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Abstract

The lattice Boltzmann method (LBM) is an innovative and promising ap-
proach in computational fluid dynamics. From an algorithmic standpoint it
reduces to a regular data parallel procedure and is therefore well-suited to high
performance computations. Numerous works report efficient implementations
of the LBM for the GPU, but very few mention multi-GPU versions and even
fewer GPU cluster implementations. Yet, to be of practical interest, GPU LBM
solvers need to be able to perform large scale simulations. In the present contri-
bution, we describe an efficient LBM implementation for CUDA GPU clusters.
Our solver consists of a set of MPI communication routines and a CUDA kernel
specifically designed to handle three-dimensional partitioning of the computa-
tion domain. Performance measurement were carried out on a small cluster.
We show that the results are satisfying, both in terms of data throughput and
parallelisation efficiency.

Keywords: GPU clusters, CUDA, lattice Boltzmann method

1. Introduction

A single-GPU based computing device is not proper to solve large scale prob-
lems because of the limited amount of on-board memory. However, applications
running on multiple GPUs have to face the PCI-E bottleneck, and great care has
to be taken in design and implementation to minimise inter-GPU communica-
tion. Such constraints may be rather challenging; the well-known MAGMA [15]
linear algebra library, for instance, did not support multiple GPUs until version
1.1, two years after the first public release.

The lattice Boltzmann method (LBM) is a novel approach in computational
fluid dynamics (CFD), which, unlike most other CFD methods, does not consist
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in directly solving the Navier-Stokes equations by a numerical procedure [9].
Beside many interesting features, such as the ability to easily handle complex
geometries, the LBM reduces to a regular data-parallel algorithm and therefore,
is well-suited to efficient HPC implementations. As a matter of fact, numerous
successful attempts to implement the LBM for the GPU have been reported in
the recent years, starting with the seminal work of Li et al. in 2003 [10].

CUDA capable computation devices may at present manage up to 6 GB
of memory, and the most widespread three-dimensional LBM models require
the use of at least 19 floating point numbers per node. Such capacity allows
therefore the GPU to process about 8.5× 107 nodes in single-precision. Taking
architectural constraints into account, the former amount is sufficient to store
a 4163 cubic lattice. Although large, such a computational domain is likely to
be too coarse to perform direct numerical simulation of a fluid flow in many
practical situations as, for instance, urban-scale building aeraulics or thermal
modeling of electronic circuit boards.

To our knowledge, the few single-node multi-GPU LBM solvers described in
literature all use a one-dimensional (1D) partition of the computation domain,
which is relevant in this case since the volume of inter-GPU communication is
not likely to be a limiting factor given the small number of involved devices.
This option does not require any data reordering, provided the appropriate par-
titioning direction is chosen, thus keeping the computation kernel fairly simple.
For a GPU cluster implementation, on the contrary, a kernel able to run on
a three-dimensional (3D) partition seems preferable, since it would both pro-
vide more flexibility for load balancing and contribute to reduce the volume of
communication.

In the present contribution, we describe an implementation of a lattice Boltz-
mann solver for CUDA GPU clusters. The core computation kernel is designed
so as to import and export data efficiently in each spatial direction, thus en-
abling the use of 3D partitions. The inter-GPU communication is managed by
MPI-based routines. This work constitutes the latest extension to the TheLMA
project [1], which aims at providing a comprehensive framework for efficient
GPU implementations of the LBM.

The remainder of the paper is structured as follows. In Section 2, we give
a description of the algorithmic aspects of the LBM as well as a short review
of LBM implementations for the GPU. The third section consists of a detailed
description of the implementation principles of the computation kernel and the
communication routines of our solver. In the fourth section, we present some
performance results on a small cluster. The last section concludes and discusses
possible extensions to the present work.

2. State of the art

2.1. Lattice Boltzmann Method

The lattice Boltzmann method is generally carried out on a regular orthog-
onal mesh with a constant time step δt. Each node of the lattice holds a set of
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Figure 1: The D3Q19 stencil — The blue arrows represent the propagation
vectors of the stencil linking a given node to some of its nearest neighbours.

scalars {fα |α = 0, . . . N} representing the local particle density distribution.
Each particle density fα is associated with a particle velocity ξ

α
and a propa-

gation vector cα = δt · ξ
α
. Usually the propagation vectors link a given node

to one of its nearest neighbours, except for c0 which is null. For the present
work, we implemented the D3Q19 propagation stencil illustrated in Fig. 1. This
stencil, which contains 19 elements, is the most commonly used in practice for
3D LBM, being the best trade-off between size and isotropy. The governing
equation of the LBM at node x and time t writes:

∣∣fα(x+ cα, t+ δt)
〉
−
∣∣fα(x, t)

〉
= Ω

(∣∣fα(x, t)
〉)

, (1)

where
∣∣fα

〉
denotes the distribution vector and Ω denotes the so-called collision

operator. The mass density ρ and the momentum j of the fluid are given by:

ρ =
∑

α

fα , j =
∑

α

fαξα . (2)

In our solver, we implemented the multiple-relaxation-time collision opera-
tor described in [5]. Further information on the physical and numerical aspects
of the method are to be found in the aforementioned reference. From an algo-
rithmic perspective, Eq. 1 naturally breaks in two elementary steps:

∣∣f̃α(x, t)
〉
=

∣∣fα(x, t)
〉
+Ω

(∣∣fα(x, t)
〉)

, (3)

∣∣fα(x+ cα, t+ δt)
〉
=

∣∣f̃α(x, t)
〉
. (4)

Equation 3 describes the collision step in which an updated particle distribution
is computed. Equation 4 describes the propagation step in which the updated
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(a) Initial state (b) Post-collision state (c) Post-propagation state

Figure 2: Collision and propagation — The collision step is represented by the
transition between ( a) and ( b). The pre-collision particle distribution is drawn
in black whereas the post-collision one is drawn in blue. The transition from ( b)
to ( c) illustrates the propagation step in which the updated particle distribution
is advected to the neighbouring nodes.

(a) Initial state (b) Pre-collision state (c) Post-collision state

Figure 3: In-place propagation — With the in-place propagation scheme, con-
trary to the out-of-place scheme outlined in Fig. 2, the updated particle distri-
bution of the former time step is advected to the current node before collision.

particle densities are transferred to the neighbouring nodes. This two-step pro-
cess is outlined by Fig. 2 (in the two-dimensional case, for the sake of clarity).

2.2. GPU implementations of the LBM

Due to substantial hardware evolution, the pioneering work of Fan et al. [6]
reporting a GPU cluster LBM implementation is only partially relevant today.
The GPU computations were implemented using pre-CUDA techniques that are
now obsolete. Yet, the proposed optimisation of the communication pattern still
applies, although it was only tested on Gigabyte Ethernet; in future work, we
plan to evaluate its impact using InfiniBand interconnect.

In 2008, Tölke and Krafczyk [16] described a single-GPU 3D-LBM imple-
mentation using CUDA. The authors mainly try to address the problem in-
duced by misaligned memory accesses. As a matter of fact, with the NVIDIA
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G80 GPU available at this time, only aligned and ordered memory transac-
tions could be coalesced. The proposed solution consists in partially performing
propagation in shared memory. With the GT200 generation, this approach is
less relevant, since misalignment has a lower—though not negligible—impact on
performance. As shown in [12], the misalignment overhead is significantly higher
for store operations than for read operations. We therefore suggested in [13] to
use the in-place propagation scheme outlined by Fig. 3 instead of the ordinary
out-of-place propagation scheme illustrated in Fig. 2. From an implementation
standpoint, this alternative approach consists in performing the propagation
when loading the densities from device memory instead of performing it when
storing the densities back. The misalignments therefore only occur on read op-
erations. With the GT200, the gain in performance is about 20%. Moreover,
the resulting computation kernel is simpler and leaves the shared memory free
for possible extensions.

Further work led us to develop a single-node multi-GPU solver, with 1D
partitioning of the computation domain [14]. Each CUDA device is managed
by a specific POSIX thread. Inter-GPU communication is carried out using zero-
copy transactions to page-locked host memory. Performance and scalability are
satisfying with up to 2,482 million lattice node updates per second (MLUPS)
and 90.5% parallelisation efficiency on a 3843 lattice using eight Tesla C1060
computing devices in single-precision.

In their recent paper [17], Wang and Aoki describe an implementation of the
LBM for CUDA GPU clusters. The partition of the computation domain may
be either one-, two-, or three-dimensional. Although the authors are elusive on
this point, no special care seems to be taken to optimise data transfer between
device and host memory, and as a matter of fact, performance is quite low. For
instance, on a 3843 lattice with 1D partitioning, the authors report about 862
MLUPS using eight GT200 GPUs in single-precision, i.e. about one third of
the performance of our single-node multi-GPU solver using similar hardware.
It should also be noted that the given data size for communication per rank,
denoted M1D, M2D, and M3D, are at least inaccurate. For the 1D and 2D
cases, no account is taken of the fact that for the simple bounce-back boundary
condition, no external data is required to process boundary nodes. In the 3D
case, the proposed formula is erroneous.

3. Proposed implementation

3.1. Computation kernel

To take advantage of the massive hardware parallelism, our single-GPU and
our single-node multi-GPU LBM solvers both assign one thread to each node
of the lattice. The kernel execution set-up consists of a two-dimensional grid of
one-dimensional blocks, mapping the spatial coordinates. The lattice is stored as
a four-dimensional array, the direction of the blocks corresponding to the minor
dimension. Two instances of the lattice are kept in device memory, one for even
time steps and one for odd time steps, in order to avoid local synchronisation is-
sues. This data layout allows the fetch and store operations to be coalesced since
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Figure 4: Grid layout for the single-GPU and the single-node multi-GPU LBM
solvers — The execution grid is two-dimensional with one-dimensional blocks
spanning the width of the domain (or sub-domain).

consecutive threads within a warp access consecutive memory locations. It also
makes possible, using coalescent zero-copy transactions, to import and export
data efficiently at the four sub-domain faces parallel to the blocks, with partial
overlapping of communication and computations. For the two sub-domain faces
orthogonal to the blocks however, such approach is not practicable since only
the first and the last thread within a block would be involved in data exchange,
leading to individual zero-copy transactions which, as shown in section 6 of [14],
dramatically increase the cost of inter-GPU communication.

A possible solution to extend our computation kernel to support 3D parti-
tions would be to use a specific kernel to handle the interfaces orthogonal to the
blocks. Not mentioning the overhead of kernel switching, such an approach does
not seem satisfying since the corresponding data is scattered across the array
and therefore the kernel would only perform non-coalesced accesses to device
memory. As a matter of fact, the minimum data access size is 32 bytes for
compute capability up to 1.3, and 128 bytes above, whereas only 4 or 8 bytes
would be useful. The cache memory available in devices of compute capability
2.0 and 2.1 is likely to have small impact in this case, taking into account the
scattering of the accessed data.

We therefore decided to design a new kernel able to perform propagation and
data reordering at once. With this new kernel, blocks are still one-dimensional
but, instead of spanning the lattice width, contain only one warp, i.e. W = 32
threads (for all existing CUDA capable GPUs). Each block is assigned to a tile
of nodes of size W ×W × 1, which imposes for the sub-domain dimensions to
be a multiple of W in the x- and y-direction. For a Sx × Sy × Sz sub-domain,
we therefore use a (Sx/W )× (Sy/W )× Sz grid.

The data access pattern is outlined in Fig. 5. For the sake of clarity, let us
call lateral densities the particle densities crossing the tile sides parallel to the
y-direction. Using a D3Q19 stencil, the number of lateral densities is M = 10.
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Warp

Shared memory Shared memoryTile

Figure 5: Processing of a tile — Each tile of nodes is processed row by row by
a CUDA block composed of a single warp. Note that we only drew a 8 × 8 tile
instead of a W ×W tile in order to improve readability. The current row is
framed in red and the direction of the processing is indicated by the bold red
arrow. The in-coming lateral densities are drawn in blue whereas the out-going
ones are drawn in red. These densities are stored in a temporary array hosted
in shared memory.

At each time step, the lateral densities are first loaded into a temporary array
in shared memory, then the kernel loops over the tile row by row to process
the nodes saving the updated lateral densities in the temporary array, last the
updated lateral densities are written back.

In addition to the two instances of the lattice, as for the single-GPU and
single-node multi-GPU kernels, the new kernel uses an auxiliary array in device
memory to store the lateral densities. As demonstrated by the pseudo-code in
Code 1, the data transfer operations issued by the kernel, i.e. the statements
on lines 6, 7, 15, 23, and 28, are coalescent. These transactions may be either
accesses to device memory or, for the nodes located at the interfaces of the
sub-domains, zero-copy transactions to communication buffers in host memory.
This novel data access pattern makes thus possible to export data efficiently in
every spatial direction.

The data transfered by the kernel consist of the densities stored in the lattice
instances and the lateral densities stored in the auxiliary array. At each time
step, the volume of data read and written amounts to N ×W 2 floating point
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1. for each block B do

2. for each thread T do

3. x1 ← (BxW,ByW + Tx, Bz)

4. x2 ← (BxW +W − 1, ByW + Tx, Bz)

5. for each α ∈ L do

6. load fα(x1, t) = f̃α(x1 − cα, t− δt) in shared memory

7. load fᾱ(x2, t) = f̃ᾱ(x2 − cᾱ, t− δt) in shared memory

8. end for

9. for y = 0 to W − 1 do

10. x← (BxW + Tx, ByW + y,Bz)

11. for α = 0 to N do

12. if (Tx = 0 and α ∈ L) or (Tx = W − 1 and ᾱ ∈ L) then

13. read fα(x, t) from shared memory

14. else

15. load fα(x, t) = f̃α(x− cα, t− δt)

16. end if

17. end for

18. compute
∣∣f̃α(x, t)

〉

19. for α = 0 to N do

20. if (Tx = 0 and ᾱ ∈ L) or (Tx = W − 1 and α ∈ L) then

21. write f̃α(x, t) to shared memory

22. else

23. store f̃α(x, t)

24. end if

25. end for

26. end for

27. for each α ∈ L do

28. store f̃ᾱ(x1, t) and f̃α(x2, t)

29. end for

30. end for

31. end for

Code 1: Computation kernel — In this pseudo-code, Bx, By, Bz, and Tx denote
the indices of block B and thread T ; L = {1, 7, 9, 11, 13} lists the indices of
the propagation vectors with a strictly positive x-component; ᾱ stands for the
direction opposite to α. Note that, for the sake of simplicity, we omitted the
processing of boundary conditions.
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numbers1 per tile for the former, and to M ×W per tile for the later.
The amount of 4-byte (or 8-byte) words read or written per block and per

time step is therefore:

QT = 2
(
19W 2 + 10W

)
= 38W 2 + 20W, (5)

and the amount of data read or written in device memory per time step for a
Sx × Sy × Sz sub-domain is:

QS =
Sx

W
×

Sy

W
× Sz ×QT = SxSySz

38W + 20

W
. (6)

We therefore see that this approach only increases the volume of device mem-
ory accesses by less than 2%, with respect to our former implementations [12],
while greatly reducing the number of misaligned transactions.

3.2. Multi-GPU solver

To enable our kernel to run across a GPU cluster, we wrote a set of MPI-
based initialisation and communication routines. These routines as well as the
new computation kernel were designed as components of the TheLMA frame-
work, which was first developed for our single-node multi-GPU LBM solver.
The main purpose of TheLMA is to improve code reusability. It comes with
a set of generic modules providing the basic features required by a GPU LBM
solver. This approach allowed us to develop our GPU cluster implementation
more efficiently.

The execution set-up as well as general parameters such as the Reynolds
number of the flow simulation or various option flags, are specified by a con-
figuration file in JSON format [4]. The listing in Code 2 gives an example file
for a 2 × 2 × 1 partition running on two nodes. The parameters for each sub-
domains, such as the size or the target node and computing device, are given
in the Subdomains array. The Faces and Edges arrays specify to which sub-
domains a given sub-domain is linked, either through its faces or edges. These
two arrays follow the same ordering as the propagation vector set displayed
in Fig. 1. Being versatile, the JSON format is well-suited for our application.
Moreover, its simplicity makes both parsing and automatic generation straight-
forward. This generic approach brings flexibility. It allows any LBM solver
based on our framework to be tuned to the target architecture.

Our implementation requires the use of an MPI process for each sub-domain
to handle. At start, the rank 0 process is responsible for processing the config-
uration file. Once this file is parsed, the MPI processes register themselves by
sending their MPI processor name to the rank 0 process, which in turn assigns
an appropriate sub-domain to each of them and sends back all necessary pa-
rameters. The processes then perform local initialisation, setting the assigned
CUDA device and allocating the communication buffers, which fall into three

1A whole segment access is performed for each row and each density, although for some
densities the first or the last thread do not issue an individual transaction.
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{

"Path": "out",

"Prefix": "ldc",

"Re": 1E3,

"U0": 0.1,

"Log": true,

"Duration": 10000,

"Period": 100,

"Images": true,

"Subdomains": [

{

"Id": 0,

"Host": "node00",

"GPU": 0,

"Offset": [0, 0, 0],

"Size": [128, 128, 256],

"Faces": [ 1, null, 2, null, null, null],

"Edges": [ 3, null, null, null, null, null,

null, null, null, null, null, null]

},

{

"Id": 1,

"Host": "node00",

"GPU": 1,

"Offset": [128, 0, 0],

"Size": [128, 128, 256],

"Faces": [null, 0, 3, null, null, null],

"Edges": [null, 2, null, null, null, null,

null, null, null, null, null, null]

},

{

"Id": 2,

"Host": "node01",

"GPU": 0,

"Offset": [0, 128, 0],

"Size": [128, 128, 256],

"Faces": [ 3, null, null, 0, null, null],

"Edges": [null, null, 1, null, null, null,

null, null, null, null, null, null]

},

{

"Id": 3,

"Host": "node01",

"GPU": 1,

"Offset": [128, 128, 0],

"Size": [128, 128, 256],

"Faces": [null, 2, null, 1, null, null],

"Edges": [null, null, null, 0, null, null,

null, null, null, null, null, null]

}

]

}

Code 2: Configuration file
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categories: send buffers, receive buffers and read buffers. It is worth noting that
both send buffers and read buffers consist of pinned memory allocated using the
CUDA API, since they have to be made accessible by the GPU.

The steps of the main computation loop consist of a kernel execution phase
and a communication phase. During the first phase, the out-going particle
densities are written to the send buffers assigned to the faces without performing
any propagation as for the densities written in device memory. During the
second phase, the following operations are performed:

1. The relevant densities are copied to the send buffers assigned to the edges.

2. Non-blocking send requests are issued for all send buffers.

3. Blocking receive requests are issued for all receive buffers.

4. Once message passing is completed, the particle densities contained in the
receive buffers are copied to the read buffers.

This communication phase is outlined in Fig. 6. The purpose of the last
operation is to perform propagation for the in-coming particle densities. As a
result, the data corresponding to a face and its associated edges is gathered in a
single read buffer. This approach avoids misaligned zero-copy transactions, and
most important, leads to a simpler kernel since only six buffers at most have to
be read. It should be mentioned that the read buffers are allocated using the
write combined flag to optimise cache usage. According to [7, 8, 11], this setting
is likely to improve performance since the memory pages are locked.

4. Performance study

We conducted experiments on an eight-node GPU cluster, each node being
equipped with two hexa-core X5650 Intel Xeon CPUs, 36 GB memory, and three
NVIDIA Tesla M2070 computing devices; the network interconnect uses QDR
InfiniBand. To evaluate raw performance, we simulated a lid-driven cavity [2] in
single-precision and recorded execution times for 10,000 time steps using various
configurations. Overall performance is good, with at most 8,928 million lattice
node updates per second (MLUPS) on a 7683 lattice using all 24 GPUs. To set
a comparison, Wang and Aoki in [17] report at most 7,537 MLUPS for the same
problem size using four time as many GPUs. However, it should be mentioned
that these results were obtained using hardware of the preceding generation.

The solver was compiled using CUDA 4.0 and OpenMPI 1.4.4. It is also
worth mentioning that the computing devices had ECC support enabled. From
tests we conducted on a single computing device, we expect the overall perfor-
mance to be about 20% higher with ECC support disabled.

4.1. Performance model

Our first performance benchmark consisted in running our solver using eight
GPUs on a cubic cavity of increasing size. The computation domain is split in
a 2× 2× 2 regular partition, the size S of the sub-domains ranging from 128 to
288. In addition, we recorded the performance for a single-GPU on a domain of
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Lattice GPU 0
Faces

(send buf.)

CPU 0

Edges

(send buf.)

Interconnect

Faces

(recv. buf.)

Edges

(recv. buf.)

CPU 1

Faces

(read buf.)
Lattice GPU 1

Figure 6: Communication phase — The upper part of the graph outlines the path
followed by data leaving the sub-domain handled by GPU 0. For each face of the
sub-domain, the out-going densities are written by the GPU to pinned buffers
in host memory. The associated MPI process then copies the relevant densities
into the edge buffers and sends both face and edge buffers to the corresponding
MPI processes. The lower part of the graph describes the path followed by data
entering the sub-domain handled by GPU 1. Once the reception of in-coming
densities for faces and edges is completed, the associated MPI process copies the
relevant data for each face of the sub-domain into pinned host memory buffers,
which are read by the GPU during kernel execution.
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size S, in order to evaluate the communication overhead and the GPU to device
memory data throughput. The results are gathered in Tables 1, 2, and 3.

Table 1 shows that the data throughput between GPU and device memory
is stable, only slightly increasing with the size of the domain. (Given the data
layout in device memory, the increase of the domain size is likely to reduce
the amount of L2 cache misses, having therefore a positive impact on data
transfer.) We may therefore conclude that the performance of our kernel is
communication bound. The last column accounts for the ratio of the data
throughput to the maximum sustained throughput, for which we used the value
102.7 GB/s obtained using the bandwidthTest program that comes with the
CUDA SDK. The obtained ratios are fairly satisfying taking into account the
complex data access pattern the kernel must follow.

In Tables 2 and 3, the parallel efficiency and the non-overlapped commu-
nication time were computed using the single-GPU results. The efficiency is
good with at least 87.3% and appears to benefit from surface-to-volume effects.
In Tab. 3, the third column reports the overall data throughput (intra-node
and inter-node), the fourth column gives the amount of data transmitted over
the interconnect per time step, and the last column reports the correspond-
ing throughput. Both throughputs remain rather stable when the size of the
domain increases from 256 to 576, only decreasing by about 20% whereas the
communication load increases by a factor of 5. Figure 7 displays the obtained
performance results.
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Figure 7: Performance for a 2× 2× 2 regular partition
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Domain size (S) Runtime (s) Performance (MLUPS) Throughput (GB/s) Ratio to peak throughput

128 54.7 383.2 59.2 57.6%

160 100.6 407.2 62.9 61.2%

192 167.6 422.3 65.2 63.5%

224 260.3 431.8 66.7 64.9%

256 382.3 438.8 67.8 66.0%

288 538.7 443.4 68.5 66.7%

Table 1: Single-GPU performance
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Domain size (2S) Runtime (s) Perf. (MLUPS) Parallel efficiency

256 62.7 2,678 87.3%

320 114.5 2,862 87.9%

384 186.9 3,030 89.7%

448 289.6 3,105 89.9%

512 418.7 3,206 91.3%

576 587.0 3,256 91.8%

Table 2: Performance for a 2× 2× 2 regular partition

Domain size (2S) Communication (s) Inter-GPU (GB/s) Transmission (MB) Inter-node (GB/s)

256 7.9 9.9 5.0 6.2

320 13.9 8.9 7.8 5.5

384 19.3 9.6 11.3 5.9

448 29.3 8.2 15.3 5.1

512 36.4 8.6 20.0 5.4

576 48.3 8.2 25.3 5.1

Table 3: Data throughput for a 2× 2× 2 regular partition
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4.2. Scalability

In order to study scalability, both weak and strong, we considered seven dif-
ferent partition types with increasing number of sub-domains. Weak scalability
represents the ability to solve larger problems with larger resources whereas
strong scalability accounts for the ability to solve a problem faster using more
resources. For weak scalability, we used cubic sub-domains of size 128, and
for strong scalability, we used a computation domain of constant size 384 with
cuboid sub-domains. Table 4 gives all the details of the tested configurations.

For our weak scaling test, we use fixed size sub-domains so that the amount
of processed nodes linearly increases with the number of GPUs. We chose a
small, although realistic, sub-domain size in order to reduce as much as possi-
ble favourable surface-to-volume effects. Since the workload per GPU is fixed,
perfect scaling is achieved when the runtime remains constant. The results of
the test are gathered in Tab. 5. Efficiency was computed using the runtime of
the smallest tested configuration. Figure 8 displays the runtime with respect
to the number of GPUs. As illustrated by this diagram, the weak scalability of
our solver is satisfying, taking into account that the volume of communication
increases by a factor up to 11.5. It is worth noting that in this test, the config-
uration using 18 GPUs performs better than the configuration using 16 GPUs.
It seems that a better node occupancy (i.e. three sub-domains per node instead
of two) has a positive impact on performance. However, this hypothesis need
to be confirmed by large-scale experiments.
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Figure 8: Runtime for the weak scaling test — Perfect weak scaling would result
in an horizontal straight line.
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Number of GPUs Nodes×GPUs Partition type Domain (weak scal.) Sub-dom. (strong scal.)

4 2× 2 1× 2× 2 128× 256× 256 384× 192× 192

6 2× 3 1× 3× 2 128× 384× 256 384× 128× 192

8 4× 2 2× 2× 2 256× 256× 256 192× 192× 192

12 4× 3 2× 3× 2 256× 384× 256 192× 128× 192

16 8× 2 2× 4× 2 256× 512× 256 192× 96 × 192

18 6× 3 2× 3× 3 256× 384× 384 192× 128× 128

24 8× 3 2× 4× 3 256× 512× 384 192× 96 × 128

Table 4: Configuration details for the scaling tests

17



Number of GPUs Runtime (s) Efficiency Performance (MLUPS) Perf. per GPU (MLUPS)

4 59.8 100% 1402 350.5

6 64.2 93% 1959 326.6

8 62.7 95% 2676 334.5

12 66.8 90% 3767 313.9

16 71.1 84% 4721 295.1

18 67.0 89% 5634 313.0

24 73.2 82% 6874 286.4

Table 5: Runtime and efficiency for the weak scaling test

Number of GPUs Runtime (s) Efficiency Performance (MLUPS) Perf. per GPU (MLUPS)

4 335.0 100% 1690 422.6

6 241.9 92% 2341 390.1

8 186.1 90% 3043 380.3

12 134.7 83% 4204 350.3

16 109.9 76% 5152 322.0

18 98.4 76% 5753 319.6

24 80.3 70% 7053 293.9

Table 6: Runtime and efficiency for the strong scaling test
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Figure 9: Runtime for the strong scaling test — Perfect strong scaling is indi-
cated by the solid red line

In our strong scalability test, we consider a fixed computation domain pro-
cessed using an increasing number of computing devices. As a consequence the
volume of the communication increases by a factor up to three, while the size
of the sub-domains decreases, leading to less favourable configurations for the
computation kernel. The results of the strong scaling test are given in Tab. 6.
The runtime with respect to the number of GPUs is represented in Fig. 9 using a
log-log diagram. As shown by the trend-line, the runtime closely obeys a power
law, the correlation coefficient for the log-log regression line being below −0.999.
The obtained scaling exponent is approximately −0.8, whereas perfect strong
scalability corresponds to an exponent of −1. We may conclude that the strong
scalability of our code is good, given the fairly small size of the computation
domain.

5. Conclusion

In this paper, we describe the implementation of an efficient and scalable
LBM solver for GPU clusters. Our code lies upon three main components that
were developed for that purpose: a CUDA computation kernel, a set of MPI ini-
tialisation routines, and a set of MPI communication routines. The computation
kernel’s most important feature is the ability to efficiently exchange data in all
spatial directions, making possible the use of 3D partitions of the computation
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domain. The initialisation routines are designed in order to distribute the work-
load across the cluster in a flexible way, following the specifications contained in
a configuration file. The communication routines manage to pass data between
sub-domains efficiently, performing reordering and partial propagation. These
new components were devised as key parts of the TheLMA framework[1], whose
main purpose is to facilitate the development of LBM solvers for the GPU. The
obtained performance on rather affordable hardware such as small GPU clusters
makes possible to carry out large scale simulations in reasonable time and at
moderate cost. We believe these advances will benefit to many potential appli-
cations of the LBM. Moreover, we expect our approach to be sufficiently generic
to apply to a wide range of stencil computations, and therefore to be suitable
for numerous applications that operate on a regular grid.

Although performance and scalability of our solver is good, we believe there is
still room for improvement. Possible enhancements include better overlapping
between communication and computation, and more efficient communication
between sub-domains. As for now, only transactions to the send and read buffers
may overlap kernel computations. The communication phase starts once the
computation phase is completed. One possible solution to improve overlapping
would be to split the sub-domains in seven zones, six external zones, one for each
face of the sub-domains, and one internal zone for the remainder. Processing
the external zones first would allow the communication phase to start while the
internal zone is still being processed.

Regarding ameliorations to the communication phase, we are considering
three paths to explore. First of all, we plan to reinvest the concepts presented
in [7] and [8] to improve data transfers involving page-locked buffers. Secondly,
we intend to evaluate the optimisation proposed by Fan et al. in [6], which
consists in performing data exchange in several synchronous steps, one for each
face of the sub-domains, the data corresponding to the edges being transfered
in two steps. Last, following [3], we plan to implement a benchmark program
able to search heuristically efficient execution layouts for a given computation
domain and to generate automatically the configuration file corresponding to
the most efficient one.
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