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Abstract
& Context The gain in accuracy of breeding values with the
use of single trial spatial analysis is well known in forestry.
However, spatial analyses methodology for single forest
genetic trials must be adapted for use with combined anal-
yses of forest genetic trials across sites.
& Aims This paper extends a methodology for spatial anal-
ysis of single forest genetic trial to a multi-environment trial
(MET) setting.
& Methods A two-stage spatial MET approach using an
individual-tree model with additive and full-sib family genetic
effects was developed. Dispersion parameters were estimated
usingBayesian techniques via Gibbs sampling. The procedure is

illustrated using height growth data at age 10 from eight large
Tsuga heterophylla (Raf.) Sarg. second-generation full-sib prog-
eny trials from two series established across seven sites in British
Columbia (Canada) and on one in Washington (USA).
& Results The proposed multi-environment spatial mixed
model displayed a consistent reduction of the posterior mean
and an increase in the precision of error variances σ2

e

� �
than

the model with “sets in replicates” or incomplete block alpha
designs. Also, the multi-environment spatial model provided
an average increase in the posterior means of the narrow- and
broad-sense individual-tree heritabilities h2N and h2B, respec-
tively). No consistent changes were observed in the posterior
means of additive genetic correlations (rAjj′).
& Conclusion Although computationally demanding, all dis-
persion parameters were successfully estimated from the pro-
posed multi-environment spatial individual-tree model using
Bayesian techniques via Gibbs sampling. The proposed two-
stage spatial MET approach produced better results than the
commonly used nonspatial MET analysis.

Keywords Multi-environment spatial model . Model
comparison .Western hemlock . Gibbs sampling . Full-sib
family genetic effects . Additive genetic correlations

1 Introduction

Tree improvement programs usually involve the evaluation of
similar sets of potential new genotypes in a range of sites and
often over several years using a variety of experimental designs.
This is often referred to as multi-environment trials (MET),
where an environment constitutes a particular site/year combi-
nation (Smith et al. 2001). MET allows the study of the differ-
ential response of genotypes to different environmental
conditions, i.e., quantifying the magnitude of the genotype by
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environment interactions if related material is tested. The im-
portance of genotype by environment interactions can be ex-
amined by genetic correlations among environments, assuming
that a character measured in two environments represents two
distinct traits (Falconer and Mackay 1996). Mixed model anal-
yses of multi-environment forest genetics trials data are being
increasingly used for estimating between site genetic correla-
tions (e.g., see Costa e Silva et al. 2005; Li et al. 2007).

Spatial environmental variation within a site is largely of two
types: global trend or large-scale variation and/or local trend or
small-scale variation. Both are well known in forestry field
trials as a result of factors such as variations in soil fertility,
moisture, depth, or slope. Many studies utilizing spatial analy-
sis of single forest genetic trials display a consistent reduction in
the error variance and an increase in the heritability. This
typically results in a gain in accuracy of breeding values and
greater genetic gain when compared with different a priori
experimental designs (e.g., Dutkowski et al. 2006; Zas 2006;
Cappa and Cantet 2007; Ye and Jayawickrama 2008). Several
approaches have been developed and applied for single forest
trials to reduce the effects of the environmental variability, such
as nearest neighbor techniques (Magnussen 1990), kriging (Zas
2006), nonstochastic functions such as polynomials (Thomson
and El-Kassaby 1988) or smoothing splines (Costa e Silva et al.
2001) and post-blocking (Ericsson 1997). Cappa and Cantet
(2007) proposed the use of the tensor products of cubic B-
splines based on a mixed model framework using Bayesian
techniques via Gibbs sampling. This was done by treating the
B-spline function parameters as random variables (i.e., using a
covariance structure for the random knots effects), in a two-
dimensional grid. The two-dimensional surface involving a
tensor product of B-splines bases for single forest genetic trials,
provided an increase in the heritability and the accuracy of the
estimated breeding value of parent and offspring (Cappa and
Cantet 2007; Cappa et al. 2011). However, this spatial analysis
methodology for single forest genetic trials must be adapted for
use with combined analyses across sites, which can be referred
to as “spatial MET analysis”.

In recent years, spatial MET analyses have become com-
mon in agricultural field trials (Cullis et al. 1998; Smith et al.
2001; Casanoves et al. 2005; Oakey et al. 2007). Cullis et al.
(1998) presented a one-stage approach for the spatial analysis
of plot data from multi-environment variety trials, by fitting
both the spatial variability within trials using a separable two-
dimensional first-order autoregressive (AR(1)) error covari-
ance structure for rows and columns of each trial, and the
heterogeneity in error variance across trials. Smith et al.
(2001) extended the analysis to include a factor analytic struc-
ture to approximate an unstructured genetic (i.e., variety) co-
variance matrix between sites. Casanoves et al. (2005) detailed
the use of a local spatial correlation between plots within trials
through isotropic and anisotropic covariance structures for the
error terms and including heterogeneous residual variances

across locations for a series of 18 MET of peanut (Arachis
hypogaeaL.). Oakey et al. (2007) extended themodel of Smith
et al. (2001) to estimate dominance effects with plots of sug-
arcane with pedigree information for 2,663 individuals on six
sites. Although multi-environment mixed models that account
for genetic correlations among trials and spatial variability
within trials being superior to the classical nonspacial models
(i.e., better model fit and more accurate breeding value predic-
tion; Ye and Jayawickrama 2008; Ding et al. 2008), the appli-
cation of spatial METanalyses in data from forest genetic trials
is still rather limited (but see Ye and Jayawickrama 2008; Ding
et al. 2008; Hardner et al 2010; de la Mata and Zas 2010).

Contrary to agricultural variety trials, analysis in forest ge-
netics tests are typically on individual trees as opposed to using
plot data. In addition, forestry trials are often larger than the
variety trials because of the larger size of individual plants and
the higher replication necessary to achieve satisfactory family
estimates (Dutkowski et al. 2002). Therefore, forest genetic trials
typically have a large number of trees per site andmore test sites.
Consequently, fitting a multi-environment individual-tree model
with additive and/or full-sib family genetic effects, while ac-
counting for genetic correlations between trials and spatial var-
iability within trials in a one-stage approach, requires a lot of
computation time and a large computer memory (Ye and
Jayawickrama 2008; de la Mata and Zas 2010). In this study,
we developed a two-stage approach for the multi-environment
spatial analyses of several large forest genetics trials. A two-
stage spatial approach was also used by Ye and Jayawickrama
(2008) and de laMata and Zas (2010) in a relatively small series
of forest progeny trials (i.e., no more than four test sites with
2,700 trees per site and no more than five test sites with 2,925
trees per site, respectively). These authors corrected the original
data using the spatially dependent residuals from an individual-
tree mixed model with a separable two-dimensional AR(1) error
covariance structures for rows and columns (Ye and
Jayawickrama 2008), or using an iterative spatial analysis
method (de la Mata and Zas 2010). However, in these studies,
the analysis of the spatially adjusted data was limited by fitting
a simpler multi-environment family mixed model (i.e., with-
out account for the additive relationship among trees) or an
individual-tree mixed model with a restrictive genetic (co)
variance structure across environments. This restrictive genet-
ic (co)variance structure assumes that the genetic variance
within all trials is equal and all pairs of covariances (and
correlations) are constant across sites; therefore, a precise
study of the magnitude and importance of the genotype by
environment interactions is not accommodated.

When the number of records and traits (trials in our case)
is very large, Misztal (2008) recommended using a Bayesian
method via Gibbs sampling algorithm to estimate the vari-
ance components. Bayesian theory for statistical analyses has
become popular in several areas of quantitative genetics due to
the feasibility of doing posterior inference by means of Markov
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chain Monte Carlo (MCMC) algorithms. These methods allow
marginal inferences on each individual parameter and produce
measures of precision of the estimators through variances or
standard errors, directly by inspecting the posterior distribution
(Sorensen and Gianola 2002). In multiple-trait (or multi-
environment) models with additive relationship matrices and
several additive, and environmental covariance components,
there is no frequentist counterpart to a posterior distribution:
i.e., there are no small sampling distributions for (co)variance
parameters (or functions of them). Animal breeders have used
MCMC techniques such as Gibbs sampling to estimate (co)
variance components in multiple-trait animal models (e.g., Van
Tassell and Van Vleck 1996). Nevertheless, Gibbs sampling
estimates of genetic parameters from multiple-trait individual-
tree models are still scarce (e.g., Cappa and Cantet 2007), and
estimates from multi-environment individual-tree models even
fewer (Gwaze and Woolliams 2001). Gwaze and Woolliams
(2001) fitted amulti-environment individual-tree model with an
unstructured additive (co)variance matrix between trials and an
independent error variance for each site, using Gibbs sampling
to make decisions about the optimal selection environment.
However, their approach does not considered spatial variability
within trials.

Our goal in this paper is to extend the methodology for
spatial analysis for a single forest genetic trial proposed by
Cappa and Cantet (2007) to a MET setting, using an
individual-tree model with additive and full-sib family genetic
effects in a two-stage approach. The Bayesian approach via
Gibbs sampling was employed to make inferences in all dis-
persion parameters of the model. Developments are illustrated
for tree height at age 10 for 34,143 progeny from 483 families
involving 149 parents for eight large second-generation full-sib
trials in two series of western hemlock (Tsuga heterophylla
(Raf.) Sarg.). Additionally, the resulting estimates of all dis-
persion parameters for the proposed multi-environment spatial
individual-tree mixed model are finally compared with
corresponding estimates from the classical model including a
priori “sets in replicates” or incomplete block alpha designs.

2 Materials and methods

2.1 Genetic material, mating design, and trial description

The western hemlock (T. heterophylla (Raf.) Sarg.) data set used
in this study originated from the full-sib second-generation
Hemlock Tree Improvement Cooperative (HEMTIC) program
in the Pacific Northwest. This second-generation populationwas
formed by recombining the best 150 first-generation parents,
i.e., by recombining the top 30 parents from each of the five
first-generation programs: two each from Oregon (OR) and
Washington (WA) and one from BC. Two different mating
designs were used: (1) “local diallels” (LD) series, composed

of five six-parent disconnected partial (half) diallels representing
each of the five programs mentioned above (two each from OR
and WA and one from BC), and (2) “elite diallels” (ED) series,
composed of the “best” 30 parents in partial diallels (i.e., the six
best from parents from each of the five programs as ranked in
the first generation tests). Each “best” parent was crossed with
two parents from each of the five programs. A detailed descrip-
tion of these first- and second-generation genetic materials used
in this study can be found in King and Cress (1991), King et al.
(1998), and Jayawickrama (2003).

Eight of the HEMTIC full-sib progeny trials, five from the
LD series and three from the ED series were chosen for the
two-stage spatial MET analysis (Table 1, Fig. 1). The five LD
series trials were planted in 1997 and 1998 and the three ED
series sites were planted in 1999. They are distributed along
the Pacific coast, fromWashington State to the northern end of
the Vancouver Island in BC (i.e., from 47° 12′ to 50° 34′ north
latitude, from 123° 56′ to 127° 41′west longitude and from 45
to 380 m of altitude; Fig. 1).

The number of common parents between pairs of sites
varied from 134 to 144 within the five LD series trials and
was 30 for the three ED series trials. The LD series has from
314 to 342 common families and the ED series from 137 to
140 (Table 2). However, the parents and families forming the
two series are only partially connected. Only 30 of the 149
parents in the ED series are also in the LD series, and the ED
series has only 15 common families (out of a total of 483) with
the LD series. A “sets in replicates” design (Schutz and
Cockerham 1966; “S in R”), with families within a local diallel
grouped together in a set (“genetic group”) and each replicate
including all sets, was used for the LD series. The families of
the ED series were planted in an incomplete block alpha design
(Williams and Matheson 1994; ICB) with 30 replications and
10 incomplete blocks within replications. Single-tree plots
were used in all the trials. The five LD series trials were planted
at 2×2, 2.5×2.5, and 3×2.5 m spacing and the three ED series
trials at 2.5×2.5 m spacing (Table 1). Two check lots occur on
almost all test sites; however, these data were not used for the
first and second stages of the spatialMETanalysis. Total height
at age 10 (TH, centimeter) for all surviving trees was measured
on all sites. The resulting data set consisted of 34,143 progeny
height observations from the eight trials (23,473 from LD
series and 10,670 from ED series).

2.2 Statistical models of analysis

2.2.1 The first-stage statistical model for spatial
single-environment analysis

In the first-stage of the spatial MET analysis, a two-
dimensional smoothed surface involving a tensor product
of cubic B-splines bases was estimated for each site of the
two series analyzed. In doing so, an individual-tree mixed

Spatial analysis of multi-environment large forest genetic trials 629
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model with a two-dimensional smoothed surface, as de-
scribed by Cappa and Cantet (2007) was fitted. The only
difference from their individual-tree additive genetic mixed
model was the addition of the random full-sib family genetic
effects (corresponding to specific combining ability; SCA).

Therefore, the individual-tree mixed model with a two-
dimensional surface for the original data fitted on each site
included: fixed effects of the diallel unit (i.e., genetic
groups; LD series), overall site mean (ED series), and ran-
dom effects of additive (breeding values) and full-sib family

Fig. 1 Location of the eight western hemlock full-sib progeny trials

Table 2 Number of parents
(above diagonal) and families
(below diagonal) in common
among the trials analyzed within
each series

Local diallels Jordan 2 Kiyu Jordan 3 Rupert 1 Humptulips

Jordan 2 134 136 136 136

Kiyu 314 134 134 134

Jordan 3 324 314 144 143

Rupert 1 324 314 342 143

Humptulips 324 314 339 339

Elite diallels Stove Tlupana Michelsen

Stove 30 30

Tuplana 137 30

Michelsen 140 137

Spatial analysis of multi-environment large forest genetic trials 631



effects (i.e., SCA). The two-dimensional surface (in matrix
notation, Bb) was fitted at each site using the tensor products
of cubic B-splines bases. The matrix B contains the nonzero
B-spline bases needed to express each row and column in
terms of cubic B-splines bases. The parametric vector b con-
tains the parameters of the tensor products of B-splines bases.
A more detailed explanation of the two-dimensional surface
(Bb) using the tensor products of B-splines bases, can be
found in Cappa and Cantet (2007, pp. 2678–2679). Three
models with different numbers of knots for rows and columns
were fitted for each site of the two series analyzed (Cappa et al.
(unpublished)). The best model for each site (i.e., the suitable
number of knots capturing most of the spatial variability) was
first used to estimate the two-dimensional smoothed surface,
and then to obtain the spatially adjusted data (as described in
the following section).

2.2.2 The second-stage statistical model
for spatial MET analysis

Given the small number of common parents and families,
the different field design for each series, and our overall
objective to compare the multi-environment model for the
spatially adjusted data on the a priori “S in R” and ICB
designs, the MET analyses (i.e., the spatial and nonspatial)
were undertaken within each series separately (i.e., for the
LD and ED series). Therefore, two multi-environment
individual-tree mixed models (i.e., spatial and nonspatial)
with additive and full-sib family genetic effects were eval-
uated within each series. In the second-stage of the spatial
MET analysis, the spatially adjusted data are obtained for
each tree at each site by subtracting the estimated smoothed

surface from the original data. Thus, the spatially adjusted
data of tree i at each j site yij, is calculated as

yij ¼ y�ij � Bbb� �
ij

ð1Þ

where, y�ij is the original data of tree i for site j and Bbb� �
ij
is

the estimate smoothed surface of of tree i for site j from
the first stage. Then, the full multi-environment model is
analyzed by considering the set of observations on each
environment a different trait and combining the analysis
over the five and three sites within of each LD and ED
series, respectively. Since diallel mating units are con-
founded with geographic origins of parents in the LD
series, genetic groups or diallel units are included in the
analyses to account for genetic differences among pro-
grams and genetic sampling effects among diallels. A
previous analysis found significant differences among ge-
netic group in the five trials of the LD series. Therefore, the
individual tree spatially adjusted data, were analyzed by fitting
the multi-environment individual-tree mixed models for the
LD and ED series with partial diallel units (or genetic groups)
within site, and overall site mean as fixed effects, respectively.
Let the subscript j index the sites (j01,…, s), i index the trees
(i01,…, qs) for each site, and l index the groups (l01,…, gs)
for site s. Let yijl be the spatially adjusted data of tree i from
site j scored in group l. The aijl and fijl are the additive breeding
value and the SCA of individual (or family) i for site j, scored
in group l. Then, we can write the following multi-
environment individual-tree mixed model with additive and
full-sib family genetic effects for spatially adjusted data (here-
after multi-environment spatial model) as:

y1
�
ys

24 35 ¼
X 1 : 0
: : :
0 : X s

24 35 β1
:
βs

24 35þ
Za1 : 0
: : :
0 : Zas

24 35 a1
:
as

24 35þ
Z f 1 : 0
: : :
0 : Z fs

24 35 f 1
:
f s

24 35þ
e1
:
es

24 35 ð2Þ

or, more compactly as

y ¼ Xβ þ Zaaþ Z f f þ e ð3Þ
The breeding values of all individuals for all sites are

included in a10 . . .j jas0� ¼ a. This vector has zero expectation
and a covariance matrix equal to G A � A , where GA is the
s×s additive genetic (co)variance matrix between the five
and three trials of the LD and ED series, with diagonal
elements σ2

Aj; j
: the additive variance of site j and off-

diagonal elements σA
j; j
0 : the additive genetic covariance

between sites j and j′. The square matrix A, of order q×q,
contains the additive relationships (Henderson 1984) among

all trees of all sites within each series, either parents without
data or offspring with records in y. The total number of trees
at all sites within each series, including parents without
phenotypic data, is q.

The full-sib family genetic effects for all sites within each
series are included in f 1

0 . . .j jf s0½ � ¼ f . This vector has zero
expectation and the diagonal f×f (co)variance matrix GF, where

GF ¼ �s
j¼1

Injσ
2
fj

and σ2
fj

are scalars representing the family

variance for each site j, with j01,…, s. The symbol �s
j¼1

indicate

the “direct sum” of matrices notation. Therefore, the family
genetic covariance between sites j and j′ are assumed to be

632 E.P. Cappa et al.



zero within both series, this allows a more parsimonious
model.

To obtain a matrix formulation of the distribution of e,
the error terms are ordered by tree within site. Then, the
expected value of e is zero and covariance matrix R,

where R ¼ �s
j¼1

Injσ
2
ej , and σ2

ej
are scalars representing the

error variance for each site j, with j01, …, s. Notice that
the family and residual covariances are assumed to be
zero, even though trees across sites are additive geneti-
cally related, i.e., additive genetic covariance between
any two sites within each series exists, but no family
and environmental covariance is assumed. Vectors a, f,
and e are assumed to be independent and normally
distributed.

For the nonspatial MET analysis, the multi-environment
individual-tree model with additive and full-sib family ge-

netic effects (3), were fitted using the original data y�ij
� �

instead of the spatially adjusted data yij
� �

of tree i at each j

site for each series. To account for the environmental vari-
ability, this multi-environment nonspatial model also includ-
ed from 18 to 20 replicate effects for the five LD series
trials, and 30 replicate effects for the ED series trials, as
fixed design effects.

2.3 Bayesian estimation

All dispersion parameters of the model (3) are estimated by
the Bayesian approach, Gibbs sampling (Sorensen and
Gianola 2002). We describe in detail the prior distribution
of all parameters, the likelihood of the data, and the joint and
conditional posterior densities for the multi-environment
individual-tree model of spatially adjusted data, as these
are necessary to make posterior inference by means of
Gibbs sampling.

2.3.1 Specification of prior distributions and likelihood
for combined sites

Following Cappa and Cantet (2006) for a multi-trait
individual-tree model, here we chose to use conjugate
prior densities. In a conjugate approach, the prior den-
sities for all parameters are selected to be closed under
sampling, which means that both prior and posterior
belong to the same family of distributions. In order to
reflect a prior state of uncertainty for the fixed effects
in a mixed linear model, while keeping the posterior
distribution proper, β is taken to be β~Np (0, K), where
p is the number of fixed effects. The matrix K is
diagonal with large elements (kii >108, Cantet et al.
2004), and the prior density of β (the fixed effects) is

then proportional to:

p β Kjð Þ /
Yp
i¼1

kii
�1

2 exp � 1

2

Xp
i¼1

β2i
kii

( )�����
����� ð4Þ

The vector of breeding values is distributed a priori as a~
Nq (0, GA ⊗ A); see (7) in Cappa and Cantet (2006), so that:

p a GA; Ajð Þ / GAj j�q
2 : Aj � s

2

�� exp � 1

2
a0 G�1

A � A�1
� �

a

� �
ð5Þ

A priori, the additive covariance matrix GA follows an
invertedWishart density asGA~IW (GA

*, nA) with parameters
GA

* and nA. In a Bayesian setting,GA
* is the hypercovariance

and nA the degrees of belief (Sorensen and Gianola 2002; page
57) so that:

p GA G�
A; nA

�� � / G�
A

nA
2 A � nAþsþ1ð Þ

2

���� exp � 1

2
tr G�

AG
�1
A

� �� �������������	
ð6Þ

The vector of full-sib family genetic effects is distributed
a priori as f~Nf (0, GF), so that:

p ff GFjð Þ / GF
� f

2 exp � 1

2
f

0
G�1

F f

� ��������� ð7Þ

A priori, the diagonal family covariance matrix GF (i.e.,
the σ2

fj
at each j sites), follows an scaled inverted x2 density

as Inv-x2 d2fj ; uf
� �

, with hypervariance d2fj and degrees of

belief uf , so that:

p σ2
fj
uf ;σ

2
fj

���� �
/ σ2

fj

� ��
uf
2 þ1ð Þ

exp �
uf d

2
fj

2σ2
fj

( )
ð8Þ

Finally, a priori, the residual variance at each site σ2
ej
has a

scaled inverted x2 density as Inv-x2 d2ej ; ue
� �

, with hyper-

variance d2ejand degrees of belief ue, so that:

p σ2
ej
ue;σ

2
ej

���� �
/ σ2

ej

� �� ue
2 þ1ð Þ

exp �
ued

2
ej

2σ2
ej

( )
ð9Þ

In the Bayesian view of the mixed linear model
(Sorensen and Gianola 2002), the likelihood of the data is
proportional to

p y β; a; f ;Rjð Þ / Rj j�1
2 : exp � 1

2
e
0
R�1e


 �
ð10Þ

where e ¼ y� Xβ � Zaa� Zf f .
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2.3.2 Joint and conditional posterior densities
for combined sites

The joint posterior density is written as the product of the
expressions (10) and (4–9) which then results in

p β; a; f ;GA;GF;R yjð Þ /
Rj j�1

2 exp � 1
2 e

0
R�1e

� 
exp � 1

2

Pp
i¼1

β�2i
kii

� �
exp � 1

2 a
0
G�1

A � A�1
� �

a
� �

GAj j� nAþsþqþ1ð Þ
2 exp � 1

2 tr G�
AG

�1
A

� �� �
exp � 1

2 f
0
G�1

F f
� �

σ2
fj

� ��
uf
2 þ1ð Þ

exp � uf d
2
fj

2σ2fj

� �
σ2
ej

� �� ue
2 þ1ð Þ

exp � ued
2
ej

2σ2ej

� � ð11Þ

To take advantage of all information in the data about any
parameter, inferences about β, a, f, GA, GF, and R are based
on their respective marginal posterior densities. A useful
property of these marginal distributions is their lack of
dependence upon any particular value of the other parame-
ters. Thus, each marginal density is obtained by integrating
out the joint distribution (11) with respect to the parameters
other than the one of interest. This is accomplished by using

the MCMC procedure known as Gibbs sampling, while
taking advantage that the marginal conditional densities
resulting from (10) are feasible for sampling. For a multitrait
model with additive effects, the conditional densities were
obtained as shown in Van Tassell and Van Vleck (1996),
Sorensen and Gianola (2002), and Cappa and Cantet (2006).

Thus, for the linear parameters in bβ, ba and bfof model (3) the
posterior conditional density is equal to

bβbabf
24 35 y; GA; GF;σ2

ej
;� Npþfþsq

���
bβbabf

24 35; X
0
R�1 X þ K�1 X

0
R�1Za X

0
R�1Z f

Z
0
aR

�1X Z
0
aR

�1Za þ G�1
A � A�1 Z

0
aR

�1Z f

Z
0
fR

�1X Z
0
fR

�1Za Z
0
fR

�1Z f þ G�1
F

264
375
�10B@
1CA

ð12Þ

The vectors bβ , ba and bf in (16) are the solutions to the
following system of equations

X
0
R�1 X þ K�1 X

0
R�1Za X

0
R�1Z f

Z
0
aR

�1X Z
0
aR

�1Za þ G�1
A � A�1 Z

0
aR

�1Z f

Z
0
fR

�1X Z
0
fR

�1Za Z
0
fR

�1Z f þ G�1
F

264
375 bβbabf
24 35 ¼

X
0
R�1y

Z
0
aR

�1y
Z

0
fR

�1y

24 35 ð13Þ

The posterior conditional density of the covariance ma-
trix GA is an inverted Wishart with scaling matrix GA

*+S
and degrees of belief equal to nA+q+s+1

p GA y; β; a; f ;σ2
f1
; :::;σ2

fs
;σ2

e1
; :::; σ2

es

���� �
/ GA

�ðnAþqþsþ1Þ
2 exp � 1

2
tr G�

A þ S
� �

G�1
A

� � ��������� ð14Þ
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being S equal to

S ¼

a
0
1A

�1a1 a
0
1A

�1
a2 : : a

0
1A

�1as
a

0
2A

�1a1 a
0
2A

�1a2 : : a
0
2A

�1as
: : a

0
iA

�1aj : :
: : : : :

a
0
sA

�1a1 a
0
sA

�1a2 : : a
0
sA

�1as

2666664

3777775 ð15Þ

The posterior conditional density of the family variance at
each j site, σ2

fj
, has a scaled inverted x2 distribution for each jth

site with parameters eufj ¼ fj þ uf and ed2fj ¼ f
0
j fj þ uf d

2
fj

� � eufj�
,

such that it is written a

p σ2
fj y; β; a; f ;GA; σ

2
e1 ; :::;σ

2
es

��� �
/ σ2

fj

� ��
ufþfjþ2

2 þ1

� �
exp �

eufjed2fj
2σ2

fj

( )
ð16Þ

Finally, the marginal posterior conditional density of the
error variances σ2

ej
has a scaled inverted x2 distribution with

parameters euej ¼ nj þ ue and ed2ej ¼ e
0
jej þ ued

2
ej

� � euej�
, such

that it is written as

p σ2
ej
y; β; a; f ;GA;σ

2
f1
; . . . ;σ2

fs

���� �
/ σ2

ej

� ��
ueþnjþ2

2 þ1

� �
exp �

euejed2ej
2σ2

ej

( )
ð17Þ

At any iteration of the Gibbs algorithm, we first sampled
from distribution (12), then from (17), (14), and finally from
(16), for the process to start back again. A programwas written
in FORTRAN to perform all calculations. The FORTRAN
program is available from the first author upon request.

2.3.3 Computational details, posterior inference, and model
comparison

The values of the hypervariances for the diagonal elements

of GA
*, d2fj , and d2ej were estimated from the same spatially

adjusted data set using an empirical Bayes approach via a
single trial Gibbs sampling with an individual-tree model
including fixed effects of genetic groups (for the LD series)
and an overall site mean (for the ED series) and random
additive and full-sib family genetic effects. Priors for the
additive covariances σA

j;j0
were obtained using the average

information algorithm implemented in the software package
ASReml (Gilmour et al. 2006) with a multi-environment
individual-tree model (3) from the same spatially adjusted
data. The degrees of belief were then set to 10 (i.e.,
nA0υf0υe010) to reflect a relatively high degree of uncer-
tainty (Sorensen and Gianola 2002; page 57).

At the end of each iteration of the Gibbs sampling eσA
j;j0
,eσ2

A j;j
, eσ2

fj
, and eσ2

ej
were reparametrized to additive genetic

correlations (rAjj′), dominance variance σ2
Dj

� �
, and individ-

ual narrow- and broad-sense heritability (hN
2 and hB

2 , re-
spectively) as follows:

rAjj0 ¼ eσAj;j0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffieσ2A j; j
eσ2A

j0 ; j0

q ; σ2
Dj ¼ 4	 eσ2

fj
;

h2Nj ¼
eσ2A j; jeσ2A j; j
þeσ2fjþeσ2ej ; h2Bj ¼

eσ2A j; j
þeσ2Djeσ2A j; j

þeσ2fjþeσej2
A single Gibbs chain of 202,000 (LD series) and 302,000

(ED series) iterations was sampled. These iterations took
approximately 6 (LD series) and 13 (ED series) days, respec-
tively, to deliver its entire inferential output, on a single
2.20 GHz Intel(R) Core(TM)2 DUO processor with 3.0
Gbytes of random access memory, using a 32-bits Microsoft
Window XP. The first 2,000 iterates were discarded due to
burn-in. Convergence was monitored by plotting the iterations
against the mean of the draws up to each iteration (running
mean plots) for each parameter. Means, modes, medians,
standard deviations, and 95% high posterior density intervals,
were then calculated for all parameters from the individual
marginal posteriors using the R package “Bayesian Output
Analysis” (BOA version 1.0.1; Smith 2003).

The estimates of all dispersion parameters were used to
compare the fit of the multi-environment spatial and non-
spatial models within each series. Further model comparison
were provided by the accuracy of prediction of breeding
values (i.e., the correlation between the true and predicted
breeding values) for each parent, offspring, and family,
which were computed using the following expression
(Mrode 2006; page 90):

rij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffieσ2
A j;j

� PEVij

� �
eσ2

A j;j

vuuut
The acronym PEVij stands for “prediction error variance”

(Henderson 1984) of predicted breeding values to tree i and
site j using the “best linear unbiased predictors” of parents,
offspring, and families. The PEV is calculated as the diagonal
elements of the inverse of the coefficient matrix from the
mixed model equations (Henderson 1984) in (13). To make
the accuracies comparable across the multi-environment spa-
tial and nonspatial models, the required variance components
to set up the mixed model equations were those estimated
from the multi-environment spatial model. Spearman correla-
tions were also calculated to compare whether the ranking of
predicted breeding values differed among models.
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3 Results

The proposed multi-environment individual-tree mixed
model for spatially adjusted data produced a reduction of
the posterior means of the estimates error variances σ2

e

� �
from 7.8% to 38.3% in the LD series and from 3.9% to
14.6% in the ED series (Table 3). The reduction in the σ2

e of
the multi-environment spatial model compared to multi-
environment nonspatial model was on average 20.7% for
the “S in R” (LD series), but only 8.9% for the ICB (ED
series) designs. This suggests that the a priori ICB design
(ED series) was more effective in removing the spatial
variability than the a priori “S in R” design (LD series).

The changes in the absolute value of posterior means of
the additive variance σ2

A

� �
across the five LD series trials

showed small but generally inconsistent changes between
the multi-environment nonspatial and spatial models, with
σ2
A both decreasing and increasing in value from −3.9% to

5.0%. However, in the three trials of the ED series, the
estimated posterior means of σ2

A from the multi-
environment spatial model were greater than the observed
multi-environment nonspatial model estimates (from 15.8%
to 24.1%). A different tendency was observed for the esti-
mate of dominance variances σ2

D

� �
, where some higher

values were obtained from the multi-environment spatial

model in the three LD series trials with nonzero estimates.
Similar posterior means of σ2

D were estimated for the ED
series trials between both models (Table 3). The estimates
hN
2 and hB

2 showed inconsistent changes between the series,
increasing (to a maximum of 66.7% in the LD series) or
decreasing (less than 11.1% in the ED series) from the
multi-environment nonspatial to spatial models (Table 3).

The posterior means of additive genetic correlations
(rAjj′) showed nonsignificant and inconsistent changes
between the multi-environment spatial and nonspatial
models across sites within each series, with rAjj′ both
decreasing (by −0.06 to −0.17 correlation units in the
LD series) and increasing (by 0.01 to 0.02 correlation
units in the LD series and be 0.01 to 0.04 correlation
units in the ED series; Table 4).

The average accuracy of predicted breeding values showed
no or very small differences (i.e., usually in the third decimal
place), but largely in favor of the proposed spatial MET
analysis, in both series (not shown). The Spearman correlation
between predicted breeding values from the two multi-
environment models compared was high for both the LD
and ED series and equal to 0.95 and 0.99 for parents, 0.99
and 0.99 for offspring, and 0.93 and 0.97 for families, respec-
tively; therefore, a small amount of rank change took place for
either parents or families between models.

Table 3 Posterior means (95% high posterior density interval) for the
additive genetic variance σ2

A

� �
, dominance genetic variance σ2

D

� �
,

individual narrow-sense heritability (hN
2 ), individual broad-sense

heritability (hB
2 ), and error variance σ2

e

� �
of total height from the

multi-environment nonspatial (NonSP) and spatial (SP) model

Site MET modela σ2
A σ2

D hN
2 hB

2 σ2
e

Local diallel

Jordan 2 NonSP 8.3 (5.2–10.8) 5.7 (3.1–9.3) 0.04 (0.02–0.05) 0.07 (0.05–0.09) 203.0 (196.2–210)

SP 8.1 (4.4–11.2) 7.4 (3.9–12.4) 0.05 (0.03–0.07) 0.10 (0.07–0.13) 149.9 (144.6–155.4)

Kiyu NonSP 6.5 (3.8–9.1) 5.5 (2.9–9.2) 0.03 (0.02–0.04) 0.06 (0.04–0.08) 209.6 (201.4–218)

SP 6.5 (3.6–8.8) 7.0 (3.5–11.9) 0.05 (0.03–0.06) 0.10 (0.07–0.14) 129.3 (124.1–134.6)

Jordan 3 NonSP 9.0 (5.4–11.8) 5.4 (2.8–9.4) 0.05 (0.03–0.06) 0.07 (0.05–0.10) 190.1 (183.1–197.4)

SP 9.8 (6.3–12.1) 6.0 (3–10.3) 0.06 (0.04–0.08) 0.10 (0.07–0.13) 148.4 (142.8–154.1)

Rupert 1 NonSP 17.5 (11–24) 0.0 (0.0–0.0) 0.06 (0.04–0.08) 0.06 (0.04–0.08) 269.1 (258.7–279.7)

SP 18.2 (12.7–24.4) 0.0 (0.0–0.0) 0.07 (0.05–0.09) 0.07 (0.05–0.09) 243.1 (233.6–252.7)

Humptulips NonSP 12.2 (7.9–18) 0.0 (0.0–0.0) 0.06 (0.04–0.09) 0.06 (0.04–0.09) 182.7 (176.2–189.3)

SP 11.6 (8.6–14.3) 0.0 (0.0–0.0) 0.06 (0.05–0.08) 0.06 (0.05–0.08) 168.4 (162.8–174.2)

Elite diallel

Stove NonSP 21.9 (13.1–35.6) 10.0 (5.5–0) 0.11 (0.07–0.18) 0.17 (0.12–0.24) 166.3 (157–175)

SP 18.5 (12.5–26.7) 9.9 (5.6–0) 0.11 (0.08–0.16) 0.17 (0.13–0.23) 142.1 (135.2–149)

Tuplana NonSP 19.0 (11.5–30.6) 0.9 (0.4–0) 0.09 (0.05–0.13) 0.09 (0.06–0.14) 204.6 (194.8–214.5)

SP 14.5 (9.8–20.2) 0.9 (0.4–0) 0.07 (0.05–0.10) 0.08 (0.05–0.10) 187.5 (179.4–195.7)

Michelsen NonSP 10.1 (5.8–16.2) 7.6 (4–0) 0.06 (0.04–0.09) 0.10 (0.07–0.15) 158.4 (151.5–165.4)

SP 7.6 (4.9–10.7) 7.4 (3.9–0) 0.05 (0.03–0.07) 0.09 (0.07–0.13) 152.3 (146.1–158.7)

Note that additive genetic, dominance genetic and error variances were divided by 100 for optimal display
aMET model NonSP: multi-environment nonspatial model with replicates and incomplete block effects, MET model SP: multi-environment spatial
model
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4 Discussion

This paper presents an extension of the method of Cappa and
Cantet (2007) to account for the spatial variation in multi-
environment large forest genetic trials using a multi-
environment individual-tree model with additive and full-sib
family genetic effects in a two-stage spatialMETanalysis. Our
approach differs from previous works (Ye and Jayawickrama
2008; de la Mata and Zas 2010), in that we analyzed the
spatially adjusted data by fitting a multi-environment
individual-tree mixed model with an unstructured additive
genetic (co)variance matrix between trials, allowing both,
different additive genetic variances for each trial and cova-
riances (and correlations) for all different pairs of trials.
Additionally, the proposed multi-environment spatial
individual-tree model also accounted for the family (i.e.,
SCA) variance for each trial. Ye and Jayawickrama (2008)
fitted one- and two-stage family and individual-tree mixed
model with a common additive variance and covariance
across trials. However, the assumption of a constant genetic
variance and covariance across trial for the genetic (co)vari-
ance matrix may lead to inaccurate biased predictions of
genetic values, and thus may affect selection decision and
estimates of genetic gain (Costa e Silva et al. 2005). Using a
two-stage approach, de la Mata and Zas (2010) analyzed
spatially adjusted data using a family mixed model with
different constraints to the genetic (co)variance matrix across
trial, from a simple diagonal matrix with the same genetic
variance for all the trials to an unstructured family (co)vari-
ance structure. The multi-environment spatial family model
reduces computational requirements by a reduction in the size
of the system of equations to be solved, compared with the
multi-environment spatial individual-tree model; however,
only half-sib parents are being evaluated.

In the analyses here reported, additive genetic correlation
across trials within each series, and additive, family, and error
variances, and functions of these estimates for each trial, were
successfully estimated for eight large second-generation trials

of western hemlock using a Bayesian procedure coupled with
a Markov chain Monte Carlo technique (Gibbs sampling). An
alternative approach for estimating dispersion parameters is
the use of restricted maximum likelihood procedures (REML;
Patterson and Thompson 1971). However, when the number
of trees per site and the number of sites is large, the estimation
of parameters for a large unstructured additive genetic (co)
variance matrix while accounting for the spatial variability
within trial using the average information-REML algorithm,
becomes computationally difficult (i.e., failing to converge;
Ye and Jayawickrama 2008; Ding et al. 2008). Ye and
Jayawickrama (2008) highlighted the difficulties in conver-
gence when fitting an individual-tree mixed model in one-
stage assuming variance homogeneity across trials, an inde-
pendent error variance between sites and a separable two-
dimensional AR(1) error covariance structures for rows and
columns within trials, using average information-REML.
Ding et al. (2008) also fitted an individual-tree model with
additive and family genetic effects using the average informa-
tion algorithm with unstructured genetic covariances between
trials, an independent error variance between sites, and a
separable two-dimensional AR(1) error covariance structure
within trial from data on 12,460 individuals originating from
169 to 216 full-sib families of Pinus radiata D. Don at five
sites. They also found trouble with convergence when fitting
the spatial model in a one-stage process. Using the average
information-REML algorithm, Hardner et al. (2010) proposed
reducing the number of parameters needed to describe the
family (co)variance matrix across trials by using a factor-
analytic parameterisation in a one-stage spatial analysis.
Their factor analysis was successfully applied to the estima-
tion of genetic parameters of diameter at breast height for a
total of 841 genotypes of eucalypt hybrid families assessed
across 21 trials. However, Smith et al. (2001) noted difficulties
with convergence of these factor-analytic models using the
average information algorithm. Misztal (2008) suggested that
for complexmodels (i.e., numerous traits andmultiple random
effects) and poor starting values (i.e., initial estimates of (co)

Table 4 Posterior means (95% high posterior density interval) of the additive genetic correlations (rAjj′) between sites within each series for the
multi-environment spatial (above diagonal) and nonspatial (below diagonal) models

Local diallels Jordan 2 Kiyu Jordan 3 Rupert 1 Humptulips

Jordan 2 0.87 (0.74–0.93) 0.73 (0.59–0.86) 0.64 (0.34–0.81) 0.88 (0.83–0.94)

Kiyu 0.87 (0.77–0.92) 0.77 (0.66–0.86) 0.80 (0.67–0.90) 0.73 (0.62–0.82)

Jordan 3 0.67 (0.53–0.83) 0.60 (0.49–0.74) 0.61 (0.43–0.76) 0.89 (0.82–0.94)

Rupert 1 0.66 (0.41–0.81) 0.81 (0.71–0.91) 0.49 (0.28–0.65) 0.61 (0.39–0.75)

Humptulips 0.82 (0.71–0.90) 0.58 (0.47–0.69) 0.90 (0.85–0.96) 0.50 (0.27–0.67)

Elite diallels Stove Tlupana Michelsen

Stove 0.89 (0.80–0.94) 0.79 (0.63–0.89)

Tuplana 0.91 (0.83–0.96) 0.97 (0.95–0.99)

Michelsen 0.83 (0.70–0.92) 0.98 (0.96–0.99)
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variance components), the average information algorithm can
“overshoot”, resulting in either very slow convergence or
parameter estimates that lie out of the parameter space. In
spite of Bayesian approaches having better properties for
parameter estimation in many situations, it is still difficult to
compare frequentist and Bayesian estimators, due to the fact
that central issues related to the comparison of frequentist
estimators (such as repeated sampling or bias) do not have
the samemeaning in the Bayesian school (Gelman et al. 1995,
page 108).

Our results showed that the fit of a multi-environment
spatial model to eight large second-generation full-sib prog-
eny trials of T. heterophylla (Raf.) Sarg. with a priori “S in
R” and ICB designs, displayed a consistent reduction in the
estimated posterior mean of σ2

e within each trial (average
reduction of 16.0%) relative to a conventional multi-
environment nonspatial model. As expected, these reduc-
tions in σ2

e confirm that there are spatial variations that are
not adequately accounted for the a priori design effects. The
reduction of the estimates σ2

e agree with results of Ye and
Jayawickrama (2008) who showed an average reduction of
32.5% across the five Douglas fir MET tests, and Ding et al.
(2008) across five radiata pine trials, with an average reduc-
tion of 1.3%. Moreover, in our data, the multi-environment
spatial model produced an increase in the precision (i.e.,
narrower values for the 95% high posterior density interval,
with an average increase of 18.8%) for the estimation of σ2

e.
The estimated posterior means of σ2

A within each trial,
showed no consistent patterns (i.e., both decreasing and
increasing) when compared between the multi-environment
spatial model and the conventional MET analysis. Similar
results have been found by Ye and Jayawickrama (2008) and
Ding et al. (2008) who reported a variation from −10.1% to
34.3% and from −58.8% to 14.8%, respectively, using a one-
stage spatial analysis. The multi-environment spatial model
increased the average estimates of the posterior means of hN

2

and hB
2 (on average, across all sites of both series by 11.2%

and 18.5%, respectively), though these estimates showed
inconsistent changes between series. The higher individual-
tree heritabilities estimated for the proposed spatial MET
analysis in each of the five trials of the LD series, are likely
associated with the higher reduction in the estimation of σ2

e

obtained for the LD (20.7%), relative to the ED (8.9%) series.
Consistent increases (from 3.7% to 65.4%) for individual-tree
heritabilities were also found byYe and Jayawickrama (2008).
Interestingly, our results indicated that the average accuracy of
predicted breeding values showed indistinguishable differen-
ces, and little re-ranking took place for parents, offspring, and
families in both series. This differs from the results reported by
Ye and Jayawickrama (2008) where the spatial analysis of
MET data provided more accurate breeding values (ranged
from 1% to 20% for parent and from 1% to 25% for offspring)
than the classical nonspatial model.

The effect of the spatial analysis on the genotype by
environment interaction from data of multi-environment
forest genetic trials has not been extensively studied. The
analysis of the western hemlock data revealed that the multi-
environment spatial individual-tree model, showed no con-
sistent changes on the rAjj′ between pairs of sites within both
LD and ED series. These results agree with those obtained
by Ding et al. (2008) who reported an inconsistent effect on
estimate genetic correlations (changes ranged from −15.4%
to 20.0%) using a one-step spatial approach, and Ye and
Jayawickrama (2008) who showed a decrease from 4.3% to
14.0% in the genotype by environment interaction from the
conventional (nonspatial) multi-environment to the multi-
environment spatial model.

Although applying a one-stage spatial MET analysis to
compare the results with those obtained from the proposed
procedure (i.e., two-stage spatial MET analysis) was not
computationally possible, Ye and Jayawickrama (2008)
compared the effect of one- vs. two-stage spatial MET.
They found that both methodologies had similar effects on
the derived parameters such as heritability, accuracy of
breeding values, rank correlations of breeding values
(≥0.99) and predicted genetic gains (a difference<0.2%),
and concluded that the two-stage analysis is a suitable
method for fitting large regular spatial MET data. However,
they reported that the family×trial interactions in the two-
stage spatial analysis were slightly higher than those from
the one-stage spatial analysis. Cullis et al. (1998) compared
one- vs. two-stage spatial analysis in barley variety field trials.
In this case, the two-stage approach implies that the genotype
effects were conditionally fixed for each experiment during
the first stage to obtain the variety means. However, using data
from all sites, in the second stage of the analysis genotype
effects were considered random in the mixed model used.
They reported similar results from the one- versus two stage-
spatial analyses, with the exception of the genotype×environ-
ment variance for the two-stage being slightly higher than for
the one-stage analysis.

As a final comment, regardless of being able to complete
the two-stage spatial MET analysis with an unstructured
additive genetic (co)variance matrix between trials and an
SCA variance by trial, computations were still demanding.
However, as computing capabilities of desktop computers
increases, analyses such as the one presented here, with very
large forest genetics trial data will become more common.

5 Summary and conclusions

Given the necessity of accounting for both genetic correla-
tions between trials and spatial variability within trials, we
presented an extension of the single-environment spatial
model of Cappa and Cantet (2007). We developed a two-
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stage spatial MET approach for the analysis of large forest
genetic trials, using a multi-environment individual-tree
model with additive and full-sib family genetic effects.
Previous attempts at a spatial MET analysis with a two-
stage approach have been limited by simpler models (i.e.,
without accounting for the additive relationship among
trees) or restrictive genetic (co)variance structures across
environment. The procedure of fitting a more complex mod-
el for multi-environment large forest trials was empirically
illustrated using the height data at age 10, from eight large
second-generation trials of western hemlock formed by
recombining the top 150 first-generation parents. Although
computationally demanding, the (co)variance parameters
(and functions of them) were successfully estimated from
the proposed multi-environment spatial individual-tree mod-
el using a Bayesian method by means of the Gibbs sam-
pling. The proposed two-stage spatial MET approach
produced better results than the commonly used non-
spatial MET analysis. The multi-environment individual-
tree model of spatially adjusted data displayed a consistent
and important reduction of the posterior mean as well as an
increase in the precision of σ2

e , and an average increase in
the posterior means of hN

2 and hB
2 .
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