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Abstract
& Introduction Fagacées is a growth model that has been
developed for pure Oak or Beech stand management in even-
aged high forests and coppice with standards forests. It has
been calibrated for the plain forests of northern France.
& Objectives This paper presents all the characteristics of
this model: general structure, equations, and parameters. It
can be classified as a distance-independent tree-centered
model. Its main originality is that tree growth is organised
according to a top–down organisation.
& Result At first, the growth is computed at the stand level.
Then it is allocated between the individual trees. The paper
presents and discusses successively these two parts. In
addition, the model delivers the stem profile of each tree:
rings and compartments within the stem. Some other
additional modelling that have been defined for batch mode
purposes are also briefly presented.

Keywords Growth and yield model . Stand growth .

Tree-centered . Sessile oak . Common beech

1 Introduction

Many forest dynamics models have been developed in the
last decades. They generally present various kinds of
organisation and structure that allow some classifications
(see Porté and Bartelink 2002 for a review of forest model
classifications). The particular organisation and structure of
a given model depend on the purpose for which it has been
developed.

Among these models, the Fagacées growth and yield
model can be classified as a distance-independent tree-
centered model. It has been mainly developed during the
1990s, first for the management of pure Beech stands
(Dhôte 1991), then expanded to pure Oak stands (Dhôte
1999). Its development has been motivated by the lack of
growth and yield model adapted for managing these species
in France. Indeed, despite the fact that Sessile Oak
(Quercus petraea Liebl.) and Beech (Fagus sylvatica L.)
are respectively the first and third forest species in France
(they represent respectively 12.3% and 9.3% of the
productive forest area; Inventaire Forestier National 2007),
no growth and yield model were developed for these
species in France before. The main reference for Oak was a
yield table published in 1962 (Pardé 1962) and for Beech a
yield table published in 1973 (Décourt 1973). These tables
have then been republished in 1984 (ENGREF et al. 1984).
They contain reference trajectories for Oak and Beech
silviculture and can be considered as ancestors of growth
models for these species in France. The Fagacées growth
model has been developed to provide the foresters a more
flexible tool than growth and yield tables to manage even-

Handling Editor: Daniel Auclair

G. Le Moguédec : J.-F. Dhôte
INRA, UMR 1092, Laboratoire d’Etude
des Ressources Forêt-Bois (LERFoB),
Centre INRA de Nancy,
54280 Champenoux, France

J.-F. Dhôte
e-mail: jean-francois.dhote@onf.fr

G. Le Moguédec (*)
INRA, UMR AMAP,
Boulevard de la Lironde, TA A-51/PS2,
34398 Montpellier cedex 5, France
e-mail: gilles.moguedec@cirad.fr

Present Address:
J.-F. Dhôte
ONF, Direction Technique et Commerciale Bois,
Boulevard de Constance,
77300 Fontainebleau, France

Annals of Forest Science (2012) 69:257–269
DOI 10.1007/s13595-011-0157-0



aged high forest stands and coppice with standards stands,
the forest structures that are the most common in France for
Oak and Beech.

The main originality of the Fagacées model lies in its
top–down organisation (Fig. 1): once the global growth of
the stand has been computed, it is allocated among the trees
within the stand. The model thus presents at the same time
some properties of stand models and some properties of
individual models.

Unlike other classical tree-centered forest growth models
used for European common species like SILVA (Pretzsch et
al. 2002) or BWINPRO (Shröder et al. 2007), Fagacées is
not a spatialised model. As for other distance-independent
growth models like PROGNAUS (Monserud and Sterba
1996), competition between individuals is not explicitly
computed but is assessed through global relations such as
absolute or relative position within a histogram.

Although most parts of this model have already been
published (generally in French, sometimes only in poorly
accessible documents), it has never been fully presented.
We present here the general structure of this model, the
whole set of equations of the growth part and the
corresponding parameters. We present also some additional
procedures used to obtain a full simulator so that the growth
simulator can be entirely rebuilt from the information
presented in this paper.

Since Fagacées is a tree-centered model, individual trees
are described by individual characteristics such as age,
diameter at breast height (d130) and height (h). This
information can be further presented as a whole stem profile
that will be used to compute volumes and wood qualities.

This paper contains many notations and formulae. In
order to help the reader, Table 1 presents the main
notations used.

2 Equations of the growth model

2.1 Origin of the data

Various samples have been used to establish or calibrate the
equations presented in this paper.

The main data used were obtained from permanent
stands that were established in plain forest of the
northern part of France covering a climatic gradient
from oceanic (Normandy region) to semi-continental
(Alsace region). All of them were established between
1883 and 1935 and most of them were issued from
natural regeneration. They are currently maintained by
the French National Institute for Agronomical Research
(INRA). They were established in order to study the
influence of thinning intensity and frequency on wood
production. Several plots were kept as control plots,
with no silvicultural treatment. This point will be crucial
for the adjustment of a self-thinning relation. Details on
the permanent stands can be found in papers published
by Pardé (1962), Oswald (1981) and Dhôte (1999).

For Oak, 11 sites contain 32 plots (several plots per site)
between 0.2 and 1 ha and 339 forest inventories. The age
classes vary from 27 to 277 years, but main data concern
plots between 40 and 160 years old. The chosen sites
mainly correspond to areas devoted to high-quality oak

Fig. 1 General structure of the
“Fagacées” growth model
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timber production and at least average site fertility index
(top height at 100 years between 21 and 29 m).

For Beech, the main data represents five sites and 33
plots, with areas from 0.2 to 1 ha. Age classes vary from 35
to 130 years. As for Oak, the plots were chosen mainly
within good fertility conditions (Dhôte 1997).

The top height curve for Oak was established from a
sampling of 50 pure Oak plots (0.06 ha each) from five
regions of the northern part of France. These plots were
chosen so that they cover a large range of site fertility
index. In each plot, the first, third and fifth largest dominant
trees were sampled for a detailed stem analysis. This
sampling was conducted at the French Forest Service
(ONF) by Duplat and Tran-Ha (1997).

Relations for individual trees are issued partly from 82
mature sessile Oak trees measured in detail in five areas
from Northern France sampled during a convention
between INRA and ONF (Nepveu and Dhôte 1998) and
partly from a sample of 3,000 individual conventional data
collected in the permanent plots already mentioned (Dhôte
et al. 2000).

Self-thinning curves, that are used to compute the
Relative Density Index, have also been adjusted on data
issued from the latter permanent plots (Dhôte 1997). Except
for the self-thinning curves (see below), all the relations

presented in this paper have been fitted using least squares
methods.

2.2 The Relative Density Index

The notion of Relative Density Index (RDI) is based on
Reineke’s observations (Reineke 1933) in very dense
monospecific stands for several species from North
America. Reineke defined a self-thinning line which
represents the maximum number of stems a forest stand
at a given diameter could support before self-thinning
occurs. He defined a Stand Density Index to convert the
number of trees in a stand to the number of trees the same
stand would have for the same density with an average
diameter of 10 in. (25 cm).

However, the values of this index can vary within a very
large interval and the values obtained for different species
or regions cannot be directly compared. The RDI has then
been defined in order to be scaled within the [0, 1] interval.
It is computed as the ratio of the actual number of stems in
a stand and the theoretical number of stems this stand could
support with the same DBH (Fig. 2):

RDI ¼ N

Nmax
ð1Þ

where, N is the current number of trees and Nmax the
theoretical maximum number of trees obtained from the
self-thinning equation.

For both sessile Oak and Beech, the self-thinning line is
given by:

ln Nmaxð Þ ¼ a� b � ln p � Dg

� � ð2Þ
where, Dg is the average quadratic diameter expressed in
centimetres. However, this self-thinning relation is not

Table 1 Main notations used in the paper

Symbol Signification Unit

N Number of trees per hectare in
the stand

Number/ha

A Age of the stand (≃age of the trees
within the stand)

Years

RDI Relative Density Index –

H0 Top height of the stand m

H Average height of the stand m

H100 Site Fertility Index
(top height at age 100)

m

h Individual height of a tree m

D130 or DBH Diameter at 130 cm (breast height) cm

Dg Average quadratic diameter of the stand cm

d130 Individual diameter at 130 cm cm

d(z) Individual diameter at height z cm

G Basal area of the stand m²/ha

g Basal area of the tree cm²

σ Threshold circumference for
individual growth

cm

γ Maximum efficiency of growth cm/year

μ1 to μ7 Parameters of the individual
diameter profile

cr Crown ratio of a tree –

rh Crown radius of a tree m

φ Parameter to control batch thinning –

Fig. 2 Construction of the Relative Density Index (RDI) and
introduction of self-thinning in the Fagacées model
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always a straight line. In particular, the slope parameter b
can increase as the forest grows (Zeide 2005). Nevertheless,
this formulation is considered as a good approximation
among a wide range of ages and fertility conditions.

Since the theoretical maximum value of the RDI is
1, Eq. 2 can be used in Eq. 1 to obtain a new computation
of RDI:

RDI ¼ N � p � Dg

� �b
expðaÞ ð3Þ

The values of parameters a and b used in Fagacées are
given in Table 2. They have been obtained by visually
adjusting a straight line on the upper limit of the points
[ln(Dg); ln(N)] from the data of the permanent plots
(Dhôte 1997).

Two main criticisms of this approach can be formulated.
First, the chosen adjustment method is known to be highly
dependent on the data quality. In particular, it is necessary
that part of the stands used to adjust the relation is close
from the self-thinning situation. Since there are some stands
with no sivicultural treatment for decades in the data used,
we consider that this condition is verified. Other methods
exist to fit self-thinning relations such as the stochastic
frontier analysis but they need additional assumptions to be
properly applied (Zhang et al. 2005). Second, the param-
eters do not change according to the site fertility index. The
fact that these parameters should change according to
species or according to site fertility index is discussed
(Jack and Long 1996; Bi et al. 2000; Morris 2003). In our
case, if two different parameter estimations have been
conducted for Oak and Beech, no significant relation with
the site fertility index H100 has been highlighted. However,
it should be remarked that the values of the b parameter
found here differ from those found by Pretzsch (2006) for
the same species in central and southern Germany. It is
higher (in absolute value) for Oak: the value used for the b
parameter is 1.701 whereas it ranges from 1.222 to 1.628
according to site in Pretzsch et al. For Beech, the value used
in Fagacées is lower: 1.574 against 1.723–1.873 in Pretzsch
et al.

2.3 Stand initialisation

Natural regeneration is simulated to generate an initial
stand. The word “recruitment” would actually be more
appropriate than “regeneration” since the trees appear in

the model only once they have reached a given state
(circumference at 130 cm greater or equal than 1 cm).
Several studies (Sano 1997; Fortin et al. 2006) showed
that tree diameters are generally distributed according to
an inverse j-shaped distribution. Among such distribu-
tions, the power distribution, the Weibull distribution and
the exponential distribution are the simplest and are
commonly used (Nord-Larsen and Johannsen 2007).
Here, the initial individual diameters are randomly
generated from an exponential distribution, which has
been chosen for simplicity. Its unique parameter is chosen
so that the average quadratic diameter of the stems equals
a given value Dg:

If the random variable D follows an exponential
distribution with expected value equal to θ, then:

E D2
� � ¼ 2 � q2 ð4Þ
The parameter θ is chosen so that

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E D2ð Þp ¼ Dg hence:

q ¼ Dgffiffiffi
2

p ð5Þ

Simulations begin only when the growth model becomes
valid, around 15 years old. Since the model is used to
compare silvicultural scenarios, the same starting point is
chosen for all of them. This starting point is defined by the
initial RDI, RDI0, from which the initial number of stems
N0 to be generated is obtained according to Eq. 2:

ln N0ð Þ ¼ ln RDI0ð Þ þ a� b � ln p � Dg0

� � ð6Þ
Since a “do-nothing” scenario (corresponding to

unmanaged forest from regeneration) belongs to the set
of scenarios to be studied, the value of RDI0 has been
fixed to 1.

Data analysis from forest inventories in several areas of
the northern half of France showed the following fact.
When the trees are about 15 years old, an oak stand in
natural regeneration conditions has an average quadratic
diameter Dg approximately equal to 1 cm, regardless of the
stand fertility index. So the reference Dg0=1 cm at age A0=
15 years is taken as a starting point for the for regeneration
simulations. The individual heights h are then obtained
from the individual diameters and the stand top height
using the allometric Eq. 24 that will be presented later in
this paper.

2.4 The stand level of the growth model

2.4.1 Top height curves

For Sessile oak, the top height depends only on stand age
and on stand fertility index. The curve equation (Eq. 7 and
Fig. 3), based on data from even-aged high forests available

Parameter Sessile
oak

Beech

a 14.000 13.688

b 1.701 1.574

Table 2 Parameters used for the
computation of RDI
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at the ONF, has been established by Duplat and Tran-Ha
(1997). It is written as:

H0 ¼ f A;H100ð Þ
¼ m1 þ m2 � Aþ m3 � H100 þ m4ð Þ 1� exp �m5 � Am6ð Þ½ �m7

þ m8 þ m9 � H100ð Þ � A
ð7Þ

where,

& H0 is the top height of the stand (metres);
& A is its age (years);
& H100 is the fertility index (metres).

Since the model has been designed for even-aged stands, the
age of the stand is also the age of its trees. The site fertility index
H100 is defined by the top height of the stand at 100 years.
The values of the parameters m1 to m9 are given in Table 3.

This curve presents an oblique asymptote. Usually,
growth equations present a horizontal asymptote. But even
the oldest stands (around 220 years old) used to establish
Eq. 7 were still growing. Since no high standard forest
older than 250 years was available in the data, this curve is
generally considered as acceptable until 250 years and may
be extrapolated until 300 years, not after, due to the oblique
asymptote.

This equation is mainly used in the model to compute
the dynamics of stand height between two successive steps
of simulation. The stand height is generally supposed to be
independent from the silviculture for many timber species.
However, this is not completely true. Hence in several
forest models, for example the one from Nord-Larsen and
Johannsen (2007), the height is estimated as an increasing
function of the stand density. In the Oak version of the
Fagacées model, the increment of stand height ΔH0

between the ages At and At+1 is computed as:

ΔH0 ¼
H0 Atþ1ð Þ � H0 Atð Þ if RDI � 0:5

2 � RDI � H0 Atþ1ð Þ � H0 Atð Þ½ � if RDI < 0:5 if RDI � 0:5

(

ð8Þ
The growth reduction factor due to low density can appear

strong. It has been built so that the growth tends to 0 for very
low density and to lead to continuous growth around RDI=
0.5. This reduction factor has been introduced mainly to give
the model a behaviour for low density consistent with the
theory. But, due to the lack of available data for very low stand
densities, it has not been validated in this area.

For Beech, the current version of top height equation has
been fitted by Bontemps (2006) on the Lundqvist–Matérn
equation:

H0ðAÞ ¼ K � exp � ln
K

HA0

� ��m

þ R � m � Cm

K
A� A0ð Þ

� �� 1
m

0
@

1
A

ð9Þ
which is a classical sigmoid growth curve with horizontal
asymptote. In this parameterisation, A is the current stand
age, A0 a reference age, HA0 the top height at the reference
age, K the value of the horizontal asymptote and m a shape
parameter. The quantity Cm is a function of m adjusted to
give to the parameter R the meaning of the growth speed at
the inflexion point (taken as fertility indicator). For the
Lundqvist–Matérn equation it can be written as:

Cm ¼ exp 1þ mð Þ 1� ln 1þ mð Þ½ �f g ð10Þ
However, contrary to the Oak case, it has not been

possible to give to Eq. 9 a single set of parameters for the
whole northern part of France (Table 4).

Fig. 3 Top height curve for Sessile oak (after Duplat and Tran-Ha 1997)

Table 3 Parameters of Duplat and Tran-Ha’s curve for Sessile oak top
height

m1=0.30 m m4=−7.10703 m m7=0.71192

m2=−0.039339 m/year m5=0.0024168 m8=0.10445 m

m3=0.78595 m6=1.56660 m9=0.0023513 year−1

Table 4 Parameters of Bontemps’ curve for Beech top height

Parameter Unit Northwestern France Northeastern France

A0 Year 5 5

HA0 m 1.3 1.3

K m 44 67.3

R m/year 0.4 0.4

m – 0.517 1.218

The growth and yield model Fagacées: equations and batch scenario 261



2.4.2 Basal area increment

The basal area increment between two steps of simulation is
given by a potential-reductor equation:

ΔG ¼ f1 H0;ΔH0ð Þ � f2 stand densityð Þ ð11Þ
where f1 is a function that expresses the potential stand
growth, that depends only on the current top height H0 and
its variation ΔH0 between two steps of simulation and f2 is
a function that expresses how the potential growth is
reduced by the stand density.

The potential stand growth f1 has the following expression:

Oak : f1 H0;ΔH0ð Þ ¼ p1 þ p2 �ΔH0 � p3H0

Beech : f1 H0;ΔH0ð Þ ¼ p1 þ p2 �ΔH0

(
ð12Þ

The reductor function takes a different form for Oak and
Beech. For Oak, the stand density is expressed by the RDI
index:

f2 RDIð Þ ¼ 1þ rð Þ � RDI
r þ RDI

ð13Þ

whereas for Beech, it uses the sum of diameters exceeding a
given threshold Σσ:

f2 Σsð Þ ¼ 1� exp � r1 þ r3ð Þ �Σs½ � ð14Þ
The stand density indexΣσ used for Beech is computed as

Σs ¼ 1

stand area

� �
�
X
d130�s

d130 ð15Þ

The diameter threshold σ cannot be determined at this
step. It will be numerically adjusted to equilibrate stand
growth and individual growth later in this paper (Eq. 16).

For both Oak and Beech, the values of the parameters
used for functions f1 and f2 can be found in Table 5. They
have been empirically established and adjusted on existing
datasets (Dhôte 1995; Nepveu and Dhôte 1998).

In the global Eq. 11, the growth has two independent
components (for Oak at least if RDI≥0.5): the stand height

curve that depends only on age and fertility index and the
stand density that depends on silviculture.

The first component (Eq. 12) has the general shape of
the derivative of a classical growth curve: first increasing,
reaching a maximum then decreasing. However, it should
not be used after 300 years which is the limit of validity for
the model.

The second component (Eq. 13 for Oak, Eq. 14 for
Beech) expresses how the increment of basal area given by
12 is depressed if the stand density is not at its maximum
value. This is the only way by which the silviculture acts on
growth in the model. It is an increasing and concave
function of stand density with values increasing from 0 to
1. It expresses that the speed of growth increases with stand
density, but relatively more for low density values than for
high densities.

2.5 From stand level to tree level

Fagacées is a tree-centered model. Within the stand, each tree
growth is individually computed as follows. Once the global
growth is computed, it is allocated among all the individuals
(Fig. 1). The individual growth is first computed for the
increment of the individual basal area. The individual height
is then adjusted by allometry.

The transition from stand level to tree level for the basal
area increment is given by Eq. 16:X
trees

dg sð Þ ¼ ΔG � S ð16Þ

where, δg is the individual basal area increment and S is the
total stand area (ha). The parameter σ is an intermediate
quantity used in the computation of individual basal area
increment (Eq. 17 below). It is adjusted to make individual
basal area growth sum up to stand growth as determined by
the stand growth compartment of the model.

2.6 Growth of an individual tree

2.6.1 Increment of individual basal area

Dhôte (1999) has shown that in oak stands, individual tree
growth is favoured for trees belonging to the biggest trees
of the stand. At the opposite, the competition for a small
tree can be so strong that its growth is almost stopped. For
that reason, in the Fagacées model, the increment of basal
area for a given tree is given by:

dg ¼ g �max d130 � s; 0ð Þ ð17Þ
where,

& δg is the individual increment of basal area (square
centimetre per year);

Table 5 Parameters used for the increment of basal areal

Parameter Sessile oak Beech Unit

p1 0.2719 0.1512 m²/ha/year

p2 2.8018 2.0525 m/ha

p3 5.9684×10−3 – m/ha/year

r 0.21852 – –

r1 – 3.6586×10−4 ha/cm

r2 – 1.6706×10−4 ha/cm

r3 – 1.4476×10−4 ha/cm
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& γ is a maximal efficiency for growth (centimetre per
year), see below for explanations;

& d130 is the current tree diameter at 130 cm (centimetre);
& σ is a threshold which defines a minimum diameter for

radial growth to occur (centimetre).

Only the trees with a diameter exceeding σ will grow
(Fig. 4). This threshold σ has no fixed value but is
numerically adjusted at each step of the simulation
according to Eq. 16.

In this model, the growth is expressed in terms of basal
area which is linked to the diameter at 130 cm (d130) by the
relation:

g ¼ p � d2130=4 ð18Þ

If expressed in terms of diameter, the increment can be
rewritten as:

dd130 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2130 þ

4

p
dg

r
� d130 ¼ d130 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

p
� dg

d2130

s
� 1

 !

ð19Þ
To interpret the γ parameter of Eq. 17, suppose that the σ

parameter is neglectable compared to the biggest diameters
in the stand. In this case, from the fact that 2 g

d130
<< 1, the

first-order Taylor series of relation (19) gives for the high
values of d130:

dd130 ¼ d130 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

p
� g p � d130 � sð Þ

d2130

s
� 1

 !

� d130 � 1þ 2
g

d130
� 1

� �
¼ 2g ð20Þ

The γ term represents the theoretical maximum incre-
ment of tree radius, so that it is called “maximum
efficiency” of the growth.

For sessile Oak, it has been found to be linked to the
fertility index of the stand H100 by the relation:

g ¼ 0:2007þ 0:0314 � H100 ð21Þ
where, γ is expressed in centimetres per year and H100 is
expressed in metres.

For Beech, this coefficient depends on the variation of
top height ΔH0 but also on the stand density expressed
with the index Σσ defined in Eq. 15:

g ¼ f1 ΔH0ð Þ � r3 þ r1 � exp �r2 �Σsð Þ½ � ð22Þ

The parameters of this equation are given in Table 5. The
diameter threshold σ is determined by numerically solving
the equation

Σs � s � Nsð Þ � r3 þ r1 � exp �r2 �Σsð Þ½ � ¼ f2 Σsð Þ ð23Þ

where, Nσis the number of trees per hectare with diameter
exceeding σ, so that global growth given by (16) equals
total individual growth given by (17).

The γ coefficient depends only on fertility index for Oak
and on both fertility index and stand density index for
Beech. This can be related to the fact that Beech is more
shade-tolerant than Oak. Hence, it reacts more progressive-
ly than Oak to stand density variations.

2.6.2 Increment of individual height

Once the tree diameter d130 (cm) is computed, the tree
height h (m) is computed using an allometric relation
(Dhôte and de Hercé 1994):

h ¼ 1:30þ a d130ð Þ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 d130ð Þ � 4 � p � q1 � q2 � H0 � 1:30ð Þ � d130

p
2 � q2

ð24Þ
where,

a d130ð Þ ¼ H0 � 1:30þ p � q1 � d130 ð25Þ

This is a hyperbolic curve, that crosses the point (d130=
0 cm, h=1.30 m) and presents a horizontal asymptote at h=
H0. The values of parameters q1 and q2 are different for
sessile Oak and Beech (Table 6). This relation is considered
as robust within a wide range of ages and site conditions

Fig. 4 Individual growth of basal area

Table 6 Parameters of the allometric relation for individual height

Parameter Sessile oak Beech Unit

q1 0.373 0.412 m/cm

q2 0.98812 0.98764 –

The growth and yield model Fagacées: equations and batch scenario 263



(Dhôte and de Hercé 1994). But since it is only an
allometry, the individual height consistency depends on
those of the top height growth and of the individual basal
area growth.

2.7 Robustness and sensitivity analysis

The quality of the model can be studied at three levels:
the general organisation of the different model compo-
nents, the general form of the equations that describe
these components and the parameters associated to these
equations.

The Fagacées model can be considered as robust due
to its top–down organisation. The main equations have
been established at the stand scale, that is known to be
generally more stable and reliable than the tree scale
(Peng 2000).

The form of these equations has been chosen so that
they respect theoretical considerations regarding the
phenomenons they are supposed to represent. For
example, the RDI Eq. 3 is derived from the linear
relationship between the maximum number of stems and
the stand diameter in a log–log scale as expressed by
Reineke’s self-thinning rule. Due to these constrained
forms, the model cannot have an aberrant behaviour.
However, these forms may be appropriate only within a
limited domain. For example the top hight curve used for
Oak that presents an oblique asymptote cannot be
extrapolated to very old stands. It is however often
difficult to precisely define such domain limits. There is
in general no difficulty to establish the validity of a
relation in parts of the domain where observations are
available. The question is how far from the observed area
these relations can be extrapolated. An answer may be
given by expert’s advice, but this answer cannot be very
precise.

Except for self-thinning, the values of the parameters
associated to the different relations have been obtained
from observations using least squares methods. In most
cases, the stability of the estimations has been studied
by cross-validation, bootstrap or other resampling

methods. These results have then been used to study
the sensitivity of the response to variations of the
parameters, at the scale of the different relations. In all
cases, the numerical outputs obtained from variations of
the parameters were comparable to the observed data.

In a general way, all available data have been used.
The robustness of the behaviour at the model scale has
always been privileged by the choice of the form of the
equations and the way they have been arranged. In
several cases, it would have been possible to use
equations more adapted to the available data. But these
equations were more sensitive to variations of parame-
ters or to the bounds of the validity domain. With the
chosen formulation, there is a slight loss of precision in
terms of numerical outputs, but a more stable behaviour
of the equations.

3 Complementary modelling for the evaluation
of a silvicultural scenario

3.1 Stem profile

3.1.1 Stem taper curve

In Fagacées the trees are individualized. So each stem
of the stand has its own characteristics. At the end of a
growth step, each stem is allocated a diameter (d130) and
a total height h. These two variables are then used along
with allometric relations to deliver a stem profile. The
stem profile is a function of the height z in the tree at
which the diameter is computed. For both Beech and Oak,
this function has the same general form (Eq. 26 and
Fig. 5).

The stem profile can be assimilated to a succession of
two cones, one for the stem above the crown basis, the
other for the stem under the crown basis (Hatsch 1997).
The latter has to be corrected at the bottom of the stem to
take the butt influence into consideration.

For 0≤z≤h, the diameter of the stem above bark (in
centimetre) at height z (in metre) is given by:

dðzÞ ¼
m2 � m1 � zð Þ if m3 � z � m1ðwithin the crownÞ

m4 � m3 � zð Þ þ m5 � m2 � m1 � m3ð Þ½ � 1þ lðzÞ
1þ l m3ð Þ if 0 � z � m3ðunder the crownÞ

8><
>: ð26Þ

where, λ (z) is a function to represent the variation of diameter
at the butt:

lðzÞ ¼ m6 � exp � z

m7
ln 100 � m6ð Þ

� �
ð27Þ

with:

& μ1 is the height of the apex, it is then equal to the total
height h (metre);

& μ2 is the decrease of diameter per metre in the crown
(centimetre per metre);
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& μ3 is the height of the crown basis (metre);
& μ4 is the decrease of diameter per metre under the

crown (centimetre per metre);
& μ5 is the discontinuity of the diameter at the crown limit

(no dimension, μ5≥1);
& μ6 represents the correction for the butt at the basis of

the stem (no dimension);
& μ7 represents the height at which the influence of the

butt falls to 1% of the stem diameter (metre).

All the parameters from μ1 to μ7 are computed from the
individual diameter d130, the individual height h and top
height of the stand H0 using allometric relations. Details on
these computations can be found in Hatsch (1997) and
Dhôte et al. (2000). These relations do not correspond to
dynamic models: the parameter values at a given iteration
of the simulation do not depend on their values at the
previous iterations.

3.1.2 Volume within the stem

The main application of the stem taper Eq. 26 is the
computation of volume between two heights. Since the
modelled stem is a solid of revolution, the volume between
two heights is then computed as:

V z1; z2ð Þ ¼ p
40000

Zz2
z1

d2ðzÞdz ð28Þ

Again, the coefficient used in this formula is due to the
fact that the diameter is expressed in centimetres whereas
the height is expressed in metres. The volume is then
expressed in m3. This computation can be conducted either
numerically or analytically. In order to be adapted to further

modifications of the stem taper Eq. 26, the numerical
computation has been chosen in the current version of the
model.

3.1.3 Compartments within the stem

From the bark to the pith, three compartments are
considered in the stem: bark, sapwood and heartwood. In
addition, the evolution of the crown basis during growth
helps to define two parts in the sapwood and in the
heartwood: knotty and clear wood (see Fig. 5). The limits
between all these compartments are based on allometric
relations that can be found in Dhôte et al. (2000).

They provide detailed results on the geometry of each
stem: volume of sapwood and heartwood, ring width. These
characteristics can then be used to predict various properties
such as wood density that are crucial to estimate some
characteristics of the stem such as its wood quality or its
carbon content. Various indicators can then be derived to
process a multicriteria evaluation of the simulated stand
(Bucket et al. 2005).

3.2 Thinning and self-thinning

Self-thinning occurs after the growth step, but only when
RDI exceeds 1 (Fig. 2). In this case, the smallest trees
systematically die until RDI falls to 1. Thinning is the main
intervention included in Fagacées. It starts when the stand
reaches a given stage (i.e. age, average diameter, RDI). In
the original version of the model, it was manually
conducted. Its technical characteristics (number of stems
or basal area to harvest in each diameter class) were a
consequence of the user’s decision. In the current version,
another possibility using a parameterised rule has been
defined. This rule allows the programme to run in “batch
mode” without user intervention. It is used for studies that
need a lot of simulations.

It has been designed so that the thinned trees are
preferably, but not systematically, the smallest of the stand.
It could however be modified to allow thinning from above.
But in that case, the top height growth would be modified,
so the current Eq. 8 should be replaced by another one,
more adapted to this situation.

The thinning procedure depends on two user-defined
parameters. The first one is the thinning intensity
(expressed in terms of basal area of RDI to reach), the
second one defines the kind of thinning. It takes its value in
the [0;1] interval. The 0 value corresponds to the case
where the thinning can occur until the maximum diameter
of the stand, the 1 value to a thinning strictly from below.

The thinning procedure is a two-step one: the first
defines the classes of diameter that may be thinned, the
second one is the thinning itself.

Fig. 5 Stem profile in the Fagacées model: compartments of the stem
and parameters of the stem taper curve
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3.2.1 First step of batch mode for thinning: determination
of an upper diameter for thinning

When the thinning occurs, the stand can be described in
terms of number of stems (N), average diameter at (D),
average quadratic diameter (Dg) or density index (RDI).
The lowest and the upper diameters (respectively Dmin and
Dsup) can also be defined. A thinning will be realised by
removing stems until a given state is reached. Very often, it
is formulated in terms of a value of basal area to remove or
a given targeted RDI (lower than the starting one!). The
simplest way to reach this goal would be to systematically
remove the smallest trees until the objective is achieved, but
it does not correspond to the real silvicultural practice. A
procedure has then been designed to define an upper
diameter DU below which thinning can occur.

A thinningmore intensive than the aimed one is used. If the
goal is to decrease to the value RDIobj, a thinning to the value
φ ⋅ RDIobj will be considered (alternatively, if the goal is
expressed in terms of basal area to remove, so that the basal
area of the stand after thinning is Gobj, the value φ ⋅ Gobj will
be considered), where φ is an additional parameter chosen
within the [0, 1] interval. The value of DU is the diameter
below which a systematic thinning of the smallest trees
should occur to reach the φ ⋅ RDIobj value.

In practice, a function called “partial RDI” is used to
compute DU: Let Ω(D) be the set of trees with diameter
(d130) greater than or equal to D, NΩ(D) and DΩ(D),
respectively, the number of stems and the average quadratic
diameter of Ω(D). The partial RDI RDIΩ(D) is the value of
RDI computed from NΩ(D) and DΩ(D) using Eq. 3.

The partial RDI is a decreasing function of diameter, with
values varying from the RDI of the whole stand when D is
less than or equal to Dmin, to 0 when D is greater than or
equal to Dsup. The value DU is the lowest diameter for which
RDIΩ(D)≤φ ⋅ RDIobj (Fig. 6). For clarity of illustration, the
data used for Fig. 6 have been obtained by simulating a stand
with exaggerated range of considered diameters.

3.2.2 Second step of batch mode for thinning: the thinning
itself

Once DU has been defined, each stem of the stand is
associated to a probability of being thinned, which is a
function of the stem diameter d130. This probability is taken
as proportional to:

t ¼ max
DU � d130
D� Dinf

; 0

� �
ð29Þ

so that the small trees have a greater probability to be
thinned than the big ones and no tree with d130≥DU will be
thinned.

In practice, each tree is then associated to a random
variable X defined as:

X ¼ t � U ð30Þ

where, U is randomly taken in an Uniform law [0, 1].
The trees are then ordered by decreasing X value.

They are thinned from the beginning of the list until the
targeted RDI or basal area is reached. Figure 7 presents an
example of result. The chosen value of φ in this example
is 0.7.

Fig. 6 The partial RDI function and the determination of the DU

parameter used for batch thinning

Fig. 7 Example of result of the batch rule for thinning
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3.3 Batch scenarios

The first versions of the Fagacées model were designed to
be manually run by the user who had to take the
silvicultural decisions at each step. This approach still
exists in the current version of Fagacées available through
the CAPSIS platform (de Coligny 2005). However, since
some studies based on this model need intensive simu-
lations, a batch mode has also been developed. This mode
needs batch silvicultural scenarios to be defined.

These batch scenarios are defined by four elements:

& a reference trajectory to follow in the age×RDI space;
& a tolerance around this reference trajectory;
& a rule for the kind of thinning;
& a stop condition for the simulation.

The principles of the batch scenarios are the following.
At the beginning, nothing special happens after regener-

ation. The trees grow with self-thinning as the only cause of
mortality. Due to the fact that the Fagacées model has not
been calibrated on very young stands, it is not worth to
define precise instructions in the model for early stages.

The scenario itself begins at a given age (more than
15 years old). The silvicultural interventions will aim to
make the stand follow a pre-defined trajectory in the age×
RDI space. Of course, if this trajectory were to be exactly
followed, an intervention would be needed at each step of
the simulation (3-year steps in general). It is not realistic.
So a tolerance envelope has been defined around the
reference trajectory. Each time the stand reaches the upper
limit of the envelope, an intervention is carried out to bring
the stand RDI down to the lower limit. An additional
constraint can be defined to forbid a too short interval
between two consecutive thinnings. In that case, the second
thinning will be delayed until this constraint is respected.

The previous procedure defines the date and the intensity
of the thinnings. The thinnings themselves are conducted
according to the thinning procedure detailed in Section 3.2.
The φ parameter value to use is given by a function of the
stand current state.

The scenario is run until a defined stop condition is
encountered. This stop condition can be any logical rule
based on the stand state (current age, average diameter).

Figure 8 illustrates an example of scenario for Oak
where the main trajectory is defined by three straight
segments to define three phases of the silvicultural schedule
(preparation of the stand, designation of the crop trees and
maturation). During the first two phases, the reference RDI
varies linearly with the age of the stand. These two phases
have pre-defined lengths. During the last phase, the
reference RDI is maintained constant. This phase continues
until the stop condition is encountered, so its length is not
in general defined in advance. Here the final age has been

set to 250 years just for illustration. The width of the
tolerance envelope in this example has been fixed to a
constant value (0.05 above and under the reference). The φ
parameter used for thinning cannot be shown on this figure.
It has also been set to a constant value (φ=0.7). At the end
of the scenario, all the remaining trees are harvested so the
RDI falls to 0.

Since the functions for the reference trajectory, the
tolerance envelope width and the φ parameter are not
constrained to a particular form and the stop condition can
be any logical rule based on the stand state, the procedure
for batch scenarios was designed to study a very large set of
silvicultural schedules. The only condition for the functions
and the stop condition are to be consistent with what they
are supposed to represent.

4 Discussion

Even if the equations can differ for Oak and Beech, the
general approach used in the Fagacées growth model for
these two species is the same. The model has been designed
for high forest and coppice with standards forest manage-
ment at a relatively large scale (a whole forest, a little
region). According to Passioura (1973) cited by Battaglia
and Sands (1998): “An appropriate model structure for
management application is a transparent one: that it has few
enough parameters so that each can be measured, directly
or indirectly, and is composed of submodels corresponding
to readily identifiable and experimentally accessible sys-
tems.”. With its top–down organisation and the privileged

Fig. 8 An example of trajectory followed by a stand using the batch
scenario
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choice of robust equations, Fagacées does respect these
general principles.

This top–down approach is not so common in forest
modelling despite the fact it could lead to models useful for
forest managers (Zeide 2003). It has been adopted by
Corona et al. (2002) for the same reasons as Fagacées but in
a much simpler situation: clonal plantation of poplar.

Although it is a tree-centered model, its main growth
equation (Eq. 11) has been calibrated at the stand level.
Indeed, the models adjusted at the scale of the stand are
known to be generally more reliable for growth and yield
than the models adjusted at the scale of the tree (Peng 2000).

The growth is mainly directed by the top height curve
that is independent from silviculture as long as the stand
density remains high enough. This result is generally
admitted for a large range of initial spacing and thinning
intensities as long as no thinning from above is performed
(Skovsgaard and Vanclay 2008). Hence, in the current
version, the model cannot be used to simulate silvicultures
with thinnings from above.

If the stand density becomes very low, the stand height
growth of Oak is depressed. However, due to the lack of
available data for such stand densities, only an empirical
correction has been introduced in the model. The model
should then not be used to simulate silviculture with very
low densities.

As a stand growth model, Fagacées is a classical one
since the growth equations regulate stand height and basal
area (Eqs. 7, 9 and 11). It becomes a tree-centered model by
the way the global growth of basal area is allocated among
individual trees (Eqs. 16 and 17). After this step, the
individual heights and the whole stem profiles are simply
rebuilt from allometries.

Both global and individual growths are expressed in
terms of variation of basal area. They are consistent
with differential equations that are classically used in
process-based models. These equations also have a
process-based interpretation whereas the individual
height and the stem profile equations are purely
descriptive relations (Dhôte 1996).

None of the growth equations contains random
components. The Fagacées growth model is a purely
deterministic one. As a consequence, due to Eq. 17, the
hierarchy of trees will never change during stand devel-
opment. If a given tree is smaller than another one at a
given step of the simulation, it will remain smaller in all
further steps, as long as none of them disappear due to
thinning or self-thinning.

Another consequence is that the variability of diameters
within a stand at a given age depends on the variability within
the initial stand. It can only be modulated by the thinning rules
the user may apply. However, the initial variability (expressed
as diameter variance for example) is not enough to predict the

evolution of diameter variability through growth. The whole
diameter distribution is needed. Fagacées is a tree-
individualised model and cannot be reduced to a population
model nor to a stand model without loss of information.

If the growth equations have been calibrated so that they
lead to unbiased predictions of basal area and global wood
volume, the weakness of the variability representation may
lead to biased prediction of wood quality. Indeed, wood
quality clusters are based on conventional dimension limits for
log diameter and ring width. Best qualities are defined by
highest or lowest values for these dimensions. If the
dimension variability is badly represented, the proportion of
wood that verifies the wood quality conditions will be biased.
In that case, alternative scenarios can be compared to predict
which one produces the best quality in average, but not to
predict precisely the wood quantities in each quality cluster.
Hence the representation of the inter-tree variability is a point
that could be improved in further versions of the model. This
could be done for example by including random components
for individual growth in the Eqs. 17 and 24.

5 Conclusion

The Fagacées model was built to simulate the consequences
of a wide variety of silvicultures for even-aged high forests
of Oak or Beech. Due to its top–down organisation, it
combines the properties of a stand growth model (robust-
ness and reliability) and some of tree-centered models
(individual stem profiles). Only a very limited set of
equations defines the growth model part and each of these
equations reflects very simple principles. Thus the model
can easily be improved if necessary. Several directions for
that are considered: improvement of the growth equations,
improvement of the stem taper profile, and designing of a
model for Oak and Beech mixed stands based on the same
concepts (Hein and Dhôte 2006).

The outputs of the growth model are used as inputs for
modelling stem taper in order to obtain an estimation of the
wood properties. However, the individual variability is badly
represented. In addition, some defaults of Oak wood such as
cracks or epicormic branches, that have a strong influence on
wood quality, are not or insufficiently modelled. This can be a
source of bias for some applications, related to wood quality.
In this case, the model outputs have to be used only for
comparisons of silvicultural scenarios. The under-
representation of wood defects is due to a lack of knowledge
on the deterministic mechanisms related to them. So it is still
too early to include them in the model.

Despite these relative insufficiencies, this model is
largely used by French forest managers and in forest
research. It is still the only one available for Oak or Beech
pure stands in the pedo-climatic conditions of northern
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France. It has been distributed to forest modellers and to
forest managers, mainly through the CAPSIS project (de
Coligny 2005) available at http://www-capsis.cirad.fr/
home. It has contributed to the development of new
standards of silviculture for the French Oak forest by the
French National Forest Service (Jarret 2004; Sardin 2008).
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