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Abstract. In this paper, a method of data visualization and classifica-
tion performance estimation applied to target classification is proposed.
The objective of this paper is to propose a mathematical tool for data
characterization. The principle is to use a non linear dimensionality re-
duction technique to describe our data in a low-dimensional space and to
model embedding data by Gaussian mixture model (GMM) to estimate
classification performance graphically and analytically.

1 Introduction and context

During major conflicts, cooperative classification techniques are not enough re-
liable enough and Non Cooperative Target Recognition (NCTR) [MO98] is in-
creasingly seen as essential. High Range Resolution (HRR) [WE94] offers a rapid
way to characterise a target through the use of radar range profile. A range pro-
file is essentially a one-dimensional radar image of the target.

The HRR profile is a representation of temporal response of target to an high
resolution radar impulse. Range resolution obtains with this kind of radar signa-
ture is less than a meter, which allows to take into account very small fluctuation
of Radar Cross Section (RCS) along the target. As consideration, high resolution
involves range profile with a large number of samples. Therefore, HRR profiles
live in high-dimensional space. Most of classification techniques consist in com-
paring target signature under test with target signatures contained in a data
set. In this case, classification problem is considered as a supervised classifica-
tion problem [DU01]. Analysis of data set properties and visualization of classes
repartition in this set can be interesting to estimate classification performance.
To visualize high-dimensional data in a 2D or 3D space, a large number of di-
mensionality reduction techniques have been proposed for several years. Among
these methods, t-Student Stochastic Neighbor Embedding [MA08] method al-
lows to reduce the tendency to crowd points together in the center of a map
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contrary to classical methods like Locally Linear Embedding [RO00], Isomap
[TE00] or Sammon mapping [SA69].

This paper is organized as follows. In section 2, the database used for our
study is described. The section 3 is a reminder on the dimensionality reduc-
tion methods and more particularly on the t-Distributed Stochastic Neighbor
Embedding technique. In the section 4, a GMM algorithm for NCTR applica-
tion is proposed. The section 5 shows the kind of data visualization obtained
with our method. Probability map and decision matrix in low-dimensional space
are computed and compared with decision matrix obtained in high-dimensional
space with GMM algorithm. Our conclusion and suggestions for future work are
presented in section 6.

2 Database

The data used in this article are synthetic data. The data set contains NT range
profiles in K = 3 different classes (N1

T = N2

T = N3

T = 342). They were generated
from target modeling (CAD) on which were applied techniques to calculate RCS.
For each configuration (frequency, elevation angle, azimuth), the RCS complex
value is calculated. The table 1 summarizes notation used for the data set.

M the number of range bins in our range profiles.

Nk
T

the number of range profiles belonging to the class k.

NT =
PK

k=1
Nk

T
the total number of range profiles.

xk
T,i

the i-th range profile belonging to the class k, with k = {1, . . . , K} et
i = [1, . . . , Nk

T ].

Xk
T

the matrix of range profiles belonging to the class k.

xT,i the i-th range profile with i = [1, . . . , NT ].

XT the matrix of range profiles.

yk
T,i

the i-th low-dimensional range profile belonging to the class k.

Y k
T

the matrix of low-dimensional range profiles belonging to the class k.

yT,i the i-th low-dimensional range profile.

Y T the matrix of low-dimensional range profiles.

Table 1: Summary of notations used for the data set

3 Dimensionality reduction

A large number of nonlinear dimensionality reduction techniques that aims to
preserve the local stucture of data have been proposed for many years and many
of which are reviewed by Lee and Verleysen [LE07]. Among these techniques,
we can mention the most popular: Sammon Mapping [SA69], Stochastic Neigh-
bor Embedding (SNE) [HI02], Isomap [TE00], Maximum Variance Unfolding



3

(MVU) [WE04], Locally Linear Embedding (LLE) [RO00] and Laplacian Eigen-
maps [BE02]. On artificial data, these techniques obtain very good performance
but they are not often very successful at visualizing real high-dimensional data.
Indeed, most of these techniques are not capable of retaining both local and the
global structure of the data in a single map.

In 2009, van der Maaten and Hinton [MA08] proposed a new method called
“t-Distributed Stochastic Neighbor Embedding” or “t-SNE”, which is capable
of capturing very well much of the local structure of the high-dimensional data,
while also revealing global structure such as the presence of clusters at several
scales. t-SNE method is directly inspired from SNE method.

3.1 Stochastic Neighbor Embedding (SNE)

Principle of SNE method is to convert high-dimensional Euclidian distances be-
tween datapoints into conditional probabilities that represent similarities. The
similarity of range profile xT,i to range profile xT,j is the conditionnal proba-
bility, pj|i, that xT,i would pick xT,j as its neighbor if neighbors were picked
in proportion to their probability density under a Gaussian centered at xT,i.
Mathematically, the conditional probability pj|i is defined by

pj|i =
exp

(

−||xT,i − xT,j ||2/(2σ2

i )
)

∑

k 6=i exp (−||xT,i − xT,k||2/(2σ2

i ))
(1)

where σi is the variance of the Gaussian that is centered on range profile xT,i.

For the low-dimensional range profiles yT,i and yT,j of the high-dimensional
range profiles xT,i and xT,j , it is possible to compute a similar conditional prob-
ability, which is denote by qj|i

qj|i =
exp

(

−||yT,i − yT,j ||
2
)

∑

k 6=i exp
(

−||yT,i − yT,k||
2
) (2)

If the map points yT,i and yT,j correctly model the similarity between the
high-dimensional range profiles xT,i and xT,j , the conditional probabilities pj|i

and qj|i will be equal. Therefore, SNE aims to find a low-dimensional data rep-
resentation that minimizes the mismatch between pj|i and qj|i. The Kullback-
Leiber divergence is a natural measure of the faithfulness with which qj|i models
pj|i. SNE minimizes the sums of Kullback-Leiber divergences over all datapoints
using a gradient descent method. The cost function C is given by

C =
∑

i

KL(Pi||Qi) =
∑

i

∑

j

pj|i log
pj|i

qj|i
(3)

where Pi represents the conditional probability distribution over all other data
points given datapoint xT,i and Qi represents the conditional probability distri-
bution over all other map points given map point yT,i
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3.2 t-Distributed Stochastic Neighbor Embedding (t-SNE)

t-SNE method provides two major innovations compared to classical SNE method.
The cost function used by t-SNE differs from the one used by SNE in two ways.
Firstly, it uses a symmetrized version of the SNE cost function with simpler
gradients. Indeed, to minimizing the sum of the Kullback-Leiber divergences be-
tween the conditional probabilities pj|i and qj|i, it is also possible to minimize
a single Kullback-Lieber divergence between a joint probability distribution, P ,
in the high-dimensional space and a joint probability distribution, Q, in the
low-dimensional space:

C = KL(P ||Q) =
∑

i

∑

j

pij log
pij

qij

with pii = pjj = 0 (4)

In symmetric SNE, the pairwise similarities in the low-dimensional map qij

are given by

qij =
exp

(

−||yT,i − yT,j ||
2
)

∑∑

k,l,k 6=l

exp
(

−||yT,k − yT,l||
2
) (5)

and in the high-dimensionality space

pij =
pj|i + pi|j

2NT

(6)

This ensures that
∑

j pij > 1

2NT
for all datapoints xT,i, as a result of which

each datapoints xT,i makes a significant contribution to the cost function.
Secondly it uses the Student t-distribution rather than the Gaussian to com-

pute the similarity between two points in the low-dimensional space. t-SNE
employs a heavy-tailed distribution in the low-dimensional space to alleviate
both the crowding problem and the optimization problems of SNE. Therefore,
in t-SNE, qij becomes

qij =

(

1 + ||yT,i − yT,j ||
2
)−1

∑∑

k,l,k 6=l

(

1 + ||yT,k − yT,l||
2
)−1

(7)

4 Gaussian Mixture Models (GMM) for NCTR
application

Let note by ZT the data set. Then for any of its element zT,i (in low-dimensional
space zT,i = yT,i ∈ R

2 and in high-dimensional space zT,i = xT,i ∈ R
M ), a

mixture model can be defined as follows:

p(zT,i|ZT ) =

K
∑

k=1

πk
T p(zT,i|θ

k
T ) (8)
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where θk
T is the set of parameters of distribution k and πk

T is the prior probability
of the class k.

4.1 Gaussian Mixture Models (GMM)

In the case of GMM, θk
T = {mk

T , Ck
T }, where mk

T (mk
T ∈ R

2 in the low-
dimensional space and mk

T ∈ R
M in the high-dimensional space) is the mean

range profile of the class k:

mk
T =

1

Nk
T

Nk
T

∑

i=1

zk
T,i (9)

and Ck
T (Ck

T ∈ R
2×2 in the low-dimensional space and Ck

T ∈ R
M×M in the

high-dimensional space) is the covariance matrix of the class k. Elements of this
matrix are defined by:

Ck
T (p, q) =

1

Nk
T − 1

Nk
T

∑

i=1

(zk
T,i(p) − mk

T (p)) (zk
T,i(q) − mk

T (q)) (10)

Finally, the Bayes rule is used to computed posterior probability of each class k,
with p(zT,i|θk

T ) = N (zT,i|θk
T ).

p(zT,i ∈ k|zT,i) =
πk

T p(zT,i|θk
T )

∑K

i πk
T p(zT,i|θk

T )
(11)

4.2 Decision rule and error rate control

A major constraint in NCTR application is to control error rate to avoid fratri-
cide shoots. In this context, the classical decision rule of maximum a posteriori
(MAP) cannot be used. We defined a new decision rule adapted to NCTR con-
text. Let p = [p1, . . . , pk] be the vector of posterior probability computed for the
K classes.

– if pi ≥ TG, the class i is granted
– if TD ≤ pi < TG, the class i is dubious
– if pi < TD, le class i is denied

We construct three decision matrix: (i) a Granted matrix (Grm), (ii) a Du-
bious matrix (Dum) and (iii) a Denied matrix (Dem). Each of them is a K×K
matrix. The decision thresholds TG and TD are ajusted empirically to maintain
error rate 3 less than a fixed value (for example 5%).

3 (i) We have an error when the class i is declared denied for a range profile of the
class i. Diagonal of Dem gives the error rate. (ii) We have a success when the class
i is declared granted and the other classes dubious or denied for a range profile of
the class i. Success rate (SR) is deduced from Grm. (SR(i) = Grm(i) ×

Q

j 6=j
(1 −

Grm(j))). (iii) We have a good identification when the class i is declared granted
and the others classes denied for a range profile of the class i. Good identification
rate (GIR) is deduced from Grm and Dem. (GIR(i) = Grm(i) ×

Q

j 6=j
Dem(j)).
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5 Data visualization and classification performance
estimation

5.1 Probability map in low-dimensional space

After computing Y T from t-SNE algorithm and from XT , we want to visu-
alize how data are placed over the decision rule. First from Y T , we estimate
parameters θk

T of the K Gaussian distribution of GMM. Then, we can sample
the 2D space and calculate for each sample of the grid the posterior probability
for each Gaussian distribution of GMM. Finally, we can plot probability maps
where granted, dubious and denied zones for each class are represented. The low-
dimensional range profile can be superposed on this map and we can estimate
graphically classification performance with our data.

(a) SNR=30dB (b) SNR=20dB (c) SNR=15dB

(d) SNR=30dB (e) SNR=20dB (f) SNR=15dB

(g) SNR=30dB (h) SNR=20dB (i) SNR=15dB

Fig. 1: t-SNE 2D visualization of data for class 1, 2 and 3 (row) and for three SNR
values (column).

From figure 1a, 1d and 1g, we can see immediatly that error rate for class 2
and 3 will be equal to 0% and good identification rate equal to 100%, because
each sample of class 2 and 3 is entirely in granted area. For the class 1, we can
see that some samples are in class 1 denied area and in class 2 granted area.
With SNR = 20dB (cf. figure 1b, 1e and 1h), some samples of class 1 are yet
placed in class 2 granted area and some samples of class 2 are in class 1 dubious
area. Samples of class 3 remain in class 3 granted area. When SNR = 15dB (cf.
figure 1c, 1f and 1i), increasingly samples of class 1 and 2 are placed in class 1
dubious area.
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5.2 Decision matrix in low-dimensional space

We can retrieve graphically observations by computing Grm, Dum and Dem
matrix defined in section 4.2.

Grm Dum Dem
P

P
P
PTest

Class 1 2 3 1 2 3 1 2 3

SNR=30dB
Class 1 99.1 0.9 0 0 0 0 0.9 99.1 100
Class 2 0 100 0 0 0 0 100 0 100
Class 3 0 0 100 0 0 0 100 100 0

SNR=20dB
Class 1 99.1 0.9 0 0 0 0 0.9 99.1 100
Class 2 0 98.5 0 0.9 1.5 0 98.5 0 100
Class 3 0 0 100 0 0 0 100 100 0

SNR=15dB
Class 1 95.6 0.9 0 3.5 1.1 0 0.9 98 100
Class 2 0.6 94.4 0 5 4.7 0 94.4 0.9 100
Class 3 0 0 100 0 0 0 100 100 0

Fig. 2: Grm, Dum and Dem matrix for three different SNR in low-dimensional space

Indeed, as seen on the probability maps, error rate and good identification
rate (and success rate) are respectively equal to 0% and 100% for class 2 and
3 with an SNR = 30dB. With SNR = 30dB, SNR=20dB or SNR=15dB, we
retrieve that some samples (0.9%) of class 1 are placed in class 2 granted area.
When SNR = 15dB, some samples (3.5%) of class 1 are placed in class 1 dubious
area and in class 2 dubious area (1.1%). Generally, this table allows us to get an
analytical measurement of the observations made from probability maps.

5.3 Decision matrix in high-dimensional space

Grm Dum Dem
P

P
P
PTest

Class 1 2 3 1 2 3 1 2 3

SNR=30dB
Class 1 100 0 0 0 0 0 0 100 100
Class 2 0 100 0 0 0 0 100 0 100
Class 3 0 0 100 0 0 0 100 100 0

SNR=20dB
Class 1 99.4 0.6 0 0 0.3 0 0.6 99.1 100
Class 2 0.3 99.7 0 0 0.3 0 99.7 0 100
Class 3 0 0 100 0 0 0 100 100 0

SNR=15dB
Class 1 97.7 2.3 0 0.3 0 0 2 97.7 100
Class 2 0.3 99.7 0 0 0 0 99.7 0.3 100
Class 3 0 0 100 0 0 0 100 100 0

Fig. 3: Grm, Dum and Dem matrix for three different SNR in high-dimensional space
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Finally, we can compute Grm, Dum and Dem matrix obtained applying GMM
algorithm in the high-dimensional space (cf. Fig.3). Overall, classification per-
formances are better in high-dimensional space than in low-dimensional space.
Even if rates are higher in high-dimensional space, we retrieve the same tendency
than we can observe in low-dimensional space. Our method provide a good tool
to estimate analytically and graphically classification performance we can get
from a data set and its associated probability distribution model.

6 Conclusion and perspectives

In this paper, a new method of classification performance evaluation is pro-
posed. This method mixes dimensionality reduction and classical Gaussian mix-
ture modelization to propose a mathematical tool for classification performance
evaluation. An additional work will be to generalize these methods for any kind
of algorithm and to evaluate for each kind of algorithm the critical dimension
from which the performances begin to degrade. This will allow to determine the
best appropriate algorithm from data and to reduce the computational cost of
this algorithm.
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