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Abstract
• Introduction Millions of hectares of Quercus ilex forests
dominate disturbed landscapes in the western part of the
Mediterranean basin. Although these forests are very wide-
spread, little is known about the composition and structure of
their associated ectomycorrhizal fungal communities.
• Results and discussion We examined seasonal patterns in
ectomycorrhizal communities and their response to increased
drought using a rainfall exclusion experiment established
in a Q. ilex coppice since 2003. Ectomycorrhizae were
sampled four times in 2007–2009. By sequencing fungal
ITS, we identified 129 species in 1,147 sequenced ectomy-
corrhizal root tips. The fungal community in the surface
organic horizon was well described by the logseries
theoretical model, with 47.9% of singleton species. The
composition of the community was strongly dominated by
Basidiomycetes, with three families (Thelephoraceae,
Russulaceae and Cortinariaceae) accounting for 72.9% of
the root tips. Relative abundance of Russulaceae and
Thelephoraceae showed pronounced seasonal shifts. Ex-
perimental reduction of rainfall resulted in significant shifts
in community composition and seasonal fluctuations but
had no effect on global richness of the community.

• Conclusions Together, these results suggest that the pre-
dicted rainfall reduction in this region due to climate change
will lead to shifts in species composition in ectomycorrhizal
communities.

Keywords Ectomycorrhizal communities . Global change .

Mediterranean forests . Drought

1 Introduction

After millennia of exploitation (Quézel and Médail 2003),
Mediterranean forests are now facing rapid anthropogenic
climate change (IPCC 2007). Current climate models
project a rise in mean temperature of between 2.2°C and
5.1°C and a potential decline of 4–27% in annual rainfall
during the twenty-first century, with dramatic changes in
rainfall distribution over the Mediterranean basin (IPCC
2007). According to this scenario, this region may be
especially vulnerable, with the extinction of more than
2,000 plant species expected (Malcolm et al. 2006) and
dramatic consequences for the structure, dynamics and
functioning of Mediterranean forests (Allard et al. 2008).
The effects of longer and more severe drought on soil biota
are still poorly investigated. From an ecological point of
view, a decrease in precipitation may reduce soil wetness
(Limousin et al. 2009), decrease soil carbon exchange
(Misson et al. 2010) and affect major soil enzymatic activities
with consequences for phosphorus, carbon and nitrogen
turnover (Barnard et al. 2006; Sardans and Penuelas 2005).

Ectomycorrhizal (ECM) fungi are a key microbial group
involved in these soil processes. Like the majority of
temperate-zone trees, Mediterranean tree species are associ-
ated with these fungi, which make chimeric structures called
Ectomycorrhizae on fine roots (Smith and Read 2008).
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More than 5,000 species of Ascomycetes and Basidio-
mycetes are involved in ectomycorrhizal mutualisms world-
wide (Smith and Read 2008). At the ecosystem level, ECM
fungi drive nutrient cycling. As in most temperate forests,
under the harsh and unpredictable Mediterranean climate,
Ectomycorrhizae are crucial for nutrition of both partners
and protect plants against soil parasites (Morin et al. 1999),
toxic compounds (Hall 2002) and drought (Jany et al.
2002). Understanding and documenting species responses
to current and predicted climate change scenarios are
current frontiers in ecology (O’Neill et al. 2008; Shi et al.
2002). To our knowledge, the response of ECM fungal
communities to the predicted rainfall decline in the Medi-
terranean basin has not been investigated. More specifically,
there is a need to document the effect of increasingly severe
drought predicted with climate change on the temporal
dynamics of Mediterranean ECM communities.

In the western part of the Mediterranean basin, Quercus
ilex L. (holm oak) dominates the landscape at low elevation.
This evergreen species covers more than 7.5 Mha, mainly in
coppices of anthropogenic origin (e.g. after wildfires or clear-
cutting), characterized by high stem density and low primary
productivity (Terradas 1999). In France, because human
pressure on woody resources has decreased, Q. ilex coppices
are now expanding and ageing (Scarascia-Mugnozza et al.
2000). As they age, these secondary forests accumulate
structural changes that represent new and valuable opportu-
nities for harbouring a diversity of insects, birds and epiphytic
bryophytes (see Buse et al. 2008).

To our knowledge, belowground diversity, and especial-
ly ECM diversity, has not been studied in Q. ilex coppices.
During the last decade, molecular studies revealed hyper-
diverse ECM assemblages associated with both Californian
(Morris et al. 2008; Smith et al. 2007; Walker et al. 2005)
and European (Azul et al. 2010; Richard et al. 2005)
Mediterranean oaks, but most of this research was carried
out in forest systems characterized by low disturbance rates
or by only ancient disturbance. None dealt with anthropo-
genic coppices, despite the dominance of this vegetation
type in the Mediterranean area. The sole exception is a
preliminary descriptive study of morphotypes of Ectomy-
corrhizae in presumed species-rich ECM assemblages (de
Román and de Miguel 2005). Unfortunately, morphotyping
alone does not completely resolve species identification
(Horton and Bruns 2001). Knowledge of ECM communi-
ties of recently disturbed Q. ilex coppices thus remains
incomplete.

Because oaks are major hosts of ectomycorrhizal and
other fungi in the Mediterranean area, Q. ilex coppices are a
superb model to test for drought as a potential driving
factor underlying structure, composition and temporal
dynamics of fungal communities. In this study, we
specifically addressed the three following questions using

a throughfall exclusion experiment that has been conducted
since 2003: (1) What ECM communities are associated
with highly disturbed Q. ilex coppices? (2) Does the
contrasted Mediterranean climate induce seasonal shifts in
ECM assemblages? (3) Does simulated rainfall reduction
affect ECM richness and diversity in ecosystems dominated
by Q. ilex?

2 Material and methods

2.1 Study site

The research site is located 35 km northwest of Montpellier
(southern France) in the Puechabon State Forest (43° 44′
29″ N, 003° 35′ 45″ E, elevation 270 m asl). The state
forest covers a 690-ha area on Jurassic limestone. Soil is
shallow with mull humus overlying (1) a superficial (less
than 5 cm on average) organic layer and (2) a mineral
horizon of irregular depth (depending on bedrock fissuring)
with high clay and high volumetric rock content: 75% in
the first 50 cm and 90% for the whole soil profile.

The climate is of Mediterranean type with rainfall
mainly occurring during autumn and winter, with about
80% between September and April. The mean annual
precipitation at the study site is 908 mm with wide
variations (from 556 to 1,310 mm during the period
1984–2008). The average annual temperature is 13.5°C,
ranging from 2.4°C (mean January minima) to 28.7°C
(mean July maxima).

Puechabon State forest is an ancient Q. ilex afforestation.
This forested area has been managed as a short-rotation
(20–25 years) coppice for centuries. The vegetation in the
research site is a 66-year-old monospecific Q. ilex coppice,
with a diffuse (<25% of cover) species-poor understorey,
dominated by Buxus sempervirens, Phillyrea latifolia,
Ruscus aculeatus and Pistacia terebinthus, overlying a
discontinuous herbaceous layer. Of the woody species, only
Q. ilex has the ability to associate with ECM fungi
(Limousin et al. 2008).

2.2 Experimental design

In 2003, a throughfall exclusion experiment was estab-
lished at the site as part of the European project
Mediterranean Terrestrial Ecosystems and Increasing
Drought. The experimental design is comparable, in
conception, to that described by Hanson et al. (2003).
Rainfall exclusion was achieved using PVC gutters
covering 33% of the ground area under the oak canopy.
In this experiment, control plots were designed where
identical gutters were set up upside down so that the
albedo and the micro-climate of the forest understorey
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were the same as those in exclusion plots. The experi-
mental design consisted of three blocks about 50 m apart,
each block comprising two adjacent 140 m2 (14×10 m)
plots (one rainfall exclusion +1 control plot). Given the
partitioning of incident rainfall into interception loss,
throughfall and stemflow, the throughfall exclusion re-
duced the average precipitation input to the soil by 29%
(Limousin et al. 2008), as confirmed by significant
decrease of soil water potential during summer drought
(Limousin et al. 2009). Furthermore, tree physiology was
affected, as annual transpiration was reduced by 23% and
predawn leaf water potential was significantly reduced in
the dry treatment (Limousin et al. 2009).

2.3 Sorting and handling of Ectomycorrhizae

To investigate the temporal dynamics of ECM commu-
nities, soil cores (taken with soil cylinders 5.2 cm in
diameter × 2.6 cm depth) were collected at the study site.
The organic soil horizon was investigated because it
concentrates most of the ECM diversity in general, and it
is the most exposed to drought variations. Sampling was
conducted twice in autumn (December 2007 and December
2008) and twice in spring (June 2008 and June 2009). These
sample dates were chosen based on life history traits of both
host and fungi (spring sampling corresponding to the host’s
photosynthesis maximum (Allard et al. 2008) and autumn
sampling corresponding to the fruiting peak of ECM
communities).

At each of the four sampling dates, 90 soil cores were
collected as follows: three 4-m-long transects were
designated in each of the six plots (three control + three
exclusion plots). Along each transect, five soil cores
were collected at 1-m intervals. Samples were transferred
to the laboratory (CEFE, CNRS Montpellier) and stored
at 2°C. Roots were sieved from the soil cores and
washed. Short root tips were counted and classified as
ECM tips if they possessed a fungal mantle upon
examination under a dissecting microscope. All ECM
tips were hand-picked and then sorted into morphotypes
under a dissecting microscope by characteristics such as
colour, shape and distinct features of the mantle (Agerer
2001). In each soil core, a subsample of each morphotype
was hand-picked for molecular identification according to
the following sampling strategy: (1) one ECM tip for each
of the rare morphotypes (i.e. represented by fewer than ten
ECM tips) of the core, (2) seven ECM tips for all
morphotypes represented by more than ten mycorrhizae
in the core and (3) 14 ECM tips for all morphotypes
represented by at least 100 ECM tips in the core. Analysis
of multiple samples of each morphotype is necessary
owing to the richness of ECM communities (Richard et al.
2005).

2.4 Sampling of ECM tips for molecular identification
of ectomycorrhizal species

Mycorrhizae of Cenococcum geophilum and those of a
dominant Thelephoraceae species (Tomentella sp1), two
abundant species representing more than one third of the
total number of ECM tips on Q. ilex roots, were identified
by morphology (de Román and de Miguel 2005; Richard et
al. 2005). However, in order to verify their identification,
30 mycorrhizae of each of these two abundant morphotypes
were randomly selected from different soil cores and
sequenced.

2.5 Molecular identification of ECM

ECM tips were rinsed twice in distilled water and stored
at −20°C until DNA extraction. Fungal DNA was
extracted from ECM tips with the Extract-N-Amp™ kit
(Sigma-Aldrich, St. Louis, USA) with some modifica-
tions of the protocol: ECM tips were incubated in 50 μL
of extraction solution instead of 100 μL and diluted in
50 μL of dilution solution instead of 100 μL. The
internal transcribed spacer (ITS) region of the rDNA was
amplified by polymerase chain reaction (PCR) on 2 μL
of the freshly extracted DNA, mixed with 10 μL of the
REDExtract-N-Amp PCR ReadyMix™ (Sigma-Aldrich,
St. Louis, USA), 1 μL of each primer at 10 μM and
6 μL of distilled water (sterilized before mixing by 30′ at
120°C in an autoclave and 10′ exposure to UV). PCR
products were checked on 1.5% agarose gel and, when
positive, sent to AGOWA Genomics (Warwickshire, UK)
for sequencing with the same set of primers used in
PCR. All PCR reactions were performed using the primer
pair ITS1-F/ITS4 (Gardes and Bruns 1993). A supple-
mentary PCR using the ITS4B primer instead of ITS4 was
performed when the first PCR showed two different fungal
ITS sequences on the same tip.

Fungal ITS sequences were checked and edited with
Sequencher 4.9. Corrected sequences were identified
using the BLAST algorithm and the UNITE database
(http://unite.ut.ee/). The best BLAST identification was
reported for each fungal taxon. The UNITE species name
was validated only when (1) the similarity between the
submitted sequence and the sequence in the database was
higher than 97% and (2) the UNITE identification made
sense when taking into account ecological considerations
and known geographical distribution of related species.
Sequences with less than 97% of similarity with the
nearest blast, or for which the UNITE species name was
considered too uncertain, were ascribed as undetermined
species to a genus. Alignments of unnamed sequences
were performed at the genus level using ClustalW
(Thompson et al. 1994). Between-sequence similarities
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were calculated using BioEdit (Hall 1999) with 97%
similarity as a constant species threshold.

2.6 Statistical analyses

Structure of ECM communities was analysed using species-
relative abundance data. Briefly, Whittaker plots of log
abundance on species rank were used to compare the shape
of the observed dominance–diversity curves with the
geometric series, the log series, the lognormal and
MacArthur’s broken-stick theoretical model of species
abundance distribution. The observed community data were
compared with theoretical distributions using chi-squared
goodness-of-fit tests (Krebs 1999).

Comparisons of species richness among ECM com-
munities of different sizes were performed using the
rarefaction method as described in Richard et al. (2009).
Rarefaction analysis was used to compare (1) spring and
autumn and (2) exclusion and control plot richness of
ECM communities. For each season and treatment,
species diversity within ECM communities was estimated
using various indices based on relative abundance of
species, including Simpson’s diversity index D, Shannon–
Wiener information index H′ (base 2 logs) and Fisher’s
alpha.

We analysed the overall community composition of
ECM using PRIMER 5 (2002 PRIMER-E Ltd.; Clarke
and Gorley 2001) and CAP (Anderson 2004). With
PRIMER 5 (2002 PRIMER-E Ltd.; Clarke and Gorley
2001), we performed community analyses of sequences
using nonmetric multidimensional scaling, a robust non-
parametric analytical technique that is applied to the
dissimilarity matrix calculated among sequence types using
the Bray–Curtis dissimilarity coefficient based on relative
abundances per transect using log(x+1)-transformed data.
Soil cores were considered to be independent replicates
based on the high degree of patchiness in the belowground
occurrence of ECM fungal species in Q. ilex forests (Richard
et al. 2005). We used a two-factor analysis of similarity
(ANOSIM), which is analogous to an F test where distances
or similarities within groups are compared with between-
group differences to test for the effects of both season and
rainfall reduction on structure of ECM community compo-
sition. ANOSIM r values measure the strength of these
differences and scale between −1 and 1. Subsequent P values
were determined through a randomization procedure. These
procedures have been successfully used for the analysis of
community composition, including ectomycorrhizal commu-
nities (Sthultz et al. 2009).

Using CAP (Anderson 2004), we performed a canon-
ical analysis of principal coordinates, which provides a
constrained ordination, followed by a canonical discrim-
inant analysis (CDA), which tests for differences among a

priori groups, as described by Anderson and Willis (2003).
The test is done by permutation using the trace and first
canonical root statistics (Anderson and Willis 2003). We
used this secondary technique because often, in ecology,
there are several strongly correlated, highly abundant
species that do not change across treatment groups.
However, there may be patchy, less abundant species that
do differ significantly across treatment groups. In this
case, CAP will find these differences among the assemb-
lages more often than other tests that do not take into
account the correlation structure among the variables. To
insure enough replication for proper permutation to be
achieved, samples from both years were pooled for these
community analyses.

Similarity between ECM communities found in differ-
ent sampling dates was compared using (1) the binary
coefficient of Sorensen, which is based on presence/
absence of species, and (2) the average Euclidian
distance based on abundance data (Krebs 1999). Varia-
tion in species abundance between seasons and between
treatments was tested using chi-squared tests with Yates’s
correction when necessary. All statistics were considered
significant at P=0.05.

3 Results

Over the four sampling dates, 4,754 ECM tips were
sampled, among which 1,574 tips were selected for ITS
amplification. Identification was successful for 1,147
ECM tips (73%; Table 1). The basidiomycete-specific
primer pair ITS1-f/ITS4B was used to analyse 22 ECM
tips that showed colonization by two different fungal
species. In all, 131 species were distinguished. Identifica-
tion and homogeneity were tested for two dominant
morphotypes by sequencing 30 tips for each: these two
morphotypes (C. geophilum and Tomentella sp1) proved to
be homogeneous.

3.1 Structure, richness and composition of the ECM
communities in control plots

In control plots, the relative abundances of the ECM
species were well described by the log series (Fig. 1). Data
showed a typical distribution of individuals per species with
47.9% of the species (42 out of 94) represented by
singletons (first black bar in Fig. 1a) while a lognormal
distribution would have been dominated by species of
intermediate abundance. Only three species were repre-
sented by more than 30 ECM tips (Fig. 1a).

ITS sequencing revealed high species richness in control
plots, with 94 species on the 420-m2 sampling area,
resulting in high values of Shannon–Wiener and Fisher’s

60 F. Richard et al.



alpha diversity estimators (Table 1). The Simpson index
revealed a probability of 92% that two ECM tips picked at
random within the community belong to two different
species (Table 1).

The ECM community was strongly dominated by
Basidiomycetes (83.7% of ECM tips, and 85.7% of
species; Fig. 2). At the family level, three distinct patterns
were found: (1) three abundant and species-rich families,

Table 1 Species richness, diversity and heterogeneity estimators of ECM communities at the Puechabon site during the period December 2007–
June 2009

Parameter Control plots Rainfall exclusion plots

Spring Autumn Total Spring Autumn Total

Number of speciesa 40.5 (154.5) 37 (122) 61.5 (276.5) 37.5 (153) 36 (144) 60.5 (297)

Rarefied number of speciesb 28.8 (81) 30.4 (81) 93.3 (541) 27.1 (81) 27 (81) 88.8 (541)

Fisher’s alphac 18.32 17.88 24.39 16.31 15.99 23.53

Simpson’s (1-D) index of diversityc 0.92 0.91 0.92 0.92 0.91 0.94

Shannon–Wiener information index (H′)c 4.36 4.27 4.74 4.29 4.21 5.04

Total number of sampled ECM tips 309 244 553 306 288 594

a Values are mean numbers of species per sampling years (n=2 consecutive years) with mean numbers of ECM tips per sampling year within parentheses
b Rarefaction analyses were conducted on spring and autumn communities in control and rainfall exclusion plots on the one hand (minimal sample
size n=81 root tips) and on total communities in control and rainfall exclusion plots on the other hand (minimal sample size n=541 root tips)
c Values of diversity and heterogeneity estimators are mean numbers per sampling years (n=2 consecutive years)
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Fig. 1 Observed (black bars) and log series theoretical (white bars) distributions of ECM taxa according to their abundance classes as observed at
Puechabon from December 2007 to June 2009 in control (a) and rainfall exclusion (b) plots
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Thelephoraceae, Russulaceae and Cortinariaceae, accounted
for 72.9% of the root tips and 70.3% of species, (2) two
moderately abundant and species-poor groups, Sebacinaceae
and C. geophilum accounted for 19.8% of the root tips but
only 4.3% of the species, and (iii) ten rare families together
represented 7.3% of the root tips and 25.4% of the species
(Table 2). With 35.5% of the ECM tips, Thelephoraceae was
the most abundant family, and with 28.7% of the total
number of ECM taxa, Cortinariaceae was the most species-
rich (Table 2).

At the species level, while the asexual taxon C. geophilum
strongly dominated among Ascomycetes (Fig. 2a), while
Tomentella sp1 represented 35.3% of the Basidiomycete
ECM tips (data not shown). Moderately abundant species
included Inocybe grisealilacina, Sebacina epigaea, Lactar-
ius acerrimus, Russula faustiana and Thelephora caryophyl-
lea, which together accounted for 19.9% of ECM tips. The
45 singleton species mainly encompassed Cortinariaceae
(28.9%; 13 species), Russulaceae (22.2%; eight species) and
Tuberaceae (11.1%; five species).

3.2 Temporal variation of the ECM communities in control
plots

Only 8.5% of the ECM species (eight out of 94) were found
in all four sampling dates (Fig. 3a). These species
represented 55.7% of the total number of root tips
(Fig. 3a) and were among the 15 most abundant species

(ranks 1, 2, 4–7, 12 and 15). In contrast, 61.7% of species
(58 out of 94) were found at only one of the four sample
dates (Fig. 3a). Most of these species were not abundant,
and together, they accounted for only 15.7% of total root
tips (Fig. 3a).

Similarity between pairs of consecutive sampling dates,
as calculated using either the Sorensen binary coefficient or
Euclidian distance, showed similar patterns (Fig. 4). The
lowest similarity level (i.e. greatest distance) was obtained
when comparing June 2008 and December 2008 commu-
nities. These two consecutive seasons shared the lowest
number of species of any pair in the whole sampling period
(Fig. 4). Similarity between the first (December 2007) and
the last sampling date (June 2009) was higher than any of
the three pairs of consecutive seasons when using presence/
absence data (i.e. species turnover; Fig. 4).

Spring and autumnal relative abundances of ECM
species both fitted to a log series theoretical distribution
(data not shown). Rarefied values of species richness
averaged 28.8 and 30.4 in spring and fall, respectively
(Table 1). Similarly, values of Fisher’s alpha and Simpson
and Shannon–Wiener indexes tended to be higher in spring
than in autumn (Table 1).

Overall, season did not have a significant impact on
community composition of ECM species in control plots
(ANOSIM r=0.005, P=0.353). This was also true for the
CDA test in CAP (trace statistic=0.542, P=0.128). Only
three ECM families (out of 14) and four species (out of 94)

Cenococcum geophilum

Pyronemataceae

Tuberaceae

Pezizaceae

Helvellaceae

Other Ascomycota

Cenococcum geophilum

Tuberaceae

Pezizaceae

Helvellaceae

Other Ascomycota

83.7
(497)

16.3
(97)

83.7
(463)

16.3
(90)

5,2

6,2

8,2

5,2
6,2

67,0

7,9

3,43,4

9,0

76,4

(a)

(b)

Fig. 2 Ratio between Ascomy-
cete (black) and Basidiomycete
(white) lineages at Puechabon in
control (a) and rainfall exclusion
(b) plots, with details of Asco-
mycete families (for details of
Basidiomycetes, see Fig. 5b).
Values are relative importance
of both lineages expressed in
percent. The numbers of ECM
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showed significant differences between spring and autumn.
While Thelephoraceae (χ2=8.75; P<0.01) and Pezizaceae
(χ2=4.51; P<0.05) were more represented in autumn,
members of Russulaceae (χ2=16.7; P<0.001) were signif-
icantly more represented in spring soil samples (Table 2).
One species, T. caryophyllea, was tenfold more abundant in
autumn (rank 3) than in spring (rank 24; Fig. 3b and
Table 2). Conversely, three species were more common in
spring than in autumn, L. acerrimus (rank 3 vs. 33), R.
faustiana (rank 5 vs. 8) and Russula sp1 (rank 7 vs. 34)
(Table 2). These four species represented 12.6% of the total
number of ECM tips (Fig. 3c). The 90 remaining species
were (1) either too rare to show any significant seasonal
pattern (69.2% of species, accounting for 20.1% of ECM
tips) or (2) indifferently sampled in both seasons (26.5% of
species, including C. geophilum, accounting for 67.3% of
ECM tips; Fig. 3b, c).

3.3 Effect of simulated drought on ECM communities

Whittaker plots of log abundance on species rank showed
very similar distributions of species-relative abundances

in control and water exclusion plots, both dominated by
rare taxa with very few abundant ones. Water exclusion
had no effect on species richness: rarefied values of
species richness averaged 93.3 and 88.8 out of 541
individuals in control and water exclusion plots, respec-

Table 2 Temporal distribution of ECM families, including details of
related species with significantly contrasted patterns, at the Puechabon
site in control plots from December 2007 to June 2009

Parameter Sampling period

Autumn Spring Total

Thelephoraceae 41.9 a 30.0 b 35.5
Thelephora caryophyllea 7.0 a 0.7 b

Cortinariaceae 17.1 a 16.5 a 16.7

Russulaceae 15.0 a 25.2 b 20.7
Russula sp1 0.4 a 3.9 b

Russula faustiana 2.0 a 4.6 b

Lactarius acerrimus 0.4 a 5.9 b

Cenococcum geophilum 12.6 a 11.9 a 12.2

Sebacinaceae 6.9 a 8.1 a 7.6

Pezizaceae 2.8 a 0.3 b 1.4

Tuberaceae 1.2 a 1.3 a 1.3

Tricholomataceae 0.8 a 1.9 a 1.4

Albatrellaceae 0.4 a 1.0 a 0.7

Hygrophoraceae 0.4 a 0.6 a 0.5

Sclerodermataceae 0.4 a 1.0 a 0.7

Clavulinaceae 0 a 0.3 a 0.2

Helvellaceae 0 a 1.0 a 0.5

Melanogastraceae 0 a 0.3 a 0.2

Other Ascomycotina 0.4 a 0.6 a 0.5

Values are relative abundances of families and species (expressed as
the percentage of the total number of sequenced tips). Values followed
by different letters significantly differ according to chi-squared tests
with Yates’s corrections
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tively (Table 1), when averaged across all four sampling
dates. Species diversity did not differ between treatments
(Table 1). Similarly, values of Simpson and Shannon–
Wiener indices differed only slightly between experimen-
tal plots (Table 1).

The rainfall reduction treatment significantly altered
ECM community composition (ANOSIM r=0.043, P=
0.014; Fig. 5a). The communities from spatially distinct

blocks of the same treatment also differed, but the treatment
had more effect than the distance on composition of ECM
communities (Fig. 5a). The results of the CDA support this
finding and show significant differences between the
control and experimental water exclusion plots (trace
statistic=1.516, P=0.001). The CDA in CAP showed that
season had a significant effect on ECM community
composition in the experimental water removal plots (trace

2008 Dry Season
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0.45 (0.85)

December, 2007                          June, 2008                           December, 2008                           June, 2009

0.34 (0.81)

0.34 (0.97)

Fig. 4 Diagrammatic represen-
tation of temporal variation in
the composition of ECM com-
munities at Puechabon from
December 2007 to June 2009.
Numbers are values of the
Sorensen similarity coefficients,
with Euclidian distances within
parentheses, calculated between
pairs of sampling seasons. Black
arrows indicate sampling dates,
with indication of the different
seasons as follows: spring
(white), summer (light grey), fall
(dark grey) and winter (black)
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statistic=0.689, P=0.017; Fig. 5a). The results from the
two-factor ANOSIM and the CDA in CAP show that ECM
assemblages in this study consist of three distinct commu-
nities; one associated with the control plots in both spring
and autumn, one associated with water exclusion plots in
spring and finally one associated with water exclusion plots
in autumn (Fig. 5a).

Rainfall reduction had a moderate effect on composition
of the ECM community. In both treatments, Ascomycetes
accounted for 16.3% of the total number of root tips
(Fig. 2a, b). The asexual C. geophilum was the most
abundant Ascomycete species, accounting for more than
two thirds of root tips (76.4% and 67% in control and water
exclusion plots, respectively; Fig. 2a, b).

The same four families of Basidiomycetes as in
control plots strongly dominated in water exclusion plots
(i.e. Thelephoraceae, Cortinariaceae, Russulaceae and
Sebacinaceae; Fig. 5b). Only two families showed a
significant difference in abundance between treatments:
in water exclusion plots, Cortinariaceae (χ2=7.83; P<
0.01; rank 3 in control and rank 4 in water exclusion plots)
were significantly more abundant, while members of
Sebacinaceae (χ2=6.19; P<0.02; rank 5 in both treat-
ments) were less represented (Fig. 5b).

In all, only six species (out of 129, 4.7%; e.g. three
species of Cortinariaceae, as well as Tomentella lilaci-
nogrisea, Russula maculata and Humaria hemisphaerica)

increased significantly in abundance in water exclusion
plots (Table 3). Three of them, namely R. maculata, T.
lilacinogrisea and Hebeloma velutipes, were among the
ten most abundant species of the community. Inversely,
seven species (5.4%; three Russulaceae, two Thelephor-
aceae, Inocybe hirtella and Sebacina incrustans) were
significantly more represented in control plots (Table 3).
Two of these, R. faustiana and L. acerrimus, were among
the ten most abundant species. The 116 remaining species
were either unaffected (for 16 of them, including Tomen-
tella sp1 and C. geophilum) by the water reduction or too
rare (for 102 of them) to be submitted to any statistical test
(Table 3).

4 Discussion

4.1 Structure and richness of ECM communities in Q. ilex
coppices

The structure of ECM fungal assemblages of Q. ilex
coppices is similar to that of communities previously
described in Q. ilex old-growth stands (Richard et al.
2005) in that it harbours a high species richness (Table 1)
and is dominated by rare taxa (Figs. 1 and 3a). This was
quite unexpected when considering the features of the
stand. The duration and intensity of human pressure in the

Table 3 Variation in abundance between control and rainfall exclusion plots for the 29 most abundant ECM species at the Puechabon site from
December 2007 to June 2009

Family or fungal group Species with a higher abundance in Species with no change in
abundance

Rainfall exclusion Control

Thelephoraceae Tomentella lilacinogrisea*** Tomentella subtestacea*** Tomentella sp

Tomentella coerulea* Thelephora caryophyllea

Tomentella bryophila

Tomentella badia

Tomentella subclavigera

Tomentella stuposa

Cortinariaceae Hebeloma velutipes** Inocybe hirtella** Inocybe griseolilacina

Cortinarius torvus* Inocybe flocculosa

Cortinarius tenuiores group sp1* Cortinarius neofurvolaesus

Cortinarius hinnuleus

Russulaceae Russula maculata*** Russula sp1*** Lactarius subserifluus

Russula faustiana** Russula sp2

Lactarius acerrimus** Russula vinosobrunnea

Sebacinaceae Sebacina incrustans*** Sebacina epigaea

Pyronemataceae Humaria hemisphaerica***

Other Ascomycotina Cenococcum geophilum

Pezizaceae Hydnobolites cerebriformis

Significant differences between treatments using chi-squared tests with Yates’s correction: *P<0.05; **P<0.01; ***P<0.001
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Mediterranean region, which dramatically eroded plant
communities in Mediterranean oak coppices, leading to
loss of some ECM hosts (Quézel and Médail 2003), could
be expected to affect ECM communities. Similar current
agro-sylvo-pastoral exploitation leads to impoverishment
of ECM fungal assemblages, for instance in Q. suber
Montados (Azul et al. 2010). Our result may reflect a long
recovery process of ECM diversity in coppices (associated
with forest ageing), the signature of ancient human
pressure in Q. ilex old-growth stands or both. In any of
these cases, the high ECM richness observed in our
studied system suggests that these highly human-
disturbed ecosystems may still be valuable reservoirs of
fungal diversity.

The strong dominance of rare taxa is striking when the
moderate age of the studied coppice is considered. When
taking into account the natural dynamics of Q. ilex forests,
a 66-year-old coppice corresponds to a mid-stand develop-
ment. Previous studies, based on either fruiting bodies
(Visser 1995) or root tips (Baxter et al. 1999), showed that
ECM species abundance distribution in forests of middle
age becomes lognormal, while the distribution we observed
fits to the log series model (Fig. 1). This may suggest that
our sampling effort was insufficient to detect many rare
taxa. However, the dominance of rare taxa occurs in
species-rich ECM assemblages of old sampled stands
(old-growth stage; O’Dell et al. 1999; Richard et al. 2005;
Smith et al. 2002). The ECM communities may thus reflect
more the age of the tree individuals (age of root systems)
than the age of stems since the last clear-cut. This is in line
with observations in Fagus sylvatica coppices of various
ages resprouting from stumps of same age, where ECM
richness and evenness do not vary with stem age (di Marino
et al. 2009).

4.2 Temporal variation of ECM communities

Despite the strong seasonality of the Mediterranean climate,
both composition and richness of ECM communities at
Puechabon were remarkably insensitive to the period of
sampling (Table 1). Season had no significant effect on the
composition of the overall community (Fig. 5a) and only
induced significant shifts in abundance of three ECM
families (Table 2) and four species (Fig. 3). Our results
differ from those of most recent studies showing marked
seasonal dynamics within ECM assemblages (Buée et al.
2005; Courty et al. 2008; Koide et al. 2007). However,
these studies were carried out in temperate or montane
climatic contexts. The first report on temporal dynamics of
ECM communities in Mediterranean forests is consistent
with our results: in xeric Quercus douglasii woodland,
Smith et al. (2007) described a stable ECM community
across seasons.

In our studied system, Thelephoraceae (more abundant in
autumn) and Russulaceae (more abundant in spring), which
collectively made up more than 50% of the ECM tips and
more than 40% of species, showed opposite patterns of
temporal abundance (Table 2). Interestingly, they also have
contrasted fruiting patterns in Q. ilex coppices: while
Thelephoraceae preferentially fruit in late winter and spring,
Russulaceae (mostly Russula species) are autumnal fruiters
(Chevassut 1988). These ECM families may decouple in
time their vegetative and sexual reproductive investments in
this ecosystem. The observed difference also suggests that
the period of maximum investment in mycelial growth may
contribute to delineation of the ecological niche. As
previously shown for soil micro-organisms (Smit et al.
2001) including ECM fungi (Koide et al. 2007), temporal
partitioning, by reducing interspecific competition, may be a
mechanism underlying the maintenance of (1) a high species
richness within the community at local scale and (2) the
striking dominance of the family Thelephoraceae in Q. ilex
forests (de Román and de Miguel 2005).

4.3 Impact of increased drought on ECM communities

Our results suggest that five consecutive years of increased
drought (1) induced significant shifts in the composition
and (2) enhanced the seasonal dynamics of ECM assemb-
lages in Q. ilex coppices (Fig. 5a) but (3) did not cause any
decrease in species richness or diversity (Table 1).

The first response (shifts in species composition) suggests
that the main consequence of an extended drought may be
qualitative, including variation in relative abundance for
dominant fungal species (Table 3) and families (Fig. 5b).
Pronounced changes in ECM community composition
following severe drought have been previously reported in
Pinus edulis forests, including an increase in relative
abundance of Ascomycetes (Sthultz et al. 2009; Swaty et
al. 2004). Our data show that in the richer ECM communi-
ties associated with Q. ilex, drought leads neither to change
in the Ascomycetes to Basidiomycetes ratio nor to an
increase in the relative abundance of the dominant species
C. geophilum (Fig. 2) but does lead to a positive response of
the family Cortinariaceae (Fig. 5b and Table 3). This is not
the first report of drought resistance in Cortinariaceae
species. Using activity profiling of excised ECM root tips,
Buée et al. (2005) showed drought resistance traits for
three Cortinariaceae species, such as higher abundance
and metabolic activity in summer as compared with
winter. Other adaptive traits may contribute, including
differential tradeoff between vegetative and reproductive
investments (for instance, most Cortinarius species fruit
only erratically in Q. ilex forests (Chevassut 1988)) to
maintain abundance and richness of Cortinariaceae in the
context of increased drought. The absence of response of
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C. geophilum to drought is more surprising, since it has
been previously described as an efficient root protectant
against drought (di Pietro et al. 2007) as well as a drought-
tolerant fungal species (Jany et al. 2003).

Our results also suggest that the expected changes in
rainfall distribution in the French Mediterranean region
may induce seasonal variation in the composition of ECM
communities (Fig. 5a). The mechanisms underlying these
shifts may include responses of both trees and ECM
symbionts. For instance, ecophysiological adaptations of
forest trees to drought, such as reduced fine root
production (Valdes et al. 2006), may in turn drive fungal
shifts. Similarly, ECM symbionts unequally survive
drying under controlled conditions (di Pietro et al. 2007).

The third response (no decrease in species richness and
diversity) was not expected and deserves further investigation.
This result contrasts with previous reports of a significant
decrease in ECM species richness for P. edulis forests
suffering a decade-long drought (Sthultz et al. 2009). Several
reasons, not mutually exclusive, may account for these
discrepancies. First, the frequent natural fluctuations of the
Mediterranean climate may have already selected for ECM
species able to survive short periods of drought. Second, in
the previous framework, the artificial 5-year disturbance may
be insufficient in duration and/or intensity of drought to
induce a dramatic loss of species in these highly adapted
communities. Third, the high species richness of Q. ilex
ECM assemblages (especially as compared with Pinus ECM
assemblages) may limit the detection of rare species and the
related local extinction events.

From a biological point of view, the observed oscil-
lations in relative abundance of ECM species may reflect
changes in vegetative dynamics within the ECM assemb-
lages, with unknown effects on population structures.
However, the long-term effect, if any, of the increased
variations remains to be investigated.
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