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LAVER’S RESULTS AND LOW-DIMENSIONAL TOPOLOGY

PATRICK DEHORNOY

Dedicated to the memory of Rich Laver

Abstract. In connection with his interest in selfdistributive algebra, Richard
Laver established two deep results with potential applications in low-dimen-
sional topology, namely the existence of what is now known as the Laver tables
and the well-foundedness of the standard ordering of positive braids. Here we
present these results and discuss the way they could be used in topological
applications.

Richard Laver established two remarkable results that might lead to significant
applications in low-dimensional topology, namely the existence of a series of finite
structures satisfying the left-selfdistributive law, now known as the Laver tables,
and the well-foundedness of the standard ordering of Artin’s positive braids. In
this text, we shall explain the precise meaning of these results and discuss their
(past or future) applications in topology. In one word, the current situation is
that, although the depth of Laver’s results is not questionable, few topological
applications have been found. However, the example of braid groups orderability
shows that, once initial obstructions are solved, topological applications of algebraic
results involving selfdistributivity can be found; the situation with Laver tables is
presumably similar, and the only reason explaining why so few applications are
known is that no serious attempt has been made so far, mainly because the results
themselves remain widely unknown in the topology community.

Therefore this text is more a program than a report on existing results. Our aim
is to provide a self-contained and accessible introduction to the subject, hopefully
helping the algebraic and topological communities to better communicate. Most
of the results mentioned below have already appeared in literature, a number of
them even belonging to the folklore of their domain (whereas ignored outside of
it). However, at least the observations about cocycles for Laver tables mentioned
in Subsection 1.3 (and established in another paper) are new.

Very naturally, the text comprises two sections, one devoted to Laver tables,
and one devoted to the well-foundedness of the braid ordering. It should be noted
that the above two topics (Laver tables, well-foundedness of the braid ordering)
do not exhaust Laver’s contributions to selfdistributive algebra and, from there, to
potential topological applications: in particular, Laver constructed powerful tools
for investigating free LD-structures, leading to applications of their own [68, 69, 70].
However, connections with topology are less obvious in these cases and we shall not
develop them here (see the other articles in this volume).
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1. Laver tables

The left-selfdistributivity law is the algebraic law (LD) x(yz) = (xy)(xz), which
is obeyed among others by the conjugacy operation of any group. Its connection
with low-dimensional topology as an algebraic distillation of Reidemeister move of
type III has been recognized more than thirty years ago [59, 77], and its investigation
led in particular to the discovery of the orderability of Artin’s braid groups [22, 23].
Every new example of a structure obeying the LD-law is potentially promising for
topological applications. First described in 1995, the Laver tables are a family of
such finite structures. Easily accessible to computer experiments but quite different
from the standard examples, they are fundamental in several respects and using
them in topology is one of the most exciting programs one could reasonably propose.

The section comprises four subsections: after introducing the Laver tables in
Subsection 1.1, we successively discuss four approaches known to provide applica-
tions of selfidistributivity, namely diagram colourings (Subsection 1.2), homology
and cohomology (Subsection 1.3) and, finally, R-matrices and the Yang–Baxter
equation (Subsection 1.4); in each case, we first introduce the general context and
then discuss the specific case of Laver tables. To save some space, we deliberately
omitted virtual knots [63] here, although the latter provide a natural framework for
extending many existing results and might therefore appear as natural candidates
for using Laver tables.

1.1. Laver’s result. In the rest of this text, an algebraic structure (S, ∗) made
of a set equipped with a binary operation that obeys the LD-law will be called an
LD-system, a neutral and easily understandable term inspired by Bruck’s classical
textbook [9]. The names “LD-groupoid” and “LD-algebra” have also been used in
the algebra community (conflicting with other standard meanings for “groupoid”
and “algebra”), whereas “shelf” was sporadically used in the topology community
for the right-counterpart of an LD-system, that is, a binary system that obeys the
right-selfdistributivity law (RD) (xy)z = (xz)(yz).

Most of the classically known LD-systems are connected with conjugacy in a
group. In particular, not much was known before the 1990’s about finite monogen-
erated LD-systems, that is, those that are generated by a single element. Richard
Laver changed this situation radically in 1995—thus answering by anticipation the
question candidly raised twenty years after in [84, Problem 9].

Theorem 1.1 (Laver [70]). (i) For every N > 1, there exists a unique binary
operation ∗ on {1, ... , N} that, for all p, q, satisfies

p ∗ 1 = p+ 1modN,(1.1)

p ∗ (q ∗ 1) = (p ∗ q) ∗ (p ∗ 1).(1.2)

Then ({1, ... , N}, ∗) is an LD-system if and only if N is a power of 2.
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(ii) Let An be the LD-system of size 2n so obtained. Then, for all n and p 6 2n,
there exists a (unique) integer 2r satisfying

p ∗ 1 < p ∗ 2 < ··· < p ∗ 2r = 2n,

and the subsequent values p∗ q then repeat periodically. The number 2r is called the
period of p, written πn(p); one has πn(2

n − 1) = 1 and πn(2
n) = 2n.

(iii) The LD-system An admits the presentation 〈1 | 1[2n] = 1〉, where x[k] stands
for (...((x∗x)∗x)...)∗x with x repeated k times.

(iv) For n > 1, the map prn : x 7→ x mod 2n−1 defines a surjective homomor-
phism from An to An−1 and, for every p 6 2n, one has either πn(p) = πn−1(prn(p))
or πn(p) = 2πn−1(prn(p)).

(v) If Axiom I3—see below—is true, the period πn(1) tends to ∞ with n, the
relation πn(1) > πn(2) holds for every n, and, letting A∞ be the limit of the inverse
system (An, prn)n, the sub-LD-system of A∞ generated by (1, 1, ...) is free.

The LD-system An is now known as the nth Laver table. Due to their explicit
definition, it is easy to effectively compute the first Laver tables, see Table 1.

The way Richard Laver discovered the tables is remarkable, and, together with
the orderability of braid groups, it is arguably one of the most interesting applica-
tions of large cardinals ideas in algebra [24].

In recent Set Theory, large cardinal axioms play an important rôle as natural
axioms that can be added to the basic Zermelo-Fraenkel system to enhance its
logical power. A number of such axioms state the existence of certain elementary
embeddings, that is, of injective maps that preserve every notion that is first-order
definable from the membership relation. One of the most simple such statements,
Axiom I3, asserts the existence of a (nontrivial, that is, non-bijective) elementary
embedding from a limit rank Vλ to itself [89, 60]. The point here is that, if such an
object exists, then the family Eλ of all such elementary embeddings of Vλ to itself
equipped with the binary operation j[k] :=

⋃
α<λ j(k↾Vα) is an LD-system, that is,

the relation i[j[k]] = i[j][i[k]] holds. It has been known since the 1980’s that the
algebraic structures (Eλ, [ ]) have nontrivial properties [20]. Investigating them since
the time of [67], Laver was naturally led to introducing their quotients obtained by
cutting the graphs of the elementary embeddings at some level. Laver proved that,
for every n, cutting at the level of what is called the 2nth critical ordinal yields a
finite quotient with 2n elements and that the latter enjoys the properties listed in
Theorem 1.1. What is remarkable here is that, once the definition of Theorem 1.1(i)
has been isolated, the existence of the tables and the basic properties listed in (i)–
(iv) can be established directly, without appealing to elementary embeddings and,
therefore, they do not require any large cardinal assumption. By contrast, for the
properties listed in (v), no direct combinatorial proof has been found so far and,
therefore, one cannot assert them without assuming the (unprovable) existence of
an elementary embedding of the needed type, which is precisely the (strong) large
cardinal axiom I3. We refer to Chapters X, XII, and XIII of [26] for details.

The algebraic investigation of Laver tables was pursued in two directions. The
first one is the study of general (finite) LD-systems, which proved to be an intricate
question. As shown by A.Drápal in [35, 36, 37], the global result is that Laver
tables are the fundamental objects when one considers finite LD-systems with one
generator: every such LD-system can be obtained from Laver tables by means of
various transformations, see [26, Section X.2] for precise statements, and also the
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A0 1
1 1

A1 1 2
1 2 2
2 1 2

A2 1 2 3 4
1 2 4 2 4
2 3 4 3 4
3 4 4 4 4
4 1 2 3 4

A3 1 2 3 4 5 6 7 8
1 2 4 6 8 2 4 6 8
2 3 4 7 8 3 4 7 8
3 4 8 4 8 4 8 4 8
4 5 6 7 8 5 6 7 8
5 6 8 6 8 6 8 6 8
6 7 8 7 8 7 8 7 8
7 8 8 8 8 8 8 8 8
8 1 2 3 4 5 6 7 8

A4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 12 14 16 2 12 14 16 2 12 14 16 2 12 14 16
2 3 12 15 16 3 12 15 16 3 12 15 16 3 12 15 16
3 4 8 12 16 4 8 12 16 4 8 12 16 4 8 12 16
4 5 6 7 8 13 14 15 16 5 6 7 8 13 14 15 16
5 6 8 14 16 6 8 14 16 6 8 14 16 6 8 14 16
6 7 8 15 16 7 8 15 16 7 8 15 16 7 8 15 16
7 8 16 8 16 8 16 8 16 8 16 8 16 8 16 8 16
8 9 10 11 12 13 14 15 16 9 10 11 12 13 14 15 16
9 10 12 14 16 10 12 14 16 10 12 14 16 10 12 14 16
10 11 12 15 16 11 12 15 16 11 12 15 16 11 12 15 16
11 12 16 12 16 12 16 12 16 12 16 12 16 12 16 12 16
12 13 14 15 16 13 14 15 16 13 14 15 16 13 14 15 16
13 14 16 14 16 14 16 14 16 14 16 14 16 14 16 14 16
14 15 16 15 16 15 16 15 16 15 16 15 16 15 16 15 16
15 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Table 1. The first five Laver tables; we read for instance the values
π0(1) = 1, π1(1) = π2(1) = 2; π3(1) = π4(1) = 4: the periods of the first
rows make a non-decreasing sequence; the tables make an inverse system
under projection mod 2n: for instance, taking mod 8 the four values that
occur in the first row of A4, namely 2, 12, 14, 16, yields 2, 4, 6, 8, which are
the 4 values that occur in the first row of A3; taking the latter mod 4 then
gives 2, 4 repeated twice, hence the two values that occur in the first row
of A2, etc.

recent preprint [88], which offers a simplified description in a restricted situation.
Summarizing, we can say that the Laver tables play, in the world of selfdistribu-
tivity, the same rôle as the one played by the cyclic groups Z/pZ in the world of
associativity.

The second direction of research was to try to discard the large cardinal as-
sumption in Theorem 1.1(v)—or, contrariwise, to prove that it is necessary. So
far, only partial results have been obtained. In the direction of eliminating the ax-
iom, A.Drápal established in [38, 39, 40] the first three steps of a program which,
if completed, would show that πn(1) tends to infinity with n. The combinatorial
complexity increases so fast that the problem was then abandoned. In the other di-
rection, it was proved by R.Dougherty and T. Jech [34] that πn(1) tends to infinity
(if it does) at least as slow as the functional inverse of the Ackermann function, im-
plying that its divergence cannot be proved in Primitive Recursive Arithmetic. This
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however says nothing for Peano Arithmetic nor, a fortiori for the Zermelo–Fraenkel
system. Note that, in contradistinction with the properties of free LD-systems, in
particular the irreflexivity property of [68] and [21], that were first proved using
Axiom I3 and subsequently without it, the properties of the LD-systems Eλ used
to establish that πn(1) tends to infinity are not trivial from a set-theoretical point
of view, relying on a deep result by J. Steel about extenders. This might explain
why discarding the large cardinal axiom is more difficult here, see [30] for details.

1.2. The diagram colouring approach. We now turn to possible applications
of the Laver tables in low-dimensional topology, starting here with the principle of
using selfdistributive structures to colour the strands of link or braid diagrams and
its known implementations: in this subsections as in the next ones, we first recall
the general principle (thus mentioning elements that are mostly standard in the
topology community) and then consider the specific case of Laver tables.

As a general preliminary remark, we would like to insist on the fact that, ac-
cording to Theorem 1.1, Laver tables are closely connected with free LD-systems,
so, in some sense, with the most general LD-systems. By contrast, all racks and
quandles that have been used so far in topology (see Definition 1.4 below) are, by
very definition, quite far from being free LD-systems: for instance, every rack (here
in its left-selfdistributive version) satisfies the law (x∗x)∗y = x∗y and its operation
is closely connected with the conjugacy operation of a group. This is not at all the
case with general LD-systems, and with Laver tables in particular: in a sense, this
is bad news as it may suggest that none of the existing tools will extend, but, in
another sense, this is good news as this suggests that any possible application of
the Laver tables has good chances to be really new—as was the application of free
LD-systems to braid orderability twenty years ago.

The general principle. In order to investigate embedded 1-dimensional objects like
knots, links, braids, one usually starts with diagrams similar to those of Figure 1,
which are seen as plane projections of curves embedded in R3, and the generic
question is to recognize whether two diagrams represent ambient isotopic curves,
that is, whether there exists a continuous deformation of the ambient space that
takes the curves projecting to the first diagram to the curve projecting to the second
diagram.

Figure 1. Three diagrams, respectively representing the Hopf link (two
circles embedded in R

3), the trefoil knot (one embedded circle), and Gar-
side’s fundamental braid ∆3.

A classical result—see for instance [5], [12], or [62]—asserts that two diagrams
represent ambient isotopic links if and only if they can be transformed into one
another by means of the three types of Reidemeister moves displayed in Figure 2.

The idea of strand colouring is then natural: assuming that an auxiliary set S
(the “colours”) has been fixed, we attach to each arc in the considered diagram a
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∼ ∼

type I:

∼ ∼

type II:

∼

type III:

Figure 2. Reidemeister moves: two diagrams represent ambient isotopic
figures if and only if they can be transformed into one another using a finite
sequence of such moves.

label from S, with the aim of extracting information about the isotopy class of the
considered diagram. If the colours do not change when two strands cross, the only
piece of information that can be extracted is the number of connected components
in the case of a (closed) link diagram, or the permutation associated with the
braid in the case of an (open) braid diagram. Things become more interesting
when colours are allowed to change at crossings. The simplest case is when the
strands are oriented and, when two strands cross, only the colour of the top arc
may change and its new colour only depends on the colours of the two arcs involved
in the crossing and of the orientation of the latter. This amounts to assuming that
the set of colours S is equipped with two binary operations ∗, ∗̄ and the colours
obey the rules

(1.3)
b

a

a

a ∗ b
and

b

a

a ∗̄ b

b .

Now, in order to possibly extract information about the isotopy class of a diagram,
we have to request that the colours do not change when an isotopy is performed
or, more exactly, that an admissible colouring is mapped to (another) admissible
colouring with the same output. Both in the case of closed diagrams (knots and
links) and in the case of open diagrams (braids), this amounts to requiring that,
when a Reidemeister move is performed and some input colours are applied to the
(oriented) strands, then the output colours are not changed. This immediately
translates into algebraic constraints for the operations ∗ and ∗̄.

Lemma 1.2 (Joyce [59]). Assume that ∗ and ∗̄ are binary operations on S. Then
(S, ∗, ∗̄)-colourings are invariant under Reidemeister moves if and only if (S, ∗, ∗̄)
obeys the following laws:

type I: x ∗ x = x ∗̄ x = x;(1.4)

type II: x ∗ (x ∗̄ y) = x ∗̄ (x ∗ y) = y;(1.5)

type III: x ∗′ (y ∗′′ z) = (x ∗′ y) ∗′′ (x ∗′ z) for ∗′, ∗′′ ranging in {∗, ∗̄}.(1.6)

The proof is given in Figure 3.
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type I:
a

a

a ∗ a
∼

a a

∼
a

a

a ∗̄ a

type II:
a

b

a

a∗̄(a∗b)

a∗b

a

∼
a

b

a

b
∼
a

b b

b∗(b∗̄a)

b∗̄a

b

type III++:

a

b

c

a∗(b∗c)

a∗b

a

b∗c

b

∼

a

b

c

(a∗b)∗(a∗c)

a∗b

a

a∗b

a
a∗c

type III
−+:

a

b

c

c

(c∗̄a)∗(c∗̄b)

c∗̄ac∗̄b

c∗̄a
c ∼

a

b

c

c

c∗̄(a∗b)

c∗̄a

a∗b

a
c

Figure 3. Translation of invariance under Reidemeister moves into alge-
braic laws for the colourings: in the case of Reidemeister III, four orientations
are possible, of which only two are displayed; the other two are similar and
correspond to the last two combinations of ∗ and ∗̄.

One is thus led to considering the structures involving two binary operations
obeying the laws listed in (1.4)–(1.6). An easy observation is that, in such struc-
tures, each operation determines the other and that the four laws of (1.6) reduce
to a single law.

Lemma 1.3. A structure (S, ∗, ∗̄) obeys (1.5) if and only if the left-translations
of (S, ∗) are bijective and, for all a, b in S, one has

(1.7) a ∗̄ b = the unique element c of S satisfying a ∗ c = b.

In this case, the laws of (1.4) (resp. (1.6)) are satisfied if and only if (S, ∗) obeys
x ∗ x = x(1.8)

(resp. x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z)).(1.9)

We skip the (easy) verification, which can be found for instance in [31]. It is then
natural to introduce a terminology for those LD-systems that satisfy the additional
laws of Lemma 1.2.

Definition 1.4. [44, 59] An LD-system (S, ∗) in which all left-translations are
bijective—or, equivalently, a structure (S, ∗, ∗̄) where (1.5) and (1.6) are obeyed—
is called a rack. An idempotent rack, that is, a rack satisfying (1.8), is called a
quandle.

Remark 1.5. Various names appear for the above structures in literature. For
instance, racks are called automorphic sets in the early source [8], whereas the
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terms LD-quasigroup and LDI-quasigroups would be coherent with the standards
the algebra community for rack and quandle respectively. More importantly, the
most common convention in the topology community is to appeal to the opposite
operations, namely to define colourings by the rules

(1.10)
b

a

a ⊳ b

b
and

b

a

a

a ⊳̄ b .

The effect of these conventions is to replace left-selfdistributivity with its right
counterpart (RD) (x⊳y)⊳z = (x⊳ z)⊳ (y ⊳z) everywhere and, of course, to consider
right-translations in the definition of a rack. Because of our specific interest in the
Laver tables here, we shall stick to (1.3) and the law (LD) here. To avoid ambiguity,
we use ∗ and ∗̄ as a generic notation for LD-operations, thus keeping ⊳ and ⊳̄ for

RD-operations. Of course, the transpose Ãn of the Laver table An is an RD-system
with 2n elements.

Using colourings: case of braids. Using diagram colourings takes different forms
according to whether the considered diagram is open (braid diagram) or closed
(link diagram). We begin with the case of braids.

An m-strand geometric braid is a family ofm open curves embedded in R2×[0, 1]
such that the family of initial points is {(0, i, 0) | i = 1, ... ,m}, the family of final
points is {(0, i, 1) | i = 1, ... ,m}, and, for every t, the intersection with the plane
z = t consists of m points exactly. A braid is an isotopy class of geometric braids,
referring here to isotopies of R2× [0, 1] that leave the planes R2×{0} and R

2×{1}
fixed. Projecting a geometric braid on the plane x = 0 gives a diagram like the one
on the right of Figure 1: the specificity is that there exists a fixed orientation so
that the diagrams consists of m arcs going from the line x = 0 to the line x = 1 in
such a way that the x coordinate keeps increasing (no U-turn).

Concatenatingm strand geometric braids induces (after rescal-
ing) a well-defined product on m strand braids, which turns to
provide a group structure as, by Reidemeister moves of type II,
the concatenation of a geometric braid and its image in a ver-
tical mirror is isotopic to the trivial braid, a collection of hor-
izontal segments. Calling σi the (class of the geometric) braid
that projects as shown on the right, one easily shows that the
group Bm of all m-strand braids is generated by σ1, ... , σm−1.

1

i
i+1

m

...

...





σi

It was then proved by E.Artin in [3, 4] that the groupBm admits the presentation

(1.11)

〈
σ1, ... , σn−1

∣∣∣∣
σiσj = σjσi for |i− j| > 2

σiσjσi = σjσiσj for |i− j| = 1

〉
,

and, by F.A.Garside in [50], that the submonoidB+
m ofBm generated by σ1, ... , σm−1

admits, as a monoid, the presentation (1.11). The elements of the monoid B+
m are

called positive m-strand braids. By definition, they can be represented by braid
diagrams in which all crossings have the same orientation.

Using a fixed structure (S, ∗, ∗̄) to colour the strands of an S-strand braid di-
agram using the rules (1.3) provides a map from Sm to itself, namely the map
that associates the sequence of output colours to the sequence of input colours. By
Lemma 1.2, this map is isotopy-invariant whenever (S, ∗) is a quandle. Actually,
due to the definition of braids with U-turns forbidden, Reidemeister moves of type I
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are impossible, and it is sufficient to use racks that need not be quandles. Similarly,
when one considers positive braids, Reidemeister moves of type II are impossible,
and using general LD-systems becomes possible. As, by very definition, colourings
are compatible with the product of braids, Lemma 1.2 takes the form:

Lemma 1.6 (Brieskorn [8]). (i) Assume that (S, ∗) is a rack. Then putting

(a1, ... , am) • σi = (a1, ... , ai−1, ai ∗ ai+1, ai, ai+2, ... , am),(1.12)

(a1, ... , am) • σ−1
i = (a1, ... , ai−1, ai+1, ai ∗̄ ai+1, ai+2, ... , am)(1.13)

defines an action (on the right) of the group Bm on Sm.
(ii) Assume that (S, ∗) is an LD-system. Then (1.12) defines an action of the

monoid B+
m on Sm.

The action of Lemma 1.6 is called the Hurwitz action. Using classical examples
of racks then leads to no less classical examples of braid invariants. For instance,
considering Z equipped with the operation x ∗ y = y + 1 leads to the augmen-
tation homomorphism from Bm to (Z,+), whereas considering a Z[t, t−1]-module
equipped with the binary operations x ∗ y = (1 − t)x + ty leads to a linear repre-
sentation of Bm into GLn(Z[t, t

−1]), the (unreduced) Burau representation of Bm.
Similarly, considering a rank m free group Fm equipped with the conjugacy opera-
tion x∗ y = xyx−1 leads to a (faithful) representation of Bm in Aut(Fm), the Artin
representation.

Using colourings: case of links and knots. An (oriented) m-component geometric
link is a family of m disjoint closed curves embedded in R3. A link is an isotopy
class of geometric links, referring here to isotopies of R3. Knots are links with one
component. Projecting geometric links to a plane keeping track of the orientation of
crossings and avoiding triple points and tangencies yields a link diagram. As already
said, two diagrams represent the same link if and only if they can be transformed
into each other by means of Reidemeister moves.

At least two different approaches have been developed in order to use selfdistribu-
tive structures to construct link invariants via the colouring approach. Developed
by D. Joyce [59] and S.Matveev [77], the first one consists in attaching to every
diagram a specific quandle that will capture the topology of the link it represents:

assuming that the considered link diagram is the closure D̂ of an m-strand braid
diagram D (see Figure 4), one uses m letters a1, ... , am to colour the input ends
of the braid diagram, one propagates the colours throughout the diagram result-
ing in m output colours t1, ... , tm which are formal combinations of a1, ... , am by
means of two formal operations ∗, ∗̄, and one defines the fundamental quandle QD

to be the quandle that admits the presentation 〈a1, ... , am | t1 = a1, ... , tm = am〉.
The quandle laws imply that QD only depends on the isotopy class of D̂, and it
captures almost all topological information about the link represented by D as it
is a complete invariant of the isotopy type up to a mirror symmetry. In practice,
determining the fundamental quandle effectively is possible only in simple particu-
lar cases [80], so one tends to consider more simple structures, typically quotients
of the fundamental quandle like the Alexander quandle from which the Alexander
polynomial can be read [45, 46].

The second approach consists, as in the case of braids, in fixing one auxiliary
quandle (the same for all diagrams) and using it to define topological invariants.
Here applications are so numerous that we can only be extremely sketchy and refer
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a

b

a∗b

a

(a∗b)∗a

a∗b

((a∗b)∗a)∗(a∗b)

(a∗b)∗a

Figure 4. A link diagram for the trefoil knot of Figure 1 that is the closure
(dashed lines) of a braid diagram, here σ3

1 ; the fundamental quandle of the
knot is the quandle whose presentation is obtained by equating the labels
on the left- and right-ends, here 〈a, b | ((a∗b)∗a)∗(a∗b) = a, (a∗b)∗a = b〉,
which is also 〈a, b | b∗(a∗b) = a, (a∗b)∗a = b〉, or, more symmetrically,
〈a, b, c | a∗b = c, b∗c = a, c∗a = b〉. By projecting the fundamental quandle
to a group, that is, interpreting ∗ as a conjugacy operation, one obtains the
Wirtinger presentation of the fundamental group of the complement of the
knot, here the group 〈a, b | aba = bab〉 in which we recognize B3.

for instance to the survey [18] for a better account and a more complete bibliogra-
phy. Typically, if S is a finite quandle, one can count how many S-colourings exist.
More precisely, the value of the quandle counting invariant for a link L is defined
to be the number of homomorphisms from the fundamental quandle QL to S. It
is shown in [53, 51] that the counting invariants associated with certain explicit
family of quandles lead to classical link invariants like the linking number or the
Alexander polynomial.

The case of Laver tables. Laver tables are very far from all racks and quandles that
have been mentioned above—and, much more generally, from those that have been
used so far. By the way, Laver tables are LD-systems, but they are not racks nor
a fortiori quandles: as asserted in Theorem 1.1(iii), the period of 2n − 1 in An

is 1, meaning that the row of 2n − 1 is constant (with value 2n) and, for n > 1, the
associated left-translations is very far from bijective. So, the only direct application
is the existence of an Hurwitz action for positive braids:

Lemma 1.7. For every n, putting

(1.14) (a1, ... , am) • σi = (a1, ... , ai−1, ai ∗ ai+1, ai, ai+2, ... , am)

defines an action of the monoid B+
m on Am

n .

The problem now is the failure of the laws (1.4) and (1.5), which respectively
correspond to Reidemeister moves of types I and II. As for Reidemeister moves
of type I, we know that the problem vanishes if we restrict to braids; in the case
of links, forgetting type I amounts to restricting to what is called regular isotopy,
corresponding to considering framed links in which, in addition to the strands, a
distinguished orthogonal direction is fixed at each point. The overall conclusion
is that the failure of (1.4) alone does not discard topological applications. By the
way, a number of recent works consist in extending to general racks some results
first established in the particular case of quandles, see for instance [78, 19, 79].

The failure of (1.5) is a more serious obstruction since it a priori discards the
existence of an Hurwitz action for arbitrary braids. However, it turns out that, at
least in good cases, the problem can be solved. So assume that (S, ∗) is an LD-
system. We do not assume that (S, ∗) is a rack, but we assume for a while that
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(S, ∗) is left-cancellative, that is, the left-translations of ∗ are injective. Then using
for the negative crossings the colouring rule

b

a

the unique c satisfying a ∗ c = b, if such one exists

b

enables one to define a partial Hurwitz action, in the sense that ~a • w need not
be defined for every sequence ~a in Sm and every m-strand braid word w: not all
sequences of initial colours can be propagated throughout the braid diagram. Then
the point is the following (absolutely nontrivial) result:

Lemma 1.8. [23] Assume that (S, ∗) is a left-cancellative LD-system.
(i) For all m-strand braid words w1, ... , wp, there exists at least one sequence ~a

in Sm such that ~a • wi is defined for every i.
(ii) If w,w′ are equivalent m-strand braid words, and ~a is a sequence in Sm such

that both ~a • w and ~a • w′ are defined, then the latter sequences are equal.

In other words, although (S, ∗) is not assumed to be a rack, one obtains an
action that is partial but still enjoys good invariance properties. Applying this
approach in the case when (S, ∗) is a free LD-system directly led to the orderability
of the group Bm in [23]: free LD-systems are orderable, in the sense that there
exists a linear ordering satisfying a < a ∗ b for all a, b, and using the associated
colourings naturally leads to ordering braids: a braid β is declared smaller than
another braid β′ if, for some/any sequence ~a such that both ~a • β and ~a • β′ are
defined, the sequence ~a • β is smaller than the sequence ~a • β′ with respect to the
lexicographical ordering on Sm.

Laver tables are not left-cancellative, hence they are not directly eligible for
Lemma 1.8 and further tricks will have to be developed in order to use them for
colourings. A natural but probably too naive approach could be to use fractionary
decompositions of braids: every m-strand braid β can be expressed as a quotient
β−1
1 β2 where β1 and β2 are positive m-strand braids, and the decomposition is

unique if one requires in addition that β1 and β2 admit no common left-divisor in
the monoid B+

m. Whenever (S, ∗) is an LD-system, the sequences ~a • β1 and ~a • β2
are defined for every sequence ~a in Sm and, therefore, the pair (~a •β1,~a •β2), which
depends only on ~a and β, could be used as a (sort of) colouring for β, see Figure 5
for an example. Alternatively, every braid in Bm \B+

m admits a unique expression
as ∆−d

m β0 where ∆m is Garside’s fundamentalm-strand braid, d is a positive integer
and β0 is a positive braid that is not left-divisible by ∆m in B+

m, and one could use
the pair (~a • ∆d

m,~a • β0) as another colouring for β.
The failure of left-cancellativity for each of the LD-systems An implies that we

may have ~a •β1 = ~b •β1 with ~a 6= ~b and, from there, with ~a •β2 6= ~b •β2. However, an
important positive point is that, by Laver’s Theorem 1.1 and at least if Axiom I3
is true, (a subsystem of) the inverse limit A∞ of the LD-systems An is a free
LD-system. So, An-colourings can be viewed as finite approximations of free LD-
system-colourings. Hence the left-cancellativity of free LD-systems might imply a
good asymptotic behaviour for An-colourings. This is probably worth exploring.

Another (related) direction of research would be to use the approach of R.L.Rub-
insztein in [85], based on the introduction of a notion of topological quandle. Laver
tables are finite, discrete structures, and they are a priori not relevant for such
a topological approach. However, the limit A∞ of the inverse system (An, prn)
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1

2

1

1

1

1

2

2

1

1

4

2

1

1

1

1

1

1

4

1 2 2

4

1 4

Figure 5. Two tentative colourings of the 3-strand braid σ1σ2σ
−1

1
using

the Laver table A2: on the left, we use the decomposition of the braid as an

irreducible fraction, namely σ−1

2
σ1σ2, on the right, we use its decomposition

with a denominator that is a power of Garside’s fundamental braid, namely

∆−1

3
σ2σ

2

1 σ2; in both cases, one propagates the colours from the middle.

consists of all 2-adic integers, and this limit is therefore equipped with a natural
valuation, hence with an ultrametric topology. In particular, at least if Axiom I3
is satisfied, the substructure of A∞ generated by (1, 1, ...) is a free LD-system: the
latter is not a rack, but it is close to be one in that all left-translations are one-
to-one. Thus investigating the counterpart of the space of colourings JQ(L), a link
invariant defined in [85], seems to be a natural and promising approach.

1.3. The (co)-homology approach. Owing to the difficulty of computing the
fundamental quandle of a link, it is natural to try to obtain partial information by
developing a convenient homology theory, viewed as a way to define sort of linear
approximations. Initiated by R. Fenn, C.Rourke, B. Sanderson from 1990 [43, 45]
and developed by S.Carter, M.Elhamdadi, M. Saito, and their collaborators in [14,
15, 16, 17], this approach proved to be extremely fruitful, as explained in [43, 18].

The general principle. A comprehensive survey can be found in [18], and we shall
just present here the very first steps. As we consider left-selfdistributivity here, it is
coherent to use a symmetric version of the construction as developed in [14] or (for
the case of a general LD-system) [82]. The starting observation is that several ways
of associating chain complexes to an LD-system exist—and even more exist when
one starts with a multi-LD-system, that is, a set equipped with several mutually
distributive operations [83].

Lemma 1.9. Assume that (S, ∗) is an LD-system. For k > 1, let Ck(S) be a free
Z-module based on Sk, and put C0(S) = Z. For 1 6 i 6 k, define Z-linear maps
d ∗
k,i, d

0
k,i : Ck(S) → Ck−1(S) by

d ∗
k,i(x1, ... , xk) = (x1, ... , xi−1, x̂i, xi ∗ xi+1, ... , xi ∗ xk),

d 0
k,i(x1, ... , xk) = (x1, ... , xi−1, x̂i, xi+1, ... , xk).

Put ∂ ∗
k :=

∑k
i=1(−1)i−1d ∗

k,i, and ∂
0
k :=

∑k
i=1(−1)i−1d 0

k,i. Then, for every Z-linear

combination ∂k of ∂ ∗
k and ∂ 0

k , we have ∂k−1 ◦ ∂k = 0 for every k.

Proof (sketch). A direct computation shows that, for all 1 6 j < i 6 k and for every
choice of ⋄ and ⋆ in {∗, 0}, the relation d ⋄

k−1,j ◦ d ⋆
k,i = d ⋆

k−1,i−1 ◦ d ⋄
k,j is satisfied.

From there, one deduces

(1.15) ∂ ∗
k−1 ◦ ∂ ∗

k = ∂ 0
k−1 ◦ ∂ 0

k = ∂ ∗
k−1 ◦ ∂ 0

k + ∂ 0
k−1 ◦ ∂ ∗

k = 0,

and the result easily follows. The point in this computation is that, when say
d∗k−1d

∗
k(x1, ... , xk+1) is expanded into a sum of (k − 1)k terms, then, for all i < j,
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there appear exactly two terms in which xi and xj do not appear on the right:

(−1)i+j+2(x1, ... , xi−1, x̂i, xi ∗ xi+1, ... , xi ∗ xj−1, x̂j ,

xi ∗ (xj ∗ xj+1), ... , xi ∗ (xj ∗ xk+1)),

which corresponds to omitting the jth entry first and then the ith one, and

(−1)i+j+1(x1, ... , xi−1, x̂i, xi ∗ xi+1, ... , xi ∗ xj−1, x̂j ,

(xi ∗ xj) ∗ (xi ∗ xj+1), ... , xi ∗ (xi ∗ xj+1), ... , xi ∗ xk+1)),

which corresponds to omitting the ith entry first and then the j − 1st one. The
left-selfdistributivity law is then exactly the condition needed to ensure that the
above two tuples coincide, so their cumulated contribution vanishes. �

So Lemma 1.9 says that, for every linear combination ∂k of ∂∗k and ∂0k, the
sequence (Ck(S), ∂k)k is a chain complex—actually (1.15) says that (Ck(S), ∂

∗
k , ∂

0
k)k

is what is called a chain bicomplex—leading to a derived notion of homology and,
dually, of cohomology. It is standard to consider two particular linear combinations,
namely ∂∗k itself, and ∂∗k − ∂0k.

Definition 1.10. Assume that (S, ∗) is an LD-system.
(i) For k > 1, put ∂R

k = ∂ ∗
k − ∂ 0

k . Then the chain complex (Ck(S), ∂
R

k )k is called
the rack complex of (S, ∗), and its homology is called the rack homology of (S, ∗),
denoted by (HR

k (S))k.
(ii) For every abelian group G, define Ck(S;G) to be HomZ(Ck(S);G) and

let ∂k
R

be the differential on Ck(S;G) induced by ∂R

k . The cohomology of the
cochain complex (Ck(S;G), ∂kR)k is called the G-valued rack cohomology of (S, ∗),
denoted by (Hk

R
(S;G))k. The image of ∂k−1

R
(resp. the kernel of ∂k

R
) is denoted

by Bk
R(S;G) (resp. Z

k
R(S;G)) and its elements are called G-valued k-coboundaries

(resp. k-cocycles).
(iii) The one-term distributive homology and cohomology of (S, ∗) are obtained

by replacing ∂R

k with ∂ ∗
k everywhere.

In the distributive world, the one-term distributive complex can be seen as the
analogue of the bar complex for associative algebras, whereas the rack complex is
an analogue of the Hochschild complex. This was pointed out in [82] and explained
in the context of a unifying braided homology theory in [74].

It turns out that, in view of topological applications, the rack (co)homology is
more suitable than the one-term distributive (co)homology. More specifically, the
rack 2-cocycles directly lead to interesting invariants. It follows from the explicit
definitions of Lemma 1.9 that a map φ : S × S → G defines a (rack) 2-cocycle if
and only if it obeys the rule

(1.16) φ(x, z) + φ(x ∗ y, x ∗ z) = φ(y, z) + φ(x, y ∗ z).
Then the general principle that makes 2-cocycles valuable here is the possibility of
using them in the context of diagram colourings so as to obtain invariants.

Lemma 1.11. [18] (i) Assume that (S, ∗) is an LD-system, G is an abelian group,
and φ : S × S → G is a G-valued 2-cocycle for (S, ∗). For D a positive m-strand
braid diagram and ~a in Sm, define φ̂D(~a) =

∑
i φ(ai, bi) where ai, bi are the input

colours at the ith crossing of D when D is coloured from ~a. Then φ̂D is invariant
under Reidemeister moves of type III.
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(ii) If (S, ∗) is a rack and a negative crossing contributes −φ(a, b) when the output
colours are a, b, then φ̂D is defined for every braid diagram and it is invariant under
Reidemeister moves of type II and III.

(iii) If (S, ∗) is a quandle and φ satisfies the rule φ(x, x) = 0, then φ̂D is defined
for every link diagram and it is invariant under Reidemeister moves of type I–III.

Proof. The argument for (i) is given in Figure 6. For (ii), concatenating two oppo-
site crossings leads to a contribution of the form φ(a, b)− φ(a, b). Finally, for (iii),
adding a loop results in an additional contribution of the form ±φ(a, a), hence 0
under the additional assumption. �

a

b

c c

a ∗ b

a a ∗ c

a ∗ b

b

φ(a, b) + φ(a, c)+ φ(a∗b, a∗c)

a

b

c b

a

b∗c a

a

φ(b, c) + φ(a, b∗c) + φ(a, b)

Figure 6. Using a 2-cocycle to construct a braid invariant: one asso-
ciates with every braid diagram the sum of the values of the cocycle at
the successive crossings labelled by means of the reference LD-system; the
cocycle rule of (1.16) is exactly what is needed to guarantee invariance with
respect to Reidemeister moves of type III.

Rack 3-cocycles also proved to lead to interesting topological applications, but
here we shall only refer to the survey [18] where a complete discussion can be found.

The case of the Laver tables. The Laver tables are directly eligible for the above
constructions, and there is no problem for defining the associated homology and
cohomology groups. The cases of one-term and rack homologies are rather different,
the latter turning out to be much richer than the former.

So, let us first briefly consider the one-term homology of Laver tables. As is
the case of many monogenerated LD-systems (that is, LD-systems generated by a
single element), the groups H∗

k (An) are trivial:

Proposition 1.12. For every n, the chain complex (Ck(An), ∂
∗
k)k is acyclic, and

the resulting homology groups H∗
k (An) are trivial.

Proof. We follow the method of [82, Proposition 6.5] and give two different argu-
ments. First define θk : Ck(An) → Ck+1(An) for k > −1 by θ−1(1) = −(2n) and
θk(x1, ... , xk+1) = −(2n, x1, ... , xk). Using the fact that 2n ∗x = x holds for every x
in An, we obtain

θk∂
∗
k(x1, ... , xk+1) =

k+1∑

i=1

(−1)i(2n, x1, ... , xx1 , x̂i, xi∗xi+1, ... , xi∗xk+1),

θk+1∂
∗
k+1(x1, ... , xk+1) = (x1, ... , xk)

+

k+1∑

i=1

(−1)i+1(2n, x1, ... , xx1 , x̂i, xi∗xi+1, ... , xi∗xk+1),

whence θk∂
∗
k+∂

∗
k+1θk+1 = id. Hence θk is a contracting homotopy for (Ck(An), ∂

∗
k),

and the homology of the complex must be trivial.
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Putting θ′−1(1) = (2n) and θ′k(x1, ... , xk+1) = (−1)k+1(x1, ... , xk, 2
n), one checks

that θ′∗ is an alternative contracting homotopy for (Ck(An), ∂
∗
k) now using the fact

that x ∗ 2n = 2n holds for every x in An. �

Rack (co)homology of Laver tables is much more interesting. Due to our specific
interest in topological applications, and owing to Lemma 1.11, we only consider
rack 2-cocycles. Without loss of generality, we also restrict to Z-valued cocycles.
Thus, we are interested in maps φ : {1, ... , 2n} × {1, ... , 2n} → Z that obey (1.16).
It turns out that such 2-cocycles can be described very precisely in terms of the
values that appear in the columns of the tables An. Here we shall mention the main
result only, and refer to [33] for more details and proofs.

Proposition 1.13. [33] For every n, the Z-valued 2-cocycles for An make a free Z-
module of rank 2n, with a basis consisting of coboundaries defined for 1 6 q < 2n by

ψq,n(x, y) =

{
1 if q appears in the column of y in An but not in that of x ∗ y,
0 otherwise,

completed with the constant cocycle with value 1.

A complete enumeration in the case of the 8-element table A3 is displayed in
Table 2.

ψ1,3 1 2 3 4 5 6 7 8

1 1 · · · · · · ·

2 1 · · · · · · ·

3 1 · · · · · · ·

4 1 · · · · · · ·

5 1 · · · · · · ·

6 1 · · · · · · ·

7 1 · · · · · · ·

8 · · · · · · · ·

ψ2,3 1 2 3 4 5 6 7 8

1 · 1 · · · · · ·

2 1 1 · · 1 · · ·

3 1 1 · · 1 · · ·

4 · 1 · · · · · ·

5 1 1 · · 1 · · ·

6 1 1 · · 1 · · ·

7 1 1 · · 1 · · ·

8 · · · · · · · ·

ψ3,3 1 2 3 4 5 6 7 8

1 1 · 1 · 1 · · ·

2 · · 1 · · · · ·

3 1 · 1 · 1 · · ·

4 · · 1 · · · · ·

5 1 · 1 · 1 · · ·

6 1 · 1 · 1 · · ·

7 1 · 1 · 1 · · ·

8 · · · · · · · ·

ψ4,3 1 2 3 4 5 6 7 8

1 · · · 1 · · · ·

2 · · · 1 · · · ·

3 · 1 · 1 · 1 · ·

4 · · · 1 · · · ·

5 · 1 · 1 · 1 · ·

6 · 1 · 1 · 1 · ·

7 1 1 1 1 1 1 1 ·

8 · · · · · · · ·

ψ5,3 1 2 3 4 5 6 7 8

1 1 · · · 1 · · ·

2 1 · · · 1 · · ·

3 1 · · · 1 · · ·

4 · · · · · · · ·

5 1 · · · 1 · · ·

6 1 · · · 1 · · ·

7 1 · · · 1 · · ·

8 · · · · · · · ·

ψ6,3 1 2 3 4 5 6 7 8

1 · 1 · · · 1 · ·

2 · 1 · · · 1 · ·

3 1 1 1 · 1 1 1 ·

4 · · · · · · · ·

5 · 1 · · · 1 · ·

6 · 1 · · · 1 · ·

7 1 1 1 · 1 1 1 ·

8 · · · · · · · ·

ψ7,3 1 2 3 4 5 6 7 8

1 1 · 1 · 1 · 1 ·

2 · · · · · · · ·

3 1 · 1 · 1 · 1 ·

4 · · · · · · · ·

5 1 · 1 · 1 · 1 ·

6 · · · · · · · ·

7 1 · 1 · 1 · 1 ·

8 · · · · · · · ·

Table 2. A basis of B2

R(A3) consisting of the seven {0, 1}-valued 2-
cocycles ψq,3 with 1 6 q 6 7. To make reading easier, the zeroes are
indicated with “-”. Completing with the constant cocycle with value 1, we
obtain a basis of Z2

R(A3).

The proof of Proposition 1.13 is not trivial, and it relies on the combinatorial
properties of right-division in Laver tables. Two-cocycles capture a lot of infor-
mation about Laver tables: for instance, one can directly recover from the cocy-
cle ψ2n−1,n all periods in An, hence, in a sense, the most critical combinatorial
parameters.
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Rack 3-cocycles can also be analyzed for Laver tables. They involve functions
of three variables and the 2-cocycle condition (1.16) is replaced with the 3-cocycle
condition

φ(x ∗ y, x ∗ z, x ∗ t)+φ(x, y, z ∗ t) + φ(x, z, t)(1.17)

= φ(x, y ∗ z, y ∗ t) + φ(y, z, t) + φ(x, y, t).

It turns out that 3-cocycles on An make a free Z-module of rank 22n − 2n +1, and
an explicit basis can again be described [33].

At the moment, the question of using the above results to extract topological
information about not necessarily positive braids and possibly links, remains open,
as does the question of a topologically interpreting these possible invariants. How-
ever, we note that having an explicit basis of 2-cocycles made of N-valued functions
seems especially promising in view of combinatorial interpretations, typically for
counting arguments. We shall not go further here, but, clearly, the conclusion of
this section should be that the (co)homological approach is promising in terms of
possible topological applications for Laver tables.

1.4. The approach of the Yang–Baxter equation. Another context in which
selfdistributive structures are involved is that of the (Quantum) Yang–Baxter equa-
tion (YBE or QYBE) and its connections with quantum groups and R-matrices,
whence indirectly with topology and knot invariants.

The general principle. We start from the (non-parametric form of) the (quantum)
Yang–Baxter equation, or, rather, of the equivalent braid equation.

Definition 1.14. If V is a vector space, an element R of GL(V ⊗ V ) is called a
solution of the Yang–Baxter equation (YBE), or an R-matrix, if we have

(1.18) (R ⊗ id)(id⊗R)(R ⊗ id) = (id⊗R)(R⊗ id)(id ⊗R).

If one writes Rij for the automorphism of V ⊗3 that corresponds to R acting on
the ith and jth coordinates, the YBE becomes

(1.19) R12R23R12 = R23R12R23,

directly reminiscent of the braid relation (1.11)—with the notation of (1.19), the
original Yang–Baxter equation is R12R13R23 = R23R13R12; it transforms into the
“braid form” (1.19) when R is replaced by ΠR, where Π is the switch operator that
exchanges x and y [58].

For instance, if A is C[q, q−1] and V is A×A with standard basis (e1, e2), then
the automorphism of V ⊗V defined in the basis (e1⊗e1, e1⊗e2, e2⊗e1, e2⊗e2) by

the matrix q−1/2

( 1 0 0 0
0 0 1 0
0 1 q−q−1 0
0 0 0 1

)
satisfies (1.18), that is, it is a solution of YBE. This

solution is connected with the basic representation of the quantum group Uq(sl(2))
and the Jones polynomial [61].

Among the (many) solutions of the Yang–Baxter equation, we consider here those
solutions R that preserve some fixed basis S of the considered vector space V . Then
the restriction of R to S × S yields a bijection ρ of S × S to itself that satisfies

(1.20) ρ12ρ23ρ12 = ρ23ρ12ρ23,

and, conversely, every bijection of S × S into itself that satisfies (1.20) induces
a solution of YBE that maps S⊗2 into itself. Such solutions of YBE are called
set-theoretic because they are entirely determined by their action on the basis.
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Definition 1.15. A set-theoretic solution of YBE is a pair (S, ρ) where S is a
set and ρ is a bijection of S × S into itself that satisfies (1.20). In this case, we
denote by ρ1(x, y) and ρ2(x, y) the first and the second entry of ρ(x, y). A set-
theoretic solution (S, ρ) of YBE is called nondegenerate if, for every a in S, the
left-translation y 7→ ρ1(a, y) is one-to-one and the right-translation x 7→ ρ2(x, a)
are one-to-one.

A set-theoretic solution ρ of YBE can then be characterized in terms of algebraic
laws obeyed by the associated maps ρ1 and ρ2 viewed as binary operation on the
reference set S.

Lemma 1.16. Assume that (S, ρ) is a set-theoretic solution of YBE. For a, b in S,
write a⌉b for ρ1(a, b) and a⌈b for ρ2(a, b). Then the operations ⌉ and ⌈ obey the
laws

(x⌉y)⌉((x⌈y)⌉z) = x⌉(y⌉z),(1.21)

(x⌉y)⌈((x⌈y)⌉z) = (x⌈(y⌉z))⌉(y⌈z),(1.22)

(x⌈y)⌈z = (x⌈(y⌉z))⌈(y⌈z).(1.23)

Conversely, if ⌉ and ⌈ are binary operations on S that satisfy (1.21)–(1.23) and ρ
is the map of S × S to itself defined by ρ(a, b) = (a⌉b, a⌈b), then (S, ρ) is a set-
theoretic solution of YBE. In the above context, (S, ρ) is nondegenerate if and only
if left-translations of ⌉ and the right-translations of ⌈ are one-to-one.

Proof. We may appeal to braid colourings, using colours from S and the rule

(1.24)
b

a

a⌈b

a⌉b,

that is, the extension of (1.3) in which both crossing strands may change colours.
Then saying that ρ satisfies (1.20) amounts to saying that, for every choice of the
input colours, the output colours of the diagrams σ1σ2σ1 and σ2σ1σ2 coincide. We
read on Figure 7 that this happens exactly when the operation ⌈ and ⌉ obey the
laws of (1.21)–(1.23). The other verifications are then straightforward. �

a

b

c

a⌈b

a⌉b

(a⌈b)⌉c

(a⌈b)⌈c

(a⌉b)⌉((a⌈b)⌉c)

(a⌉b)⌈((a⌈b)⌉c)

a

b

c

b⌉c

b⌈c

a⌈(b⌉c)

a⌉(b⌉c)

(a⌈(b⌉c))⌈(b⌈c)

(a⌈(b⌉c))⌉(b⌈c)

Figure 7. Colouring braids using the rule (1.24) is invariant under braid
relations if and only if the birack laws (1.21)–(1.23) are obeyed.

The following terminology is then natural:

Definition 1.17. A birack is a system (S, ⌉, ⌈) consisting of a set S equipped
with two binary operations ⌉ and ⌈ that satisfy (1.21)–(1.23) and such that the
left-translations of ⌉ and the right-translations of ⌈ are one-to-one.
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So Lemma 1.16 says that a set-theoretic solution of the YBE, that is, a set-
theoretic R-matrix, is one and the same thing as a birack. Let us mention here
the beautiful result of Rump [86] who observed that inverting the operations of a
birack enables one to replace biracks and the rather complicated laws (1.21)–(1.23)
with equivalent structures made of a set equipped with a binary operation obeying
the unique more simple law (x ∗ y) ∗ (x ∗ z) = (y ∗ x) ∗ (y ∗ z), see [32, Chapter XII].

Returning to selfdistributive structures, we immediately obtain the following
simple connection:

Lemma 1.18. Assume that ∗ is a binary operation on a set S. For a, b in S, define
a ∗0 b = a. Then (S, ∗, ∗0) is a birack if and only if (S, ∗) is a rack.

The verification has already been done, as this essentially amounts to check-
ing that what remains from (1.21)–(1.23) when the operation ⌈ is the trivial op-
eration ∗0 is the fact that the operation ∗ obeys the left-selfdistributivity law:
this corresponds to specializing (1.24) into (1.3), that is, using Figure 3 (case of
type III++) instead of Figure 7. In terms of R-matrices, we deduce the following
result, which appears in [41] and belongs to folklore:

Proposition 1.19. Assume that (S, ∗) is a (finite) rack. Let V be a C-vector
space based on a copy (ea)a∈S of S. Then the endomorphism of V ⊗2 defined by
R(ea, eb) = (ea∗b, ea) is a (set-theoretic) solution of YBE.

By definition, a solution of YBE is an automorphism of the considered space:
in the context of Proposition 1.19, the endomorphism R is invertible if and only if
the map (a, b) 7→ (a ∗ b, a) is a bijection of S × S, that is, if the left-translations
associated with ∗ are bijective. This is the place where the assumption that (S, ∗)
is a rack, and not only a general LD-system, is used.

1.4.1. The case of the Laver tables. When we consider the Laver tables, they are
indeed finite LD-systems, but they are not racks (except in the trivial case of A0):
in the table of An, the row of 2n−1 is constant, hence very far from being bijective.
The rest of the construction works, so one naturally obtains is a “pseudo-solution”
of YBE, defined to be an endomorphism that satisfies (1.19) but need not be invert-
ible. For instance, the pseudo-R-matrix associated with the Laver table A1 corre-

sponds to the (non-invertible) matrix

(
0 0 1 0
0 0 0 0
1 1 0 0
0 0 0 1

)
, whereas that associated with A2

is




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 1 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1




. In general, the pseudo-R-matrix associated with

the Laver table An is a square matrix of size 22n that contains 2n entries equal
to 1. The obvious question is whether such “non-invertible R-matrices” can be of
any use, typically in connection with the theory of Hopf algebras. In particular,
one can wonder whether q-deformations of such matrices might exist and be useful.
As in Subsection 1.2, many results originally established using quandles have been
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subsequently extended to arbitrary racks [2]. Also, racks proved to play a fun-
damental rôle in the classification of finite-dimensional pointed Hopf algebras [1].
The question of whether one could go one step further and work with more general
LD-systems, specifically with Laver tables, remains open.

2. The well-foundedness of the braid ordering

The second result by Laver we shall mention here involves Artin’s braid groups
and their ordering(s). Braid groups were proved to be orderable, that is, to admit a
left-invariant linear ordering, in 1992 [22, 23], by an ordering that proved both to be
canonical, in the sense that many different approaches converge to the same notion,
and to have rich combinatorial properties [29]. Using his approach to selfdistribu-
tivity via recursive normal forms, Rich Laver proved in 1995 what is probably the
deepest result known so far about this braid ordering, namely that its restriction
to the monoid of positive braids is a well-ordering. At the moment, this mainly led
to applications of logical flavour, but the result inspires several promising ideas for
further work.

This section contains four subsections. First, the braid ordering, Laver’s result,
and its direct consequences are described in Subsection 2.1. Subsequent refinements
are mentioned in Subsection 2.2. Next, applications to unprovability statements are
stated in Subsection 2.3. Finally, we discuss more hypothetic applications involving
the Conjugacy Problem of braids and, possibly, the Markov equivalence relation,
in Subsection 2.4.

2.1. The well-ordering of positive braids. We recall from Subsection 1.2 that
the n-strand braid group, that is, the group of isotopy classes of n-strand braid
diagrams, is denoted by Bn. The group Bn admits a more or less canonical family
of generators (‘the Artin generators’) σ1, ... , σn−1 in terms of which Bn admits the
presentation (1.11). Thus every n-strand braid is represented by various words in
the alphabet {σ±1

1 , ... , σ±1
n−1}, naturally called n-strand braid words, two such braid

words representing the same braid if and only if they can be transformed into one
another using the relations of (1.11) and the free group relations σiσ

−1
i = σ−1

i σi = 1.

Definition 2.1. [23] (i) A braid word w is called σi-positive if it contains the
letter σi but neither the letter σ−1

i nor any letter σ±1
j with j < i.

(ii) For β, β′ in Bn, say that β <D β′ holds if, among the various braid words
that represent β−1β′, at least one is σi-positive for some i.

In other words, β <D β′ holds if the quotient-braid β−1β′ admits an expression
in which the generator σi with least index occurs positively only. For instance,
consider β = σ1 and β′ = σ2σ1. Then the quotient β−1β′ is σ−1

1 σ2σ1, so the braid

word σ−1
1 σ2σ1 is one expression of this quotient, and it is neither σ1-positive nor

σ2-positive. Now another expression of the same quotient-braid is σ2σ1σ
−1
2 , which

is a σ1-positive braid word. Therefore σ1 <D σ2σ1 is declared to be true.

Proposition 2.2. [22, 23] For every n, the relation <D is a linear ordering on the
group Bn and it is left-invariant, that is, β <D β′ implies γβ <D γβ′ for every γ.

The braid order<D will be referred to here as the D-ordering of braids (‘Dehornoy
ordering’). There is no need to mention a braid index here, as one shows that
the D-ordering on Bn−1 is the restriction of the D-ordering on Bn when Bn−1 is
embedded in Bn by adding an nth strand on the top of the diagrams. Going to the
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limit yields a left-invariant ordering on the limit group B∞. Note that, for n = 2,
the group Bn is the free group generated by σ1, so it is isomorphic to the additive
group of integers and the associated D-ordering corresponds to the usual ordering
of integers via p 7→ σp

1 .
For n > 3, the D-ordering of n-strand braids is not right-invariant, and it is

actually easy to show that no left-invariant ordering of Bn may be right-invariant.
However, Laver proved

Theorem 2.3 (Laver, [71]). For all β in Bn and i in {1, ... , n − 1}, the relation
β <D σiβ is satisfied.

In other words, whereas γ <D γ′ does not imply γβ <D γ′β in general, 1 <D σi
does imply 1β <D σiβ for every braid β. Laver’s proof of Theorem 2.3 relies on
colouring braids (in the sense of Subsection 1.2) using elements of free LD-systems
and developing a fine combinatorial analysis of the latter structures by means of
normal forms of their elements introduced by tricky recursive definitions—a quite
delicate argument actually.

Let us say that a word w is a subword of another word w′ if w′ can be obtained
from w by inserting letters, not necessarily in adjacent positions. Then Theo-
rem 2.3 directly implies that the D-ordering has what is usually called the Subword
Property:

Corollary 2.4 (Laver, [71]). If β, β′ are braids and some braid word representing β
is a subword of some braid word representing β, then β 6D β′ holds.

Proof. For an induction, it is sufficient to show that the conjunction of β = β1β2
and β′ = β1σiβ2 implies β <D β′. Now Theorem 2.3 implies β2 <D σiβ2, whence
β1β2 <D β1σiβ2 since <D is invariant under left-multiplication. �

The Subword Property directly implies that every conjugate β′ of a positive
braid, that is, every braid of the form γ−1βγ with β ∈ B+

n , satisfies β
′ >D 1, since

we can write γ−1βγ >D γ−1γ = 1. It follows in turn that β >D 1 is true for every
quasipositive braid β, the latter being defined as a braid that can be expressed as
a product of conjugates of positive braids [81].

Using the Subword Property in a more tricky way, one shows the following
property that involves a sort of shifted conjugacy.

Corollary 2.5. [25, Lemma 3.5] Let sh be the shift endomorphism of B∞ that
maps σi to σi+1 for every i. Then, for every braid β, one has sh(β)σ1 >D β.

However, the most promising consequence of Laver’s result is that some frag-
ments of the D-ordering are well-orderings, that is, every nonempty subset must
have a smallest element.

Corollary 2.6 (Laver, [71]). For every n, the restriction of the D-ordering to B+
n

is a well-ordering.

Proof. By a celebrated result of Higman [52], an infinite set of words over a finite
alphabet necessarily contains two elements w,w′ such that w is a subword of w′.
Let β1, β2, ... be an infinite sequence of braids in B+

n . Our aim is to prove that this
sequence is not strictly decreasing. For each p, choose a positive braid word wp

representing βp. There are only finitely many n-strand braid words of a given
length, so, for each p, there exists p′ > p such that wp′ is at least as long as wp.
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So, inductively, we can extract a subsequence wp1 , wp2 , ... in which the lengths are
non-decreasing. If the set {wp1 , wp2 , ...} is finite, there exist k, k′ such that wpk

and wpk′
are equal, and then we have βpk

= βpk′
. Otherwise, by Higman’s result,

there exist k, k′ such that wpk
is a subword of wpk′

, and, by construction, we must
have pk 6 pk′ . By Corollary 2.4, this implies βpk

6D βpk′
in B+

n . So, in any case,
the sequence β1, β2, ... is not strictly decreasing. �

The well-order property established by Laver for B+
n is a strong statement. As a

general matter of fact, the D-ordering on Bn is an intricate relation for n > 3: it is
not Archimedean (there exist β, β′ such that βp <D β′ holds for every p), it is not
Conradian (there exist β, β′ such that β′βp <D β holds for every p), it has infinite
ascending and descending sequences, etc. By contrast, Laver’s result shows that
forgetting about non-positive braids yields a very simple ordering, in particular one
where the position of an element can be specified using just an ordinal, see Figure 8.

(B+

3 , <D)1 σ2 σ2
2 ... σ1 σ1σ2 σ1σ

2
2 ...

...
(B3, <D)1 σ2 σ2

2 ... σ−1
2 σ1σ

−1
2

↓
σ−1
2 σ1

σ−1
2 σ1σ2 ... σ1σ

−1
2 σ1 σ1σ2 σ1σ

2
2 ...

Figure 8. Restricting to positive braids changes the ordering: for in-

stance, in (B+

3
, <D), the braid σ1 is the limit of σp

2
, whereas, in (B3, <D), it

is an isolated point with immediate predecessor σ1σ
−1

2
; the grey part in B3

includes infinitely many braids, such as σ−1

2
σ1 and its neighbours—and

much more—but none of them lies in B+

3
.

Among the standard consequences of the well-order property, we deduce

Corollary 2.7. Every nonempty subset of B+
n is either cofinal or it has a least

upper bound inside (B+
n , <D).

Indeed, for X included in B+
n , unless X is unbounded in B+

n , the set of all upper
bounds of X is nonempty, hence it admits a least element.

Before turning to further results, let us conclude this subsection with a conjec-
ture of R. Laver that involves braids and extends his well-order result. We saw in
Lemma 1.7 and Lemma 1.8 that, whenever (S, ∗) is a left-cancellative LD-system,
one can define a partial Hurwitz action of Bn on Sn. For every sequence ~a in Sn,
we can then consider the family

DS(~a) = {β ∈ Bn | ~a • β is defined }.
As the action of positive braids is always defined, we always have B+

n ⊆ DS(~a). In
some cases [66], the family DS(~a) reduces to B

+
n and, therefore, Corollary 2.6 says

that the restriction of the D-ordering to this family DB∞
(1, ... , 1) is a well-order.

Conjecture 2.8 (Laver, private communication). If (S, ∗) is a free LD-system, the
restriction of the D-ordering to every family of the form DS(~a) is a well-order.

The conjecture remains open when ~a has length 3 and more. As noted by
R. Laver, the above braid formulation is equivalent to a formulation involving free
LD-systems only, and connected with the results of [72] and [73]. Let us also
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mention a similar conjecture where free LD-systems are replaced with the (left-
cancellative) LD-system (B∞, ∗) where ∗ is the shifted conjugacy operation

(2.1) β ∗ γ = β · sh(γ) · σ1 · sh(β)−1,

with sh the endomorphism that maps σi to σi+1 for every i. This conjecture is also
open so far.

2.2. Further refinements. We now report about some subsequent results, mainly
by S. Burckel, J. Fromentin, and the author, that made the description of the braid
well-order more precise than the original abstract argument of R. Laver.

The restriction of the D-ordering to the monoid B+
∞ of positive braids on an

unbounded number of strands is not a well-ordering since it contains the descending
sequence σ1 >D σ2 >D ··· . However, it is easy, and technically convenient, to reverse
the role of left and right in braid diagrams and to obtain a well-ordering on B+

∞.

Definition 2.9. For n > 2, let φn be the automorphism of the group Bn (‘flip
automorphism’) that maps σi to σn−i for every i. For β, β

′ in Bn, we write β <
φ

D
β′

for φn(β) <D φn(β
′). The relation <φ

D
is called the flipped D-ordering on Bn.

It is straightforward to check that the relation <φ

D
is a left-invariant linear or-

dering on Bn, and that it is independent of n in that, for β, β′ in Bn, the rela-
tion β <φ

D
β′ holds in Bn if and only if it holds in Bn′ for any n′ > n. When

compared with the D-ordering, the flipped D-ordering amounts to exchanging left
and right: β <φ

D
β′ holds if and only if the quotient-braid β−1β′ admits an ex-

pression in which the generator σi with largest index occurs positively only. In
particular, we have σ1 <

φ

D
σ2 <

φ

D
··· . The benefit of considering <φ

D
instead of <D is

to give an improved picture of the way the monoids B+
n embed into one another,

see Figure 9. Indeed, one shows:

Proposition 2.10. [29, Proposition II.2.10] The restriction of the flipped D-ordering
of B∞ to B+

∞ is a well-ordering and, for every n, the set B+
n is the initial segment

of (B+
∞, <

φ

D
) determined by σn, that is, we have B+

n = {β ∈ B+
∞ | β <φ

D
σn}.

1 σ1 σ2 σ3 σ4 ... (B+
∞, <

φ

D
)

︸ ︷︷ ︸
positive 2-strand braids︸ ︷︷ ︸

positive 3-strand braids︸ ︷︷ ︸
positive 4-strand braids, etc.

Figure 9. The well-ordered set (B+
∞
, <φ

D): an increasing union of end-

extensions, in which B+
n is the initial segment determined by σn.

Laver’s proof that the restriction of the D-ordering to positive braids is a well-
ordering is indirect, and it remains ineffective in that it does not specifies the order
type of (B+

n , <D) or (B
+
∞, <

φ

D
). These natural questions have been solved.

Proposition 2.11 (Burckel, [10]). For every n, the order type of (B+
n , <D) is ω

ωn−2

.

Proposition 2.11 also implies that the order type of (B+
n , <

φ

D
) is ωωn−2

and,

therefore, that of (B+
∞, <D) is ωωω

, the upper bound of ωωn−2

when n goes to
infinity.
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Burckel’s result relies on an intricate inductive argument, which assigns to every
n-strand braid word a finite rooted tree with uniform height n − 2, so that, for
β, β′ in B+

n , the relation β <D β′ holds if and only if the ShortLex-minimal tree
representing β is ShortLex-smaller than the ShortLex-minimal tree representing β′,
where a height m rooted tree is considered to be a finite sequence of height m− 1
rooted trees, and a height m rooted tree (T1, ... , Tℓ) is declared ShortLex-smaller
than another heightm rooted tree T ′ = (T ′

1, ... , T
′
ℓ′), if ℓ < ℓ′ holds, or if ℓ = ℓ′ holds

and there exists i such that Tj = T ′
j holds for j < i and Ti is ShortLex-smaller

than T ′
i .

In Burckel’s approach, the ShortLex-minimal tree representing a braid β appears
as the terminal point of a recursive reduction process and it is not easily determined.
The situation was made simpler when the simple connection between (B+

n , <D)
and (B+

n−1, <D) stated in Proposition 2.12 below was found, leading to considering
the ordering of B+

n as an iterated extension of the ordering of B+

2 , that is, of the
standard ordering of natural numbers.

If β, β′ are positive braids, one says that β right-divides β′ if there exists a
positive braid γ satisfying β′ = γβ. Garside’s theory of braids [50] implies that
every braid in Bn admits a unique maximal right-divisor lying in Bn−1, namely
the least common left-multiple of all right-divisors of β lying in Bn−1. Iterating
the result, one obtains a decomposition of every positive n-strand braid in terms
of a sequence of positive (n − 1)-strand braids. The result is then that, in terms
of such decompositions, the flipped D-ordering on B+

n is the ShortLex-extension of
the flipped D-ordering on B+

n−1.

Proposition 2.12. [28] For n > 3 and β in B+
n , define the φn-splitting of β to

the (unique) sequence (βp, ... , β1) in B
+

n−1 such that, for each r, the braid βr is the
maximal right-divisor of γr−1 that lies in B+

n−1, where γr is inductively defined by
β = γrβr starting from β0 = 1. Then, for β, β′ in B+

n with φn-splittings (βp, ... , β1)
and (β′

p′ , ... , β′
1), the relation β <φ

D
β′ holds if and only if (βp, ... , β1) is smaller than

(β′
p′ , ... , β′

1) for the ShortLex-extension of (B+

n−1, <
φ

D
).

Saying that (βp, ... , β1) is the φn-splitting of a braid β means that one has

(2.2) β = φp−1
n (βp) · ... · φn(β2) · β1,

and σ1 is the only generator σi that right-divides φ
n−r
n (βp)···φn(βr+1)βr for each r.

By iterating the decomposition process, one eventually obtains for every positive
braid β an expression in terms of shifted powers of σ1, that is, a distinguished
expression by a braid word, called the alternating normal form of β.

As the right-divisibility relation of braids can be tested in linear time, the φn-
splitting of a positive braid can be computed in quadratic time and Proposition 2.12
implies that, for every n, the orderings <φ

D
and <D of Bn can be recognized in

quadratic time.
One of the nice consequences of Laver’s well-ordering result is that every pos-

itive braid can be characterized by a unique parameter, namely the ordinal that
describes its rank in the well-order (B+

∞, <
φ

D
): for instance, the rank of the trivial

braid 1 is 0, that of σ1, the immediate successor of 1, is 1 and, for i > 2, the
rank of σi is the length of the initial segment determined by σi, which is B+

i by

Proposition 2.10, hence this rank is ωωi−1

by Proposition 2.11. It is then natural
to ask for a complete explicit description of the rank function. The latter is not
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an algebraic homomorphism with respect to the ordinal sum: in general, the rank
of β1β2 is not the sum of the ranks of β1 and β2. This happens to be true when
β2 is σ1, which has rank 1 but, for instance, the rank of σ1σ2 turns out to be ω2,
which is not 1+ω (that is, ω) although the rank of σ2 is ω. The problem essentially
amounts to recognizing which braid words are alternating normal; in the case of
3-strand braids, the answer is simple:

Proposition 2.13. [28, Proposition 6.7] Put ε1 = 0, ε2 = 1, and εr = 2 for r > 3.
Then every braid in B+

3 admits a unique expression σep
parity(p) ···σe2

2 σe1
1 with ep > 1,

and er > εr for r < p; its rank in (B+

3 , <
φ

D
) is then

(2.3) ωp−1 · ep +
∑

p>r>1

ωr−1 · (er − εr).

For instance, the alternating normal form of Garside’s fundamental braid ∆3

is σ1σ2σ1, as the latter word satisfies the defining inequalities of Proposition 2.13,
contrary to σ2σ1σ2, that is, σ

1
2 σ

1
1 σ

1
2 σ

0
1 , in which the third exponent from the right,

namely 1, is smaller than the minimal legal value ε3 = 2. So, in this case, the
sequence (ep, ... , e1) is (1, 1, 1), and, applying (2.3), we deduce that the rank of ∆3

in (B+

3 , <
φ

D
)—hence in (B+

∞, <
φ

D
) as well—is ω2 + 1.

In the general case, only partial results are known: for instance, it is shown
in [28] that the family of all alternating normal n-strand braid words is recognized
by a finite state automaton and, in [11], S. Burckel describes a recursive procedure
for determining the rank in B+

n .
We conclude with extensions of the previous results involving other submonoids

of the braid groups. It turns out that the argument used to establish that the
restriction of the D-ordering to the monoid B+

n is a well-ordering works for other
submonoids:

Corollary 2.14. Assume thatM is a submonoid of B∞ that is generated by finitely
many elements, each of which is a conjugate of some generator σi. Then the re-
striction of the D-ordering to M is a well-order.

Proof. The argument is the same as for Corollary 2.6: assuming thatM is generated
by β1, ... , βp, it suffices to show that the Subword Property is valid for the words in
the alphabet {β1, ... , βp} and, for this, it is enough to show that β <D βkβ holds for
every positive braid β. Now, assuming βk = γ−1σiγ, Theorem 2.3 gives γβ <D σiγβ,
whence β <D γ−1σiγβ, for every β. �

The hypothesis that the monoid M is finitely generated is crucial in Corol-
lary 2.14. For instance, the descending sequence σ1 >D σ2 >D ... witnesses that
the submonoid B+

∞ of B∞ is not well-ordered by the D-ordering. Such phenom-
ena already occur inside B3: for instance, the submonoid of B3 generated by all
conjugates σ−p

2 σ1σ
p
2 of σ1—and, more generally, the submonoid of all quasiposi-

tive n-strand braids—contains the infinite descending sequence σ1 >D σ−1
2 σ1σ2 >D

σ−2
2 σ1σ

2
2 >D ··· .

A typical example of a monoid eligible for Corollary 2.14 is the dual braid
monoid B+∗

n , which is the submonoid of Bn generated by the
(
n
2

)
braids of the

form σi ···σjσ−1
j−1 ···σ−1

i , the ‘band’ or ‘Birman–Ko–Lee’ generators [6]. J. Fromentin

showed in [48] that the order type of (B+∗
n , <φ

D
) is ωωn−2

, using a characterization
of the restriction of the (flipped) D-ordering to B+∗

n in terms of a normal from
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(‘rotating normal form’) that is analogous to the alternating normal form of Propo-
sition 2.12 but involves an order n automorphism analogous to a rotation instead
of the order 2 automorphism φn that is analogous to a symmetry [49]. At the tech-
nical level, the properties of the rotating normal form are often nicer than those of
the alternating normal form.

Another indirect outcome of Laver’s result is the investigation of the well-founded-
ness of alternative braid orderings. There exists an uncountable family of left-
invariant linear orderings on the braid group Bn [29, Chapter XIV]. Most of them
do not induce well-orderings on the braid monoid Bn, but at least all the orderings
stemming from the hyperbolic geometry approach suggested by W.Thurston and
investigated in [87] do, and it was recently shown that the associated order type is

again ωωn−2

[56, 57].

2.3. Applications to unprovability statements. The order type of the well-

ordering on B+
n , namely ωωn−2

, is a (relatively) large ordinal: although not ex-
tremely large in the hierarchy of countable ordinals, it is large enough to give rise to
nontrivial unprovability statements. The principle is that, although the well-order
property forbids that infinite descending sequences exist, there exist nevertheless
finite descending sequences that are so long that their existence cannot be proved
in weak logical systems.

It is well-known that there exist strong limitations about the sentences possibly
provable in a given formal system, starting with Gödel’s famous theorems implying
that certain arithmetic sentences cannot be proved in the first-order Peano system.
However, the Gödel sentences have a strong logical flavour and they remain quite
remote from the sentences usually considered by mainstream mathematicians. It
is therefore natural to look for further sentences that are unprovable in the Peano
system, or in other formal systems, and, at the same time, involve objects and
properties that are both simple and natural. Typical results in this direction involve
finite combinatorics, well-quasiorders, and the Ramsey Theory [7, 47, 90].

We shall mention some results along this line of research that involve the D-
ordering of braids. Here we shall restrict to the case of 3-strand braids and refer
to [13] for details and extensions. In order to construct a long sequence of braids,
we start with an arbitrary braid in B+

3 and then repeat some transformation until,
if ever, the trivial braid is obtained. Here, the transformation at step t will consist
in removing one crossing, but, in all cases but one, introducing t new crossings.
It is reminiscent of Kirby–Paris’ Hydra Game [64], with Hercules chopping off one
head of the Hydra and the Hydra sprouting t new heads. The paradoxical result is
that, contrary to what examples suggest, one always reaches the trivial braid after
finitely many steps.

Definition 2.15. For β is a nontrivial positive 3-strand braid, and t a positive
integer, define β{t} to be the braid represented by the following diagram: in the
alternating normal diagram of β, we remove one crossing in the critical block,
defined to be the rightmost block whose size is not the minimal legal one, and add
t crossings in the next block, if it exists, that is, if the critical block is not the final
block of σ1. The G3-sequence from β is defined by β0 = β and βt = βt−1{t} for
t > 1; it stops when the trivial braid 1 is possibly obtained.

It is easy to check that the G3-sequence from σ2
2 σ

2
1 has length 14: it consists

of σ2
2 σ

2
1 , σ

2
2 σ1, σ

2
2 , σ2σ

3
1 , σ2σ

2
1 , σ2σ1, σ2, σ

7
1 , σ

6
1 , σ

5
1 , σ

4
1 , σ

3
1 , σ

2
1 , σ1, and finally 1.
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Similarly, the G3-sequence from ∆3 has length 30. Not all examples are so easy:
starting from σ2

1 σ
2
2 σ

2
1 , a braid with six crossings only, one does reach the trivial

braid, but after 90, 159, 953, 477, 630 steps.

Proposition 2.16 (Carlucci, D., Weiermann [13]). (i) For every braid β in B+

3 ,
the G3-sequence from β is finite, that is, there exists a finite number t for which
βt = 1 holds.

(ii) The statement of (i) is an arithmetic statement that cannot be proved from
the axioms of the system IΣ1.

Although braids are not natural numbers, one can encode braids and their basic
operations using natural numbers and the usual arithmetic operations. Therefore,
it makes sense to speak of braid properties that can be proved from a certain system
of arithmetical axioms: by this we mean that some reasonable encoding of braids
by natural numbers has been fixed once for all and we consider the arithmetic
counterpart of the braid property we have in mind.

The standard first-order Peano axiomatization of arithmetic PA consists of ba-
sic axioms involving addition and multiplication, plus the induction scheme, which
asserts that, for each first-order formula Φ(x) involving +,× and <, the conjunc-
tion of Φ(0) and ∀n(Φ(n) ⇒ Φ(n+1)) implies ∀n(Φ(n)). Then IΣk is the subsys-
tem of PA in which the induction principle is restricted to formulas of the form
∃x1∀x2∃x3 ···Qxk(Ψ), where Q is ∃ or ∀ according to the parity of k and Ψ is a
formula that only contains bounded quantifications ∀x<y and ∃x<y.
Proof of Proposition 2.16 (sketch). For (i), one shows that every G3-sequence is
descending with respect to <φ

D
, and the result then follows from Laver’s well-order

result (Corollary 2.6). For (ii), in order to prove that a certain sentence Φ is not
provable from the axioms of IΣ1, it is sufficient to establish that, from Φ, and using
arguments that can be formalized in IΣ1, one can prove the existence of a function
that grows as fast as the Ackermann function. Now, if T (β) denotes the length of
the G3-sequence from β, then the function p 7→ T (∆p

3) actually grows as fast as the
Ackermann function. �

The IΣ1-unprovability result of Proposition 2.16 is directly connected with the
order type ωω of the well-ordering on B+

3 . Similarly, the order type ωωω

of the
well-ordering on B+

∞ induces a connection with the stronger system IΣ2: in [13] a
certain notion of G∞-sequence in B+

∞ is defined so that, as can be expected, the
analog of Proposition 2.16 is established, namely every G∞-sequence is finite but
that result cannot be proved from IΣ2. As the order-type of (B

+
∞, <

φ

D
) is larger than

that of (B+

3 , <
φ

D
), the G∞-sequences can be made longer than the G3-sequences, so

proving their finiteness is more difficult and requires a stronger logical context.
Further results involve the transition between provability and unprovability,

which turns out to happen at a level that can be described precisely. To this
end, one considers the length of descending sequences of braids that admit some
bounded Garside complexity. Let ∆3 be the positive 3-strand braid σ1σ2σ1. Gar-
side [50] showed that every braid in B+

3 right-divides some power ∆d
3. Define the

degree deg β of a braid β to be the least integer d such that β right-divides ∆d
3.

Then, for f a fixed function on the integers, we consider (the length of) the de-
scending sequences (β0, ... , βN ) in (B+

3 , <
φ

D
) satisfying deg βt 6 d+ f(t) for every t,

that is, the descending sequences whose complexity is, in a sense, bounded by f .
If f is constant, the number of braids β satisfying deg β 6 d+ f(t) is finite, so the
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length of a sequence as above is certainly bounded. One can show using König’s
Lemma that, for every function f , the length of a sequence as above is bounded
by some constant (depending on d). The question is whether this can be proved
in the system IΣ1, and the result is that there exists a quick transition phase be-
tween IΣ1-provability and IΣ1-unprovability. Indeed, using Ackr for the functions
defined by the double recursion rules: Ack0(x) = x + 1, Ackr(0) = Ackr−1(1),
and Ackr(x + 1) = Ackr−1(Ackr(x)) for r > 1 and Ack for the diagonal func-
tion defined by Ack(x) = Ackx(x) (‘Ackermann function’), and using f−1 for the
functional inverse of f , we have

Proposition 2.17. [13] Denote by WOf the statement:
“For every d, there exists N such that every descending sequence (β0, β1, ...)
in (B+

3 , <
φ

D
) satisfying deg βt 6 d+ f(t) for every t has length at most N .”

Put fr(x) = ⌊Ack−1
r (x)

√
x⌋ for r > 0, and f(x) = ⌊Ack−1(x)

√
x⌋. Then, for every r, the

principle WOfr is provable in IΣ1, but WOf is not provable in IΣ1.

The functions involved in Proposition 2.17 all are of the form x 7→ g(x)
√
x where g

is a very slowly increasing function. The proof is a—rather sophisticated—mixture
of combinatorial methods and specific results about the number of 3-strand braids
satisfying some order and degree constraints.

It is likely that a similar result involving B+
∞ and IΣ2 could be established, but

this was not made in [13].

2.4. Braid conjugacy. We conclude with applications of the well-order property
of a different nature, namely those where the order is used to provide distinguished
elements. As we shall see, not much is known so far, but the approach leads at the
least to testable conjectures.

As a preliminary remark, let us mention that connections are known between the
position of a braid β in the D-ordering, typically the unique interval [∆2k

n ,∆
2k+1
n ) it

belongs to (the parameter k is then called the D-floor of β), and various topological
parameters associated with the link that is the closure of β [75, 76, 54, 55], see [31],
but we shall not give details here as these results do not involve the well-order
property.

By very definition, the well-order property asserts that every nonempty subset
of B+

∞ contains a <φ

D
-minimal element, and that every nonempty subset of B+

n con-
tains a <D-minimal element. In this way, one obtains a natural way to distinguish
an element in a family of positive braids. As the D-ordering of braids appears as
canonical in that many different approaches lead to the same ordering, one may
expect that the elements so identified enjoy good properties.

The Conjugacy Problem for the groupBn, namely the question of algorithmically
recognizing whether two braids are conjugated, is one of the main algorithmic ques-
tions involving braids. The question was shown to be decidable by F.A.Garside [50]
but, in spite of many efforts, the best methods known so far in the case of 5 strands
and more have an exponential complexity with respect of the length of the input
braid words—which led to proposing braid groups and conjugacy as a cryptographic
platform [65, 27].

Because of the specific properties of Garside’s fundamental braid ∆n, every braid
of Bn can be expressed as ∆−d

n β with β in B+
n , and any two braids are conjugated if

and only if they are positively conjugated, that is, conjugated via a positive braid.



28 PATRICK DEHORNOY

It follows that, in order to solve the Conjugacy Problem of Bn, it is enough to solve
the Conjugacy Problem of the monoid B+

n . Now, the well-order property implies

Lemma 2.18. For every braid β in B+
n , the intersection of the conjugacy class of β

with B+
n contains a unique <D-minimal element µn(β).

Being able to algorithmically compute the function µn would provide an imme-
diate solution for the Conjugacy Problem of B+

n , since β is conjugated to β′ if and
only if µn(β) and µn(β

′) are equal. So the question is to compute the function µn.
At the moment, the question remains open but, at least in the case of 3-strand

braids, the simple connection between the (flipped) D-ordering and the alternat-
ing normal form of Proposition 2.13 makes it realistic to explicitly compute the
function µ3. To this end, the obvious approach is to investigate the analog of the
cycling and decycling operations of [42] with the Garside normal form replaced by
the alternating normal form (or the rotating normal form), that is, the operations
corresponding to (βp, ... , β1) 7→ (β1, βp, ... , β2) and (βp, ... , β1) 7→ (βp−1, ... , β1, βp).

β 1 σ1 σ2
1 ··· σ2 σ2σ1 σ2σ

2
1 ··· σ2

2 σ2
2 σ1 σ2

2 σ
2
1 ···

rk(β) 0 1 2 ω ω+1 ω+2 ω·2 ω·2+1 ω·2+2

µ3(β) � � � σ1 � � σ2
1 σ2σ

2
1 �

··· σ3
2 σ3

2 σ1 σ3
2 σ

2
1 ··· σ1σ2 σ1σ2σ1 σ1σ2σ

2
1 ···

ω·3 ω·3+1 ω·3+2 ω2 ω2+1 ω2+2

σ2
1 σ2σ

3
1 σ2

2 σ
3
1 σ2σ1 σ2σ

2
1 σ2σ

3
1

··· σ1σ
2
2 σ1σ

2
2 σ1 σ1σ

2
2 σ

2
1 ··· σ2

1 σ2 σ2
1 σ2σ1 σ2

1 σ2σ
2
1 ···

ω2+ω ω2+ω+1 ω2+ω+2 ω2
·2 ω2

·2+1 ω2
·2+2

σ2σ
2
1 σ2

2 σ
2
1 σ2

2 σ
3
1 σ2σ

2
1 σ2σ

3
1 σ2σ

4
1

··· σ2
1 σ

2
2 σ2

1 σ
2
2 σ1 σ2

1 σ
2
2 σ

2
1 ··· σ2

1 σ
3
2 σ2

1 σ
3
2 σ1 ···

ω2
·2+ω ω2

·2+ω+1 ω2
·2+ω+2 ω2

·2+ω·2 ω2
·2+ω·2+1

σ2
2 σ

2
1 σ2

2 σ
3
1 σ2

2 σ
4
1 σ2

2 σ
3
1 σ3

2 σ
3
1

··· σ2
1 σ

4
2 σ2

1 σ
4
2 σ1 σ2

1 σ
4
2 σ

2
1 ··· σ3

1 σ2 σ3
1 σ2σ1 ···

ω2
·2+ω·3 ω2

·2+ω·3+1 ω2
·2+ω·3+2 ω2

·3 ω2
·3+1

σ2
2 σ

4
1 σ3

2 σ
4
1 σ4

2 σ
4
1 σ2σ

3
1 σ2σ

4
1

··· σ3
1 σ

2
2 σ3

1 σ
2
2 σ1 ··· σ2σ

2
1 σ2 σ2σ

2
1 σ2σ1 σ2σ

2
1 σ2σ

2
1 ···

ω2
·3+ω ω2

·3+ω+1 ω3 ω3+1 ω3+2

σ2
2 σ

3
1 σ2

2 σ
4
1 σ2

2 σ
2
1 σ2σ

4
1 �

Table 3. A few values of the function µ3 on B+
3
: here the braids are

enumerated in <φ

D-increasing order, specified using their alternating normal
form, and accompanied with their ordinal rank in the well-order; the symbol
� indicates the fixed points of µ3, that is, the braids that are minimal in
their conjugacy class.

Some values of the function µ3 are listed in Table 3; these values should suggest
both that µ3 is nontrivial but also that it obeys simple rules. For instance, a typical
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rule suggested by the computer experiments is the following formula (an n-strand
version is easy to guess):

Conjecture 2.19 (D., Fromentin, Gebhardt, [31]). For every β in B+

3 , one has

µ3(β∆
2
3) = σ1σ

2
2 σ1 · µ3(β) · σ2

1 .

It is reasonable to expect that an investigation of cycling and decycling for the
alternating normal form would lead to a solution of that specific conjecture and,
more generally, lead to the practical computation of the function µ3 on B+

3 , and
subsequently of the function µn on B+

n .
If this program can be fulfilled, it would then become foreseeable to investigate

similar questions for analogous functions in which the conjugacy relation is replaced
with the Markov equivalence relation, that is, the equivalence relation on B∞, or
rather on

⋃
nBn × {n}, generated by conjugacy together with the Markov trans-

formation (β, n) ∼ (βσ±1
n , n+1). It is well-known [5] that the closures of two braid

diagrams represent the same link if and only if the braids are Markov-equivalent;
moreover, at the expense of taking into account a power of the braid ∆2

n, one can
always reduce to the case of positive braids. So, should the above approach turn
out to be possible, one would associate with every link L a unique distinguished
braid, namely the (B+

∞, <
φ

D
)-smallest positive braid in the equivalence class of the

braids that represent L—or, equivalently, the unique ordinal that is the rank of this
distinguished braid in the well-order. Of course, the problem here is not the exis-
tence of the smallest braid or the ordinal (which is guaranteed by Laver’s result),
but its practical computability.

Remark 2.20. In the case of Markov-equivalence, the braid index and the braid
length are not preserved, so an equivalence class is in general infinite and Laver’s
result is essential to ensure the existence of a smallest representative. However,
in the case of conjugacy, the braid index and the length (of positive braids) are
preserved, so the considered equivalence classes are finite: in this case, the existence
of a smallest element is guaranteed for every linear ordering of braids, and Laver’s
result is important for a motivation, but it is not needed to ensure the existence of
the function µn. As we cannot expect to solve the Conjugacy Problem for free, this
suggests that the investigation of µn may still require significant technical efforts.
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