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Abstract. Size-based scheduling methods receive a lot of attention as they can
greatly enhance the responsiveness perceived by the useréedh #fey give
higher priority to small interactive flows which are the important ones fgoed
user experience. In this paper, we propose a new packet schechdthgd Early
Flow Discard (EFD), which belongs to the family of Multi-Level Processor Shar-
ing policies. Compared to earlier proposals, the key feature of EFD is dlye w
flow bookkeeping is performed as flow entries are removed from thetéible as
soon as there is no more corresponding packet in the queue. In thieaygtive
flow table remains of small size at all times. EFD is not limited to a scheduling
policy but also incorporates a buffer management policy. We showghrexten-
sive simulations that EFD retains the most desirable property of mooencss
intensive size-based methods, namely low response time for shos, fiahile
limiting lock-outs of large flows and effectively protecting low/medium ratd-mu
timedia transfers.

Keywords: size-based scheduling, performance, LAS, Run2C

1 Introduction

Size-based scheduling has received a lot of attention fr@nesearch community with
applications to Web servers [15], Internet traffic [3, 14, &63G networks [2, 10]. The
key idea is to favor short flows at the expense of long onesusecahort flows are
in general related to interactive applications like Em#lieb browsing or DNS re-
quests/responses; unlike long flows which represent baakgrtraffic. Such a strategy
pays off as long as long flows are not completely starved aisdydnerally holds with-
out further intervention for Internet traffic where shortwftorepresent a small portion
of the load and thus cannot monopolize the bandwidth.

Despite their unique features, size-based schedulingipslihave not yet been
moved out of the lab. We believe the main reasons behind dlis &f adoption are
related to the following general concerns about size-baskdduling approaches:

— Size-based scheduling policies are in essence statecth flow needs to be
tracked individually. Even though one can argue that thadieips should be de-
ployed at bottleneck links which are presumably at the edgetvork — hence at
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a location where the number of concurrent flows is moderakbe-edmmon belief
is that stateful mechanisms are to be avoided in the firseplac

— Size-based scheduling policies are considered to overiglize long flows. De-
spite all its drawbacks, the legacy scheduling/buffer gangent policy, FIFO/drop
tail, does not discriminate against long flows while sizedzhscheduling solutions
tend to impact both the mean response time of flows but alsowgance as long
flows might lock-out each others.

— As their name indicates, size-based scheduling policiesider a single dimension
of a flow, namely, its accumulated size. Still, persistemt ate transfers often
convey key traffice.g., voice over IP conversations. As a result, it seems nataral t
account both for the rate and the accumulated amount of byesch flow.

A number of works address patrtially the aforementionedtsbatings of size-based
scheduling policies. Although, to the best of our knowledgmne of them fulfill simul-
taneously the above objectives. This paper presents a iaasiing policy, EFD (Early
Flow Discard) that aims at fulfilling the following objec#s: (i) Low response time to
small flows; (ii) Low bookkeeping cost.e., the number of flows tracked at any given
time instant remains consistently low; (iii) Differentiag flows based on volumes but
also based on rate; (iv) Avoiding lock-outs.

EFD manages the physical queue of an interface (at the IP lasea set of two
virtual queues corresponding to two levels of priority: thgh priority queue first and
the low priority queue at the tail of the buffer. Formally, BEfelongs to the family
of Multi-Level Processor Sharing policies (see Sectionr®) & effectively a PS+PS
scheduling policy. The key feature of EFD is the way flow bagdqbing is performed.
In EFD, we keep an active record only for flows that have attleas packet in the
queue. This simple approach allows to fulfill the entire ¢isbbjectives listed above.
Specifically, in EFD the active flow table size is bounded tovavalue. Also, although
EFD has a limited memory footprint, it can discriminate agaibursty and high rate
flows. EFD is not limited to a scheduling policy but also inporates a buffer manage-
ment policy, where the packet with smallest priority getscdrded when the queue is
full, as opposed to drop tail which blindly discards packgten arrival. This mecha-
nism is similar to the one used in previous works [13, 4].

Section 2 gives an overview of the related works mentionedalSection 3 presents
the proposed scheduling scheme. The simulation envirofyinetuding network setup,
network topology and workload appear in Section 4. Then veesirsulations to eval-
uate its performance and compare with other schedulersatiofeb. Finally we con-
clude the paper in Section 6.

2 Related Work

Classically, size-based scheduling policies are dividaalthlind and non-blind schedul-
ing policies. A blind size-based scheduling policy is notssvof the job size while a
non-blind is. Non blind scheduling policies are applicablservers [15] where the job

1 Job is a generic entity in queueing theory. In the context of this work, agaiesponds to a
flow.
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size is related to the size of the content to transfer. A glggample of non blind policy
is the Shortest Remaining Processing Time (SRPT) policicinis optimal among all
scheduling policies, in the sense that it minimizes theayeresponse time.

For the case of network appliances (routers, access peiut3,the job size, i.e.
the total number of bytes to transfer, is not known in advaBeweral blind size-based
scheduling policies have been proposed. The Least Att&eedce (LAS) policy [13]
bases its scheduling decision on the amount of servicevexteb far by a flow. LAS is
known to be optimal if the flow size distribution has a decieg@b®azard rate (DHR) as
it becomes, in this context, a special case of the optimainGipolicy [5]. Some repre-
sentatives of the family of Multi-Level Processor ShariM)PS) scheduling policies
[8] have also been proposed to favor short flows. An MLPS patinsists of several
levels corresponding to different amounts of attainediseref jobs, with possibly a
different scheduling policy at each level. In [3], Run2C,igbhis a specific case of
MLPS policy, namely PS+PS, is proposed and contrasted to. Mt Run2C, short
jobs, which are defined as jobs shorter than a specific thickstu@ serviced with the
highest priority while long jobs are serviced in a backgh&® queue. Run2C features
key characteristics: (i) As (medium and) long jobs share a@jiR&ie, they are less pe-
nalized than under LAS; (ii) It is proved analytically in [8jat a M/G/1/PS+PS queue
offers a smaller average response time than an M/G/1/PSequéhich is the classical
model of a network appliance featuring a FIFO schedulingcg@nd shared by homo-
geneous TCP transfers; (iii) Run2C avoids the lock-out pheemon observed under
LAS [7], where a long flow might be blocked for a large amountiofe by another
long flow.

Run2C and LAS share a number of drawbacks. Flow bookkeepiogmplex. LAS
requires to keep one state per flow. Run2C needs to checlgdbiircoming packet, if it
belongs to a short or to a long flow. The latter is achievedjit{&nks to a modification
of the TCP protocol so as to encode in the TCP sequence nuhwactual number of
bytes sent by the flow so far. Such an approach, which reqaigdsbal modification
of all end hosts, is questionaBléoreover, both LAS and Run2C classify flows based
on the accumulated number of bytes they have sent, with&irigtahe flow rate into
account.

Some approaches propose to detect long flows by insertinfdivein the table
probabilistically [4, 12, 9]. The key idea here is to perfoansimple random test (with
a low probability of success) upon packet arrival to decfdbé corresponding flow
should be inserted in the table. As long flows generate maokeps, it is unlikely to
miss them, while many short flow simply go unnoticed. Thegg@gches differ in the
way they trade false positive rate against the speed of titereaf a long flow.

So far, a single work addresses the problem of accountingates in size-based
scheduling [7]. It consists in a variant of LAS, Least AtedhRecent Service (LARS),
where the amount of bytes sent by each flow decays with timerdicy to a fading
factor 8. LARS is able to handle differently two flows that have seninailar amount

2 Other works aim at favoring short flows, by marking the packets atdge ef the network so
as to relieve the scheduler from flow bookkeeping [11]. However, #pdoyment of DiffServ
is not envisaged in the near future at the Internet scale.
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of bytes but at different rates and it also limits the lock duttation of one long flow by
another long flow to a maximum tunable value.

3 Early Flow Discard

In this section, we describe how EFD manages space and timéyprEFD belongs
to the family of Multi-Level Processor Sharing schedulingigy. EFD features two
gueues. The low priority queue is served only if the high gijajueue is empty. Both
queues are drained in a FIFO manner at the packet level (vidiohgeneral modeled
as a PS queue at flow level). In terms of implementation, desipysical queue for
packet storage is divided into two virtual queues. The fiest pf the physical queue
is dedicated to the virtual high priority queue while them®t part is the low priority
queue. A pointer is used to indicate the position of the laskpt of the virtual high
priority queue. This idea is similar to the one proposed én@hoss-Protect mechanism
[9]. We now turn our attention to the flow management in EFD #redenqueuing and
dequeuing operations. We eventually discuss the spafialypgsed when the physical
queue gets full.

3.1 Flow management

EFD maintains a table of active flows, defined here as the sphadcifets that share
a common identity, consisting of a 5-tuple: source and dastin addresses, source
and destination ports and protocol number. Flows remaihertable as long as there
is one corresponding packet in the buffer and discarded whertast packet leaves.
Consequently, a TCP connection (or UDP transfers) may lieosselr time into several
fragments handled independently of each other by the stdredilote that unlike most
scheduling mechanisms that keep per flow states, EFD doegedtto use any garbage
collection mechanism to clean its flow table. This happemsrmatically upon departure
of the last packet of the flow. A flow entry keeps track of selvattibutes, including
flow identity, flow size counter, number of packets in the queu

Packet enqueuing For each incoming packet, a lookup is performed in the flowetab
of EFD. A flow entry is created if the lookup fails and the péaciseput at the end
of the high priority queue. Otherwise, the flow size countethe corresponding flow
entry is compared to a preset threshiidif the flow size counter exceedls, then the
packet is put at the end of the low priority queue; otherwise gacket is inserted at
the end of the high priority queue. The purposetois to favor the start of each flow.
In our simulations, we use th of 20 packets (up to 30 Kbytes for packets with size
of 1500 bytes each). Obviously, if a connection is brokea sgveral fragments, from
the scheduler’s perspective, then each time it will handihdragment as a unique one
and assign the start (within threshah) of each fragment a high priority, by means of
directing all packets making up the start of each fragmetottime high priority queue.
We believe that this makes sense as this happens only if thieection has not been
active for a significant time —it has not been backlogged fathde— and thus can be
considered as fresh.
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In practice, several phenomena can lead to break a connéatiomany fragments.
For instance, during connection establishment, the TOR start algorithm limits the
number of packets in flight so that it does not continuouslyupy the buffer. This is
however not a problem, as those flows are smaller thaand thus the start of the TCP
transfer will receive a high priority. If the flow lasts longand it is effectively able
to use its share of the capacity, then the connection wilhtadly occupy the buffer
without interruption and therefore stay in the flow tablegufe 1(b) illustrates such a
scenario (Section 4 details the experimental setup). igseent that, as the connection
size increases, the number of fragments tends to reach tastinthat, for the longest
connections, a small number of fragments correspond to packets.

Statistic of connection fragmentation

10

10

1ms

avg. num of fragments
-

0 1

10 10 107 10° 10*
Connection size in MSS
(a) Network topology (b) Number of fragments per connection -

workload of 8Mbit/s

Fig. 1.

Packet dequeuing When a packet leaves the queue or gets dropped, it decreases th
number of queued packets of the corresponding flow entryflblaeentry stays in the
table as long as one corresponding packet is in the queutheStiow table size is
bounded by the physical queue sizén packets. Indeed, in the worst case, there are
as many entries as distinct flows in the physical queue, e@tblowe packet.

This policy ensures that the flow table remains of small sitso if a flow sends
at high rate for a short period of time, its packets will beedted to the low priority
gueue only for the limited period of time during which the flmbacklogged: EFD is
sensitive to flow burstiness.

3.2 Buffer management

When a packet arrives to a queue that is full, EFD first inséssatrriving packet to
its appropriate position in the queue, and then drops thkegpdbat is at the end of

% In most if not all active equipments — routers, access points — queeeanted in packets
and not in bytes.
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the (physical) queue. This buffer policy implicitly givegace priority to short flows,
which differs from the traditional droptail buffer managent policy. This approach is
similar to the Knock-Out mechanism of [4] and the buffer ngeraent proposed to
LAS in [13]. As large flows in the Internet are mostly TCP flomge can expect that
they will recover from a loss event with a fast retransmitijkenshort flows that might
time out.

4 Performance Evaluation Set Up

In this section, we present the network set up — network tapoand workload — used
to evaluate the performance of EFD and to compare it to ottterduling policies. Al
simulations are done using QualNet [1].

4.1 Network Topology

We evaluate the performance of EFD and compare it to othexdsdimg policies for
the case of a single bottleneck network, using a classiaabthell topology depicted
in Fig. 1(a).

A group of senders (nodes 1 to 5) are connected to a routee (@pdy 100Mbps
bandwidth links and a group of receivers (nodes 8 to 12) anaected to another router
(node 7) with a 100Mbps bandwidth link. The two aggregatmunters are connected to
each other with a link at 10Mbps. All links have 1 ms propawatielay.

All nodes use FIFO queues, except the bottleneck node wisiek one of the four
scheduling policies that we compare in this work: FIFO, LABIN2C or EFD. The
bottleneck buffer has a finite size of 300 packets.

4.2 Workload generation

Data transfer requests arrive according to a Poisson otesserver and the client are
picked at random and the content requested is distributeat@ing to a bounded Zipf
distributed flow sizes. A bounded Zipf distribution is a dete analog of a continuous
bounded Pareto distribution.

Transfers are performed under TCP or UDP depending on thelaion. In all
cases, the global load is controlled by tuning the arrived od requests. For each sim-
ulation set-up, we consider an underload and an overloacheggvhich correspond re-
spectively to workloads of 8 and 15 Mb/s (80% and 150% of thfidsmeck capacity).
For TCP simulations, we use the GENERIC-FTP model of Quaineith corresponds
to an unidirectional transfer of data. For UDP transfersysgea CBR application model
where one controls the inter-packet arrival time. The tateables to control the exact
rate at which packets are sent to the bottleneck. In both TARJ®P cases, IP packets
have a size of 1500 bytes.

4 Due to the discussion in the above paragraph, a short flow is a parboiection whose rate
is moderate.
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5 Performance Evaluation

In this section, we compare the performance of EFD to otheedualing policies. Our
objective is to illustrate the ability of EFD to fulfill the dbogectives listed in the intro-
duction, namely (i) low bookkeeping cost, (ii) low resporisee to small flows, (iii)
avoiding lock-outs, (iv) protecting long lasting delay siive flows.

To illustrate the first 3 items, we consider a TCP workloadwiidmogeneous trans-
fers, i.e., transfers that take place on paths having siroRaracteristics. For the last
item - protecting long lived delay sensitive flows - we add aRJRorkload to the TCP
workload in the form of a CBR traffic, in order to highlight thehavior of each sched-
uler in presence of long lasting delay sensitive flows.

5.1 Overhead of flow state keeping

The approaches to maintain the flow table in the size-badeeldsting policies pro-
posed so far can be categorized as follows:

— Full flow table approach as in LAS [13]. An argument in favorkafeping one
state per active flow is that the number of flows to handle resaioderate as it is
expected that such a scheduling policy be implemented adfe of the Internet.

— No flow table approach: an external mechanism marks the tmokéhe informa-
tion is implicit (coded in the SEQ number in Run2C) [3, 11]

— Probabilistic approaches: a test is performed at each packeal for flows that
have not already be incorporated in the flow table [4, 9, 1B¢ fEst is calibrated in
such a way that only long flows should end up in the flow tablé, ftise positives
are possible. Several options have been envisaged to céhidbahenomenon es-
pecially, a re-testing approach [12] or an approach wher@diws in the flow table
are actually considered as long flows once they have gedearaige than a certain
amount of packets/bytes after their initial insertion [4].

— EFD deterministic approach: the EFD approach is fully deisistic as flow entries
are removed from the flow table once they have no more pacltieeiqueue.

In this section, we compare all the approaches presenteghettee "No flow table
approach” for our TCP workload scenario (see Section 4.2).c@hsider one repre-
sentative of each family: LAS, X-Protect and EFD. We term ptBct a Multi-Level
Processor Scheduling policy that maintains two queues|asiynto Run2C, but uses
the probabilistic mechanism proposed in [9] to track longvifo As for the actual
scheduling of packets, X-Protect mimics Run2C based omfleemation it possesses.
If the packet does not belong to a flow in the flow table nor pafise test, it is put in
the high priority queue. If it belongs to a flow in the flow tabieis put either in the
high priority queue or in the low priority queue, dependimgtibe amount of bytes sent
by the flow. We use a threshold of 30KB, similar to the one usedFD.

The evolution of flow table size over time for load of 8Mbitisnflerload) and
15Mbit/s (overload) are shown in Fig. 2. For LAS and X-Pratdee flow table is visited
every 5 seconds and the flows that have been inactive for hdsare removed.

5 Note that this mechanism is proposed in [9] to do admission control furatidmot a schedul-
ing.
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Fig. 2. Evolution of flow table size over time

We observe how X-Protect roughly halves the number of trdéksvs, compared
to LAS. By contrast, EFD reduces it by one order of magnitides reason why X-
Protect offers deceptive performance is the race conditiahexists between the flow
size distribution and the probabilistic detection mechamilndeed, even though a low
probability, say 1%, is used to test if a flow is a long, therstexso many short flows
that the number of false positives becomes quite large, wpievents the flow table
from being significantly smaller than in LAS. The histograingFig. 3 confirm the
good performance of EFD in underload and also overload, &Kkeeps the flow table
size to a few 10s of entries at most. Note that this is cleariglier than the actual
queue size (300 packets) that constitutes an upper bourttediotv table size in EFD
as explained before.
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Fig. 3. Histogram of the flow table size
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5.2 Mean response time

Response time is a key metric for a lot of applications, egfigénteractive ones. An
objective of EFD and size-based scheduling policies in gang to favor interactive
applications, hence the emphasis put on response time. Wgdeo four scheduling
policies: FIFO, LAS, Run2C and EFD. FIFO is the current dédatandard and it is
thus important to compare the performance of EFD to thiscgoliAS can be consid-
ered as a reference in terms of (blind) size-based schedpdilicies as a lot of other
disciplines have positioned themselves with respect to.LRR&2C, for instance, aims
at avoiding the lock out of long flows observed more often witkS than fore.g.
FIFO. We do not consider the X-protect policy discussed ictiSe 5.1, as Run2C can
be considered as a perfect version of X-protect since Run&@hguishes packets of
flows below and above the threshdtd(we use the same threshdhdfor both EFD and
Run2C).

Response times are computed only for flows that completetilagisfer before the
end of the simulation. When comparing response times, on¢ thus also consider
the amount of traffic due to flows that terminated their tranahd to flows that did not
complete. The lack of completion of a flow can be due to a preraand of simulation.
However, in overload and for long enough simulations as mcaise, the main reason
is that they were set aside by the scheduler.

We first turn our attention to the aggregate volumes of tragficpolicy for the un-
derload and overload cases. We observe no significant eliféerbetween the different
scheduling policies in terms both of number of complete awdinplete connections.
The various scheduling policies lead to a similar level ofliaa?® utilization.

In contrast, when looking at the distribution of incompletnsfers, it appears that
the flows killed by the different scheduling policies are tia same. We present in Fig.
4 the distribution of incomplete transfers where the siza wansfer is the total amount
of MSS packets transferred at the end of the simulation. Asfiex is deemed incom-
plete if we do not observe a proper TCP tear down with two FIsl#\s expected, we
observe that FIFO tends to kill a lot of small flows while thaetpolicies discriminate
long flows.

Distributions of the response times for the (complete) shod long transfers in
underload and overload conditions are presented in FignBeball load conditions,
LAS, EFD and Run2C manage to significantly improve the respdime of the short
flows as compared to FIFO. EFD and Run2C offer similar peréorce. They both have
a transition of behavior at aboth value th = 20 MSS). Sitill, the transition of EFD
is smoother than the one of Run2C. This was expected as Rymdiésa strict rule:
below or aboveh for a given transfer, whereas EFD can further cut a long feamsto
fragments which individually go first to the high priority gue. Overall, EFD provides
similar or slightly better performance than Run2C with a imial price in terms of
flow bookkeeping. LAS offers the best response time of saset scheduling policies
in our experiment for small and intermediate size flows. Bogé flows its performance
are equivalent to the other policies in underload and sicanifly better for the overload
case. However, one has to keep in mind that in overload donditLAS deliberately

8 The medium is the IP path as those policies operate at the IP level.
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Fig. 4. Distributions of incomplete transfers size

killed a large set of long flows (see Fig. 4), hence its apgdretter performance. LARS
behaves similarly to LAS in underload and degrades to fa@uging —which brings it
close to FIFO in this case— when the networks is overloaded.
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Fig. 5. Conditional mean response time

5.3 Lock-outs

The low priority queue of EFD is managed as a FIFO queue. Als,sue expect EFD,
similarly to Run2C, to avoid lock-outs observed under LASewdby an ongoing long
transfer is blocked for a significant amount of time by a nets@nsfer of significant
size. This behavior of LAS is clearly observable in Figura)&{¢here the progress (ac-
cumulated amount of bytes sent) over time of the 3 largessteas of one of the above
simulationd. We indeed observe large periods of times where the tranefgrerience

" Those 3 connections did not start at the same time, the time axis is relativeitstdrting
dates.
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no progress, which leads to several plateaus. This is gleadontrast to the cases of
LARS, EFD and to a lesser extent of Run2C, for the same coiomsctshown in Fig-
ures 6(b), 6(c) and 6(d) respectively. The progress of taections in the latter cases
is indeed clearly smoother with no noticeable plateau.
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Fig. 6. Time diagrams of the 3 largest TCP transfers under LAS, LARS, EECRam2C (under-
load), relative to the start of each transfer

5.4 The Case of Multimedia Traffic

In the TCP scenario considered above, FTP servers were fegmaogs in the sense that
they had the same access link capacity and the same lateaaghalient. The transfer
rate was controlled by TCP. In such conditions, it is diffi¢alillustrate how EFD takes
into accounts the actual transmission rate of data sourctss section, we have added
a single CBR flow to the TCP workload used previously.
We consider two rates 64Kb/s and 500Kb/s for the CBR flow,asgmting typical

audio (e.g., VoIP) and video stream (e.g., YouTube videcendhough the YouTube
uses HTTP streaming) respectively. The background loadvalses - 4, 8 and 12Mbps-
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which correspond to underload/moderate/overload regasete bottleneck capacity
is 10 Mbps. To avoid the warm-up period of the background Veadt, the CBR flow
is started at time t=10s and keeps on sending packets cooshuuntil the end of
the simulation. The simulation lasts for 1000 seconds.esmall buffers are prone to
packet loss, we assign to the bottleneck a buffer of 50 packettead of 300 packets
previously. The loss rates experienced by the CBR flow arengim Fig. 7, in which
a well-known fair scheduling scheme called SCFQ [6] is adftedhe comparison,
aparting from other disciplines mentioned hereinbefore.
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(a) a CBR flow with rate of 64Kb/s (b) a CBR flow with rate of 500Kb/s

Fig. 7. Loss rate experienced by a CBR flow in different background loads

As we can see from the figure, for the case of a CBR flow with r&t@4é&bps,
LAS discards a large fraction of packets even at low loads T¥as expected as LAS
only considers the accumulated volume of traffic of the flow amen at 64 kbps, the
CBR flow has sent more than 8 MB of data in 1000 s (without takivegEthernet/IP
layers overhead into account). In contrast, FIFO, SCFQ an®R offer low loss rates
in the order of a few percents at most. As for EFD and LARS, #fésctively protect
the CBR flow under all load conditions.

As the rate of the CBR flow increases from 64Kbps to 500Kbpgatket loss is
observed for EFD in underload/moderate load conditiomsilaily to SCFQ, whereas
the other scheduling disciplines (FIFO, LAS, Run2C and LAB® hit at various de-
grees. In overload, EFD and LARS blow up similarly to LAS (alhnistill represents
an upper bound on the loss rate as the CBR flow is continuoualyted the lowest
priority). EFD behaves slightly better than LARS as the loathe high priority queue
is by definition lower under EFD than under Run2C.

When looking at the above results from a high level perspegabiie can think at first
sight that FIFO and SCFQ do a decent job as they provide loswiises to the CBR flow
in most scenarios (under or overload). However, those apfigrappealing results are
a side effect of a well-known and non desirable behavior 6fxlindeed, under FIFO,
the non responsive CBR flow adversely impacts the TCP wodklEading to high
loss rates. This is especially true for the CBR flow workind@® kbps. SCFQ tends
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to behave similarly if not paired with an appropriate buffeenagement policy [6]. In
contrast, LARS and EFD offer a nice trade-off as they managéntultaneously grant
low loss rates to the CBR flow with a low penalty to the TCP baokgd workload.
Run2C avoids the infinite memory of LAS but still featurestguiigh loss rates since
the CBR flow remains continuously stuck in the low priorityege.

Overall, EFD manages to keep the desirable properties eftsmized scheduling
policies and in addition manages, with a low bookkeepind, dosprotect multimedia
flows as it implicitly accounts for the rate of this flow and ratly its accumulated
volume.

6 Conclusion

In this paper, we have proposed a simple but efficient packetduling scheme called
Early Flow Discard (EFD) that uses a fixed threshold for flow discrimination whil
taking flow rates into account at the same time. EFD posséssé®y feature of keep-
ing an active record only for flows that have one packet at ieabe queue. With this
strategy, EFD caps the amount of active flow that it trackbéoqueue size in packets.

Extensive network simulations revealed that EFD, as a [daiceduler, retains the
good properties of LAS like small response times to shortdldw addition, a signifi-
cant decrease of bookkeeping overhead, of at least oneafnshegnitude is obtained as
compared to LAS, which is convincing from a practical poifiview. Lock-outs which
form the Achilles’ heel of LAS are avoided in EFD, similarly Run2C. In contrast to
LAS and Run2C, EFD inherently takes both volume and ratedotmunt in its schedul-
ing decision due to the way flow bookkeeping is performed. Wéhér demonstrated
that EFD can efficiently protect low/medium multimedia flovwsnost situations.

Future directions of research on EFD will be to test its aygtlility to WLAN in-
frastructure networks, where the half-duplex nature ofNt#C protocol needs to be
taken into account [16].
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