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Abstract

« Introduction The wavelet-based functional approach was
evaluated for modelling tree taper of jack pine (Pinus
banksiana Lamb.) trees grown in the Canadian boreal forest
region.

+ Objectives Wavelet-based functional fixed and mixed-
effects models were developed to predict tree taper, and
these models were evaluated for their predictive accuracy
using calibration and evaluation data sets.

+ Results and discussion Diameters predicted using both
fixed and mixed-effects taper models were unbiased for
calibration data set as the 95% credible limits included 0 at
all locations along the boles. The diameters predicted by
these models for validation data set, however, were
unbiased only at four out of 11 locations as the 95%
credible limits of mean bias using fixed effects model did
not include 0 at other locations.

+ Conclusion The study concludes that the wavelet-based
taper models are able to describe the taper of the trees used
in fitting the model but are unable to capture the mean taper
function of the trees not used in fitting the model.
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1 Introduction

Forestry modellers are interested in estimating tree bole
diameter or cross-sectional area of standing tree. Models
that statistically predict the diameter or cross-sectional area
at any height across the tree stem are called taper models,
and these models are needed to accurately predict the
amount of woody material contained in the tree. Accurate
estimation of a tree volume is one of the key requirements
for effective forest management planning. Taper models are
also useful in determining stem quality and calculating
merchantable volumes, log breakout and product recovery.

A number of pair-wise diameter and height measure-
ments (stem profile data) of an appropriate number of
sample trees of a particular species and physiographic
growing region are required to fit a taper model. In most of
the cases, these measurements are obtained by destructive
sampling. The sequence of pair-wise diameter and height
measurements on a tree are spatially correlated. However,
the measurements among trees can be assumed independent
as trees are usually sampled from a large number of plots
representing the physiographic region of the species
(Gregoire et al. 2000).

Many approaches have been developed for producing
taper equations. Early taper equations were based on simple
functions, e.g., Kozak et al. (1969), Ormerod (1973),
Amidon (1984). Max and Burkhart (1976) introduced the
segmented approach, in which a tree is divided into three
distinct sections and a separate polynomial equation is used
to describe each section. Liu (1980) divided the stem into a
number of sections and used a spline smoothing approach
to fit a model for each section. Later, Kozak (1988) and
Newnham (1992) introduced the variable exponent model
in which the exponent changes from the base to the tip of
the tree to account for differing shapes along the stem
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profile. In addition, Sharma and Oderwald (2001) applied
dimensional analysis and Bi (2000) used the Fourier
transformation approach to estimate the exponent of taper
equation.

Linear and nonlinear least squares regression techniques
have been used to fit these models most of the time.
However, stem profile data are longitudinal, consisting of
multiple measurements from a single stem, which violates
the fundamental least squares (Gauss Markov) assumptions
of independence and equal distribution of errors with zero
mean and constant variance (Gregoire et al. 1995; Dieguez-
Aranda et al. 2006). Forest modellers have increasingly
recognized the issues of autocorrelation and heteroscedas-
ticity in stem profile data (Leites and Robinson 2004;
Trincado and Burkhart 2006; Li and Weiskittel 2010) and
are seeking more robust methods to model stem taper.

Mixed-effects models are considered very powerful and
effective tools to counteract problems related to longitudi-
nal data. These models include both fixed and random
effects and can be used to estimate the covariance structure
from longitudinal data (e.g., Schabenberger and Pierce
2002). Fixed effects relate to parameters averaged across a
population, and random effects are associated with a
specific sampling unit (Demidenko 2004). These models
also distinguish between deterministic and stochastic model
errors.

Most recent taper modelling studies rely on mixed-
effects models. For example, taper models developed using
a mixed model approach include those by Valentine and
Gregoire (2001), Zhang et al. (2002), Garber and Maguire
(2003), Leites and Robinson (2004), Trincado and Burkhart
(2006), Koskela et al. (2006) and Sharma and Parton
(2009). Mixed models provide the flexibility to estimate
both population-averaged and subject-specific (tree) param-
eters and thus to more precisely estimate tree taper.
However, Koskela et al. (2006) stated that the linear mixed
model may not always be flexible enough to precisely
describe a tree stem as it is strictly tied to the functional
model forms. Nonlinear mixed-effects models, on the other
hand, can be difficult to fit if the number of mixed-effects
parameters is greater than 3.

Tree diameter inside bark (dib) or relative diameter
inside bark (dib/dbh, where dbh is diameter outside bark at
breast height (1.3 m)) that varies from the bottom to the top,
can be regarded as a function and be treated as a unit of
analysis (Ramsay and Silverman 1997; Besse et al. 2005;
Ferraty and Vieu 2006). Tree taper measurements contain
discrete pair-wise height and relative diameter measure-
ments at certain locations along the length of the tree. Such
functional taper data can be analysed using either nonpara-
metric or wavelet-based approaches. The nonparametric
approach is less restrictive, as it does not require equally
spaced (either in time or space) measurements. However,
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this approach has limitations when making predictions for a
new subject for example a tree as there is neither a way to
display nonparametric relationships nor is there structural
information about it (Ferraty and Vieu 2006, pp 49-50). In
contrast, the wavelet-based functional approach being a
parametric approach, predictions about a new subject can
be easily made. However, this approach requires equally
spaced functional measurements. Thus, if the height and
relative diameter are measured at equal intervals of relative
height or time across many trees, these discrete measure-
ments can be analysed using wavelet-based function
approach.

The measurement locations or intervals can be regarded
as a grid, and tree diameter measurements at various height
locations for each tree can be regarded as a function.
Figure 1 displays the relationship between jack pine trees
relative height and its corresponding relative diameter.
There are 11 measurements for each tree that are repre-
sented by circles. These circles are connected to obtain a
curve. In addition, the functional approach provides specific
model parameters for each equally spaced measurement
grids (measurement locations). Thus, the functional data
refers to the observations collected across curves or
functions, where the curve is used as a basic unit of data
analysis (Ramsay and Silverman 1997).

The functional mixed model is an emerging approach
to model functional data with linear mixed effects.
Recently, Morris and Carroll (2006) have developed a
wavelet-based functional mixed model (WFMM) to
analyse functional data. In this approach, the observed
response functions (e.g. taper measurements) are first
projected into wavelet space, and then the functional
mixed model is fitted in the wavelet space. They are then
re-projected back into data space once the model param-
eters are estimated across grid locations.

The WFMM has the advantage of both a functional
approach and wavelet transformation. The major benefit of
a functional approach to modelling is that it does not
require specification of parametric form for curves. For
example, a simple linear form may represent tree taper
because separate model parameters are estimated to make
prediction at each measurement (grid location). Similarly,
the wavelet transformation provides compact support to
efficient transformation of local features to wavelet space.
Another dimension of WFMM is the parameter estimation
in wavelet space. Wavelets provide orthogonal transforma-
tion and a unique opportunity to remove noise from the
signal without losing information. The wavelet allows both
a parsimonious and a flexible way to represent variance
covariance matrix because of its whitening property (much
smaller correlation among wavelet coefficients than original
data). Hence, WFMM has attractive properties to model
functional data.
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The objectives of this study were to demonstrate the
application of (1) a functional mixed model to tree taper
modelling for jack pine (Pinus banksiana Lamb.) trees
using the WFMM approach and (2) investigate its
usefulness, advantages and limitations in taper modelling.

2 Wavelet-based functional mixed model

In this section, we briefly summarize the wavelet-based
functional mixed model method introduced by Morris and
Carroll (2006) and describe how to apply it to tree taper
modelling. Functional mixed models are a recent develop-
ment (Guo 2002; Antoniadis and Sapatinas 2007; Morris et
al. 2003) and can be used to model both fixed and random
functions in the same functional space. Functional mixed
models can be thought of an extension of Laird and Ware’s
(1982) random effects model for functional data, where the
forms of the fixed and random effects functions are left
completely unspecified (Morris and Carroll 2006). For
example, let a sample of n curves Y(¢), i=1, ..., n, be
observed on compact set T € R, which is assumed without
loss of generality to be [0, 1]. In the case of tree taper
modelling, these can be assumed as the relative diameter
measurements of a tree, which are equally spaced along the
length of tree (7). Following Morris and Carroll (2006) and
Morris et al. (2008), a functional mixed model for these
functions can be represented as:

Yi(t) = zp:ijBj(t) + zm: ZieUr(t) + Ei(t) (1)
J=1 k=1

where Xj; and Z; are the covariate matrix and the design
matrix, respectively, for functional (time or space ) fixed
effects B(f) and random effects U(?), respectively, and E;
(f) are residual error processes. We assume U(f) are
independent and identically distributed (i.i.d.) Gaussian
processes with mean zero and covariance surface Q(t,%).
Similarly, E(#) are i.i.d. Gaussian processes with mean zero
and covariance surfaces S(¢1,t,). Ui(f) and E{(f) are assumed
independent.

Covariates {X =12, p}, discrete or continuous,
can be any factors that can explain the tree taper. Each
functional coefficient Bj(f) describes the effect of the
corresponding factor at location 7 of the taper. The covariate
can include a column of 1’s to represent overall mean
function, continuous or discrete variable of interest like
relative height, function of dbh, height, stand density, or
any interaction of these factors. Similarly, the functional
random effects provide a flexible approach for modelling
correlation among trees if trees are not independent. For
example, sample plot or regional level random effect

functions can be specified when multiple trees are obtained
from the same plot.

Fixed and random effects and the residual error process
are all functional in functional mixed models. Morris et al.
(2006) stated “heuristically [the WFMM] model fitting can
be viewed as fitting separate mixed models at each time [or
space point across the grid £], but with an extra layer added
for regularization, that is, which borrows strength across
observations within a function.”

A discrete version of model 1 is required if we have all
trees relative diameters are measured on the same equally
spaced grid ¢ of length 7 Let ¥ be the nx7T matrix
containing the observed samples on grid with each row
containing one observed sample on grid 7. A discrete form
of this mixed model can be expressed as:

Y =XB+ZU + E (2)

Each row of the nxT matrix ¥ contains measurements
from a tree on grid ¢. The matrix X is an nxp design matrix
of covariates, and B is a pxT matrix of fixed effect
functions on grid ¢t with B;; representing the effect of the
covariate in column i of X to response variable Yat time or
space #. The matrix U is an mx T matrix of random effect
functions on the grid ¢, and Z is the corresponding nxm
design matrix. E is an (nx T) matrix containing the residual
error process of the corresponding observed sample. We
assume that the rows of U are i.i.d. MVN (i.e., multivariate
normal) (0, @) and rows of E are ii.d. MVN(O, S),
independent of U, with @ and § being 7'xT covariance
matrices that are analogues of the covariance surfaces in
Eq. 1 on the grid # (Morris et al. 2008).

Note the definition of functional data (sampled on a fine
grid) will not be too restrictive if the functions are observed
across a fine grid (i.e. smaller steps relative to tree height).
We can interpolate the observed data to obtain a common
grid without changing it substantively (see Morris and
Carroll (2006) for details on WFMM modelling assump-
tions and computation).

2.1 Model development

Following Morris and Carroll (2006), the nonparametric
wavelet-based mixed model can be developed as follows:

1. Perform a discrete wavelet transformation (DWT) on the
response vector for each observed curve to obtain
corresponding empirical wavelet coefficients.

2. Fit a functional mixed model using Markov chain Monte
Carlo (MCMC) methods to these empirical wavelet
coefficients, yielding a posterior sample of model parame-
ters for fixed effects and random effects functions, as well
as the variance components.
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3. Obtain the posterior distribution of the mean fixed and
random effects on a fixed grid ¢ using inverse discrete
wavelet transformation (IDWT) and use these posterior
samples of model parameters to perform Bayesian estima-
tion, inference and prediction.

Thus, the first step involves the right matrix multiplication
of observed functional curves sampled over an equally
spaced grid of size 7 by an orthogonal DWT matrix.
Mathematically, it can be represented as D=YW’, where W
is a T T size orthogonal DWT matrix, ¥ is a NXT matrix
containing each function (tree taper measurements) stacked
as a row, and D is NxT matrix containing the empirical
wavelet coefficients for all observed curves (note the
superscript ' stands for franspose). Each row of D contains
empirical wavelet coefficients for the curve and the
columns double indexed for scale j and location k, with
j=1, .., Jand k=1, ..., K;.

Wavelet coefficients are defined as the inner product of
the observed function y(t) and the corresponding wavelet
basis function. For example, let y=(yy, ..., y7) be a sample
of a function at 7 equally spaced points with 7"assumed to
be the power of 2. The vector y can be transformed to
wavelet space as d=yW' where W'=[V,/ W', W', ... W/].
However, there exists a fast algorithm (DWT) for decom-
posing y into a set of T'wavelet coefficients (Mallat 1989;
Percival and Walden 2000) but only in O(7T) operations. The
DWT decomposes the set of observations into sets of
wavelet and scaling coefficients d=(cj, d;, d,, ds, ..., d))
where d;=yW;' are wavelet coefficients at level or scale j
and c;=yV) are the scaling coefficients (Percival and
Walden 2000; Morris et al. 2006). For simplicity, both the
wavelet and scaling coefficients are referred to as wavelet
coefficients. For details on wavelets, see Daubechies
(1992), Chui (1992) and Keinert (2004), and for details
on DWT, see Percival and Walden (2000), Vidakovic (1999)
and Ogden (1997).

2.2 Parameter estimation

WFMM estimates model parameters in a wavelet space
using MCMC with vague priors for the variance and
independent mixture priors for the elements of B* (* sign
used for parameter in wavelet space). The prior distribution
of B*;, the wavelet coefficient at scale j and location k for
fixed effect i are defined as

By = 7N (0 7in) + (1 - 7;‘k)60a (3)

7;k = Bernoulli (”i/‘) ,

. . * . . .
where d, is a point mass at 0 and v ;; is an indicator of
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whether wavelet coefficient (j, k) is important for represent-
ing the signal for the fixed effect function i. Similarly, 7;
and 7y are prior probability and variance, respectively, for
representing the fixed effect i. This prior is frequently used
in Bayesian implementation of wavelet regression (Clyde et
al. 1998; Abramovich et al. 1998) as it provides adoptive
regularization of the fixed effect functions by nonlinearly
shrinking them toward 0. In addition, regularization
parameters 7, and m; determine the relative trade-off
between variance and bias in the nonparametric estimation
(Morris et al. 2006). These regularization parameters can
either be specified or estimated using an empirical Bayes
method (see Carlin and Louis 2000 for details).

A fully specified Bayesian model for functional data is
defined after specifying distribution and priors for model
parameters (fixed functional effects, random functional
effects and variance—covariance vectors (@ and S)). The
marginalized likelihood functions are used to obtain the
posterior sample of model parameters. The MCMC scheme
includes three major steps (Morris et al. 2006). First, fixed
effect samples are drawn and the fixed effect i at level j and
location k is estimated by integrating out the random
effects. This will improve the mixing properties of the
samples over a Gibbs sampler. Samples of between-curve
covariance parameters @ and § were then obtained using a
single random walk Metropolis—Hastings step. Finally, a
series of Gibbs samples were taken to update the random
effect wavelet coefficients. See Morris and Carroll (2006)
for details about the parameter’s conditional distributions.

Posterior samples of the model parameters in the wavelet
space are projected back to the data space by applying
IDWT. These samples are obtained for each fixed effect
function B{f) on the grid t by applying IDWT to each
posterior sample of the corresponding vector of wavelet
coefficients B;*=(B*;;, ..., B* k) and random effects
functions. Once the posterior samples of model parameters
are estimated, Bayesian parameter estimation and inference
can be made. However, we are interested in predicting tree
taper across the tree height grid # using a WFMM model in
this study. Tree taper can be predicted using the posterior
point estimate of model parameters.

3 Wavelet-based functional taper model
3.1 Model fitting

In a project to model stand-density effects on tree taper,
Sharma and Parton (2009) destructively sampled 1,135 jack
pine (P banksiana Lamb.) trees across 25 even aged
monospecific plantations covering the Canadian boreal
forest region of Northern Ontario. The measurements made
on those trees included tree diameter inside bark (dib) at
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0.15, 0.5, 0.9 and 1.3 m (breast height) and at every 10th
percentile of tree height above breast height for 80% of
sampled trees and at every Sth percentile of tree height
above breast height for the rest along with bark thickness at
the breast height.

As mentioned earlier, WFMM requires equally spaced
functional data. Therefore, we used the measurements at
0.15 and 1.3 m and every 10th percentile above breast
height from each tree as these constituted approximately
equally spaced measurements. This resulted in 11 measure-
ments per tree or function. Following Percival and Walden
(2000, p. 140), the 11 taper (dib/dbh) measurements for
each tree were doubled to make 22 measurements (11 from
bottom to top and another 11 from top to bottom) to
minimize the boundary effects. Hence, the size of 7'was 22
for parameter estimation. However, only the first 11 grid
point measurements were used for model evaluation.

Of 25 sites, 13 sites were randomly selected and trees
from these sites were used for model calibration and the rest
were used for model evaluation. For simplicity, trees with
multiple missing measurements across the girds were not
included in the analysis. This resulted in 6,149 pair-wise
dib measurements from 559 trees for the calibration data set
and 5,650 pairs from 516 trees for the evaluation data set.
The mean dbh of tree was 17.86 cm, ranging from 6.1 to
34.3 cm, and the mean height was 16.13 m, ranging from
9.08 to 23.17 m for calibration data. Relative diameters of
these trees plotted against their corresponding relative
heights are displayed in Fig. 1. The mean dbh of the

Relative Diameter

0 0.2 04 0.6 0.8 1
Relative Height

Fig. 1 An illustration of tree taper for jack pine trees data from
Ontario, Canada (n=559)

evaluation data set was 16.74 cm ranging from 7.5 to
33.8 cm. Similarly, the height ranged from 7.93 to 22.3 m
with the mean of 14.75 m for this data set.

We tried a variety of explanatory variables for both the
fixed effects and random effects for wavelet-based linear
functional taper models. Based on the smallest values of
residual sum of squares and sum of absolute residuals, the
following two models (Eqs. 4 and 5) were selected.
However, we emphasize that developing a predictive taper
model for jack pine was not the objective of this study.
Rather, we attempted to explore the potential of wavelet
application in forestry modelling. A row matrix of these
models in the form of Eq. 2 can be represented as:

w0 = (o) Vabh VH| (4)

y(t):[(h(t)/H) Vdbh \/ﬁ]ﬁ—i—[\/bt/dbh\/bz/dbh]U (5)

where y(¢) is 1 x22 row matrix of tree relative diameter (dib/
dbh), A(®)/H is 1x11 row matrix with the relative height
measurements across the tree height (at stump height, dbh and
1/10 of height above breast height) and dbh, A and bt are the
tree diameter at breast height, total height and bark thickness,
respectively. 5 and U are fixed and random effects parameter
matrix of size 13%22 and 2%22, respectively. Because of
replication of the tree relative diameter measurements, there
were 22 columns in the parameter matrix. As the first 11
column of parameter matrix were similar to the remaining
columns of parameter matrix, the first 11 columns of
parameters were used to make inference about models fitting
and evaluation (Table 1). As suggested by Morris and Carroll
(2006), tree variables \/dbh, H and \/bt/dbh were stan-
dardized to have mean 0 and standard deviation 1.

We used Daubechies (1992) wavelet with two vanishing
moments at J=2 levels and periodic boundary conditions.
The choice of wavelet and boundary condition were made
by assessing the deviation of the diagonal eigenvalues of
correlation matrix (w "> W? w2, W*=WW and w=diag
(W?%)). The wavelet and boundary condition that provided
minimum deviation in eigenvalues were preferred to
maintain orthogonality, as far as possible, in wavelet
transformation either from data to wavelet space or vice
versa. We fitted the WFMM model using a computer
programme, WFMM version 2.0.3."

While specifying the MCMC simulation, we used
20,000 iterations as burn-in and ran the model for
300,000 iterations, keeping every 10th run. The Metropo-
lis—Hastings acceptance probability for the variance com-

! Detailed information about the software is available at http:/
biostatistics.mdanderson.org/SoftwareDownload/SingleSoftware.
aspx?Software 1d=70.
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Table 1 Posterior point estimates for wavelet-based linear functional fixed and mixed-effects model parameters

t1 ? 13 t4 5 16 t7 3 9 t10 t11
Fixed effects model
05 -8.1767 —0.6487 0.3088 0.3665 0.4079 0.4789 —0.0984 —-0.7540 —1.9242 —1.7409 —-0.4306
5> 0.6507 0.3712 —0.0394 —0.0578 -0.1264 —0.4401 —0.6447 -1.2369 -1.3200 —0.2891 0.1734
O3 0.5194 0.5944 0.1147 0.4624 0.2063 0.2398 —-0.1015 0.2849 —0.5086 0.2791 0.3881
04 0.4807 0.2705 0.5826 0.2133 0.2553 0.2768 0.4755 0.0608 0.4057 -0.0512 0.2725
0s 0.2289 0.2970 0.2164 0.1596 0.4982 0.1009 0.1412 0.2504 0.1140 0.1885 —0.0437
Os —0.2353 0.5302 0.1209 0.3271 0.0164 0.3061 0.1145 0.2490 0.0980 0.0981 0.1277
057 0.4460 —0.0887 0.5162 —-0.0920 0.1921 0.0643 0.2553 0.1811 —0.2930 0.2461 0.2437
s 1.0614 —0.2692 0.0663 0.1990 0.2842 0.0533 0.2852 0.0375 0.2368 0.0482 —0.1044
Bo 0.1478 0.1205 0.2785 0.1054 0.0850 0.2078 0.1032 0.2860 —0.2485 0.2719 —0.0108
Bio 0.0073 0.2972 —0.0481 0.3437 —0.1864 0.3412 -0.0144 0.1409 0.1688 —0.0854 0.3438
B —0.1456 0.2875 0.0888 0.0513 0.3205 —0.0500 0.1137 —0.0465 0.5822 -0.0786 —-0.3986
Bz 0.0154 —0.0029 —0.0086 —-0.0133 —-0.0153 -0.0154 -0.0179 —-0.0213 -0.0257 —-0.0265 -0.0217
B3 0.0060 0.0205 0.0163 0.0169 0.0183 0.0186 0.0193 0.0202 0.0192 0.0410 0.0376
Linear mixed-effects model
05 -7.9731 -0.4536 0.4698 0.6176 0.5871 0.6760 0.0566 —0.6395 —-1.8999 —-1.7287 -0.4599
5> 0.7326 0.4771 —-0.0690 0.0017 —0.1568 —0.4450 —0.6877 —1.3042 —1.2814 -0.3671 0.1497
O3 0.3985 0.5895 0.1705 0.4658 0.1899 0.2609 —0.0661 0.2158 —-0.3479 0.1919 0.3240
04 0.5137 0.2386 0.5552 0.1568 0.3134 0.2163 0.3739 0.1511 0.2973 0.0334 0.2510
0s 0.1798 0.3414 0.2957 0.1863 0.3630 0.1903 0.1422 0.2886 0.0671 0.2021 —0.0213
Os -0.2027 0.4858 0.2079 0.2766 0.0224 0.3311 0.0603 0.3503 —0.1494 0.2225 0.1310
G4 0.6441 -0.1926 0.5398 —0.1113 0.2828 0.0225 0.2986 0.1635 —0.3182 0.2072 0.3827
Gs 0.8008 —-0.1615 0.1428 0.1258 0.3335 -0.0123 0.3754 0.0307 0.1094 0.1296 —-0.0900
B 0.3216 0.0934 0.0555 0.1806 0.1891 0.0994 0.1615 0.1567 -0.0214 0.1106 0.0790
Bro 0.1125 0.1861 0.0281 0.2414 —0.0447 0.2706 —-0.0223 0.1795 0.1148 -0.0050 0.2219
0B -0.3075 0.3997 0.0552 0.1691 0.0596 0.1357 0.0378 -0.0359 0.6916 —-0.1238 —0.4430
B2 0.0186 0.0004 —-0.0058 -0.0107 —-0.0131 -0.0133 -0.0165 —-0.0203 —-0.0254 -0.0269 —-0.0224
B3 0.0044 0.0190 0.0155 0.0152 0.0170 0.0170 0.0177 0.0195 0.0180 0.0409 0.0380
U, -0.0173 0.0001 0.0136 -0.0070 —-0.0078 -0.0123 -0.0100 -0.0034 —-0.0037 -0.0030 0.0071
U, -0.0173 0.0001 0.0136 -0.0070 -0.0078 -0.0123 -0.0100 -0.0034 —-0.0037 -0.0030 0.0071

tl, 12,..., t11 represent tree height grids

ponent was between 0.2730 and 0.3428 for the fixed
effect and 0.2747 and 0.4974 for the mixed-effects
WFMM model. We used trace plots of the model
parameters (not shown) to assess convergence. The trace
plots revealed that the MCMC algorithm converged and
mixed adequately.

To evaluate the performance of the WFMM model, we
adopted the Sharma and Parton (2009) variable exponent
taper model Eq. 6 as the benchmark. Hereafter, this model
is referred to as the VET model. For simplicity, we fitted the
VET model using the NLIN procedure of SAS 9.1 (SAS
Institute Inc 2004).

o 51+522+5322
4 s ( =) (1 (©)
D H—hp) \hp

where /p is the breast height (1.3 m), z (= #/H) and 4,
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i=0,1, 2, 3 are model parameters and other variables are as
defined earlier.

3.2 Model performance and evaluation

Model performance was evaluated based on predictions of dib
across 11 equally spaced grid points (across tree height) for
both the calibration and evaluation data set. We compared the
predicted dib for the three models (Egs. 4, 5 and 6) across the
grid. To assess the residuals across the calibration and
evaluation data sets, we first computed the posterior mean of
WFMM model coefficients for each functional effect.
Posterior point estimates of model coefficients were then
used to predict dib. At each grid location, the bias in dib
prediction is defined as the difference between observed and
predicted stem dib. Since WFMM being a Bayesian model,
we calculated the 95% credible limits of dib prediction bias
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for both fixed and mixed-effects models. In the case of the
VET model, we calculated studentized bootstrap 95%
confidence interval of dib prediction bias using 10,000
bootstrap samples (DiCiccio and Efron 1996). Unlike a
linear mixed model, no clear algorithm is available to predict
the random coefficient for a wavelet-based linear mixed
functional model for a new data set. Therefore, we were
unable to calculate the predicted dibs for this model for the
evaluation data set.

The point estimate of posterior mean of the fixed and
mixed (fixed and random) effects WFMM model coeffi-
cients are given in Table 1. For every grid location, there
were 13 model coefficients for fixed effects and two
additional coefficients for mixed effects. The variance—
covariance matrix of residuals (S) for both fixed and mixed-
effects WFMM and the random effects (Q) for mixed-
effects WFMM are given in Fig. 2. The variation of wavelet
coefficients was larger at the first, second, sixth and 10th
grid locations than at other locations for variance covari-
ance S and at first, second and sixth grid locations for the
random effect variance. The first grid location represents
the tree section close to the ground, where larger variation
was expected, and the other grid locations represented the
regions of taper inflection. Thus, the diagonal variance
covariance Q (random effects) and S (model residual)
matrices figures clearly demonstrate that the WFMM model
can easily accommodate the range of non-stationarity and
heteroscedasticity in the data.

Dibs predicted by both the fixed and mixed-effects WFMM
models were very accurate for the calibration data (Fig. 3). The
mean bias 95% credible limits included the zero for all grid

Fixed S
N

Tree height grid

Mixed S
N

1 2 3 4 5 6 7 8 9 10 1"

Mixed Q

1 2 3 4 5 6 7 8 9 10 1
Tree height grid

Fig. 2 Fixed effect covariance parameter (S) and random effects
covariance parameter (Q) of fixed and mixed-effects wavelet-based
taper model in relation to equally spaced tree stem height. Note: 1 to
11 along the x-axis represents the tree height girds
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Fig. 3 Dib prediction mean biases across tree stem grids and their
95% credible limits for the fixed and random effects wavelet-based
functional models (WFMM) and mean biases across tree stem grids
and their 95% studentized bootstrap interval for a variable exponent
model for calibration data. Note: 1 to 11 along the x-axis represents
the tree height girds

points implying that the predictions were unbiased. Hence, the
WFMM model fitted the calibration data almost perfectly. In
the case of VET model, the studentized bootstrap 95%
confidence included 0 at 5 grid points.

In case of the evaluation data, the WFMM fixed effects
model dib prediction had a small bias for some of the
height grid locations (Fig 4). Out of 11 grid points across
tree stem, only four grid points prediction were unbiased.
Similarly, VET model predictions for this datasets were
unbiased at five grid point locations. However, the range of
mean bias 95% credible limits varied from —0.1 to 0.22 cm
for the WFMM fixed effects model (Fig. 4). The dib
predictions by WFMM model seems to be slightly less
accurate for the evaluation data than for calibration data.

The WFMM fixed and mixed-effects models were
further evaluated by generating stem profile curves for
three randomly selected small-, medium- and large-sized
trees (Fig. 5). Dibs predicted for these trees were very
similar across tree height for both models. Predicted dibs
were more accurate for small- and medium-sized trees than
for large-sized tree.

3.3 Estimating diameter inside bark and tree volume
A functional model treats dib measurements across the grid as

a unit of analysis, and it has a matrix of model parameters. It
may seem that using this model is more complicated, but the

%‘%%% IN-\)A @ Springer
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Fig. 4 Dib prediction mean biases across tree stem grids and their
95% credible limits for the fixed effects wavelet-based functional
model (WFMM) and mean biases across tree stem grids and their 95%
studentized bootstrap intervals for variable exponent model for
validation data. Note: 1 to 11 along the x-axis represents the tree
height grids

use of this model is as simple as other traditional models. The
fixed effect WFMM taper model can be used to estimate
relative dib at any grid locations. For example, diameter inside
bark can be estimated as

dib(t) = dbh.[5(t))], (7)

where di/l;(t) is the predicted diameter inside bark at grid
locations ¢, 3(t) = [(h(t)/H) v/dbh H|pB and other terms

Fig. 5 Tree profiles generated (a)
using a wavelet-based functional 25

as defined earlier. For illustration, let us take the example of
the small diameter-sized tree as shown in Fig. 5. For this
tree, [((t)/H) Vdbh vH]=[0.0069, 0.0903, 0.1807,
0.2710, 0.3614, 0.4517, 0.5448, 0.6324, 0.7158, 0.8131,
0.9034, —1.5018, —0.7513], where the first 11 numbers are
tree relative height at equally spaced grid ¢ and the remaining
two are standardized values (mean O and variance 1) of
Vdbh and \/H. This row vector can be multiplied by model
parameter ﬁ (Table 1a) to get predicted values of tree taper
across grid ¢. Dib along the bole of the tree can then be
obtained by the scalar multiplication of this taper value and
dbh (Eq. 7). This results in the predicted dib (centimetres)
across the grid ¢ as 12.25, 10.48, 10.04, 9.49, 8.91, 8.21,
747, 6.56, 5.39, 3.91 and 2.09, respectively.

The dib predictions across the height grid can be linearly
interpolated to obtain diameter at any point along the bole.
In order to calculate the dib at 5 m using Eqgs. 6 and 7 for
the trees shown in Fig. 5, for example, the dib across the
tree height grids are predicted first. Two stem height grids
close to 5 m are then identified, and their corresponding
dibs and heights are noted. Dib at 5 m can now be
calculated based on these dibs and heights using linear
interpolation. In our examples, predicted dib for the small-,
medium- and large-sized trees at 5 m height were 9.02,
15.40 and 23.12 cm and 9.04, 15.53 and 23.21 c¢cm by using
the fixed and mixed-effects WFMM, respectively. The
volume of the tree can then be calculated using these
predicted diameters and heights along the bole by applying
Smalian’s formula (Avery and Burkhart 2002). Volumes
(deci m?) of these small, medium and large trees are 67.824,

(b)
25

fixed effects model and b
wavelet-based functional
mixed-effects model for sample q
tree #253 (dbh=11.5 cm
and ht=14.39 m), #115 20t
(dbh=19.2 cm and ht=18.18 m)
and #544 (dbh=28.3 cm and
ht=22 m), respectively
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O Observed

Fixed
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233.506 and 599.822, respectively, for the fixed and
68.140, 235.806 and 608.342, for the mixed-eftects
WFMM models, respectively.

4 Discussion

This study demonstrated the application of wavelet and
functional mixed models for tree taper modelling in
forestry. When diameters are measured at equally spaced
tree height, these measurements can be transformed into
wavelet space and functional mixed model can be applied
to estimate model parameters. Once model parameters are
re-projected onto data space, these models can be used to
predict tree diameters at any height and also volumes
between any heights.

Diameters predicted by WFMM taper models were
unbiased for the calibration data but were slightly biased
for the evaluation data. However, the magnitude of bias was
within the acceptable range (i.e. less than 0.16 cm). This
implies that the wavelet approach could accurately mimic
the data used in model fitting as required in image
restoration but is unable to capture the mean function
accurately to describe the taper of the trees not used in the
parameter estimation.

The WFMM model works in the functional context, i.e.,
it fits 7T scalar linear mixed models simultaneously.
Therefore, the fit could be unstable either due to collinearity
in the design matrix or by having a small effective sample
size for some of the variance components (Morris et al.
2006). We recognized this difficulty in this study. Unlike a
linear mixed model, the current version of WFMM does not
accept a single random effect due to assumptions related to
variance covariance matrices Q and S. The assumptions on
which these matrices are based sometimes limit the choice
of random effects. In addition, if we choose multiple
random effects, the fit could be poor as the model assigns
larger variability to the random wavelet coefficients than to
fixed effect wavelet coefficients. Therefore, the current
version of WFMM requires judicious choice of random and
fixed effects.

These limitations of the WFMM model forced us to
choose bark thickness as the random effect. Since the bark
thickness varies from one tree to another, the value of the
dependent variable (y=dib/dbh) for two trees may not be
the same even if their dbhs are identical because of the
differences in bark thickness. Therefore, the bark thickness
was chosen as the random effect here. However, the model
did not limit the random effects that are considered
independent across rows. As the WFMM is at the early
stages of development, this issue needs to be addressed by
conducting more research and developing an efficient
algorithm to support broader application. Another concern

with the WFMM model is the lack of a global functional
test for formally assessing fixed and random effects.
However, we found it to be very robust for the choice of
fixed effects. When the Eq. 4 was fitted without H (tree
height) in the design matrix X, this model also provided a
better fit in terms of bias in predicting diameters.

The wavelet-based functional taper model presented
provides a viable alternative to modelling taper across
trees. Since the WFMM approach can be applied to any
data that are equally spaced across time or space, this
approach opens new possibilities for analysing longitudinal
or taper data collected across time or space.
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