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Abstract
• Context Walnuts (Juglans spp.) are ecologically and
commercially important trees, yet synthesis of past and
current research findings on walnut ecophysiology is
lacking, especially in terms of potential acclimation to
climate change.
• Aims This study aims to (1) investigate walnut ecophys-
iology by comparing its attributes to associated deciduous
angiosperms, (2) address potential acclimation of walnut to
climate change, and (3) identify areas for prioritization in
future research.
• Results There is considerable uncertainty regarding the
magnitude of potential effects of climate change on walnut.
Some studies tend to indicate walnut could be negatively
impacted by climate change, while others do not. Walnut
may be at a disadvantage due to its susceptibility to drought
and frost injury in current growing regions given the
projected increases in temperature and extreme climatic
events. Other regions that are currently considered cold for
walnut growth may see increased establishment and growth
depending upon the rate of temperature increase and the
frequency and severity of extreme climatic events.

• Conclusion Research investigating a combination of
environmental factors, such as temperature, carbon dioxide,
ozone, water, and nitrogen is needed to (1) better project
climate change effects on walnut and (2) develop manage-
ment strategies for walnut acclimation and adaptation to
climate change.
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1 Introduction

The walnut genus (Juglans spp.) contains some of the most
economically and ecologically valuable trees species in
America, Europe, and Asia. Of the 20 species found
worldwide, black walnut (Juglans nigra L.) and English
walnut (Juglans regia L.) are the most abundant species of
the genus and most commonly represented in the literature.
Black walnut is dispersed throughout the central and
eastern USA and is highly prized for its lumber. English
walnut is also found scattered throughout Europe and Asia
and is valued both for nut and lumber production (Hardin et
al. 2001). In the western USA, English walnut and its
associated hybrids are cultivated for nut production with an
estimated crop value of US $700 million (USDA 2009).
Nuts are also an important food source for wildlife, such as
squirrels (Sciurus spp.) (Smith and Follmer 1972). In recent
years, a growing number of reports were published on
physiological responses of walnut species to environmental
factors, such as water, temperature, and nutrients. Many of
these studies were conducted to address climate change
issues, such as understanding decreased growth or survival
due to the reduction in accumulated winter chill and
increased freeze–thaw events for nut production in France

Handling Editor: Erwin Dreyer

M.-M. Gauthier :D. F. Jacobs (*)
Hardwood Tree Improvement and Regeneration Center,
Department of Forestry and Natural Resources, Purdue University,
715 W State St,
West Lafayette, IN 47907-2061, USA
e-mail: djacobs@purdue.edu

Present Address:
M.-M. Gauthier
Direction de la recherche forestière,
Ministère des Ressources naturelles et de la Faune du Québec,
2700 rue Einstein,
Québec, Québec G1P 3W8, Canada

Annals of Forest Science (2011) 68:1277–1290
DOI 10.1007/s13595-011-0135-6



(Améglio et al. 2004), the western USA (Baldocchi and
Wong 2008; Luedeling et al. 2009a), and Southwest Asia
(Luedeling et al. 2009b). Even studies not specifically
aimed at investigating climate change can be useful in
identifying physiological attributes of species that may
become critical in relation to projected changes in climate,
i.e., response to increased temperature or decreased precipi-
tation. To our knowledge, there are no published reports that
synthesize this body of work. Thus, the objectives of this
review were to (1) investigate walnut ecophysiology and
compare features to associated deciduous angiosperms, (2)
address potential acclimation of walnut to climate change, and
(3) identify areas for prioritization in future research.
Insufficient scientific literature on the ecophysiology of other
walnut species, such as butternut (Juglans cinerea L.), did not
allow their inclusion in this review.

The literature reviewed on walnut stress physiology
includes more than 100 articles that cover most of the
research carried out in the last 35–60 years. The literature
was grouped into four categories based on major plant
functions: (1) carbon dynamics and photosynthesis, (2)
nutrient functions, (3) acclimation to temperature, and (4)
water relations. About half of all experiments studied
English walnut or one of its associated hybrids; the other
half investigated black walnut. Comparisons where often
made with associated species, such as oak (Quercus spp.)
and maple (Acer spp.), to contrast responses of species with
different ecological and physiological attributes.

2 Carbon dynamics and photosynthesis

2.1 Carbon dynamics

Most of the literature on walnut C dynamics was carried out
during the first or second year of development. Like oaks
and other large-seeded species, walnut uses carbohydrates
stored in the maternal seed to develop its taproot (Maillard
et al. 1994a). For the first 3 weeks after sowing, the
seedling is entirely heterotrophic, i.e., its growth depends
exclusively on the seed’s C reserves (Maillard et al. 1994a;
Fig. 1a). Photosynthesis begins thereafter but is negligible
until the second month of growth (Maillard et al. 1994a). In
plantlets provided with a growing medium, autotrophy can
be attained 8 days after transfer to a growth chamber
(Chenevard et al. 1997), but seedlings need at least
40–50 days before they no longer depend on the maternal
seed (Maillard et al. 1994a, b). Leaves are both a sink and a
source of C during the second month, accounting for nearly
60% of all C in the plant (Fig. 1b). From days 32 to 48 after
sowing, photosynthesis increases and leaves can allocate
about 15% of labeled C to the stem. For the remainder of
the second month, C produced by leaves is mostly allocated

to the taproot and lateral roots (Maillard et al. 1994b).
During the first growing season, most of the C fixed
through photosynthesis is accumulated in the taproot
(∼90%) as starch, a large portion of which will serve as a
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Fig. 1 Variation of carbon in an English walnut seedling (J. regia L.)
and its maternal seed (a) and relative distribution of carbon in various
organs of an English walnut seedling (b) under controlled conditions
(22°C, 12 h) during the first 2 months of development. Each value is
the mean obtained from the combustion of dry matter of a set of five
plant samples (Maillard et al. 1994b, by permission of Oxford
University Press)
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source of carbohydrates for subsequent development
(Lacointe 1989; Lacointe et al. 1993; Chenevard et al.
1994; Maillard et al. 1994a, b).

Published literature on walnut C dynamics in saplings or
trees is less abundant, but research findings indicate
remobilization can be substantial in this genus (Table 1).
In this regard, walnut is similar to most tree species that
accumulate large pools of non-structural carbohydrates
(NSC), such as starch (Millard and Grelet 2010). In
deciduous angiosperms, NSC levels are never fully depleted
and are often at a maximum in late summer and early autumn
(Millard and Grelet 2010). In 3-year-old English walnut, C
accumulated as starch in the taproot in late summer and fall
can be hydrolyzed to sugar in winter and remobilized by
growing organs in spring (Frossard and Lacointe 1988;
Lacointe et al. 1993). Lacointe et al. (1995) also reported that
recent (up to 5 days old) C fluxes allocated toward
respiration did not exceed 25% of total plant respiration as
measured in August and October using 14CO2 labeling in
young English walnut trees. While changes in temperature
and demand from sink organs are thought to be important
causal mechanisms in walnut C remobilization, the
relative importance of each mechanism is still uncertain
(Lacointe 2000). A recent review by Millard and Grelet
(2010) tends to suggest C remobilization in tree species is
largely sink-driven.

Walnut’s period of active photosynthesis and therefore
potential annual C gain is restricted relative to associated
species by its shorter period of full leaf out and determinate
shoot growth habit. Walnut exhibits comparatively later
(∼2 weeks) spring bud break (Lechowicz 1984) and earlier
(∼1 month) leaf fall senescence (Lucier and Hinckley 1982).
As a result, walnut seedling growth is relatively rapid. In
1-year-old, field-grown black walnut, Carpenter and Hanover
(1974) found that 73% of height growth occurred 1 month
after bud break and 100% of stem growth and leaf area
accretion occurred 2 months after bud break. Honeylocust
(Gleditsia triacanthos L.), a shade-intolerant, associated
species with an indeterminate growth habit displayed much
slower growth compared to walnut: 60% of height growth,
50% of stem growth, and 68% of leaf area accretion occurred
during the same time period. When the period of active
photosynthesis is not taken into account, black walnut height
growth is generally slower than yellow-poplar (Liriodendron
tulipifera L.) or white ash (Fraxinus americana L.) but
higher than oak species on good sites (Williams 1990). Some
studies reported English walnut root and shoot growth
occurred simultaneously during the first year (Frossard
et al. 1989), while others did not (Maillard et al. 1994b).
This periodicity can also change over time, as root
development was found to occur after leaf and shoot growth
during the second year (Frossard et al. 1989).

Table 1 Selected ecological and ecophysiological attributes of walnut (Juglans spp.) relative to associated deciduous angiosperms

Ecological features Relative level Uncertainty Selected references

Shade tolerance Low Low Baker 1948; Williams 1990

Growth rate Average Low Carpenter and Hanover 1974; Williams 1990

Susceptibility to frost injury High Low Fady et al. 2003; Poirier et al. 2010

Susceptibility to embolism High Low Améglio et al. 2002; Bréda et al. 2006

Desiccation avoidance (susceptibility to drought) High Low Davies and Kozlowski 1977; Hinckley et al. 1979

Flood avoidance (susceptibility to flooding) High High Mapelli et al. 1997; Dudek et al. 1998

Rooting depth High Low Pallardy and Rhoads 1993; Williams 1990

Nutrient requirements High Low Thompson and McComb 1962; Schlesinger and
Funk 1977

Ecophysiological features Relative level Uncertainty Selected references

C and N accumulation and remobilization Average Low Lacointe 1989; Maillard et al. 1994a, b; Millard
and Grelet 2010

Period of active photosynthesis and potential C gain Low Low Lechowicz 1984; Lucier and Hinckley 1982

Capacity for photosynthesis (A, Amax) and respiration (Rd) High Low Piel et al. 2002; Gauthier and Jacobs 2010

Capacity for light acclimation Average Low Dean et al. 1982; Frak et al. 2001

Capacity to sustain repeated freeze–thaw events Low Low Améglio et al. 2001c, 2002

Temperature inducing photoinhibition Average High Dreyer et al. 2001

Stomatal sensitivity to humidity High Low Ni and Pallardy 1990, 1992

Capacity for leaf abscission High Low Ni and Pallardy 1991; Tyree et al. 1993

Response to elevated CO2 High High Tinus 1976; Maillard et al. 1999

Response to elevated O3 Unknown High None

Uncertainty is based on the number of studies conducted on the subject and the level of agreement among them
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2.2 Photosynthetic capacity and acclimation

Walnut has long been considered intolerant of shade (Baker
1948; Williams 1990; Hardin et al. 2001). Shade-intolerant
species generally exhibit thicker leaves with lower quantum
efficiency (Qe, micromoles of CO2 per micromole photons)
and higher light-saturated maximum photosynthesis (Amax,
micromoles of CO2 per square meter per second) compared
to leaves of shade-tolerant species (Loach 1967; Kozlowski
and Pallardy 1997). Black walnut can also carry out
substantial rates of net photosynthesis (A, micromoles of
CO2 per square meter per second) during the growing
season past the sapling stage (Gauthier and Jacobs 2010).
These acclimations reflect the fact that shade-intolerant species
require high light conditions to develop, where investments in
increased mesophyll thickness allow greater photosynthate
production. Findings from Dean et al. (1982) indicate that
black walnut can carry out considerable A under shaded
conditions for short periods of time at the juvenile stage. In
contrast to walnut, shade-tolerant species such as sugar maple
(Acer saccharum Marsh.) develop thinner leaves that capture
light more efficiently (higher Qe) and initiate A at lower light
levels (∼0–200 μmol photons m−2 s−1).

Like all plants (Niinemets 2007), walnut exhibits
photosynthetic plasticity to light. Walnut’s photosynthetic
acclimation and distribution of leaf characteristics, such as
leaf mass per unit area (LMA) and leaf N content per unit
area (Na), are influenced by light level, light quality (red/far
red ratio), and light source (Le Roux et al. 1999a; Green
and Kruger 2001; Frak et al. 2002a, 2005; Rosati et al.
2004). Walnut’s crown architecture varies according to the
light environment to maximize C gain (Le Roux et al.
1999b, 2001; Sinoquet et al. 2001). For example, sun
leaves of English walnut were found to have greater Amax,
stomatal conductance (g), LMA, Na, and lower dark
respiration (Rd, micromoles of CO2 per square meter per
second) compared to shade leaves of the same species (Piel
et al. 2002). Within the crown of a 20-year-old English
walnut tree, LMA was shown to vary from 50 to 150 gm−2

and Na varied from 1 to 3 gm−2 along a south–north
horizontal transect (Le Roux et al. 1999b). The highest
values were located on the southern edge and at the top of
the canopy. A similar study also found spatial variation in
leaf 13C isotope composition (∼25–30‰) in the crown of an
isolated English walnut tree (Le Roux et al. 2001).

The amount of time required for walnut to acclimate to
changing light conditions increases with leaf age (Frak
et al. 2001) and plant development stage (Gauthier and
Jacobs 2009). Transferring 1-year-old English walnut
hybrids from low light (10% incident radiation) to high
light (90% incident radiation) environments increased
photosynthetic capacity by 25–45% within 20 days (Frak
et al. 2001). Seedlings exhibited weak photosynthetic

acclimation when transferred 91 days after bud burst in
1 year but were able to acclimate when transferred 58 days
after bud burst in the next year (Frak et al. 2001).
Acclimations were mainly due to changes in leaf Na and
leaf N partitioning among photosynthetic functions, such as
carboxylation, bioenergetics, and light capture. Similar
experiments conducted with northern red oak (Quercus
rubra L.) and sugar maple at the seedling stage showed that
time required for photosynthetic acclimation was compara-
ble to results from Frak et al. (2001), despite species
differences in shade tolerance (Naidu and DeLucia 1997).
These findings also highlight the importance of N in
walnut’s photosynthetic acclimation to light. Acclimation
to increased light may take longer (1 year) in black walnut
trees past the sapling stage (Gauthier and Jacobs 2009).

Walnut’s photosynthetic capacity and acclimation
response to elevated CO2 and O3 is still poorly docu-
mented (Tinus 1976; Maillard et al. 1999). A five-fold
increase in CO2, from 325 to 1500 μmol mol−1, generated
growth increases of 70% in dry mass of black walnut
seedlings (Tinus 1976); the length of the measurement
period and the age of the seedlings were not specified.
Maillard et al. (1999) grew English walnuts from seed for
55 days under controlled chamber conditions to investi-
gate C and N allocation patterns under two CO2 levels.
Although not statistically confirmed, the 45% increase in
CO2, from 550 to 800 μL L−1, doubled the C content of
seedlings by the end of the measurement period (Fig. 2).
Elevated CO2 also impacted C allocation by increasing the
root/shoot ratio. In a synthesis of the literature, Wulls-
chleger et al. (1995) compared relative growth responses
of 73 tree species to a doubling of ambient CO2. Among
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Fig. 2 Influence of elevated CO2, from 550 to 800 μL L−1 (46%
increase), on the total carbon content of germinating English walnut
(J. regia L.) seedlings. The end of seed C contribution occurred on
day 35. Mean value was calculated from three replicates originating
from a sample of five to ten seedlings. Source: Maillard et al. (1999),
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all species studied, black walnut ranked 15th in terms of
relative increase in total plant dry mass (46%) based on
findings from Tinus (1976). Among temperate hardwoods,
black walnut ranked third behind sugar maple (11th) and
American beech (Fagus grandifolia Ehrh., 14th) but
higher than northern red oak (25th) and white oak
(Quercus alba L., 53rd). We did not find any literature
investigating effects of elevated O3 in this genus.

In comparison to these studies, short-term (7 years)
results from one of the free-air CO2 enrichment (FACE)
experiments showed that 46–54% increases in atmospheric
CO2 increased net primary productivity (NPP) of northern
temperate hardwood forests of the USA by 25% to 60%
compared to nontreated controls (King et al. 2005). Across
four sites distributed in the USA and Europe, median gains
in NPP from elevated CO2 (550 μmol mol−1) were
calculated at 23% based on 10-year data from FACE
experiments (Norby et al. 2005). More recent results
showed declining N availability reduced these gains, thus
stressing the importance of N on C gain and productivity at
the forest scale (Norby et al. 2010). Results from King et al.
(2005) also indicate that 34–45% increases in elevated O3

significantly reduced NPP of hardwood forests by 13–24%
compared to nontreated controls. Thus, exceedances of O3

air quality standards could mitigate or offset biomass gains
from elevated CO2 (Mohan et al. 2009) and exacerbate
effects of increased temperatures and drought on forest
growth in temperate hardwoods (McLaughlin et al. 2007a,
b). Ozone effects may be due to reduced stomatal control of
water loss. Drought alone could offset benefits associated
with elevated CO2 as shown for sweetgum (Liquidambar
styraciflua L.) (Warren et al. 2011).

Hence, walnut’s photosynthetic capacity with regard
to increased CO2 appears to be greater than average for
deciduous angiosperms. Because of very limited data,
however, substantial uncertainty remains regarding wal-
nut’s acclimation. Moreover, response to both CO2 and O3

cannot be determined given the lack of published data on
O3.

3 Nutrient functions

3.1 Nutrient requirements

Compared to associated species, walnut has a relatively
narrow range of soil conditions on which it grows well
(Thompson and McComb 1962) and requires deep, fertile
soils that have a high water holding capacity (Schlesinger
and Funk 1977; Williams 1990). Growth and presence are
also favored on south and southwest-facing slopes (Loacker
et al. 2007) but reduced on shallow, drier, more infertile
soils where the genetic potential for deep rooting is not

fully realized. This indicates how important root system
development is to Juglans species.

Research findings showed positive relationships between
soil nutrient content and walnut development in terms of
radial growth (Ponder 1998) and biomass production
(Paschke et al. 1989). In 19-year-old black walnut,
estimated above-ground dry biomass (kilograms) was
strongly related to total nitrate (NO3

−, r2=0.73) and total
annual NO3

− production (r2=0.41, Paschke et al. 1989). In
2-year-old black walnut rootstock, fertigation treatments
increased leaf nutrient content by 18% to 86% for N
compared with the nontreated control after one growing
season (Salifu et al. 2006). Increases in P, from 33% to
303%, and K, from 23% to 58%, were also found in
comparison with the control (Salifu et al. 2006). Two
additional studies on fertilization of black walnut seedlings
(Nicodemus et al. 2008a, b) indicate that a mixed N source
is preferred over NO3

− or NH4
+ alone to maximize

productivity. Although walnut’s nutrient requirements
are high relative to other deciduous angiosperms,
short-term response to fertilization can vary greatly
depending upon soil conditions and type of fertilizer
application (Jacobs and Seifert 2004). Black walnut’s
fertilization response may be lower compared to associat-
ed species such as yellow-poplar or white ash as shown
for a 2-year outplanting experiment in the central USA
(Jacobs et al. 2005).

3.2 Nutrient allocation and remobilization

As with other temperate hardwoods, N is essential to
the early growth phase of walnut. Both C and N
metabolism are related in this phase because the
photosynthetic capacity of leaves depends on N content
during growth (Figs. 1a, b and 3a, b). Similarly to C,
walnut uses N stored in the maternal seed for taproot
development (Fig. 3a). As the taproot develops from the
seed in the first month of growth, N is allocated primarily
to below-ground parts of seedlings, but rapidly developing
aerial parts receive the majority of N during the second
month of growth (Maillard et al. 1994a; Fig. 3b). Short-
term nutrient uptake by roots may also be coupled to C
assimilation by leaves in older walnut seedlings. Delaire et
al. (2005) measured short-term (9 days) effects of a 53%
increase in atmospheric [CO2] on CO2 uptake by shoots
and nutrient uptake by roots in 2-year-old black walnut
hybrids. Results showed that NO3

−, K+, Mg2+, and Ca2+

uptake rates by roots were proportional to CO2 uptake
rates by shoots during the study period, with r2 values
ranging from 0.73 to 0.80. This coupling may be
explained by nutrient acquisition through active transport-
er systems that require energy supplied by carbohydrates
(Delaire et al. 2005).
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Retranslocation of stored nutrients is also important in
meeting demand during periods of active growth, especially
in terms of N, as reported for walnut seedlings and mature
trees (Deng et al. 1989; Weinbaum et al. 1994; Weinbaum
and Van Kessel 1998; Frak et al. 2002b; Salifu et al. 2009).

Whereas C remobilization in tree species is largely sink-
driven, N remobilization is driven by the size of the storage
pool (Millard and Grelet 2010). In walnut, N derived from
storage accounted for about half of the xylem sap N
throughout the leaf expansion period in mature English
walnut hybrids growing in the western USA (Deng et al.
1989). In 1-year-old English walnut seedlings, spring
remobilization of N stored during the previous year
accounted for at least 54% of total N to new shoots (Frak
et al. 2002b). Salifu et al. (2009) also demonstrated the
importance of retranslocation in meeting early N demand of
1-year-old black walnut seedlings growing in sand culture.
Weinbaum and Van Kessel (1998) reported that 60% of
annual N demand of 9-year-old English walnut hybrids was
derived from redistribution of N from internal pools. The
remaining 40% was met by N influx from the soil/fertilizer
pool. Results from Weinbaum and Van Kessel (1998) also
indicate walnut hybrids stored the majority of soil and
fertilizer N absorbed and used it for new growth within
2 years of uptake. Similar N remobilization to meet nutrient
demand has been shown in several tree species and shrubs
(Millard and Grelet 2010), including deciduous angio-
sperms such as northern red oak (Salifu et al. 2008) and
sugar maple (Lennon et al. 1985; Goldfarb et al. 1990).

4 Acclimation to temperature

4.1 Freezing tolerance and avoidance

Plants generally survive subzero temperatures by exhibiting
freezing tolerance, such as deep supercooling, or freezing
avoidance, such as stem shrinkage. Walnut can exhibit both
traits. Like many associated species including northern red oak,
black walnut can display deep supercooling, i.e., freezing
resistance near −40°C, across its native range when fully
dormant (George et al. 1977). In addition to deep supercooling,
walnut can also display stem shrinkage. Améglio et al.
(2001a) showed trunks of 17-year-old English walnut orchard
trees shrank up to 1300 μm in diameter as air temperature fell
to −10°C. Diameter expanded as temperature increased back
up to 0°C. Repeated freeze–thaw cycles at increasingly colder
temperatures (−2.5°C, −5°C, −7.5°C, −10°C), carried out on
excised segments of twigs from orchard trees, resulted in
progressive loss of diameter up to 150 μm. Stem freezing
occurred between −4°C and −8°C in English walnut, and
similar stem freezing values (−6°C to −9°C) were reported in
black walnut (Murray and Byrnes 1975). Pronounced
shrinking of the living bark due to the formation of
extracellular ice is an indication of freezing avoidance
(Améglio et al. 2001b) and has been shown for other
temperate deciduous angiosperms like white oak (Hinckley
and Bruckerhoff 1975).
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Fig. 3 Variation of nitrogen in an English walnut seedling (J. regia L.)
and its maternal seed (a) and relative distribution of nitrogen in
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Despite walnut’s high freezing tolerance when fully
dormant, spring frost injury appears to be important in
English walnut, especially at the juvenile stage (Hemery
et al. 2010; Poirier et al. 2010). Early bud break in English
walnut can lead to apical bud death or shoot death during
late spring frosts as shown in short-term juvenile field tests
across five European countries (Fady et al. 2003). Develop-
ment of freezing tolerance is thought to be related to soluble
sugar accumulation (Poirier et al. 2010). In Slovenia,
Crepinsek et al. (2009) analyzed the influence of increasing
winter and spring air temperatures on bud break date in
English walnut. Compared to the 1984–1990 period, mean
air temperature from January to April increased by 0.9°C
during the 2000–2006 period and bud break occurred
3–7 days earlier. By 2060, phenological models suggest
bud break could be advanced up to 4 weeks, thus increasing
frost hazard. Repeated freeze–thaw events can also lead to
embolism, a phenomenon that has been the topic of many
experiments with English walnut.

4.2 Acclimation to freezing temperatures and embolism
recovery

Also termed cavitation, embolism is the formation of air
bubbles in xylem vessels that can be caused by attainment
of threshold negative hydrostatic pressures (tension) during
drought and winter freezing events. Freeze–thaw cycles
also cause embolism when air dissolved in xylem water is
released from solution during ice formation. Walnuts are
semi ring-porous species with large vessel diameters, which
are of intermediate width compared to larger ring-porous
species (northern red oak) and smaller diffuse-porous
species (sugar maple). Ring-porous or semi ring-porous
species are more susceptible to cavitation of xylem water
columns during winter compared to diffuse-porous species
or gymnosperms (Lechowicz 1984; Sperry et al. 1994).
Tree species susceptible to water deficits are also more
prone to cavitation (Tyree and Cochard 1996). Embolism
effectively renders xylem conduits non conductive. This
loss may be permanent or repair may occur so that
hydraulic conductivity fully recovers (Améglio et al. 2002).

Repair in walnut species involves the development of
positive hydrostatic pressures in roots and stems. In English
walnut, root pressures were generated at temperatures
above 15°C in autumn and spring, while stem pressures
were involved at temperatures below 5°C in winter (Ewers
et al. 2001). The greatest root pressures tend to occur in
spring to help remove winter embolism that may have
occurred in xylem vessels. Many other deciduous angio-
sperms such as European beech (Fagus sylvatica L.)
develop positive xylem pressures in early spring, but not
in winter (Cochard et al. 2001). Pressure apparently results
from influx of carbohydrates into xylem from the symplast

of neighboring tissues, a process that is correlated with
seasonal changes in soil and air temperature in English
walnut (Améglio et al. 2001c, 2004; Fig. 4). Sucrose
demand by developing buds, leaves, and shoots provides a
sink needed to move carbohydrates into the xylem
(Decourteix et al. 2008; Bonhomme et al. 2010). This
positive xylem pressure refills vessels, which regain
hydraulic function (Améglio et al. 2002). Secondarily,
new xylem is formed each spring, providing additional
conduits for axial water flow. This mechanism is common
to all plant species with secondary cambium (Cochard et al.
2001). Experiments by Alves et al. (2004, 2007) found that
plasma membrane H+-ATPase plays an important role in the
uptake of carbohydrates from xylem vessels during growth
resumption in English walnut. Sucrose and hexose trans-
porters (JrSTU1, JrHT1, JrHT2) involved in parenchyma
cells of xylem vessels were also identified in English
walnut (Decourteix et al. 2006, 2008).

4.3 Heat stress

In terms of heat stress, the critical leaf temperature inducing
photochemistry damage appears to be remarkably similar
(∼47.0°C) among many deciduous angiosperms of western
Europe (Dreyer et al. 2001). Using chlorophyll a fluores-
cence measurements, trends showed values of maximal
carboxylation rate (Vcmax, micromoles of CO2 per square
meter per second) and light-saturated electron transport
(Jmax, micromoles of electrons per square meter per second)
at 25°C were the lowest in English walnut (63.6 and
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solute per liter of solution, r2=0.41) or sap sugar concentration (GFS
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on 12 dates from November 1996 to March 1997. Xylem measure-
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cv. Franquette scions on wild walnut rootstocks) from a 15-year-old
walnut orchard. Each value represents the mean of nine twigs. Mean
air temperature was computed as the mean of the minimum and
maximum air temperatures recorded for each date (Améglio et al.
2004, by permission of Oxford University Press)
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102.3 μmol m−2 s−1, respectively) compared to other
species including sycamore maple (Acer pseudoplatanus
L.), pedunculate oak, and sessile oak (Quercus petraea
Matt. Liebl.). In walnut, the highest Vcmax values were
attained at 36.6°C, in the lower range compared to other
species. This is in contrast to Jmax, where the temperature of
37.3°C was at the high end of the range. Species differences
in Vcmax could be due to intrinsic differences in Rubisco,
while changes in Jmax could be due to thylakoid membrane
properties (Dreyer et al. 2001).

There can be considerable variation in both Vcmax and
Jmax in walnut seedlings: Le Roux et al. (1999a) reported a
range of Vcmax from 20 to 69 μmol m−2 s−1 and Jmax from
45 to 178 μmol m−2 s−1 in sun and shade leaves. Values
reported by Dreyer et al. (2001) also compare favorably to
mean V cm a x (47 .0 μmol m− 2 s − 1 ) and Jmax

(104.0 μmol m−2 s−1) values reported for 19 temperate
deciduous angiosperms by Wullschleger (1993).

5 Water relations

Plant water relations may be used to describe a plant’s
characteristics in terms of drought or flood tolerance. There
is some evidence to suggest walnut may be flood intolerant
(Mapelli et al. 1997; Dudek et al. 1998; Winter et al. 2009),
but this aspect of water relations will not be covered in
more detail due to the small number of experiments
conducted on the subject compared to drought tolerance.

5.1 Drought tolerance

Based on Kramer’s (1983) terminology, plants can be
classified based on their capacity to avoid or tolerate
drought. Drought avoidance refers to desert plants that
avoid drought periods by completing their life cycle prior to
the onset of drought. Hence, most other plants, including
walnut, can be characterized in terms of drought tolerance.
Tolerance is divided into desiccation avoidance and
desiccation tolerance.

From the literature, black walnut has an extensively deep
rooting habit (Williams 1990; Pallardy and Rhoads 1993)
that allows it to maintain higher predawn leaf water
potential (Ψpd) by extracting deep soil moisture unavailable
to associated species like white oak (Hinckley et al. 1979;
Martin et al. 1980; Lucier and Hinckley 1982; Ginter-
Whitehouse et al. 1983). Root growth and number of
growing roots, however, are still reduced by water deficits
as reported by Kuhns et al. (1985).

Black walnut and English walnut also display high
stomatal sensitivity to humidity, i.e., stomatal control of
transpirational water loss in seedlings (Ni and Pallardy
1990, 1992; Parker and Pallardy 1991) and mature trees

(Lucier and Hinckley 1982; Loewenstein and Pallardy
1998a; Daudet et al. 1999). Black walnut limits water loss
in response to high vapor pressure gradients (Lucier and
Hinckley 1982; Green 1993). Stomatal closure may
regulate water tension in the leaf rachis xylem (Prachis) in
English walnut (Cochard et al. 2002). Mechanisms by
which stomata can sense changes in Prachis to regulate g and
prevent embolism are still unknown, but soil Ψ or ABA
production by roots was ruled out based on findings from
Cochard et al. (2002). The signaling mechanism may reside
in the leaf mesophyll itself. This is in contrast to findings
from other studies with black walnut (Loewenstein and
Pallardy 1998a, b, 2002) that suggest xylem sap [ABA]
could act as a signal to regulate g during periods of water
deficits.

Contrary to most associated species, walnut is well-
known for exhibiting leaf abscission in periods of drought
(Parker and Pallardy 1985a; Ni and Pallardy 1991; Pallardy
and Rhoads 1993; Tyree et al. 1993). Ni and Pallardy
(1991) found that 3-month-old black walnut seedlings
placed in a growth chamber stopped CO2 assimilation and
leaflets began senescing at Ψ values of −2.2 MPa or less.
Tyree et al. (1993) also reported leaf shedding at similar Ψ
values in 1-year-old English walnut seedlings subjected to
drying cycles. Given walnut’s relatively short period of
active photosynthesis, leaf abscission reduces the amount of
C that can be accumulated in fall and remobilized in spring.

The deep root system, stomatal sensitivity to humidity,
and drought-induced leaf abscission habit suggest that
walnut is comparatively sensitive to water deficits, with
physiological responses being reflective of this sensitivity.
Moreover, all three of these features are desiccation
avoidance mechanisms that act to maintain high leaf water
content. Failure to do so is reflected in comparatively large
reductions in photosynthetic capacity (Davies and Kozlow-
ski 1977; Hinckley et al. 1979) and likely drought-induced
embolism (Cochard et al. 2002). Even in the absence of leaf
abscission, drought may decrease the amount of accumu-
lated C during late summer and fall, thus lowering winter
frost resistance and embolism repair. Because walnut bud
break occurs relatively late, winter embolism repair also
serves a critical role in walnut’s water relations by restoring
hydraulic conductivity at bud break. This allows for rapid
primary growth without prior need to build new secondary
tissues. Without this repair mechanism, walnut’s suscepti-
bility to drought would increase and growth rate could be
severely reduced.

To better illustrate walnut’s desiccation avoidance,
Davies and Kozlowski (1977) used a soil drying cycle to
investigate effects of water deficits on 2- and 3-year-old
potted seedlings of six woody angiosperms growing in
controlled environments. As drought stress increased and
leaf Ψ reached −2.5 MPa, relative rates of A rapidly
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dropped near 0% (Fig. 5). Compared to sugar maple and
American elm (Ulmus americana L.), black walnut was the
only species that did not recover from drought, exhibiting
“leaf yellowing and senescence symptoms as soil water
became limiting” (Davies and Kozlowski 1977). Black
walnut was ranked as having the lowest ability to
photosynthesize under drought stress compared to white
oak, northern red oak, and sugar maple (Hinckley et al.
1979). Using electrolyte leakage measurements, Martin et
al. (1987) showed that leaf desiccation tolerance acclima-
tion was poorly developed in black walnut compared to
northern red oak and white oak.

5.2 Other leaf osmotic adjustments

Walnut exhibits other leaf osmotic adjustments that can
vary greatly among families (Parker and Pallardy 1985a, b).
Such adjustments include increased water-use efficiency
(WUE; micromoles of CO2 per mole per H2O) and leaf
hydraulic conductance (Kleaf; millimoles of H2O per second
per megapascal). These may also be regarded as desiccation
avoidance mechanisms, although the relationship is not as
evident as rooting habit, stomatal closure, or leaf abscis-
sion. Picon-Cochard et al. (2001) used labeling techniques
to study competition of rye grass and drought on
photosynthetic parameters of 3-month-old English walnut
seedlings. Walnut displayed much higher WUE (41%) than
rye (Lolium perenne L.) grass when grown separately.
Drought was found to increase WUE by nearly 40% in
English walnut seedlings when growing with rye grass

competition, but not in the pure walnut treatment. During
initial drought stress, several deciduous angiosperms can
display transient increases in WUE, such as northern red
oak and sugar maple (Ni and Pallardy 1991). Black walnut,
however, can maintain higher WUE than most associated
species until severe water deficits occur, eventually
decreasing WUE (Ni and Pallardy 1991). Cochard et al.
(2007) found that leaves from mature English walnut trees
can quickly change Kleaf in response to light and temper-
ature. Furthermore, these changes can be explained by
regulation of aquaporins (JrPIP2,1 and JrPIP2,2), proteins
located in the plasma membrane that allow transport
through cell membranes. Results indicate that water flow
through walnut leaves under high light followed a sym-
plastic pathway and was influenced by increases in the
density of aquaporins in the cell membrane. In the dark,
however, the apoplastic route was prevalent and influence
of aquaporins was limited. Aquaporins are also involved in
walnut embolism recovery (Sakr et al. 2003).

6 Potential effects of climate change

Regional climate change projections from the Intergovern-
mental Panel on Climate Change (IPCC) were used to
describe potential changes in temperature and precipitation
in the distribution areas of both species (Christensen et al.
2007). Changes refer to the difference between the 2080–
2099 and 1980–1999 periods and were based on the IPCC’s
A1B scenario that describes the twenty-first century as a
“world of very rapid economic growth, a global population
that peaks in mid-century and rapid introduction of new and
more efficient technologies” that are balanced between
fossil and non-fossil energy resources (Nakicenovic et al.
2000). In North America and northern Europe, mean annual
temperature and precipitation are expected to increase
(Table 2). Moreover, extreme climatic events, such as
storms, floods, and droughts, may occur more frequently
and become more harmful in northern Europe (Lindner et
al. 2010). For southern Europe and the Mediterranean,
mean annual temperature is expected to rise while precip-
itation is expected to decrease (Table 2). Risk of summer
drought is likely to increase in these regions (Christensen et
al. 2007), including western Europe (Bréda et al. 2006). In
terms of elevated CO2, concentrations are projected to
increase to at least 486 μmol mol−1 by 2100 compared to
preindustrial values of 280 μmol mol−1 (Nakicenovic et al.
2000).

This information, combined with many of the previously
addressed topics, can provide insight on climate change
impacts on walnut growth. This insight is especially
relevant in wild or extensively managed areas where
nutrient supply is limiting. The magnitude of change in
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temperature is much greater than potential changes in
precipitation (Table 2). There are concerns that these
conditions may increase evapotranspiration rates (Lemprière
et al. 2008; Huntington et al. 2009) and make forest tree
species more susceptible to drought. As such, walnut may be
at a disadvantage due to its susceptibility to water deficits,
especially where drought events are predicted to occur more
frequently. In the central USA, water deficits early in the
growing season may be the most important factor limiting
growth of black walnut on upland sites (Dudek et al. 1998).
This could be particularly important for establishment and
growth of regeneration because research findings suggest
seedlings may be more intolerant of drought than mature
trees.

Walnut may also be more susceptible to late spring frost
injury and embolism due to increased freeze–thaw events, as
shown in the temperature section. Moreover, development of
freezing tolerance and embolism recovery in walnut are both
related to soluble sugar accumulation (Decourteix et al. 2008;
Bonhomme et al. 2010; Poirier et al. 2010). Thus, an increase
in summer drought or heat stress may also increase spring
frost hazard due to a reduction in accumulated C and stored N
during the previous growing season. Some of the lowest
annual diameter growth rates reported in English walnut were
associated with exceptionally cool temperatures in late spring
and early summer (Winter et al. 2009). Certain walnut
growing regions could be impacted according to current
predictions of future climates, such as the western USA
(Allen et al. 2010) and portions of Europe under Mediterra-
nean and temperate continental climates (Lindner et al. 2010).
There is already some modeling evidence suggesting climate
change may lower chilling requirements in California,
making walnut more vulnerable to frost-induced embolism
in early spring (Baldocchi and Wong 2008) and pest attacks
(Luedeling et al. 2011). Similarly, phenological models
indicate that increasing spring temperatures may advance
bud break by up to 4 weeks in central Europe, thus increasing
spring frost hazard (Crepinsek et al. 2009).

There is also evidence suggesting walnut growth and
distribution may remain stable or increase in the twenty-
first century. This evidence is based on larger-scale studies.
For traditionally cold walnut growing regions with mean
annual temperature of 7–8°C, projected increases in
temperature that provide milder winters may actually
increase walnut establishment as reported for English
walnut in inner Alpine valleys of Austria (Loacker et al.
2007). These findings indicate that areas that are currently
considered cold for walnut growth may see increased
establishment and growth depending upon the rate of
temperature increase and the frequency and severity of
extreme climatic events. Another large-scale study of 130
tree species in North America showed black walnut’s
climate-envelope area may not be drastically reduced by
2100 (McKenney et al. 2007). Under a scenario where
populations can fully migrate into their future climate
habitat, black walnut’s distribution was projected to shift
northward by 8.2° latitude (∼900 km) compared to 6.4°
(∼700 km) for all species combined. This placed black walnut
15th out of 130 species in terms of northward shift but still
behind several associated deciduous angiosperms: sugar
maple, northern red oak, white ash, and white oak (McKenney
et al. 2007). Under a scenario where populations survive only
in areas that overlap their current range, black walnut’s
predicted northward shift was the same as the overall mean
of 3.0° (∼330 km). The actual shift is likely to be found
between these two extremes. In addition to these studies,
productivity gains associated with increased atmospheric
CO2 in walnut appear to be greater than average, but there
are very few published results for walnut, combined with a
lack of data on negative effects of elevated O3.

7 Future research needs

Overall, some studies tend to indicate walnut could be
negatively impacted by climate change, while others do

Table 2 Median annual and seasonal (summer, winter) temperature and precipitation projections for various regions where walnuts occur

Species Climate Region Temperature (°C) Precipitation (%)

Sum Win Ann Sum Win Ann

Black walnut
(Juglans nigra)

Humid continental Eastern North America 3.3 3.8 3.6 1 11 7

Humid subtropical Central North America 4.1 3.5 3.5 −3 5 3

Mediterranean Western North America 3.8 3.6 3.4 −1 7 5

English walnut
(Juglans regia)

Temperate oceanic Northern Europe 2.7 4.3 3.2 2 15 9

Temperate continental, Mediterranean Southern Europe and the Mediterranean 4.1 2.6 3.5 −24 −6 −12

Values represent the difference between the 2080–2099 and 1980–1999 periods. Full details of climate change scenario projections can be found in
Christensen et al. (2007)

ann annual, sum summer, win winter
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not. There is also considerable uncertainty regarding the
magnitude of potential climate change effects, from
growth and development of individual trees to survival
and distribution patterns of the genus. We identified a
number of areas that could help address some of this
uncertainty. Quantifying walnut’s response to elevated
CO2 and O3 would be essential to determine potential
impacts on productivity. We found few experiments
investigating the effects of heat stress, which may be
critical to growth and survival under warmer temperatures
and increased frequency of extreme climatic events. We
believe that research investigating a combination of
environmental factors (temperature, CO2, O3, N, water)
would provide a better understanding of integrated stress
response of walnut. In our view, patterns of C and N
allocation and remobilization during periods of environ-
mental stress warrant further investigation given the
importance of these mechanisms. Additional research in
these areas would help increase our understanding of the
fundamental processes related to physiological acclima-
tion to climate change.

Flooding responses have received little attention com-
pared to the impacts of water deficits; more research is
needed to elucidate flooding effects on ecophysiological
processes of walnut and their subsequent impact on growth.
Nutrient processes have been largely directed at N; experi-
ments that examine other macronutrients that are essential
for growth and survival, such as P and K, would enhance
depth in knowledge of walnut nutrient dynamics.

At a larger scale, we recommend investigations into
walnut’s natural distribution across a gradient of physio-
graphic and climatic features, e.g., altitude, temperature,
precipitation, drainage, soil fertility, slope, aspect. This
would help connect ecophysiological responses with long-
term forest development and stand dynamics.
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