supremum over all f ∈ B(1) we get

ϕ m (z 0 ) ≤ sup |z-z 0 |<r ϕ(z) + 1 2m log 1 π n r 2n /n!
and the second inequality in (a) is proved -as we see, this is an easy consequence of the mean value inequality. Conversely, the Ohsawa-Takegoshi extension theorem ([OT87]) applied to the 0-dimensional subvariety {z 0 } ⊂ Ω shows that for any a ∈ C there is a holomorphic function f on Ω such that f (z 0 ) = a and

Ω |f | 2 e -2mϕ dV 2n ≤ C 3 |a| 2 e -2mϕ(z 0 ) ,
where C 3 only depends on n and diam Ω. We fix a such that the right hand side is 1. Then f ≤ 1 and so we get

ϕ m (z 0 ) ≥ 1 m log |f (z 0 )| = 1 m log |a| = ϕ(z) -log C 3 m .
The inequalities given in (a) are thus proved. Taking r = 1/m, we find that

lim m→+∞ sup |ζ-z|<1/m ϕ(ζ) = ϕ(z)
by the upper semicontinuity of ϕ, and therefore lim ϕ m (z) = ϕ(z), since lim 1 m log(C 2 m n ) = 0.

(b) The above estimates imply

sup |z-z 0 |<r ϕ(z) - C 1 m ≤ sup |z-z 0 |<r ϕ m (z) ≤ sup |z-z 0 |<2r ϕ(z) + 1 m log C 2 r n .
After dividing by log r < 0 when r → 0, we infer

sup |z-z 0 |<2r ϕ(z) + 1 m log C 2 r n log r ≤ sup |z-z 0 |<r ϕ m (z) log r ≤ sup |z-z 0 |<r ϕ(z) -C 1 m log r ,
and from this and definition (1.1), it follows immediately that

ν(ϕ, x) - n m ≤ ν(ϕ m , z) ≤ ν(ϕ, z).
Theorem 1.2 implies in a straightforward manner the deep result of [START_REF] Tong | Analyticity of sets associated to Lelong numbers and the extension of closed positive currents[END_REF] on the analyticity of the Lelong number upperlevel sets.

Corollary. [Siu74]

Let ϕ be a plurisubharmonic function on a complex manifold X. Then, for every c > 0, the Lelong number upperlevel set

E c (ϕ) = z ∈ X ; ν(ϕ, z) ≥ c is an analytic subset of X.
Proof. Since analyticity is a local property, it is enough to consider the case of a psh function ϕ on a pseudoconvex open set Ω ⊂ C n . The inequalities obtained in Theorem 13.2 (b) imply that

E c (ϕ) = m≥m 0 E c-n/m (ϕ m ).
Now, it is clear that E c (ϕ m ) is the analytic set defined by the equations g

(α)
m,ℓ (z) = 0 for all multi-indices α such that |α| < mc. Thus E c (ϕ) is analytic as a (countable) intersection of analytic sets.

1.4. Remark. It has been observed by Dano Kim [Kim13] that the functions ϕ m produced by Th. 1.2 do not in general satisfy ϕ m+1 ϕ m , in other words their singularities may not always increase monotonically to those of ϕ. Thanks to the subbadditivity result of [START_REF] Demailly | A subadditivity property of multiplier ideals[END_REF], this is however the case for any subsequence ϕ m k such that m k divides m k+1 , e.g. m k = 2 k or m k = k! (we will refer to such a sequence below as being a "multiplicative sequence"). In that case, a use of the Ohsawa-Takegoshi theorem on the diagonal of Ω × Ω shows that one can obtain ϕ m k+1 ≤ ϕ m k (after possibly replacing ϕ m k by ϕ m k + C/m k with C large enough), see [START_REF] Demailly | A subadditivity property of multiplier ideals[END_REF] and [START_REF] Demailly | Pseudo-effective line bundles on compact Kähler manifolds[END_REF].

Our next goal is to study the regularization process more globally, i.e. on a compact complex manifold X. For this, we have to take care of cohomology class. It is convenient to introduce

d c = i 4π (∂ -∂), so that dd c = i 2π ∂∂.
Let T be a closed (1, 1)-current on X. We assume that T is quasi-positive, i.e. that there exists a (1, 1)-form γ with continuous coefficients such that T ≥ γ ; observe that a function ϕ is quasi-psh iff its complex Hessian is bounded below by a (1, 1)-form with continuous or locally bounded coefficients, that is, if dd c ϕ is quasi-positive. The case of positive currents (γ = 0) is of course the most important.

1.5. Lemma. There exists a smooth closed (1, 1)-form α representing the same ∂∂-cohomology class as T and an quasi-psh function ϕ on X such that T = α + dd c ϕ.

Proof.

Select an open covering (B j ) of X by coordinate balls such that T = dd c ϕ j over B j , and construct a global function ϕ = θ j ϕ j by means of a partition of unity {θ j } subordinate to B j . Now, we observe that ϕϕ k is smooth on B k because all differences ϕ jϕ k are smooth in the intersections B j ∩ B k and we can write ϕϕ k = θ j (ϕ jϕ k ). Therefore α := Tdd c ϕ is smooth.

Thanks to Lemma 1.5, the problem of approximating a quasi-positive closed (1, 1)-current is reduced to approximating a quasi-psh function. In this way, we get 1.6. Theorem. Let T = α + dd c ϕ be a quasi-positive closed (1, 1)-current on a compact Hermitian manifold (X, ω) such that T ≥ γ for some continuous (1, 1)-form γ. Then there exists a sequence of quasi-positive currents T m = α + dd c ϕ m whose local potentials have the same singularities as 1/2m times a logarithm of a sum of squares of holomorphic functions and a decreasing sequence ε m > 0 converging to 0, such that (a) T m converges weakly to T ,

(b) ν(T, x) - n m ≤ ν(T m , x) ≤ ν(T, x) for every x ∈ X ; (c) T m ≥ γ -ε m ω.
We say that our currents T m are approximations of T with analytic singularities (possessing logarithmic poles). Moreover, for any multiplicative subsequence m k , one can arrange that

T m k = α + dd c ϕ m k where (ϕ m k ) is a non-increasing sequence of potentials.
Proof. We just briefly sketch the idea -essentially a partition of unity argument -and refer to [START_REF] Demailly | Regularization of closed positive currents and intersection theory[END_REF] for the details. Let us write T = α + dd c ϕ with α smooth, according to Lemma 1.5. After replacing T with Tα and γ with γα, we can assume without loss of generality that {T } = 0, i.e. that T = dd c ϕ with a quasi-psh function ϕ on X such that dd c ϕ ≥ γ. Now, for ε > 0 small, we select a finite covering (B j ) 1≤j≤N(ε) of X by coordinate balls on which there exists an ε-approximation of γ as

1≤ℓ≤n λ j,ℓ i dz j ℓ ∧ dz j ℓ ≤ γ |B j ≤ 1≤ℓ≤n (λ j,ℓ + ε) i dz j ℓ ∧ dz j ℓ
in terms of holomorphic coordinates (z j ℓ ) 1≤ℓ≤n on B j (for this we just diagonalize γ(a j ) at the center a j of B j , and take the radius of B j small enough). By construction ψ j,ε (z) = ϕ(z) -1≤ℓ≤n λ j,ℓ |z j ℓ | 2 is psh on B ℓ , and we can thus obtain approximations ψ j,ε,m of ψ j by the Bergman kernel process applied on each ball B j . The idea is to define a global approximation of ϕ by putting

ϕ ε,m (x) = 1 m log 1≤j≤N(ε) θ j,ε (x) exp m ψ j,ε,m (x) + 1≤ℓ≤n (λ j,ℓ -ε)|z j ℓ | 2
where (θ j,ε ) 1≤j≤N(ε) is a partition of unity subordinate to the B j 's. If we take ε = ε m and ϕ m = ϕ ε m ,m where ε m decays very slowly, then it is not hard to check that T m = dd c ϕ m satisfies the required estimates; it is essentially enough to observe that the derivatives of θ j,ε are "killed" by the factor 1 m when m ≫ 1 ε . We need a variant of Th. 1.6 providing more "equisingularity" in the sense that the multiplier ideal sheaves are preserved. If one adds the requirement to obtain a non-increasing sequence of approximations of the potential, one can do this only at the expense of accepting "transcendental" singularities, which can no longer be guaranteed to be logarithmic poles. 1.7. Theorem. Let T = α + dd c ϕ be a closed (1, 1)-current on a compact Hermitian manifold (X, ω), where α is a smooth closed (1, 1)-form and ϕ a quasi-psh function. Let γ be a continuous real (1, 1)-form such that T ≥ γ. Then one can write ϕ = lim m→+∞ ϕ m where

(a) ϕ m is smooth in the complement X Z m of an analytic set Z m ⊂ X ; (b) { ϕ m } is a non-increasing sequence, and Z m ⊂ Z m+1 for all m ;
(c) X (e -ϕe -ϕ m )dV ω is finite for every m and converges to 0 as m → +∞ ;

(d) ("equisingularity") I( ϕ m ) = I(ϕ) for all m ; (e) T m = α + dd c ϕ m satisfies T m ≥ γ -ε m ω, where lim m→+∞ ε m = 0.
Proof. (A substantial simplication of the original proof in [START_REF] Demailly | Pseudo-effective line bundles on compact Kähler manifolds[END_REF].) As in the previous proof, we may assume that α = 0 and T = dd c ϕ, and after subtracting a constant to ϕ we can also achieve that ϕ ≤ -1 everywhere on X. For every germ

f ∈ O X,x , (c) implies U |f | 2 (e -ϕ -e -ϕ m )dV ω <
+∞ on some neighborhood U of x, hence the integrals U |f | 2 e -ϕ dV ω and U |f | 2 e -ϕ m dV ω are simultaneously convergent or divergent, and (d) follows trivially. We define

ϕ m (x) = sup k≥m (1 + 2 -k )ϕ p k
where (p k ) is a multiplicative sequence that grows fast enough, with ϕ p k+1 ≤ ϕ p k ≤ 0 for all k. Clearly ϕ m is a non-increasing sequence, and

lim m→+∞ ϕ m (x) = lim k→+∞ ϕ p k (x) = ϕ(x) at every point x ∈ X. If Z m is the set of poles of ϕ p m , it is easy to see that ϕ m (x) = lim ℓ→+∞ sup k∈[m,ℓ]
(1 + 2 -k )ϕ p k converges uniformly on every compact subset of X Z m , since any new term (1 + 2 -ℓ )ϕ p ℓ may contribute to the sup only in case

ϕ p ℓ ≥ 1 + 2 -p m 1 + 2 -p ℓ ϕ p m (≥ 2ϕ p m ),
and the difference of that term with respect to the previous term

(1 + 2 -(ℓ-1) )ϕ p ℓ-1 ≥ (1 + 2 -(ℓ-1) )ϕ p ℓ is less than 2 -ℓ |ϕ p ℓ | ≤ 2 1-ℓ |ϕ p m |.
Therefore ϕ m is continuous on X Z m , and getting it to be smooth is only a matter of applying Richberg's approximation technique ([Ric68], [START_REF] Demailly | Complex analytic and differential geometry[END_REF]). The only serious thing to prove is property (c). To achieve this, we observe that

{ϕ < ϕ m } is contained in the union k≥m {ϕ < (1 + 2 -k )ϕ p k }, therefore (1.8) X e -ϕ -e -ϕ m dV ω ≤ +∞ k=m X 1 ϕ<(1+2 -k )ϕ p k e -ϕ dV ω and X 1 ϕ<(1+2 -k )ϕ p k e -ϕ dV ω = X 1 ϕ<(1+2 -k )ϕ p k exp 2 k ϕ -(2 k + 1)ϕ dV ω ≤ X 1 ϕ<(1+2 -k )ϕ p k exp (2 k + 1)(ϕ p k -ϕ) dV ω ≤ X 1 ϕ<(1+2 -k )ϕ p k exp 2p k (ϕ p k -ϕ) dV ω (1.9)
if we take p k > 2 k-1 (notice that ϕ p kϕ ≥ 0). Now, by Lemma 1.10 below, our integral (1.9) is finite. By Lebesgue's monotone convergence theorem, we have for k fixed lim p→+∞ X 1 ϕ<(1+2 -k )ϕ p e -ϕ dV ω = 0 as a decreasing limit, and we can take p k so large that ϕ<(1+2 -k )ϕ p k e -ϕ dV ω ≤ 2 -k . This ensures that property (c) holds true by (1.8).

1.10. Lemma. On a compact complex manifold, for any quasi-psh potential ϕ, the Bergman kernel procedure leads to quasi-psh potentials ϕ m with analytic singularities such that X e 2m(ϕ m -ϕ) dV ω < +∞. 

(c') ∀λ ∈ R + , X (e -λϕ -e -λ ϕ m )dV ω ≤ 2 -m for m ≥ m 0 (λ),
and thus an equality I(λ ϕ m ) = I(λϕ) for m ≥ m 0 (λ). We just need to replace estimate (1.8) by

X e -mϕ -e -m ϕ m dV ω ≤ +∞ k=m X 1 ϕ<(1+2 -k )ϕ p k e -kϕ dV ω and take p k so large that 2p k ≥ k(2 k + 1) and ϕ<(1+2 -k )ϕ p k e -kϕ dV ω ≤ 2 -k-1 .
We also quote the following very simple consequence of Lemma 1.10, which will be needed a bit later. Since ϕ m is less singular than ϕ, we have of course an inclusion I(λϕ) ⊂ I(λϕ m ) for all λ ∈ R + . Conversely :

1.12. Corollary. For every pair of positive real numbers λ ′ > λ > 0, we have an inclusion of multiplier ideals

I(λ ′ ϕ m ) ⊂ I(λϕ)
as soon as m ≥ 1 2

λλ ′ λ ′ -λ . Proof. If f ∈ O X,x
and U is a sufficiently small neighborhood of x, the Hölder inequality for conjugate exponents p, q > 1 yields

U |f | 2 e -λϕ dV ω ≤ U |f | 2 e -λ ′ ϕ m dV ω 1/p U |f | 2 e q p λ ′ ϕ m -qλϕ dV ω 1/q . Therefore, if f ∈ I(λ ′ ϕ m )
x , we infer that f ∈ I(λϕ) x as soon as the integral X e q p λ ′ ϕ m -qλϕ dV ω is convergent. If we select p ∈ ]1, λ ′ /λ], this is implied by the condition X e qλ(ϕ m -ϕ) dV ω < +∞. If we further take qλ = 2m 0 to be an even integer so large that

p = q q -1 = 2m 0 /λ 2m 0 /λ -1 ≤ λ ′ λ , e.g. m 0 = m 0 (λ, λ ′ ) = 1 2 λλ ′ λ ′ -λ , then we indeed have X e 2m 0 (ϕ m -ϕ) dV ω ≤ X e 2m(ϕ m -ϕ) dV ω < +∞ for m ≥ m 0 (λ, λ ′ ), thanks
to Lemma 1.10.

1.13. Remark. Without the monotonicity requirement (b) for the sequence ( ϕ m ) in Theorem 1.7, the strong openness conjecture proved in the next section would directly provide an equisingular sequence, simply by taking

ϕ m = 1 + 1 m ϕ m
where ϕ m is the Bergman approximation sequence. In fact all ϕ m have analytic singularities and Cor. 1.12 applied with λ = 1 and λ ′ = 1 + 1/m shows that I( ϕ m ) ⊂ I(ϕ). Since ϕ m ≥ (1 + 1 m )ϕ, the equality I( ϕ m ) = I(ϕ) holds for m large by strong openness, and properties 1.7 (a), (c), (d), (e) can be seen to hold. However, the sequence ( ϕ m ) is not monotone.

Semi-continuity of psh singularities and proof of the strong openness conjecture

In this section, we present a proof of the strong openness conjecture for multiplier ideal sheaves. Let Ω be a domain in C n , f ∈ O(Ω) a holomorphic function, and ϕ ∈ PSH(Ω) a psh function on Ω. For every holomorphic function f on Ω, we introduce the weighted log canonical threshold of ϕ with weight f at z 0

c f,z 0 (ϕ) = sup c > 0 : |f | 2 e -2c ϕ is L 1 on a neighborhood of z 0 ∈ ]0, +∞].
The special case f = 1 yields the usual log canonical threshold c z 0 (ϕ) that was defined in the introduction. The openness conjectures can be stated as follows.

Conjectures. (a) (openness conjecture, [DK01])

The set {c > 0 :

e -2c ϕ is L 1 on a neighborhood of z 0 equals the open interval ]0, c z 0 (ϕ)[. (b) (strong openness conjecture, [Dem00]) The set {c > 0 : |f | 2 e -2c ϕ is L 1 on a neighborhood of z 0 equals the open inter- val ]0, c f,z 0 (ϕ)[.
The openness conjecture 2.1 (a) was first established by Favre and Jonsson ([FJ05] in dimension 2 (see also [START_REF] Jonsson | Valuations and asymptotic invariants for sequences of ideals[END_REF], [START_REF] Jonsson | An algebraic approach to the openness conjecture of Demailly and Kollár[END_REF]), and 8 years later by Berndtsson [Bern13] in arbitrary dimension. The strong form 2.1 (b), which is equivalent to Cor. 0.10, was settled very recently by Guan and Zhou [START_REF] Qi'an Guan | Strong openness conjecture for plurisubharmonic functions[END_REF]. Their proof uses a sophisticated version of the L 2 -extension theorem of Ohsawa and Takegoshi in combination with the curve selection lemma. They have also obtained related semi-continuity statements in [START_REF] Qi'an Guan | strong openness conjecture and related problems for plurisubharmonic functions[END_REF] and "effective versions" in [START_REF] Qi'an Guan | Effectiveness of demailly's strong openness conjecture and related problems[END_REF]. A simplified proof along the same lines has been given by Lempert in [Lem14].

Here, we follow Pham Hoang Hiep's approach [Hiep14], which is more straightforward and avoids the curve selection lemma. It is based on the original version [START_REF] Ohsawa | On the extension of L 2 holomorphic functions[END_REF] of the L 2 -extension theorem, applied to members of a standard basis for a multiplier ideal sheaf of holomorphic functions associated with a plurisubharmonic function ϕ. In this way, by means of a simple induction on dimension, one can obtain the strong openness conjecture, and give simultaneously an effective version of the semicontinuity theorem for weighted log canonical thresholds. The main results are contained in the following theorem.

Theorem. ([Hiep14])

Let f be a holomorphic function on an open set Ω in C n and let ϕ be a psh function on Ω.

(i) ("Semicontinuity theorem") Assume that Ω ′ e -2c ϕ dV 2n < +∞ on some open subset Ω ′ ⊂ Ω and let z 0 ∈ Ω ′ . Then there exists δ = δ(c, ϕ, Ω ′ , z 0 ) > 0 such that for every ψ ∈ PSH(Ω ′ ), ψ -ϕ L 1 (Ω ′ ) ≤ δ implies c z 0 (ψ) > c. Moreover, as ψ converges to ϕ in L 1 (Ω ′ ), the function e -2c ψ converges to e -2c ϕ in L 1 on every relatively compact open subset Ω ′′ ⋐ Ω ′ . (ii) ("Strong effective openness") Assume that Ω ′ |f | 2 e -2c ϕ dV 2n < +∞ on some open subset Ω ′ ⊂ Ω. When ψ ∈ PSH(Ω ′ ) converges to ϕ in L 1 (Ω ′ ) with ψ ≤ ϕ, the function |f | 2 e -2c ψ converges to |f | 2 e -2c ϕ in L 1 norm on every relatively compact open subset Ω ′′ ⋐ Ω ′ .

Corollary. ("Strong openness").

For any plurisubharmonic function ϕ on a neighborhood of a point

z 0 ∈ C n , the set {c > 0 : |f | 2 e -2c ϕ is L 1 on a neighborhood of z 0 } is an open interval (0, c f,z 0 (ϕ)).
2.4. Corollary. ("Convergence from below").

If ψ ≤ ϕ converges to ϕ in a neighborhood of z 0 ∈ C n , then c f,z 0 (ψ) ≤ c f,z 0 (ϕ) converges to c f,z 0 (ϕ).
In fact, after subtracting a large constant to ϕ, we can assume ϕ ≤ 0 in both corollaries. Then Cor. 2.3 is a consequence of assertion (ii) of the main theorem when we take Ω ′ small enough and ψ = (1 + δ)ϕ with δ ց 0. In Cor. 2.4, we have by definition c f,z 0 (ψ) ≤ c f,z 0 (ϕ) for ψ ≤ ϕ, but again (ii) shows that c f,z 0 (ψ) becomes ≥ c for any given value c ∈ (0, c f,z 0 (ϕ)), whenever ψϕ L 1 (Ω ′ ) is sufficiently small. 2.5. Remark. One cannot remove condition ψ ≤ ϕ in assertion (ii) of the main theorem. Indeed, choose

f (z) = z 1 , ϕ(z) = log |z 1 | and ϕ j (z) = log |z 1 + z 2 j |, for j ≥ 1.One has ϕ j → ϕ in L 1 loc (C n ), however c f,0 (ϕ j ) = 1 < c f,0 (ϕ) = 2 for all j ≥ 1.
On the other hand, condition (i) of Theorem 2.2 does not require any given inequality between ϕ and ψ. Modulo Berndtsson's solution of the openness conjecture, (i) follows from the effective semicontinuity result of [START_REF] Demailly | Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds[END_REF], but (like Guan and Zhou) Hiep's technique will reprove both by a direct and easier method.

2.6. A few preliminaries. According to standard techniques in the theory of Gröbner bases, one equips the ring O C n ,0 of germs of holomorphic functions at 0 with the homogeneous lexicographic order of monomials

z α = z α 1 1 . . . z α n n , that is, z α 1 1 . . . z α n n < z β 1 1 . . . z β n n if and only if |α| = α 1 +. . .+α n < |β| = β 1 +. . .+β n or |α| = |β| and α i < β i for the first index i with α i = β i . For each f (z) = a α 1 z α 1 + a α 2 z α 2 + .
. . with a α j = 0, j ≥ 1 and z α 1 < z α 2 < . . . , we define the initial coefficient, initial monomial and initial term of f to be respectively

IC(f ) = a α 1 , IM(f ) = z α 1 , IT(f ) = a α 1 z α 1 ,
and the support of f to be SUPP(f ) = {z α 1 , z α 2 , . . .}. For any ideal I of O C n ,0 , we define IM(I) to be the ideal generated by {IM(f )} {f ∈I} . First, we recall the division theorem of Hironaka and the concept of standard basis of an ideal.

Theorem. (Division theorem of Hironaka

, [Gal79], [Bay82], [BM87], [BM89], [Eis95]) Let f, g 1 , . . . , g k ∈ O C n ,0 . Then there exist h 1 , . . . , h k , s ∈ O C n ,0 such that f = h 1 g 1 + . . . + h k g k + s,
and SUPP(s)∩ IM(g 1 ), . . . , IM(g k ) = ∅, where IM(g 1 ), . . . , IM(g k ) denotes the ideal generated by the family (IM(g 1 ), . . . , IM(g k )).

Standard basis of an ideal.

Let I be an ideal of O C n ,0 and let g 1 , . . . , g k ∈ I be such that IM(I) = IM(g 1 ), . . . , IM(g k ) . Take f ∈ I. By the division theorem of Hironaka, there exist h

1 , . . . , h k , s ∈ O C n ,0 such that f = h 1 g 1 + . . . + h k g k + s,
and SUPP(s) ∩ IM(I) = ∅. On the other hand, since s = fh 1 g 1 + . . . + h k g k ∈ I, we have IM(s) ∈ IM(I). Therefore s = 0 and the g j 's are generators of I. By permuting the g j 's and performing ad hoc subtractions, we can always arrange that IM(g 1 ) < IM(g 2 ) < . . . < IM(g k ), and we then say that (g 1 , . . . , g k ) is a standard basis of I.

Th. 2.2 will be proved by induction on dimension n. All statements are trivial for n = 0. Assume that the theorem holds for dimension n -1. Thanks to the L 2 -extension theorem of Ohsawa and Takegoshi ([OT87]), one obtains the following key lemma.

2.9. Lemma. Let ϕ ≤ 0 be a plurisubharmonic function and f be a holomorphic function on the polydisc ∆ n R of center 0 and (poly)radius R > 0 in C n , such that for some c > 0

∆ n R |f (z)| 2 e -2c ϕ(z) dV 2n (z) < +∞.
Let ψ j ≤ 0, j ≥ 1, be a nequence of plurisubharmonic functions on ∆ n R with ψ j → ϕ in L 1 loc (∆ n R ), and assume that either f = 1 identically or ψ j ≤ ϕ for all j ≥ 1. Then for every r < R and ε ∈ (0, 1 2 r], there exist a value w n ∈ ∆ ε {0}, an index j 0 , a constant c > c and a sequence of holomorphic functions

F j on ∆ n r , j ≥ j 0 , such that IM(F j ) ≤ IM(f ), F j (z) = f (z) + (z n -w n ) a j,α z α with |w n ||a j,α | ≤ r -|α|
ε for all α ∈ N n , and

∆ n r |F j (z)| 2 e -2c ψ j (z) dV 2n (z) ≤ ε 2 |w n | 2 < +∞, ∀j ≥ j 0 .
Moreover, one can choose w n in a set of positive measure in the punctured disc ∆ ε {0} (the index j 0 = j 0 (w n ) and the constant c = c(w n ) may then possibly depend on w n ).

Proof. By Fubini's theorem we have

∆ R ∆ n-1 R |f (z ′ , z n )| 2 e -2c ϕ(z ′ ,z n ) dV 2n-2 (z ′ ) dV 2 (z n ) < +∞.
Since the integral extended to a small disc z n ∈ ∆ η tends to 0 as η → 0, it will become smaller than any preassigned value, say ε 2 0 > 0, for η ≤ η 0 small enough. Therefore we can choose a set of positive measure of values w n ∈ ∆ η {0} such that

∆ n-1 R |f (z ′ , w n )| 2 e -2c ϕ(z ′ ,w n ) dV 2n-2 (z ′ ) ≤ ε 2 0 πη 2 < ε 2 0 |w n | 2 .
Since the main theorem is assumed to hold for n -1, for any ρ < R there exist j 0 = j 0 (w n ) and c = c(w n ) > c such that

∆ n-1 ρ |f (z ′ , w n )| 2 e -2c ψ j (z ′ ,w n ) dV 2n-2 (z ′ ) < ε 2 0 |w n | 2 , ∀j ≥ j 0 .
(For this, one applies part (i) in case f = 1, and part (ii) in case ψ j ≤ ϕ, using the fact that ψ = c c ψ j converges to ϕ as c → c and j → +∞). Now, by the L 2 -extension theorem of Ohsawa and Takegoshi (see [START_REF] Ohsawa | On the extension of L 2 holomorphic functions[END_REF]), there exists a holomorphic function

F j on ∆ n-1 ρ × ∆ R such that F j (z ′ , w n ) = f (z ′ , w n ) for all z ′ ∈ ∆ n-1 ρ
, and

∆ n-1 ρ ×∆ R |F j (z)| 2 e -2c ψ j (z) dV 2n (z) ≤ C n R 2 ∆ n-1 ρ |f (z ′ , w n )| 2 e -2c ψ j (z ′ ,w n ) dV 2n-2 (z ′ ) ≤ C n R 2 ε 2 0 |w n | 2 ,
where C n is a constant which only depends on n (the constant is universal for R = 1 and is rescaled by R 2 otherwise). By the mean value inequality for the plurisubharmonic function |F j | 2 , we get

|F j (z)| 2 ≤ 1 π n (ρ -|z 1 |) 2 . . . (ρ -|z n |) 2 ∆ ρ-|z 1 | (z 1 )×...×∆ ρ-|z n | (z n ) |F j | 2 dV 2n ≤ C n R 2 ε 2 0 π n (ρ -|z 1 |) 2 . . . (ρ -|z n |) 2 |w n | 2 ,
where ∆ ρ (z) is the disc of center z and radius ρ. Hence, for any r < R, by taking ρ = 1 2 (r + R) we infer (2.10)

F j L ∞ (∆ n r ) ≤ 2 n C 1 2 n Rε 0 π n 2 (R -r) n |w n | . Since F j (z ′ , w n ) -f (z ′ , w n ) = 0, ∀z ′ ∈ ∆ n-1 r
, we can write F j (z) = f (z) + (z nw n )g j (z) for some function g j (z) = α∈N n a j,α z α on ∆ n-1 r × ∆ R . By (2.10), we get

g j ∆ n r = g j ∆ n-1 r ×∂∆ r ≤ 1 r -|w n | F j L ∞ (∆ n r ) + f L ∞ (∆ n r ) ≤ 1 r -|w n | 2 n C 1 2 n Rε 0 π n 2 (R -r) n |w n | + f L ∞ (∆ n r ) .
Thanks to the Cauchy integral formula, we find

|a j,α | ≤ g j ∆ n r r |α| ≤ 1 (r -|w n |)r |α| 2 n C 1 2 n Rε 0 π n 2 (R -r) n |w n | + f L ∞ (∆ n r ) .
We take in any case

η ≤ ε 0 ≤ ε ≤ 1 2 r. As |w n | < η ≤ 1 2 r, this implies |w n ||a j,α | r |α| ≤ 2 r 2 n C 1 2 n Rε 0 π n 2 (R -r) n + f L ∞ (∆ n r ) |w n | ≤ C ′ ε 0 ,
for some constant C ′ depending only on n, r, R and f . This yields the estimates of Lemma 2.9 for ε 0 := C ′′ ε with C ′′ sufficiently small. Finally, we prove that IM(F j ) ≤ IM(f ). Indeed, if IM(g j ) ≥ IM(f ), since |w n a j,α | ≤ r -|α| ε, we can choose ε small enough such that IM(F j ) = IM(f ) and IC(F j ) IC(f ) ∈ ( 1 2 , 2). Otherwise, if IM(g j ) < IM(f ), we have IM(F j ) = IM(g j ) < IM(f ).

2.11. Proof of Theorem 2.2. By well-known properties of (pluri)potential theory, the L 1 convergence of ψ to ϕ implies that ψ → ϕ almost everywhere, and the assumptions guarantee that ϕ and ψ are uniformly bounded on every relatively compact subset of Ω ′ . In particular, after shrinking Ω ′ and subtracting constants, we can assume that ϕ ≤ 0 on Ω. Also, since the L 1 topology is metrizable, it is enough to work with a sequence (ψ j ) j≥1 converging to ϕ in L 1 (Ω ′ ). Again, we can assume that ψ j ≤ 0 and that ψ j → ϕ almost everywhere on Ω ′ . By a trivial compactness argument, it is enough to show (i) and (ii) for some neighborhood Ω ′′ of a given point z 0 ∈ Ω ′ . We assume here z 0 = 0 for simplicity of notation, and fix a polydisc ∆ n R of center 0 with R so small that ∆

n R ⊂ Ω ′ . Then ψ j (•, z n ) → ϕ(•, z n ) in the topology of L 1 (∆ n-1 R ) for almost every z n ∈ ∆ R .
2.11 (i). Proof of statement (i) in Theorem 2.2. We have here ∆ n R e -2c ϕ dV 2n < +∞ for R > 0 small enough. By Lemma 2.9 with f = 1, for every r < R and ε > 0, there exist w n ∈ ∆ ε {0}, an index j 0 , a number c > c and a sequence of holomorphic functions F j on ∆ n r , j ≥ j 0 , such that

F j (z) = 1 + (z n -w n ) a j,α z α , |w n ||a j,α | r -|α| ≤ ε and ∆ n r |F j (z)| 2 e -2c ψ j (z) dV 2n (z) ≤ ε 2 |w n | 2 , ∀j ≥ j 0 . For ε ≤ 1 2 , we conclude that |F j (0)| = |1-w n a j,0 | ≥ 1 2 hence c 0 (ψ j ) ≥ c > c
and the first part of (i) is proved. In fact, after fixing such ε and w n , we even obtain the existence of a neighborhood Ω ′′ of 0 on which |F j | ≥ 1 4 , and thus get a uniform bound Ω ′′ e -2c ψ j (z) dV 2n (z) ≤ M < +∞. The second assertion of (i) then follows from the estimate

Ω ′′ e -2c ψ j (z) -e -2c ϕ(z) dV 2n (z) ≤ Ω ′′ ∩{|ψ j |≤A} e -2c ψ j (z) -e -2c ϕ(z) dV 2n (z) + Ω ′′ ∩{ψ j <-A} e -2c ϕ(z) dV 2n (z) + e -2(c-c)A Ω ′′ ∩{ψ j <-A} e -2c ψ j (z) dV 2n (z).
In fact the last two terms converge to 0 as A → +∞, and, for A fixed, the first integral in the right hand side converges to 0 by Lebesgue's bounded convergence theorem, since ψ j → ϕ almost everywhere on Ω ′′ .

(ii). Proof of statement

(ii) in Theorem 2.2. Take f 1 , . . . , f k ∈ O C n ,0 such that (f 1 , . . . , f k ) is a standard basis of I(c ϕ) 0 with IM(f 1 ) < . . . < IM(f k ), and ∆ n R a polydisc so small that ∆ n R |f l (z)| 2 e -2c ϕ(z) dV 2n (z) < +∞, l = 1, . . . , k.
Since the germ of f at 0 belongs to the ideal (f 1 , . . . , f k ), we can essentially argue with the f l 's instead of f . By Lemma 2.9, for every r < R and ε l > 0, there exist w n,l ∈ ∆ ε l {0}, an index j 0 = j 0 (w n,l ), a number c = c(w n,l ) > c and a sequence of holomorphic functions F j,l on ∆ n r , j ≥ j 0 , such that

F j,l (z) = 1 + (z n -w n,l ) a j,l,α z α , |w n,l ||a j,l,α | r -|α| ≤ ε l and
(2.12)

∆ n r |F j,l (z)| 2 e -2c ψ j (z) dV 2n (z) ≤ ε 2 l |w n,l | 2 , ∀l = 1, . . . , k, ∀j ≥ j 0 .
Since ψ j ≤ ϕ and c > c, we get F j,l ∈ I(c ψ j ) 0 ⊂ I(c ϕ) 0 . The next step of the proof consists in modifying (F j,l ) 1≤l≤k in order to obtain a standard basis of I(c ϕ) 0 . For this, we proceed by selecting successively ε 1 ≫ ε 2 ≫ . . . ≫ ε k (and suitable w n,l ∈ ∆ ε l {0}). We have IM(F j,1 ), . . . , IM(F j,k ) ∈ IM(I(c ϕ) 0 , in particular IM(F j,1 ) is divisible by IM(f l ) for some l = 1, . . . , k. Since IM(F j,1 ) ≤ IM(f 1 ) < . . . < IM(f k ), we must have IM(F j,1 ) = IM(f 1 ) and thus IM(g j,1 ) ≥ IM(f 1 ). As |w n,1 ||a j,1,α | ≤ ε 1 , we will have IC(F j,1 ) IC(f 1 ) ∈ ( 1 2 , 2) for ε 1 small enough. Now, possibly after changing ε 2 to a smaller value, we show that there exists a polynomial P j,2,1 such that the degree and coefficients of P j,2,1 are uniformly bounded, with

IM(F j,2 -P j,2,1 F j,1 ) = IM(f 2 ) and | IC(F j,2 -P j,2,1 F j,1 )| | IC(f 2 )| ∈ ( 1 2 , 2).
We consider two cases:

Case 1: If IM(g j,2 ) ≥ IM(f 2 ), since |w n,2 ||a j,2,α | ≤ r -|α| ε 2 , we can choose ε 2 so small that IM(F j,2 ) = IM(f 2 ) and | IC(F j,2 )| | IC(f 2 )| ∈ ( 1 2 , 2).
We then take P j,2,1 = 0.

Case 2: If IM(g j,2 ) < IM(f 2 ), we have IM(g j,2 ) = IM(F j,2 ) ∈ IM(I(c ϕ) 0 ). Hence IM(g j,2 ) is divisible by IM(f l ) for some l = 1, . . . , k. However, since IM(g j,2 ) < IM(f 2 ) < . . . < IM(f k ), the only possibility is that IM(g j,2 ) be divisible by IM(f 1 ). Take b ∈ C and β, γ ∈ N n such that IT(g j,2 ) := a j,2,γ z γ = bz β IT(F j,1 ). We have z β ≤ z γ = IM(g j,2 ) < IM(f 2 ) and

|w n,2 ||b| = |w n,2 | | IC(g j,2 )| | IC(F j,1 )| ≤ 2|w n,2 ||a j,2,γ | | IC(f 1 )| ≤ 2r -|γ| ε 2 | IC(f 1 )| can be taken arbitrarily small. Set gj,2 (z) = g j,2 (z) -bz β F j,1 (z) = ãj,2,α z α and Fj,2 (z) = f 2 (z) + (z n -w n,2 )g j,2 (z) = F j,2 (z) -b(z n -w n,2 )z β F j,1 (z).
We have IM(g j,2 ) > IM(g j,2 ). Since |w n,2 ||b| = O(ε 2 ) and |w n,2 ||a j,2,α | = O(ε 2 ), we get |w n,2 ||ã j,2,α | = O(ε 2 ) as well. Now, we consider two further cases. If IM(g j,2 ) ≥ IM(f 2 ), we can again change ε 2 for a smaller value so that IM( Fj,2 ) = IM(f 2 ) and

| IC( Fj,2 )| | IC(f 2 )| ∈ ( 1 2 , 2).
Otherwise, if IM(g j,2 ) < IM(f 2 ), we have IM(F j,2 ) = IM(g j,2 ) < IM( Fj,2 ) = IM(g j,2 ) < IM(f 2 ). Notice that {z γ : z γ < IM(f 2 )} is a finite set. By using similar arguments a finite number of times, we find ε 2 so small that IM(F j,2 -P j,2,1 F j,1 ) = IM(f 2 ) and

| IC(F j,2 -P j,2,1 F j,1 )| | IC(f 2 )| ∈ ( 1 2
, 2) for some polynomial P j,2,1 . Repeating the same arguments for F j,3 , . . . , F j,k , we select inductively ε l , l = 1, . . . , k, and construct linear combinations

F ′ j,l = F j,l - 1≤m≤l-1 P j,l,m F ′ j,m
with polynomials P j,l,m , 1 ≤ m < l ≤ k, possessing uniformly bounded coefficients and degrees, such that IM(F ′ j,l ) = IM(f l ) and

| IC(F ′ j,l )| | IC(f l )| ∈ ( 1 2 ,
2) for all l = 1, . . . , k and j ≥ j 0 . This implies that (F ′ j,1 , . . . , F ′ j,k ) is also a standard basis of I(c ϕ) 0 . By Theorem 1.2.2 in [START_REF] Galligo | Théorème de division et stabilité en géométrie analytique locale[END_REF], we can find ρ, K > 0 so small that there exist holomorphic functions h j,1 , . . . , h j,k on ∆ n ρ with ρ < r, such that

f = h j,1 F ′ j,1 + h j,2 F ′ j,2 + . . . + h j,k F ′ j,k on ∆ n ρ and h j,l L ∞ (∆ n ρ ) ≤ K f L ∞ (∆ n r )
, for all l = 1, . . . , k (ρ and K only depend on f 1 , . . . , f k ). By (2.12)), this implies a uniform bound

∆ n ρ |f (z)| 2 e -2c ψ j (z) dV 2n (z) ≤ M < +∞
for some c > c and all j ≥ j 0 . Take Ω ′′ = ∆ n ρ . We obtain the L 1 convergence of |f | 2 e -2c ψ j to |f | 2 e -2c ϕ almost exactly as we argued for the second assertion of part (i), by using the estimate

Ω ′′ |f | 2 e -2c ψ j (z) -e -2c ϕ(z) dV 2n (z) ≤ Ω ′′ ∩{|ψ j |≤A} |f | 2 e -2c ψ j (z) -e -2c ϕ(z) dV 2n (z) + Ω ′′ ∩{ψ j <-A} |f | 2 e -2c ϕ(z) dV 2n (z) + e -2(c-c)A Ω ′′ ∩{ψ j <-A} |f | 2 e -2c ψ j (z) dV 2n (z).

Hard Lefschetz theorem for pseudoeffective line bundles

A variant of the Bochner formula

We first recall a variation of the Bochner formula that is required in the proof of the Hard Lefschetz Theorem with values in a positively curved (and therefore non flat) line bundle (L, h).

Here the base manifold is a Kähler (non necessarily compact) manifold (Y, ω). We denote by We consider the ∂ operator acting on (p, q)-forms with values in L, its adjoint ∂ * h with respect to h and the complex Laplace-Beltrami operator ∆ ′′ h = ∂∂ * h +∂ * h ∂. Let v be a smooth (n-q, 0)-form with compact support in Y . Then u = ω q ∧ v satisfies (3.1.1)

| | = | | ω,
∂u 2 + ∂ * h u 2 = ∂v 2 + Y I,J j∈J λ j |u IJ | 2
where λ 1 ≤ • • • ≤ λ n are the curvature eigenvalues of Θ L,h expressed in an orthonormal frame (∂/∂z 1 , . . . , ∂/∂z n ) (at some fixed point x 0 ∈ Y ), in such a way that

ω x 0 = i 1≤j≤n dz j ∧ dz j , (Θ L,h ) x 0 = dd c ϕ x 0 = i 1≤j≤n λ j dz j ∧ dz j .
Formula (3.1.1) follows from the more or less straightforward identity

(∂ * ϕ ∂ + ∂ ∂ * ϕ )(v ∧ ω q ) -(∂ * ϕ ∂v) ∧ ω q = q i ∂∂ϕ ∧ ω q-1 ∧ v,
by taking the inner product with u = ω q ∧ v and integrating by parts in the left hand side (we leave the easy details to the reader). Our formula is thus established when v is smooth and compactly supported. In general, we have:

3.1.2. Proposition. Let (Y, ω) be a complete Kähler manifold and (L, h) a smooth Hermitian line bundle such that the curvature possesses a uniform lower bound Θ L,h ≥ -Cω. For every measurable (nq, 0)-form v with L 2 coefficients and values in L such that u = ω q ∧ v has differentials ∂u, ∂ * u also in L 2 , we have

∂u 2 + ∂ * h u 2 = ∂v 2 + Y I,J j∈J λ j |u IJ | 2
(here, all differentials are computed in the sense of distributions).

Proof. Since (Y, ω) is assumed to be complete, there exists a sequence of smooth forms v ν with compact support in Y (obtained by truncating v and taking the convolution with a regularizing kernel) such that v ν → v in L 2 and such that

u ν = ω q ∧ v ν satisfies u ν → u, ∂u ν → ∂u, ∂ * u ν → ∂ * u in L 2
. By the curvature assumption, the final integral in the right hand side of (3.1.1) must be under control (i.e. the integrand becomes nonnegative if we add a term C u 2 on both sides, C ≫ 0). We thus get the equality by passing to the limit and using Lebesgue's monotone convergence theorem.

Proof of Theorem 0.13

Here X denotes a compact Kähler manifold equipped with a Kähler metric ω, and (L, h) is a pseudoeffective line bundle on X. To fix the ideas, we first indicate the proof in the much simpler case when (L, h) has a smooth metric h (so that I(h) = O X ), and then treat the general case.

3.2.1. Special Case: (L, h) is Hermitian semipositive (with a smooth metric).

Let {β} ∈ H q (X, Ω n X ⊗ L) be an arbitrary cohomology class. By standard L 2 Hodge theory, {β} can be represented by a smooth harmonic (0, q)-form β with values in Ω n X ⊗ L. We can also view β as a (n, q)-form with values in L. The pointwise Lefschetz isomorphism produces a unique (nq, 0)-form α such that β = ω q ∧ α. Proposition 3.1.2 then yields

∂α 2 + Y I,J j∈J λ j |α IJ | 2 = ∂β 2 + ∂ * h β 2 = 0,
and the curvature eigenvalues λ j are nonnegative by our assumption. Hence ∂α = 0 and {α} ∈ H 0 (X, Ω n-q X ⊗ L) is mapped to {β} by Φ q ω,h = ω q ∧ • .

General Case.

There are several difficulties. The first difficulty is that the metric h is no longer smooth and we cannot directly represent cohomology classes by harmonic forms. We circumvent this problem by smoothing the metric on an (analytic) Zariski open subset and by avoiding the remaining poles on the complement. However, some careful estimates have to be made in order to take the error terms into account.

Fix ε = ε ν and let h ε = h ε ν be an approximation of h, such that h ε is smooth on X Z ε (Z ε being an analytic subset of X), Θ L,h ε ≥ -εω, h ε ≤ h and I(h ε ) = I(h). This is possible by Th. 1.7. Now, we can find a family

ω ε,δ = ω + δ( i ∂∂ψ ε + ω),
δ > 0 of complete Kähler metrics on X Z ε , where ψ ε is a quasi-psh function on X with ψ ε = -∞ on Z ε , ψ ε smooth on X Z ε and i ∂∂ψ ε +ω ≥ 0 (see e.g. [START_REF] Demailly | Estimations L 2 pour l'opérateur ∂ d'un fibré vectoriel holomorphe semipositif au-dessus d'une variété kählérienne complète[END_REF], Théorème 1.5). By construction, ω ε,δ ≥ ω and lim δ→0 ω ε,δ = ω. We look at the L 2 Dolbeault complex K • ε,δ of (n, •)-forms on X Z ε , where the L 2 norms are induced by ω ε,δ on differential forms and by h ε on elements in L. Specifically

K q ε,δ = u:X Z ε →Λ n,q T * X ⊗ L; X Z ε (|u| 2 Λ n,q ω ε,δ ⊗h ε + |∂u| 2 Λ n,q+1 ω ε,δ ⊗h ε )dV ω ε,δ < ∞ .
Let K q ε,δ be the corresponding sheaf of germs of locally L 2 sections on X (the local L 2 condition should hold on X, not only on X Z ε !). Then, for all ε > 0 and δ ≥ 0, (K

q ε,δ , ∂) is a resolution of the sheaf Ω n X ⊗ L ⊗ I(h ε ) = Ω n X ⊗ L ⊗ I(h)
. This is because L 2 estimates hold locally on small Stein open sets, and the L 2 condition on X Z ε forces holomorphic sections to extend across Z ε ([Dem82], Lemma 6.9).

Let {β} ∈ H q (X, Ω n X ⊗ L ⊗ I(h)) be a cohomology class represented by a smooth form with values in Ω n X ⊗ L ⊗ I(h) (one can use a Čech cocycle and convert it to an element in the C ∞ Dolbeault complex by means of a partition of unity, thanks to the usual De Rham-Weil isomorphism, see also the final proof in Section 5 for more details). Then

β 2 ε,δ ≤ β 2 = X |β| 2 Λ n,q ω⊗h dV ω < +∞.
The reason is that |β| 2 Λ n,q ω⊗h dV ω decreases as ω increases. This is just an easy calculation, shown by comparing two metrics ω, ω ′ which are expressed in diagonal form in suitable coordinates; the norm |β| 2 Λ n,q ω⊗h turns out to decrease faster than the volume dV ω increases; see e.g. [START_REF] Demailly | Estimations L 2 pour l'opérateur ∂ d'un fibré vectoriel holomorphe semipositif au-dessus d'une variété kählérienne complète[END_REF], Lemma 3.2; a special case is q = 0, then |β| 2 Λ n,q ω⊗h dV ω = i n 2 β ∧ β with the identification L ⊗ L ≃ C given by the metric h, hence the integrand is even independent of ω in that case.

By the proof of the De Rham-Weil isomorphism, the map α → {α} from the cocycle space Z q (K • ε,δ ) equipped with its L 2 topology, into H q (X, Ω n X ⊗ L ⊗ I(h)) equipped with its finite vector space topology, is continuous. Also, Banach's open mapping theorem implies that the coboundary space B q (K • ε,δ ) is closed in Z q (K • ε,δ ). This is true for all δ ≥ 0 (the limit case δ = 0 yields the strongest L 2 topology in bidegree (n, q)). Now, β is a ∂-closed form in the Hilbert space defined by ω ε,δ on X Z ε , so there is a ω ε,δ -harmonic form u ε,δ in the same cohomology class as β, such that

(3.2.3) u ε,δ ε,δ ≤ β ε,δ .
Let v ε,δ be the unique (nq, 0)-form such that u ε,δ = v ε,δ ∧ ω q ε,δ (v ε,δ exists by the pointwise Lefschetz isomorphism). Then

v ε,δ ε,δ = u ε,δ ε,δ ≤ β ε,δ ≤ β .
As j∈J λ j ≥ -qε by the assumption on Θ L,h ε , the Bochner formula yields

∂v ε,δ 2 ε,δ ≤ qε u ε,δ 2 ε,δ ≤ qε β 2 .
These uniform bounds imply that there are subsequences u ε,δ ν and v ε,δ ν with δ ν → 0, possessing weak-L 2 limits u ε = lim ν→+∞ u ε,δ ν and v ε = lim ν→+∞ v ε,δ ν . The limit v ε = lim ν→+∞ v ε,δ ν is with respect to L 2 (ω) = L 2 (ω ε,0 ). To check this, notice that in bidegree (nq, 0), the space L 2 (ω) has the weakest topology of all spaces L 2 (ω ε,δ ); indeed, an easy calculation made in ([Dem82], Lemma 3.2) yields

|f | 2 Λ n-q,0 ω⊗h dV ω ≤ |f | 2 Λ n-q,0 ω ε,δ ⊗h dV ω ε,δ if f is of type (n -q, 0).
On the other hand, the limit u ε = lim ν→+∞ u ε,δ ν takes place in all spaces L 2 (ω ε,δ ), δ > 0, since the topology gets stronger and stronger as δ ↓ 0 [ possibly not in L 2 (ω), though, because in bidegree (n, q) the topology of L 2 (ω) might be strictly stronger than that of all spaces L 2 (ω ε,δ ) ].

The above estimates yield

v ε 2 ε,0 = X |v ε | 2 Λ n-q,0 ω⊗h ε dV ω ≤ β 2 , ∂v ε 2 ε,0 ≤ qε β 2 ε,0 , u ε = ω q ∧ v ε ≡ β in H q (X, Ω n X ⊗ L ⊗ I(h ε )).
Again, by arguing in a given Hilbert space L 2 (h ε 0 ), we find L 2 convergent subsequences u ε → u, v ε → v as ε → 0, and in this way get ∂v = 0 and

v 2 ≤ β 2 , u = ω q ∧ v ≡ β in H q (X, Ω n X ⊗ L ⊗ I(h)).
Theorem 0.13 is proved. Notice that the equisingularity property I(h ε ) = I(h) is crucial in the above proof, otherwise we could not infer that u ≡ β from the fact that u ε ≡ β. This is true only because all cohomology classes {u ε } lie in the same fixed cohomology group

H q (X, Ω n X ⊗ L ⊗ I(h))
, whose topology is induced by the topology of L 2 (ω) on ∂-closed forms (e.g. through the De Rham-Weil isomorphism).

3.2.4. Remark. In (3.2.3), the existence of a harmonic representative holds true only for ω ε,δ , δ > 0, because we need to have a complete Kähler metric on X Z ε . The trick of employing ω ε,δ instead of a fixed metric ω, however, is not needed when Z ε is (or can be taken to be) empty. This is the case if (L, h) is such that I(h) = O X and L is nef. Indeed, by definition, L is nef iff there exists a sequence of smooth metrics h ν such that i Θ L,h ν ≥ -ε ν ω, so we can take the ϕ ν 's to be everywhere smooth in Th. 1.7. However, multiplier ideal sheaves are needed in the surjectivity statement even in case L is nef, as it may happen that I(h min ) = O X even then, and h := lim h ν is anyway always more singular than h min . Let us recall a standard example (see [START_REF] Demailly | Compact complex manifolds with numerically effective tangent bundles[END_REF], [START_REF] Demailly | Pseudo-effective line bundles on compact Kähler manifolds[END_REF]). Let B be an elliptic curve and let V be the rank 2 vector bundle over B which is defined as the (unique) non split extension

0 → O B → V → O B → 0.
In particular, the bundle V is numerically flat, i.e. c 1 (V ) = 0, c 2 (V ) = 0. We consider the ruled surface X = P(V ). On that surface there is a unique section

C = P(O B ) ⊂ X with C 2 = 0 and O X (C) = O P(V ) (1) is a nef line bundle. One can check that L = O P(V ) (3) leads to a zero Lefschetz map ω ∧ • : H 0 (X, Ω 1 X ⊗ L) -→ H 1 (X, K X ⊗ L) ≃ C,
so this is a counterexample to Cor. 0.14 in the nef case. Incidentally, this also shows (in a somewhat sophisticated way) that O P(V ) (1) is nef but not semipositive, a fact that was first observed in [START_REF] Demailly | Compact complex manifolds with numerically effective tangent bundles[END_REF].

Numerical dimension of currents

A large part of this section borrows ideas from S. Boucksom's [START_REF] Boucksom | Cônes positifs des variétés complexes compactes[END_REF], [START_REF] Boucksom | Divisorial Zariski decompositions on compact complex manifolds[END_REF] and Junyan Cao's [JC14] PhD theses. We try however to give here a slightly more formal exposition. The main difference with S. Boucksom's approach is that we insist on keeping track of singularities of currents and leaving them unchanged, instead of trying to minimize them in each cohomology class.

Monotone asymptotically equisingular approximations

Let X be a compact complex n-dimensional manifold. We consider the closed convex cone of pseudoeffective classes, namely the set E(X) of cohomology classes {α} ∈ H 1,1 (X, R) containing a closed positive (1, 1)-current T = α + dd c ϕ (in the non Kähler case one should use Bott-Chern cohomology groups here, but we will be mostly concerned with the Kähler case in the sequel). We also introduce the set S(X) of singularity equivalence classes of closed positive (1, 1)-currents T = α + dd c ϕ (i.e., α being fixed, up to equivalence of singularities of the potentials ϕ, cf. Def. 0.5). Clearly, there is a fibration

(4.1.1) π : S(X) → E(X), T → {α} ∈ E(X) ⊂ H 1,1 (X, R).
We will denote by S α (X) the fiber π -1 ({α}) of S(X) over a given cohomology class {α} ∈ E(X).

Observe that the base E(X) is a closed convex cone in a finite dimensional vector space, but in general the fiber S α (X) must be viewed as a very complicated infinite dimensional space : if we take e.g. {α 1 } ∈ H 1,1 (P n , R) to be the unit class c 1 (O(1)), then any current T = 1 d [H] where H d is an irreducible hypersurface of degree d defines a point in S α 1 (P n ), and these points are all distinct. The set S(X) is nevertheless equipped in a natural way with an addition law S(X) × S(X) → S(X) that maps S α (X) + S β (X) into S α+β (X), a scalar multiplication R + × S(X) → S(X) that takes λ • S α (X) to the fiber S λα (X). In this way, S(X) should be viewed as some sort of infinite dimensional convex cone. The fibers S α (X) also possess a partial ordering (cf. Def. 0.5) such that ∀j, S j T j ⇒ S j T j , and a fiberwise "min" operation min :

S α (X) × S α (X) -→ S α (X), (T 1 , T 2 ) = (α + dd c ϕ 1 , α + dd c ϕ 2 ) -→ T = α + dd c max(ϕ 1 , ϕ 2 ), (4.1.2)
with respect to which the addition is distributive, i.e. min(T 1 + S, T 2 + S) = min(T 1 , T 2 ) + S.

Notice that when T

1 = 1 d [H 1 ], T 2 = 1 d [H 2 ]
are effective Q-divisors, all these operations +, • , min(•) and the ordering coincide with the usual ones known for divisors. Following Junyan Cao [JC14] (with slightly more restrictive requirements that do not produce much change in practice), we introduce 4.1.3. Definition. Let T = α + dd c ϕ be a closed positive (1, 1)-current on X, where α is a smooth closed (1, 1)-form and ϕ is a quasi-psh function on X. We say that the sequence of currents T k = α+dd c ψ k , k ∈ N, is a "monotone asymptotically equisingular approximation of T by currents with analytic singularities" if the sequence of potentials (ψ k ) satisfies the following properties:

(a) (monotonicity) The sequence (ψ k ) is non-increasing and converges to ϕ at every point of X. (c) (lower bound of positivity)

α + dd c ψ k ≥ -ε k • ω with lim k→+∞ ε k = 0
for any given smooth positive hermitian (1, 1)-form ω on X.

(d) (asymptotic equisingularity) For every pair of positive numbers λ ′ > λ > 0, there exists an integer k 0 (λ, λ ′ ) ∈ N such that

I(λ ′ ψ k ) ⊂ I(λϕ) for k ≥ k 0 (λ, λ ′ ).
4.1.4. Remark. Without loss of generality, one can always assume that the quasi-psh potentials

ϕ k = c k log |g k | 2 + O(1) have rational coefficients c k ∈ Q + ;
here again, g k is a tuple of locally defined holomorphic functions. In fact, after subtracting constants, one can achieve that ϕ ≤ 0 and ψ k ≤ 0 for all k. If the c k are arbitrary nonnegative real numbers, one can always replace 

ψ k by ψ ′ k = (1 -δ k )ψ k with a decreasing sequence δ k ∈ ]0, 1[ such that lim δ k = 0 and (1 -δ k )c k ∈ Q + . Then
′ k = (1 -δ k )ε k + Cδ k and C a constant such that α ≥ -Cω.
The fundamental observation is: 4.1.5. Theorem. If ψ k := ϕ m k is the sequence of potentials obtained by the Bergman kernel approximation of T = α + dd c ϕ given in the proof of Theorem 1.6 and (m k ) is a multiplicative sequence, then the ψ k can be arranged to satisfy the positivity, monotonicity and asymptotic equisingularity properties of Definition 4.1.3. Moreover, if we start with currents T T ′ in the same cohomology class {α}, we obtain corresponding approximations that satisfy ψ k ψ ′ k . Proof. By Cor. 1.12, the asymptotic equisingularity property (d) in Def. 4.1.3 is satisfied for

m k ≥ ⌈ 1 2 λλ ′ λ ′ -λ ⌉.
The other properties are already known or obvious, especially the coefficients c k = 1 m k are just inverses of integers in that case. The following proposition provides a precise comparison of analytic singularities of potentials when their multiplier ideal sheaves satisfy inclusion relations.

4.1.6. Proposition. Let ϕ, ψ be quasi-psh functions with analytic singularities, let c > 0 be the constant such that ϕ can be expressed as c log |g j | 2 + O(1) with holomorphic functions g j , and let λ ∈ R + . Denoting t + := max(t, 0), we have the implications

(a) ∀f ∈ O X,x , B x ∋x |f | 2 e -λϕ dV < +∞ ⇒ log |f | 2 1 c λc -n + ϕ, (b) I(ψ) ⊂ I(λϕ) ⇒ e ψ-λϕ dV < +∞ and ψ 1 c λc -n + ϕ (locally).
Proof. Since everything is local, we may assume that ϕ, ψ are psh functions on a small ball B ⊂ C n , and

ϕ(z) = c log |g| 2 = c log 1≤j≤N |g j (z)| 2 .
(a) The convergence of the integral on a small ball B x of center x implies

B x |f | 2 |g| -2λc dV ≤ Const B x |f | 2 e -λϕ dV < +∞
By the openness of convergence exponents, one gets

B x |f | 2 |g| -2λ+ε dV < +∞
for ε > 0 small enough (this can be seen e.g. by using a log resolution of the ideal sheaf (f, g j )). Now, if λc ≥ n, Skoda's division theorem [START_REF] Skoda | Application des techniques L 2 à la théorie des idéaux d'une algèbre de fonctions holomorphes avec poids[END_REF] implies that each f can be written f = h j g j where h j satisfies a similar estimate where the exponent of |g| -2 is decreased by 1. An iteration of the Skoda division theorem for the 

h j yields f ∈ (g j ) k where k = (⌊λc⌋-(n-1)) + ≥ (λc-n) + . Hence log |f | 2 ≤ k log |g| 2 + C ≤ k c ϕ + C ′
ψ ≤ log |f ℓ | 2 + C ≤ 1 c λc -n + ϕ + C ′ ,
and our singularity comparison relation follows.

4.1.7. Corollary. If T = α + dd c ϕ is a closed positive (1, 1)-current and (ψ k ), (ψ ′ k ) are two monotone asymptotically equisingular approximations of ϕ with analytic singularities, then for every k and every ε > 0, there exists ℓ such that (1ε)ψ k ψ ′ ℓ (and vice versa by exchanging the roles of (ψ k ) and (ψ ′ k )).

Proof. Let c > 0 be the constant occurring in the logarithmic poles of ψ k (k being fixed). By condition (d) in Def. 4.1.3, for λ ′ > λ ≫ 1 we have I(λ ′ ψ ′ ℓ ) ⊂ I(λϕ) ⊂ I(λψ k ) for ℓ ≥ ℓ 0 (λ, λ ′ ) large enough. Proposition 4.1.6 implies the singularity estimate ψ ′ ℓ 1 cλ ′ (cλn) + ψ k , and the final constant in front of ψ k can be taken arbitrary close to 1.

Our next observation is that the min(•) procedure defined above for currents is well behaved in terms of asymptotic equisingular approximations.

4.1.8. Proposition. Let T = α + dd c ϕ and T ′ = α + dd c ϕ ′ be closed positive (1, 1)-currents in the same cohomology class {α}. Let (ψ k ) and (ψ ′ k ) be respective monotone asymptotically equisingular approximations with analytic singularities and rational coefficients. Then max(ψ k , ψ ′ k ) provides a monotone asymptotically equisingular approximation of min(T, T ′ ) = α + dd c max(ϕ, ϕ ′ ) with analytic singularities and rational coefficients.

Proof. If ψ k = c k log |g k | 2 + O(1) and ψ ′ k = c ′ k log |g ′ k | 2 + O(1), we can write c k = p k /q k , c ′ k = p ′ k /q ′ k and max(ψ k , ψ ′ k ) = 1 q k q ′ k log |g k | 2p k + |g ′ k | 2p ′ k + O(1),
hence max(ψ k , ψ ′ k ) also has analytic singularities with rational coefficients (this would not be true with our definitions when the ratio c ′ k /c k is irrational, but of course we could just extend a little bit the definition of what we call analytic singularities, e.g. by allowing arbitrary positive real exponents, in order to avoid this extremely minor annoyance). It is well known that

α + dd c ψ k ≥ -ε k ω, α + dd c ψ ′ k ≥ -ε ′ k ω ⇒ α + dd c max(ψ k , ψ ′ k ) ≥ -max(ε k , ε ′ k )ω.
Finally, if ψ B,k (resp. ψ ′ B,k and ψ B,k )) comes from the Bergman approximation of ϕ (resp. of ϕ ′ and ϕ := max(ϕ, ϕ ′ )), we have

ϕ ≥ ϕ ⇒ ψ B,k ≥ ψ B,k , ϕ ≥ ϕ ′ ⇒ ψ B,k ≥ ψ ′ B,k hence ψ B,k ≥ max(ψ B,k , ψ ′ B,k ) and so ψ B,k max(ψ B,k , ψ ′ B,k ). However, for every ǫ > 0, one has (1 -ε)ψ B k ψ ℓ and (1 -ε)ψ ′ B k ψ ′ ℓ for ℓ ≥ ℓ 0 (k, ε) large, therefore (1 -ε) ψ B,k max(ψ ℓ , ψ ′ ℓ )
. This shows that max(ψ ℓ , ψ ′ ℓ ) has enough singularities (the "opposite" inequality max(ψ ℓ , ψ ′ ℓ ) ≥ ϕ = max(ϕ, ϕ ′ ), i.e. max(ψ ℓ , ψ ′ ℓ ) ϕ, holds trivially).

Following Junyan Cao [JC15], we now investigate the additivity properties of the Bergman approximation procedure.

4.1.9. Theorem. Let T = α + dd c ϕ and T ′ = β + dd c ϕ ′ be closed (1, 1)-currents in cohomology classes {α}, {β} ∈ E(X). Then for every multiplicative sequence (m k ), the sum ϕ m k +ϕ ′ m k of the Bergman approximations of ϕ, ϕ ′ gives a monotone asymptotically equisingular approximation of ϕ + ϕ ′ and T + T ′ .

Proof. Let ϕ m be the Bergman kernel approximations of ϕ = ϕ + ϕ ′ . By the subadditivity property of ideal sheaves I(mϕ + mϕ ′ ) ⊂ I(mϕ)I(mϕ ′ ) ([DEL00], Th. 2.6), hence we have ϕ m + ϕ ′ m ϕ m . By Def. 4.1.3 (d), Th. 4.1.5 and Cor. , to prove Th. 4.1.9, it is sufficient to prove that for every m ∈ N fixed, there exists a positive sequence lim

p→+∞ ε p = 0 such that (4.1.10) (1 -ε p ) ϕ m ϕ p + ϕ ′ p for every p ≫ 1.
For every m ∈ N fixed, there exists a bimeromorphic map π : X → X, such that (4.1.11)

ϕ m • π = i c i ln |s i | + C ∞ for some c i > 0,
and the effective divisor i Div(s i ) is normal crossing. By the construction of ϕ m , we have

ϕ m ϕ + ϕ ′ . Therefore (4.1.12) ϕ m • π (ϕ + ϕ ′ ) • π.
By Siu's decomposition formula for closed positive currents applied to dd c (ϕ • π), dd c (ϕ ′ • π) respectively, the divisorial parts add up to produce a divisor that is at least equal to the divisorial part in dd c ( ϕ m •π), thus (4.1.12) and (4.1.11) imply the existence of numbers a i , b i ≥ 0 satisfying

(i) a i + b i = c i for every i, (ii) 
i a i ln |s i | ϕ • π and i b i ln |s i | ϕ ′ • π.
Let p ∈ N be an integer, J be the Jacobian of π, f ∈ I(pϕ) x and g ∈ I(pϕ ′ ) x for some x ∈ X. The inequalities in (ii) and a change of variables w = π(z) in the L 2 integrals yield (4.1.13)

π -1 (U x ) |f • π| 2 |J| 2 i |s i | 2pa i < +∞ and π -1 (U x ) |g • π| 2 |J| 2 i |s i | 2pb i < +∞
for some small open neighborhood U x of x. Since i Div(s i ) is normal crossing, (4.1.13) implies that i

(pa i -1) ln |s i | ln(|f • π|) + ln |J| and i (pb i -1) ln |s i | ln(|g • π|) + ln |J|.
Combining this with (i), we get

(4.1.14) i (pc i -2) ln |s i | ln(|(f • g) • π|) + 2 ln |J|.
Note that J is independent of p, and c i > 0. (4.1.14) implies thus that, when p → +∞, we can find a sequence ε p → 0 + , such that (4.1.15)

i pc i (1 -ε p ) ln |s i | ln |(f • g) • π|.
Since f (respectively g) is an arbitrary element in I(pϕ) (respectively I(pϕ ′ )), by the construction of ϕ p and ϕ ′ p , (4.1.15) implies that

i c i (1 -ε p ) ln |s i | (ϕ p + ϕ ′ p ) • π.
Example 1.7 in [START_REF] Demailly | Compact complex manifolds with numerically effective tangent bundles[END_REF] exhibits a ruled surface over an elliptic curve Γ and a nef line bundle L over X, such that α = c 1 (L) contains a unique closed positive current T = [C], for some curve C ⊂ X that is a section of X → Γ. Then the Bergman approximation is (up to equivalence of singularities) the constant sequence T B,k = T , while S α (X) also contains a sequence of smooth currents T k ≥ -ε k ω. This implies that S(X) → S(X) is not surjective in this situation. The following proposition shows however that the "formal elements" (T k ) from S(X) do not carry larger singularities than the closed positive current classes in S(X) (the latter being constrained by the singularities of the "limiting currents" T representing the class).

4.1.23. Proposition. Let T k = α+dd c ψ k be a sequence of closed (1, 1)-currents representing an element in S α (X). Then there exists a closed positive current T ∈ α such that (T k ) W (T B,k ).

Proof. We have T k ≥ -ε k ω and ψ k ψ k+1 for some decreasing sequence ε k ↓ 0. We replace ψ k by setting

ψ k (x) = sup τ (x) ; sup X τ ≤ 0, α + dd c τ ≥ -ε k ω, and ∃C > 0, τ ≤ ψ k + C .
Then ( ψ k ) is a decreasing sequence for the usual order relation ≤ and ψ k ∼ ψ k (the argument to prove the equivalence of singularities is similar to the one already used in the proof of Th. 4.1.9, clearly ψ k ≥ ψ k -M k where M k = sup X ψ k , and the converse inequality ψ k ≤ ψ k + C k is seen by using a blow-up to make the singularities of ψ k divisorial). We take ϕ = lim k→+∞ ψ k and T = α + dd c ϕ.

Since α + dd c ψ k ≥ -ε k ω, we get in the limit T = α + dd c ϕ ≥ 0. Let (ϕ m ) be the Bergman approximation sequence of ϕ. Since ϕ ≤ ψ ℓ ≤ ψ ℓ + C ℓ , Prop. 4.1.6 (a) applied with λ = 2m shows that ϕ m 1 2mc ℓ (2mc ℓn) + ψ ℓ where c ℓ > 0 is the coefficient of the log singularity of ψ ℓ . Therefore, if we take T B,k = α + dd c ϕ m k , we get in the limit (T B,k ) W (T ℓ ).

4.1.24. Remark. When X is projective algebraic and {α} belongs to the Neron-Severi space NS R (X) = (H 1,1 (X, C) ∩ H 2 (X, Z)/torsion) ⊗ Z R, the fiber S α (X) is essentially an algebraic object. In fact, we could define S α (X) as the set of suitable equivalence classes of "formal limits" lim c 1 (D)→{α} lim k→+∞ 1 k a k associated with sequences of graded ideals a k ⊂ H 0 (X, O X (kD) satisfying the subadditive property a k+ℓ ⊂ a k a ℓ , where D are big Q-divisors whose first Chern classes c 1 (D) approximate {α} ∈ NS R (X). Many related questions are discussed in the algebraic setting in Lazarfeld's book [START_REF] Lazarsfeld | Positivity in algebraic geometry. I,II[END_REF]. It is nevertheless an interesting point, even in the projective case, that one can "extrapolate" these concepts to all transcendental classes, and get in this way a global space S(X) which looks well behaved, e.g. semicontinuous, under variation of the complex structure of X.

Intersection theory on S(X) and S(X)

Let X be a compact Kähler n-dimensional manifold equipped with a Kähler metric ω. We consider closed positive (1, 1)-currents T j = α j + dd c ϕ j , 1 ≤ j ≤ p. Let us first assume that the functions ϕ j have analytic singularities, and let Z ⊂ X be an analytic set such that the ϕ j 's are locally bounded on X Z. The (p, p)-current

Θ = 1 X Z T 1 ∧ . . . ∧ T k
thanks to the positivity of our currents T j , T ′ j and the fact that the product of such currents with bounded potentials by the current of integration [∆ j ] is well defined and positive ( [START_REF] Bedford | The Dirichlet problem for a complex Monge-Ampère equation[END_REF]). By replacing successively all terms { T j } by { T ′ j } + {∆ j } we infer

X T 1 ∧ . . . ∧ T p ∧ µ * γ ≥ X T ′ 1 ∧ . . . ∧ T ′ p ∧ µ * γ.
Now, assume that we have arbitrary closed positive (1, 1)-currents T 1 , . . . , T p . For each of them, we take a sequence T j,k = α j + i∂∂ψ j,k of monotone asymptotically equisingular approximations by currents with analytic singularities, T j,k ≥ -ε j,k ω, lim k→+∞ ε j,k = 0. We have T j,k T j,k+1 , and we may also assume without loss of generality that ε j,k ≥ ε j,k+1 > 0 for all j, k. Let Z k be an analytic containing all poles of the T j,k , 1 ≤ j ≤ p. It follows immediately from the above discussion and especially from Lemma 4.2.3 that the integrals

X 1 X Z k (T 1,k + ε 1,k ω) ∧ . . . ∧ (T p,k + ε p,k ω) ∧ γ ≥ 0
are well defined and nonincreasing in k (the fact that ε j,k is non increasing even helps here). From this, we conclude 4.2.4. Theorem. For every p = 1, 2, . . . , n, there is a well defined p-fold intersection product

S(X) × • • • × S(X) -→ H p,p
+ (X, R) which assigns to any p-tuple of equivalence classes of monotone sequences (T j,k ) in S(X), 1 ≤ j ≤ p, the limit cohomology class

lim k→+∞ 1 X Z k (T 1,k + ε 1,k ω) ∧ . . . ∧ (T p,k + ε p,k ω) ∈ H p,p + (X, R)
where H p,p + (X, R) ⊂ H p,p (X, R) denotes the cone of cohomology classes of closed positive (p, p)currents. This product is additive and homogeneous in each argument in the space S(X). 4.2.5. Corollary. By combining the above formal intersection product with the Bergman approximation operator B : S(X) → S(X), we get an intersection product

S(X) × • • • × S(X) -→ H p,p + (X, R) denoted (T 1 , . . . , T p ) -→ T 1 , . . . , T p + ,
which is homogeneous and additive in each argument.

Proof of Th. 4.2.4. The existence of a limit in cohomology is seen by fixing a dual basis ({γ j }) of H n-p,n-p (X), using the Serre duality pairing

H p,p (X, R) × H n-p,n-p (X) → R, (β, γ) → X β ∧ γ.
Since X is Kähler, we can take γ 1 = ω n-p and replace if necessary γ j by γ j + Cω n-p , C ≫ 1, to get γ j ≥ 0 for all j ≥ 2. Then the integrals

X 1 X Z k (T 1,k + ε 1,k ω) ∧ . . . ∧ (T p,k + ε p,k ω) ∧ γ j ≥ 0
are nonincreasing in k, and the limit must therefore exist by monotonicity.

4.2.6. Remark. It is natural to ask how the above intersection product compares with the (cohomology class of the) "non-pluripolar product" T 1 , . . . , T p defined in [BEGZ], § 1. In fact, the above product only neglects analytic parts of the currents involved. The simple example of a probability measure T without atoms supported on a polar set of a compact Riemann surface X yields e.g. T + = 1, while the non-pluripolar part T vanishes.

Kähler definition of the numerical dimension

Using the intersection product defined in Th. 4.2.4, we can give a precise definition of the numerical dimension. 4.3.1. Definition. Let (X, ω) be a compact Kähler n-dimensional manifold. We define the numerical dimension nd(T ) of a closed positive (1, 1)-current T on X to be the largest integer p = 0, 1, . . . , n such that T p + = 0, i.e. X T p + ∧ ω n-p > 0.

Accordingly, if (L, h) be a pseudoeffective line bundle on X, we define its numerical dimension to be

(4.3.2) nd(L, h) = nd( i Θ L,h ).
By the results of the preceding subsection, nd(L, h) depends only on the weak equivalence class of singularities of the metric h.

4.3.3. Remark. H. Tsuji [START_REF] Tsuji | Extension of log pluricanonical forms from subvarieties[END_REF] has defined a notion of numerical dimension by a more algebraic method:

4.3.4. Definition. Let X be a projective variety and (L, h) a pseudo-effective line bundle. When V runs over all irreducible algebraic suvarieties of X, one defines

ν num (L, h) = sup p = dim V ; lim sup m→∞ h 0 V , µ * (L ⊗m ) ⊗ I(µ * h m ) m p > 0
where µ : V → V ⊂ X is an embedded desingularization of V in X.

Junyan Cao [JC14] has shown that ν num (L, h) coincides with nd(L, h) as defined in (4.3.2). The idea is to make a reduction to the "big" case nd(L, h) = dim X and to use holomorphic Morse inequalities [Dem85b] in combination with a regularization procedure. We omit the rather technical details here. 4.3.5. Remark. If L is pseudo-effective, there is also a natural concept of numerical dimension nd(L) that does not depend on the choice of a metric h on L. One can set e.g.

nd(L) = max p ∈ [0, n] ; ∃c > 0, ∀ε > 0, ∃h ε , Θ L,h ε ≥ -εω, such that X Z ε ( i Θ L,h ε + εω) p ∧ ω n-p ≥ c ,
where h ε runs over all metrics with analytic singularities on L. It may happen in general that nd(L, h min ) < nd(L), even when L is nef; in that case the h ε can be taken to be smooth in the definition of nd(L), and therefore nd(L) is the largest integer p such that c 1 (L) p = 0. In fact, for the line bundle L already mentioned in Remark 3.2.4, it is shown in [START_REF] Demailly | Compact complex manifolds with numerically effective tangent bundles[END_REF] that there is unique positive current T ∈ c 1 (L), namely the current of integration T = [C] on the negative curve C ⊂ X, hence nd(L, h min ) = nd([C]) = 0, although we have nd(L) = 1 here.

Proof of Junyan Cao's vanishing theorem

This section is a brief account and a simplified exposition of Junyan Cao's proof, as detailed in his PhD thesis [JC13]. The key curvature and singularity estimates are contained in the following technical statement, which depends in a crucial way on Bergman regularization and on Yau's theorem [START_REF] Shing | On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation[END_REF] for solutions of Monge-Ampère equations.

5.1. Proposition. Let (L, h) be a pseudoeffective line bundle on a compact Kähler manifold (X, ω). Let us write T = i 2π Θ L,h = α + dd c ϕ where α is smooth and ϕ is a quasi-psh potential. Let p = nd(L, h) be the numerical dimension of (L, h). Then, for every γ ∈ ]0, 1] and δ ∈ ]0, 1], there exists a quasi-psh potential Φ γ,δ on X satisfying the following properties :

(a) Φ γ,δ is smooth in the complement X Z δ of an analytic set Z δ ⊂ X. (b) α + δω + dd c Φ γ,δ ≥ δ 2 (1 -γ)ω on X. (c) (α + δω + dd c Φ γ,δ ) n ≥ a γ n δ n-p ω n on X Z δ . (d) Φ γ,δ ≤ (1 + bδ)ψ B,k + C γ,δ where ψ B,k ≥ ϕ is a Bergman approximation of ϕ of sufficiently high index k = k 0 (δ).
(e) sup X Φ 1,δ = 0, and for all γ ∈ ]0, 1] there are estimates Φ γ,δ ≤ A and

exp -Φ γ,δ ≤ e -(1+bδ)ϕ exp A -γΦ 1,δ (f) For γ 0 , δ 0 > 0 small, γ ∈ ]0, γ 0 ], δ ∈ ]0, δ 0 ] and k = k 0 (δ) large enough, we have I(Φ γ,δ ) = I + (ϕ) = I(ϕ).
Here a, b, A, γ 0 , δ 0 , C γ,δ > 0 are suitable constants (C γ,δ being the only one that depends on γ, δ).

Proof. Denote by ψ B,k the nonincreasing sequence of Bergman approximations of ϕ (obtained with denominators m k = 2 k , say). We have ψ B,k ≥ ϕ for all k, the ψ B,k have analytic singularities and α + dd c ψ B,k ≥ -ε k ω with ε k ↓ 0. Then ε k ≤ δ 4 for k ≥ k 0 (δ) large enough, and so

α + δω + dd c (1 + bδ)ψ B,k ≥ α + δω -(1 + bδ)(α + ε k ω) ≥ δω -(1 + bδ)ε k ω -bδα ≥ δ 2 ω
for b > 0 small enough (independent of δ and k). Let µ : X → X be a log-resolution of ψ B,k , so that

µ * α + δω + dd c ((1 + bδ)ψ B,k ) = c k [D k ] + β k where β k ≥ δ 2 µ * ω ≥ 0 is a smooth closed (1, 1)-form on X that is > 0 in the complement X E of the exceptional divisor, c k = 1+bδ
m k > 0, and D k is a divisor that includes all components E ℓ of E. The map µ can be obtained by Hironaka [START_REF] Hironaka | Resolution of singularities of an algebraic variety over a field of characteristic zero. I[END_REF] as a composition of a sequence of blow-ups with smooth centers, and we can even achieve that D k and E are normal crossing divisors. In this circumstance, it is well known that there exist arbitrary small numbers η ℓ > 0 such that β kη ℓ [E ℓ ] is a Kähler class on X. Hence we can find a quasi-psh potential θ k on X such that β k := β kη ℓ [E ℓ ] + dd c θ k is a Kähler metric on X, and by taking the η ℓ small enough, we may assume that X ( β k ) n ≥ 1 2 X β n k . Now, we write

α + δω + dd c (1 + bδ)ψ B,k ≥ α + ε k ω + dd c ψ B,k + (δ -ε k )ω -bδ(α + ε k ω) ≥ (α + ε k ω + dd c ψ B,k ) + δ 2 ω
for k ≥ k 0 (δ) and b > 0 small (independent of δ and k). The assumption on the numerical dimension of i 2π Θ L,h = α + dd c ϕ implies the existence of a constant c > 0 such that, with

Z = µ(E) ⊂ X, we have X β n k = X 1 X Z α + δω + dd c ((1 + bδ)ψ B,k ) n ≥ n p δ 2 n-p X Z α + ε k ω + dd c ψ B,k p ∧ ω n-p ≥ c δ n-p X ω n
for all k ≥ k 0 (δ). Therefore, we may assume

X ( β k ) n ≥ c 2 δ n-p X ω n .
By Yau's theorem [START_REF] Shing | On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation[END_REF], there exists a quasi-psh potential τ k on X such that β k + dd c τ k is a Kähler metric on X with a prescribed volume form f > 0 such that X f = X β n k . By the above discussion, we can take here f > c 3 δ n-p µ * ω n everywhere on X. Now, we consider

θ k = µ * θ k and τ k = µ * τ k ∈ L 1 loc (X). Since θ k was defined in such a way that dd c θ k = β k -β k + ℓ η ℓ [E ℓ ], we get µ * α + δω + dd c ((1 + bδ)ψ B,k + γ(θ k + τ k )) = c k [D k ] + (1 -γ)β k + γ ℓ η ℓ [E ℓ ] + β k + dd c τ k ≥ 0.
This implies in particular that Φ γ,δ := (1 + bδ)ψ B,k + γ(θ k + τ k ) is a quasi-psh potential on X and that

µ * α + δω + dd c Φ γ,δ ≥ (1 -γ)β k ≥ δ 2 (1 -γ) µ * ω, thus condition (b) is satisfied. Putting Z δ = µ(|D k |) ⊃ µ(E) = Z, we also have µ * 1 X Z δ α + δω + dd c Φ γ,δ n ≥ γ n β n k ≥ c 3 γ n δ n-p µ * ω n ,
therefore condition (c) is satisfied as well with a = c/3. Property (a) is clear, and (d) holds since the quasi-psh function θ k + τ k must be bounded from above on X. We will actually adjust constants in θ k + τ k (as we may), so that sup

X Φ 1,δ = 0. Since ϕ ≤ ψ B,k ≤ ψ B,0 ≤ A 0 := sup X ψ B,0 and Φ γ,δ = (1 + bδ)ψ B,k + γ Φ 1,δ -ψ B,k = (1 -γ + bδ)ψ B,k + γΦ 1,δ , we have (1 + bδ)ϕ -γ(A 0 -ψ B,k ) ≤ Φ γ,δ ≤ (1 -γ + bδ)A 0
and the estimates in (e) follow with A = (1 + b)A 0 . The only remaining property to be proved is (f). Condition (d) actually implies I(Φ γ,δ ) ⊂ I((1 + bδ)ψ B,k ), and Cor. 1.12 also gives I((1 + bδ)ψ B,k ) ⊂ I((1 + bδ/2)ϕ) if we take k ≥ k 0 (δ) large enough, hence I(Φ γ,δ ) ⊂ I + (ϕ) for δ ≤ δ 0 small. In the opposite direction, we observe that Φ 1,γ satisfies α + ω + dd c Φ 1,δ ≥ 0 and sup X Φ 1,δ = 0, hence Φ 1,δ belongs to a compact family of quasi-psh functions. A standard result of potential theory then shows the existence of a uniform small constant c 0 > 0 such that

X exp(-c 0 Φ 1,δ )dV ω < +∞ for all δ ∈ ]0, 1]. If f ∈ O X,
x is a germ of holomorphic function and U a small neighborhood of x, the Hölder inequality combined with estimate (e) implies

U |f | 2 exp(-Φ γ,δ )dV ω ≤ e A U |f | 2 e -p(1+bδ)ϕ dV ω 1 p U |f | 2 e -qγΦ 1,δ dV ω 1 q .
We fix λ 0 > 1 so that I(λ 0 ϕ) = I + (ϕ), p ∈ ]1, λ 0 [ (say p = 1 + λ 0 )/2), and take

γ ≤ γ 0 := c 0 q = c 0 λ 0 -1 λ 0 + 1 and δ ≤ δ 0 ∈ ]0, 1] so small that p(1 + bδ 0 ) ≤ λ 0 .
Then clearly f ∈ I(λ 0 ϕ) implies f ∈ I(Φ γ,δ ), and (f) is proved.

The rest of the arguments proceeds along the lines of [START_REF] Demailly | Estimations L 2 pour l'opérateur ∂ d'un fibré vectoriel holomorphe semipositif au-dessus d'une variété kählérienne complète[END_REF], [START_REF] Mourougane | Versions kählériennes du théorème d'annulation de Bogomolov-Sommese[END_REF] and [DP02]. Let (L, h) be a pseuffective line bundle and p = nd(L, h) = nd( i Θ L,h ). We equip L be the hermitian metric h δ defined by the quasi-psh weight Φ δ = Φ γ 0 ,δ obtained in Prop. 5.1, with δ ∈ ]0, δ 0 ]. Since Φ δ is smooth on X Z δ , the well-known Bochner-Kodaira identity shows that for every smooth (n, q)-form u with values in K X ⊗ L that is compactly supported on X Z δ , one has

∂u 2 δ + ∂ * u 2 δ ≥ 2π X (λ 1,δ + . . . + λ q,δ -qδ)|u| 2 e -Φ δ dV ω ,
where u 2 δ := X |u| 2 ω,h δ dV ω = X |u| 2 e -Φ δ dV ω and 0 < λ 1,δ (x) ≤ . . . ≤ λ n,δ (x) are, at each point x ∈ X, the eigenvalues of α + δω + dd c Φ δ with respect to the base Kähler metric ω. Notice that the λ j,δ (x)δ are the actual eigenvalues of i 2π Θ L,h δ = α + dd c Φ δ with respect to ω and that the inequality λ j,δ (x) ≥ δ 2 (1γ) > 0 is guaranted by Prop. 5.1 (b). After dividing by 2πq (and neglecting that constant in the left hand side), we get (5.2) ∂u 2 δ + ∂ * u 2 δ + δ u 2 δ ≥ X (λ 1,δ + . . . + λ q,δ )|u| 2 e -Φ δ dV ω .

A standard Hahn-Banach argument in the L 2 -theory of the ∂-operator then yields the following conclusion.

5.3. Proposition. For every L 2 section of Λ n,q T * X ⊗ L such that f δ < +∞ and ∂f = 0 in the sense of distributions, there exists a L 2 section v = v δ of Λ n,q-1 T * X ⊗ L and a L 2 section w = w δ of Λ n,q T * X ⊗ L such that f = ∂v + w with

v 2 δ + 1 δ w 2 δ ≤ X 1 λ 1,δ + . . . + λ q,δ |f | 2 e -Φ δ dV ω .
Because of the singularities of the weight on Z δ , one should in fact argue first on X Z δ and approximate the base Kähler metric ω by a metric ω δ,ε = ω + ε ω δ that is complete on X Z δ , exactly as explained in [START_REF] Demailly | Estimations L 2 pour l'opérateur ∂ d'un fibré vectoriel holomorphe semipositif au-dessus d'une variété kählérienne complète[END_REF]; we omit the (by now standard) details here. A consequence of Prop. 5.3 is that the "error term" w satisfies the L 2 bound (5.4) X |w| 2 e -Φ δ dV ω ≤ X δ λ 1,δ + . . . + λ q,δ |f | 2 e -Φ δ dV ω .

The idea for the next estimate is taken from Mourougane's PhD thesis [START_REF] Mourougane | Versions kählériennes du théorème d'annulation de Bogomolov-Sommese[END_REF].

5.5. Lemma. The ratio ρ δ (x) := δ/(λ 1,δ (x) + . . . + λ q,δ (x)) is uniformly bounded on X (independently of δ), and, as soon as q ≥ nnd(L, h) + 1, there exists a subsequence (ρ δℓ ), δ ℓ → 0, that tends almost everywhere to 0 on X.

Proof. By estimates (b,c) in Prop. 5.1, we have λ j,δ (x) ≥ δ 2 (1γ 0 ) and

(5.6) λ 1,δ (x) . . . λ n,δ (x) ≥ aγ n 0 δ n-p where p = nd(L, h).

Therefore we already find ρ δ (x) ≤ 2/q(1γ 0 ). Now, we have

X Z δ λ n,δ (x)dV ω ≤ X (α + δω + dd c Φ δ ) ∧ ω n-1 = X (α + δω) ∧ ω n-1 ≤ Const,
therefore the "bad set" S ε ⊂ X Z δ of points x where λ n,δ (x) > δ -ε has a volume Vol(S ε ) ≤ Cδ ε converging to 0 as δ → 0 (with a slightly more elaborate argument we could similarly control any elementary symmetric function in the λ j,δ 's, but this is not needed here). Outside of S ε , the inequality (5.6) yields λ q,δ (x) q δ -ε(n-q) ≥ λ q,δ (x) q λ n,δ (x) n-q ≥ aγ n 0 δ n-p hence λ q,δ (x) ≥ cδ n-p+(n-q)ε q and ρ δ (x) ≤ Cδ 1-n-p+(n-q)ε q .

If we take q ≥ np + 1 and ε > 0 small enough, the exponent of δ in the final estimate is positive, and Lemma 5.5 follows.

Proof of Junyan Cao's Theorem, Th. 0.15. Let {f } be a cohomology class in the group H q (X, K X ⊗ L ⊗ I + (h)), q ≥ nnd(L, h) + 1. Consider a finite Stein open covering U = (U α ) α=1,...,N by coordinate balls U α . There is an isomorphism between Čech cohomology Ȟq (U, F) with values in the sheaf F = O(K X ⊗ L) ⊗ I + (h) and the cohomology of the complex (K • δ , ∂) of (n, q)-forms u such that both u and ∂u are L 2 with respect to the weight Φ δ , i.e. X |u| 2 exp(-Φ δ )dV ω < +∞ and X |∂u| 2 exp(-Φ δ )dV ω < +∞. The isomorphism comes from Leray's theorem and from the fact that the sheafified complex (K • δ , ∂) is a complex of C ∞ -modules that provides a resolution of the sheaf F : the main point here is that I(Φ δ ) = I + (ϕ) = I + (h), as asserted by Prop. 5.1 (f), and that we can locally solve ∂-equations by means of Hörmander's estimates [START_REF] Hörmander | An introduction to complex analysis in several variables[END_REF].

Let (ψ α ) be a partition of unity subordinate to U. The explicit isomorphism between Čech cohomology and L 2 cohomology yields a smooth L 2 representative f = |I|=q f I (z)dz 1 ∧ ... ∧ dz n ∧ dz I which is a combination f = α 0 ψ α 0 c α 0 α 1 ...α q ∂ω α 1 ∧ . . . ∧ ∂ψ α q of the components of the corresponding Čech cocycle c α 0 α 1 ...α q ∈ Γ U α 0 ∩ U α 1 ∩ . . . ∩ U α q , O(F) . .

Our choice of δ ≤ δ 0 , γ 0 and p, q shows that the integrals in the right hand side are convergent, and especially X |f | 2 e -p(1+bδ)ϕ dV ω < +∞. Lebesgue's dominated convergence theorem combined with Lemma 5.5 implies that the L p -part goes to 0 as δ = δ ℓ → 0, hence the "error term" w converges to 0 in L 2 norm by estimate (5.4). If we express the corresponding class {w} in Čech cohomology and use Hörmander's estimates on the intersections U α = U α j , we see that {w} will be given by a Čech cocycle ( w α ) such that U α | w α | 2 e -Φ δ dV ω → 0 as δ = δ ℓ → 0 (we may lose here some fixed constants since Φ δ is just quasi-psh on our balls, but this is irrelevant thanks to the uniform lower bounds for the Hessian). The inequality Φ δ ≤ A in Prop. 5.1 (e) shows that we have as well an unweighted L 2 estimate U α | w α | 2 dV → 0. However it is well-known that when one takes unweighted L 2 norms on spaces of Čech cocyles (or uniform convergence on compact subsets, for that purpose), the resulting topology on the finite dimensional space Ȟq (U, F) is Hausdorff, so the subspace of coboundaries is closed in the space of cocycles. Hence we conclude from the above that f is a coboundary, as desired.

5.7. Remark. In this proof, it is remarkable that one can control the error term w, but a priori completely lose control on the element v such that ∂v ≈ f when δ → 0 !

Compact Kähler threefolds without nontrivial subvarieties

The bimeromorphic classification of compact Kähler manifolds leads to considering those, termed as "simple", that have as little internal structure as possible, and are somehow the elementary bricks needed to reconstruct all others through meromorphic fibrations (cf. [START_REF] Campana | Algébricité et compacité dans l'espace des cycles d'un espace analytique complexe[END_REF], [START_REF] Campana | Réduction d'Albanese d'un morphisme propre et faiblement kählérien. II. Groupes d'automorphismes relatifs[END_REF]).

6.1. Definition. A compact Kähler manifold X is said to be simple if there does not exist any irreducible analytic subvariety Z with 0 < dim Z < dim X through a very general point x ∈ X, namely a point x in the complement X S j of a countable union of analytic sets S j X.

Of course, every one dimensional manifold X is simple, but in higher dimensions n > 1, one can show that a very general torus X = C n /Λ has no nontrivial analytic subvariety Z at all (i.e. none beyond finite sets and X itself), in any dimension n. In even dimension, a very general Hyperkähler manifold can be shown to be simple as well. It has been known since Kodaira that there are no other simple Kähler surfaces (namely only very general 2-dimensional tori and K3 surfaces). Therefore, the next dimension to be investigated is dimension 3. In this case, Campana, Höring and Peternell have shown in [START_REF] Campana | Abundance for Kähler threefolds[END_REF] that X is bimeromorphically a quotient of a torus by a finite group (see Theorem 6.8 at the end). Following [START_REF] Campana | Compact Kähler 3-manifolds without non-trivial subvarieties[END_REF], we give here a short self-contained proof for "strongly simple" Kähler threefolds, namely threefolds that do not possess any proper analytic subvariety.

Theorem. ([Bru10]

) Let X be a compact Kähler manifold with a 1-dimensional holomorphic foliation F given by a nonzero morphism of vector bundle L → T X , where L is a line bundle on X, and T X is its holomorphic tangent bundle. If L -1 is not pseudoeffective, the closures of the leaves of F are rational curves, and X is thus uniruled.

We use this result in the form of the following corollary, which has been observed in [START_REF] Höring | Uniformisation in dimension four: towards a conjecture of iitaka[END_REF], Proposition 4.2. 6.3. Corollary. If X is a non uniruled n-dimensional compact Kähler manifold with H 0 (X, Ω n-1 X ) = 0, then K X is pseudoeffective.

Proof.

  By definition of ϕ m in Th. 1.2, exp(2m(ϕ m )) is (up to the irrelevant partition of unity procedure) equal to the Bergman kernel ℓ∈N |g m,ℓ | 2 . By local uniform convergence and the Noetherian property, it has the same local vanishing behavior as a finite sum ℓ≤N(m) |g m,ℓ | 2 with N (m) sufficiently large. Since all terms g m,ℓ have L 2 norm equal to 1 with respect to the weight e -2mϕ , our contention follows. 1.11. Remark. A very slight variation of the proof would yield the improved condition

  h the pointwise Hermitian norm on Λ p,q T * Y ⊗ L associated with ω and h, and by = ω,h the global L 2 norm u 2 = Y |u| 2 dV ω where dV ω = ω n n!

( b )

 b The functions ψ k have analytic singularities (and ψ k ψ k+1 by (a)).

  (a), (b), (d) are still valid, and (c) holds with ε

  and (a) is proved. (b) If (f ℓ ) ℓ∈N is a Hilbert basis of the space of L 2 holomorphic functions f with B |f | 2 e -ψ dV < +∞, the proof of Th. 1.2 yields ψ ≤ C + log |f ℓ | 2 (and locally the singularity is achieved by a finite sum of f ℓ 's by the Noetherian property). After possibly shrinking B, the relations f ℓ ∈ I(ψ) ⊂ I(λϕ) imply B |f ℓ | 2 e -λϕ dV < +∞, hence e ψ-λϕ dV < +∞ locally by taking the sum over ℓ. The inequality proved in (a) for each f = f ℓ also yields

  Estimate (e) in Prop. 5.1 implies the Hölder inequalityX ρ δ |f | 2 exp(-Φ δ )dV ω ≤ e A X ρ p δ |f | 2 e -p(1+bδ)ϕ dV ω 1 p X |f | 2 e -qγ 0 Φ 1,δ dV ω 1 q

Combining this with the fact that (1

Therefore (1ε p ) ϕ m ϕ p + ϕ ′ p and (4.1.10) is proved.

This motivates the following formal definition.

4.1.16. Definition. For each class {α} ∈ E(X), we define S α (X) as a set of equivalence classes of sequences of quasi-positive currents T k = α + dd c ψ k such that (a) T k = α + dd c ψ k ≥ -ε k • ω with lim k→+∞ ε k = 0, (b) the functions ψ k have analytic singularities and ψ k ψ k+1 for all k. We say that (T k ) is weakly less singular than (T ′ k ) in S α (X), and write (T k ) W (T ′ k ), if for every ε > 0 and k, there exists ℓ such that (1ε)T k T ′ ℓ . Finally, we write

, and define S α (X) to be the quotient space by this equivalence relation.

The set (4.1.17)

is by construction a fiber space π : S(X) → E(X), and, by fixing a multiplicative sequence such as m k = 2 k , we find a natural "Bergman approximation functional" (4.1.18)

where ψ B,k := ϕ m k is the corresponding subsequence of the sequence of Bergman approximations (ϕ m ).

The set S(X) is equipped with a natural addition (T k ) + (T ′ k ) = (T k + T ′ k ), with a scalar multiplication λ•(T k ) = (λT k ) for λ ∈ R + , as well as with the min(•) operation min((T k ), (T ′ k )) = (min(T k , T ′ k )) obtained by taking max(ψ k , ψ ′ k ) of the corresponding potentials. By Prop. 4.1.8, B is a morphism for the min(•) operation, and by Th. 4.1.9, B is also a morphism for addition. Accordingly, it is natural to define a weak equivalence of singularities for closed positive currents by

Related ideas are discussed in [START_REF] Boucksom | Valuations and plurisubharmonic singularities[END_REF] (especially § 5), using the theory of valuations. One can summarize the above results in the following statement. 4.1.21. Theorem. The Bergman approximation functional

is a morphism for addition and for the min(•) operation on currents. Moreover B induces an injection S(X)/∼ W → S(X).

4.1.22. Remark. It is easy to see that the induced map S(X)/∼ W → S(X) is an isomorphism when dim X = 1. However, this map is not always surjective when dim X ≥ 2. In fact, is well defined on X Z, thanks to Bedford and Taylor [START_REF] Bedford | The Dirichlet problem for a complex Monge-Ampère equation[END_REF], and it is a closed positive current there. By [START_REF] Bedford | The Dirichlet problem for a complex Monge-Ampère equation[END_REF] such a current does not carry mass on any analytic set, so we can enlarge Z without changing the total mass of Θ. In fact, Θ extends as a closed positive current on the whole of X. To see this, let us take a simultaneous log resolution of the T j 's, i.e. a modification

, then the pull-back of the ideals (g j,ℓ ) ℓ , namely µ * (g j,ℓ ) ℓ = (g j,ℓ •µ) ℓ is a purely divisorial ideal sheaf O X (-D j ) on X. Let u j = 0 be a local holomorphic equation of the divisor D j on X. Since log

Hence the right-hand side defines the desired extension of 1 X Z T 1 ∧ . . . ∧ T p to X as the direct image of a closed positive current on X carrying no mass on E. An essential point is the following monotonicity lemma -the reader will find a more general version for non-pluripolar products in [BEGZ], Theorem 1.16.

4.2.3. Lemma. Assume that we have closed positive (1, 1)-currents with analytic singularities T j , T ′ j ∈ {α j } with T j T ′ j , 1 ≤ j ≤ p, and let γ ≥ 0 be a closed positive smooth (np, np)form on X. If Z is an analytic set containing the poles of all T j and T ′ j , we have

Proof. We take a log-resolution µ : X → X that works for all T j and T ′ j simultaneously. By (4.2.1) and (4.2.2), we have µ * T j = c j [D j ] + T j where T j ≥ 0 has a locally bounded potential on X, and

There are of course similar formulas µ * T ′ j = c j [D ′ j ]+ T ′ j for the T ′ j 's, and our assumption T j T ′ j means that the corresponding divisors satisfy

In terms of cohomology, we have

X thus provides a nonzero map K -1 X → T X , and an associated foliation.

It follows from the above that the canonical line bundle K X of our simple threefold X must be pseudoeffective. We then use the following simple observation. 6.4. Proposition. Assume that X is a strongly simple compact complex manifold. Then every pseudoeffective line bundle (L, h) is nef, and all multiplier sheaves I(h m ) are trivial, i.e. I(h m ) = O X . Moreover, we have c 1 (L) n = 0.

Proof. Since there are not positive dimensional analytic subvarieties, the zero varieties of the ideal sheaves I(h m ) must be finite sets of points, hence, by Skoda [START_REF] Skoda | Application des techniques L 2 à la théorie des idéaux d'une algèbre de fonctions holomorphes avec poids[END_REF], the Lelong numbers ν( i Θ L,h , x) are zero except on a countable set S ⊂ X. By [START_REF] Demailly | Regularization of closed positive currents and intersection theory[END_REF], this implies that L is nef and c 1 (L) n ≥ x∈S ν( i Θ L,h , x) n . However, by the Grauert-Riemenschneider conjecture solved in [START_REF] Tong | A vanishing theorem for semipositive line bundles over non-Kähler manifolds[END_REF], [START_REF] Tong | Some recent results in complex manifold theory related to vanishing theorems for the semipositive case[END_REF] and [Dem85b], the positivity of c 1 (L) n would imply that a(X) = n (i.e. X Moishezon, a contradiction). Therefore c 1 (L) n = 0 and S = ∅. 6.5. Proposition. Let X be a compact Kähler manifold of dimension n > 1 without any non-trivial subvariety, and with K X pseudoeffective. Then

and the Hilbert polynomial

Proof. The inequality h j (X, K ⊗m X ) ≤ h 0 (X, Ω j X ⊗ K ⊗m X ) follows from the Hard Lefschetz Theorem 0.13 applied with L = K X and the corresponding trivial multiplier ideal sheaf. Also, for any holomorphic vector bundle E on X, we have h 0 (X, E) ≤ rank(E), otherwise, some ratios of determinants of sections would produce a nonconstant meromorphic function, and thus a(X) > 0, contradiction; here we take E = Ω j X ⊗ K ⊗m X and get rank E = n j . The final claim is clear because a polynomial function P (m) which remains bounded as m → +∞ is necessarily constant. 6.6. Corollary. Let X be a strongly simple Kähler threefold. Let h i,j = dim H i,j (X, C) be the Hodge numbers. We have

Proof. The intersection number K 3 X = -c 1 (X) 3 vanishes because it is the leading term of P (m), up to the factor 3!. The Riemann-Roch formula then gives

By Kodaira's theorem, h 2,0 > 0 since X is not projective, and h 3,0 ≤ 1 since a(X) = 0. Thus 0 = 1h 1,0 + h 2,0h 3,0 ≥ 1q + 1 -1 = 1q, and q > 0.

Everything is now in place for the final conclusion.

6.7. Theorem. For any strongly simple Kähler threefold X, the Albanese map α : X → Alb(X) is a biholomorphism of 3-dimensional tori.

Proof. Since q = h 1,0 > 0, the Albanese map α is non constant. By simplicity, X cannot possess any fibration with positive dimensional fibers, so we must have dim α(X) = dim X = 3, and as q = h 1,0 = h 0 (X, Ω 1 X ) ≤ 3 (Prop. 6.5 with j = 1, m = 0) the Albanese map α must be surjective. The function det(dα) cannot vanish, otherwise we would get a non trivial divisor, so α is étale. Therefore X is a 3-dimensional torus, as a finite étale cover of the 3-dimensional torus Alb(X), and α must be an isomorphism.

In [START_REF] Campana | Abundance for Kähler threefolds[END_REF], the following stronger result is established as a consequence of the existence of good minimal models for Kähler threefolds: 6.8. Theorem. Let X be smooth compact Kähler threefold. If X is simple, there exists a bimeromorphic morphism X → T /G where T is a torus and G a finite group acting on T .