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Abstract

* Introduction Phosphorus (P) is often the first or second
element limiting aboveground net primary productivity of
forests. Besides low available inorganic orthophosphate (P1)
concentrations, soil may contain high total P contents, as
insoluble mineral P or as organic P. Most plants form
mycorrhizal associations that improve their P nutrition.
Three main hypotheses have been proposed to explain this
positive effect through an increase of (1) P mobilisation
from mineral P, (2) P mobilisation from organic P and (3)
soil exploration and P uptake. However, the positive effect
of mycorrhizal symbiosis may be variable with the fungal
species forming the association. This could be due to the
different abilities of mycorrhizal fungi to mobilise P and/or
to take up Pi from the soil.

* Objectives The aim of this review was to examine our
current knowledge about the capacity of ectomycorrhizal
fungi to release organic compounds as low-molecular-
weight organic anions and phosphatases thought to have a
role for mineral and organic P mobilisation, respectively.
The diversity of Pi transporters among mycorrhizal species
is also examined.

* Results The main conclusion is that the study of the
functional diversity of ectomycorrhizal fungi in situ is still a
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challenging question and could be addressed by combining
different tools now available to make large-scale studies.
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1 Introduction

Phosphorus (P) is an essential element for plant
nutrition and can only be taken up as inorganic
orthophosphate (Pi), either as H,PO, or HPO,*",
depending on the pH of soil solution. It has critical
functions in many processes, such as energy metabolism,
synthesis of nucleic acids and membranes, as well as in
photosynthesis (Raghothama 1999; Vance et al. 2003). In
soil, free concentrations of Pi are thought to range from 1
to 10 uM (Bieleski 1973; Hinsinger 2001; Vance et al.
2003), and this low availability limits the productivity of
plants in many terrestrial ecosystems. It is often the first
or second element limiting aboveground net primary
productivity of forests. Besides these low concentrations
in free Pi, soil may contain high levels of phosphorus that
are not directly available to plant roots or microorganisms
as P is combined either to cations to form mineral P or to
carbon-containing compounds to form organic P. Given
the Pi supply constraints in many soils, it is not surprising
that plants have evolved strategies to acquire and/or
efficiently use P. Plant adaptations that enhance the
acquisition of inorganic Pi have been reviewed many
times (e.g. Bucher 2007; Lambers et al. 2008; Lynch and
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Brown 2008; Raghothama 1999; Richardson et al. 2009;
Vance et al. 2003). Such adaptations include modifica-
tions to root structure and morphology, as well as
biochemical (e.g. root exudates). However, in natural
conditions, approximately 80% of land plants live in
association with specialised soil fungi to form mycorrhi-
zal roots. The most widespread mycorrhizal association
exists between herbaceous plants and arbuscular mycor-
rhizal (AM) fungi forming AM symbiosis (Parniske
2008; Smith and Read 2008). Woody plants from the
gymnosperms and several angiosperms growing in boreal
and temperate regions also live in symbiotic association
with mycorrhizal fungi that form ectomycorrhizal (ECM)
roots (Marmeisse et al. 2004). Whatever the mycorrhizal
type (AM or ECM), mycorrhizal fungi produce extra-
radical hyphae which are able to explore the soil away
from the mycorrhizal roots and form a tight association
with the plant root where exchanges between fungal and
root cells are occurring.

The formation of mycorrhizal roots is considered as
the most widespread response to increase phosphate
acquisition by plants (Burleigh et al. 2002; Smith et al.
2000; Tibbett and Sanders 2002). This is mainly due to
the repeated observation that mycorrhizal plants show
growth improvement and increased plant P content than
non-mycorrhizal plants (Chalot et al. 2002; Smith and
Read 2008). Three main hypotheses have been proposed
to explain this improved P nutrition of mycorrhizal
plants: an increase of (1) P mobilisation from mineral P,
(2) P mobilisation from organic P and (3) soil exploration
and P uptake. In particular, the role of extraradical
hyphae is thought to be decisive for the functioning of
the symbiosis (Finlay 2009). However, the positive effect
of mycorrhizal symbiosis may be variable with the fungal
species forming the association. This could be due to the
different abilities of mycorrhizal fungi to mobilise P and/
or to take up Pi from the soil. The aim of this review was
to examine published data that may explain such differ-
ences between mycorrhizal fungal species, especially
those forming ectomycorrhizae.

2 Diversity of fungal species to mobilise mineral P

Soils contain a large part of phosphate that can be
precipitated with calcium, iron or aluminium to form
many different potential phosphate minerals under
crystalline or amorphous form (Barber 1984). Some of
the more common minerals are listed in Table 1. In soils
above pH 7, calcium phosphates should be dominant,
whilst in acid soils, iron and aluminium phosphates are
the dominant forms (Barber 1984). Solubility isotherms
of phosphate minerals have been calculated as a function
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of pH and concentration of Pi. Figure 1 shows some
examples of common soil mineral phosphate isotherms
calculated using a calcium activity arbitrarily set at pCa=
2.5, a value consistent with those found in non-
calcareous soil solutions. The activities of AI>* and Fe’
" were controlled by the solubility of their oxides
representing an average value of calcium and are given
in Fig. 1. From these isotherms, it is possible to predict
the solubility of each mineral when the pH and [H,PO4]
in the soil solution are measured. If a point is above a
line, the solution will be supersaturated relative to that
mineral. If a point is under the line, the solution will be
undersaturated (Barber 1984). In other words, Fig. 1
shows that crystalline aluminium and iron phosphate
minerals will form at very low [H,PO4] at acidic pH
(even at pH 5), whereas calcium phosphate minerals
could be dissolved easily by a pH decrease from 7 to 5. In
addition to precipitated forms, phosphate ions can be
specifically adsorbed by soluble metal hydrous oxides or
by clays (Hunt et al. 2007). Several organic compounds
bearing carboxylic groups, either of high molecular
weight such as humic (HA) and fulvic acids (FA) or
low-molecular-weight organic anions (LMWOAs) such
as oxalate, may interact with Pi in soils to influence the
amount of available Pi in solution. As indicated by Hunt
et al. (2007), the interactions between organic com-
pounds and mineral surfaces in soil may result in positive
effects on Pi availability due to three processes—(1)
competition between carboxylates and Pi for mineral
adsorption sites; (2) complexation of surface metals and
release of these metals into solution, thereby removing
adsorption sites; and (3) increased repulsion of phosphate
anions by sorption of organic compounds to positive
sorption sites—and in negative effects by enhancing the
formation of cation bridges, leading to an increase in P
sorption sites and a decrease in Pi availability. When
assessed in solution, HA or FA purified from soils
(Borggaard et al. 2005) or HA of commercial origin
(Hunt et al. 2007) displayed a low capacity to modify the
adsorption of phosphate by metal oxides, leading to the
conclusion that humic substances have limited influence
on phosphate adsorption by aluminium and iron oxides
(Borggaard et al. 2005; Guppy et al. 2005). In contrast to
HA, oxalate supplied in the solution at low concentration
(=2 or 8 mM) together with goethite and gibbsite
displayed a significant ability to decrease Pi adsorption
on metal oxides (Hunt et al. 2007). In this context, the
production of LMWOAs by ectomycorrhizal fungi may
play a decisive role for Pi release from phosphate
minerals.

Ectomycorrhizal fungal species have been shown to
be able to produce a range of LMWOAs (Plassard and
Fransson 2009). The first studies on the capacity of
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Table 1 Some common soil

phosphate minerals (from Calcium phosphates

Aluminium phosphates Iron phosphates

Barber 1984) Cas(POLF
as 4)3

Fluoroapatite
Cas(PO4);OH
Hydroxyapatite
Ca3(POy),

Tricalcium phosphate
CayH(POy4)5-2.5H,0
Octacalcium phosphate
CaHPO,

Dicalcium phosphate
CaHPO,4-2H,0

AlPO42H,0

Variscite
HeK3Al5(PO4)g-18H,0
Potassium Taranakite
AIPO,

Berlinite

FePOy42H,0
Strengite

Dicalcium phosphate dihydrate, brushite

ectomycorrhizal fungi to produce LMWOASs were carried
out by Lapeyrie and colleagues (Lapeyrie 1988; Lapeyrie
et al. 1987, 1991). Lapeyrie et al. (1991) used 11
different ectomycorrhizal strains and found that oxalate
production ranged from 27 to 120 ug mg ' fungal dry
weight, whereas other LMWOASs could not be detected.
These results were confirmed by later experiments
(Arvieu et al. 2003). In particular, Paxillus involutus,
Suillus sp. and Rhizopogon roseolus were strong oxalate
producers (Arvieu et al. 2003; Lapeyrie et al. 1987).
Now, approximately 30 species of ECM fungi belonging
to the genera Cortinarius, Lactarius, Paxillus, Pilo-
derma, Pisolithus and Suillus were found to be able to
release substantial amounts of LMWOAs, with oxalate
being the predominant form (Courty et al. 2010).

log [H,PO,4]

Fig. 1 Solubility isotherms for indicated crystalline phases. Activity
of calcium was arbitrarily set at pCa=2.5. The activity of AI’* and Fe*"
were controlled by the solubility of their oxides (redrawn from Fig. 9.3
in Barber 1984)

Nevertheless, a huge intraspecific variation in the
capacity to release organic acids exists among these
LMWOAs-producing fungal genera, as shown for P
involutus by Lapeyrie et al. (1991). On the other hand,
almost no production of organic acids was detected in
some ECM species belonging to the genera Amanita,
Cenococcum, Hebeloma, Thelephora and Tylospora
(Courty et al. 2010) or in the species Laccaria bicolor
(Lapeyrie et al. 1991) or Hebeloma cylindrosporum
(Arvieu et al. 2003). Taken together, these data indicate
that a huge diversity of the ability to produce oxalate
occurs among ectomycorrhizal species and even among
isolates of the same species. The ecological meaning of
the diversity has not yet been established. In non-
oxalate-producing species or isolates, whether this is
due to a low production rate (through a lack or a low
level of enzymes responsible for oxalate biosynthesis)
or to the degradation of produced oxalate (by enzyme
decarboxylation of oxalate) remains to be determined.
Besides the specific diversity displayed by ectomy-
corrhizal fungal species, several environmental factors
may increase or decrease organic anion production by
ectomycorrhizal fungi. Exposure of ectomycorrhizal
fungi to different metals (including Al, Fe, Pb, Cd,
Cu and Ni) induced variable effects ranging from
negative ones to positive ones (see Table 1 in Plassard
and Fransson 2009), with an exudation of oxalate
increased by 15-45% after Pb and Cd exposure. Howev-
er, exposure to Al and Fe generally did not stimulate
oxalate production by the fungal species used. In
contrast to metal exposure, nitrogen source appears to
be a major factor as in vitro studies carried out in pure
culture show a consistent stimulation of oxalic acid
production in the presence of nitrate and inhibition by
ammonium for P involutus (Gharieb and Gadd 1999;
Lapeyrie et al. 1987; 1991). We can hypothesise that it is
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the NH," ion per se which has an inhibitory effect on
oxalate synthesis as organic nitrogen did not inhibit
organic acid release in R. roseolus, contrary to ammoni-
um (Plassard, unpublished data). When nitrate is supplied
as the sole nitrogen source in the medium, the presence of
calcium and bicarbonate ions was shown also to promote
oxalate production in the fungus grown in pure culture
(Lapeyrie et al. 1987) or in association with the plant
(Casarin et al. 2003, 2004).

From a physiological point of view, the efflux of
oxalate through fungal cell membranes occurs as anion
transport because the cytosolic pH (around 7) is higher
than the pK of oxalic acid (pK for oxalate /oxalate® ™ is
4.19; Jones 1998), meaning that the organic acid is
actually present as organic anion in the cytosol. There-
fore, when carboxylates are exuded as anions, their
charge could be balanced by a cation efflux that can be
either K™ or H" (Roelofs et al. 2001) or alternatively by
anion influx (Arvieu et al. 2003). Oxalate released with
K" or against anion influx will have only complexing
effects, whereas oxalate released with H™ will have both
complexing and acidifying effects. The production of
oxalate only should be a better strategy to mobilise Pi
combined to metals in acidic soils, as observed in
Proteacae developing in highly weathered, acidic Aus-
tralian soils and releasing citrate and K™ (Roelofs et al.
2001; Lambers et al. 2008). Conversely, the production
of oxalate together with protons should be a better
strategy when Pi is combined with calcium (see Fig. 1).
Interestingly, inter- and intraspecific differences in acid-
ifying properties of oxalate-producing ectomycorrhizal
species have been reported in vitro (Arvieu et al. 2003).
However, in the study of Casarin et al. (2003, 2004), only
the acidifying ECM species R. roseolus and the poor
oxalate producer ECM species H. cylindrosporum were
used in association with Pinus pinaster plants grown in
rhizoboxes containing a Mediterranean soil layer with a
low level of easily available P. In these conditions, only
R. roseolus hyphae were able to release oxalate into the
soil that combined with calcium to form calcium oxalate
(Casarin et al. 2003). Oxalate release was accompanied
by acidification and increase of Pi availability of
rhizosphere soil (Casarin et al. 2004). Finally, this fungal
association significantly increased the P nutrition of the
host plant, indicating its ability to enhance Pi bioavail-
ability from this soil. It would be of great interest to use
two contrasting ectomycorrhizal species, able to produce
high amounts of oxalate with or without acidifying effect,
to study the effects of complexing/acidifying properties
due to organic anion release on P bioavailability in
tropical acidic soils. Indeed, these soils are characterised
by a high level of metal oxides where acidification could
decrease P availability.
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So far, most of our knowledge about the capacities
of ECM species to produce organic anions comes from
in vitro studies (Rosling 2009). Despite the fact that in
vitro experiments are valuable tools to study processes,
systematic in situ measurement of oxalate release by
ectomycorrhizal tips could bring more relevant data on
the ecological point of view. Progress in this field was
hampered by the lack of an easy method to measure
LMWOA:s in field-sampled ectomycorrhizal tips. Recent-
ly, Rineau et al. (2008) reported a microplate assay
making it possible to measure the release of oxalate at the
level of individual ectomycorrhizal tips. The use of this
method could be a very valuable tool to assess at least the
capacities of oxalate released by ectomycorrhizal species
even if they are not grown in vitro. In addition, the
comparison of oxalate release capacity by these ectomy-
corrhizal tips with the actual concentration of oxalate in
soil sample surrounding these tips could help quantify the
fate of LMWOAs released into the mycorhizosphere.
However, determining if oxalate—or other LMWOAs—
are released with or without protons in situ remains a
challenging issue.

3 Diversity of fungal species to mobilise organic P

Remarkably, besides the low level of available free Pi,
soils contain a high amount of P that is linked to C-
containing compounds to form organic P (Po). The
majority of the organic phosphorus is present as
phosphate esters (C—O—-P bonds) either in the form
of phosphate monoesters, including inositol phos-
phates, or phosphate diesters, such as nucleic acids
and phospholipids, together with small quantities of
phosphonates (C—P bonds; Condron et al. 2005; Magid
et al. 1996). To be used by plants and soil micro-
organisms, the phosphate group of Po compounds must
be released from the ester bond linking it to carbon by
enzymes that are phosphatases. Depending on their
substrate, the enzymes can be phosphomonoesterases or
phosphodiesterases. Most of the studies addressing the
release of phosphatases use artificial phosphomonesters
such as p-nitrophenyl phosphate (pNPP) based on the
procedure described in Tabatabai and Bremner (1969) or
the fluorescent assay based on the release of 4-
methylumbelliferone from 4-methylumbelliferone-
phosphate (MUP; Courty et al. 2005, 2006; Pritsch et
al. 2004; Pritsch and Garbaye 2011) to estimate
phosphomonoesterase activity.

Depending on the pH of the incubation medium,
one can distinguish acid phosphomonoesterase activity
(ACP) from alkaline phosphomonoesterase activity
(ALP), measured respectively at pH around 5 (ACP)



Ectomycorrhizal diversity for P mobilisation

37

and 8 or more (ALP; Bae and Barton 1989; van Aarle
and Plassard 2010). However, so far, most of the ECM
fungi showed maximal activities of released or surface-
bound phosphomonoesterase at acidic pH when assayed
with pNPP (Tibbett 2002) or with MUP (Courty et al.
2005). ALP was measured in cell extracts of Cenococ-
cum graniforme (renamed Cenococcum geophilum), and
although the enzyme showed a high association with cell
wall material, it was not released into the external
medium from young fungal cultures (Bae and Barton
1989). Indeed, Antibus et al. (1986) did not measure a
significant surface ALP in the same species but rather an
ACP. It can be hypothesised that intracellular ALP will
be involved in internal recycling of fungal organic P,
whereas surface-bound or released ACP will be involved
in the mineralization of soil organic P. Indeed, as most
forest soils are not alkaline, the production of acid
phosphatases by ECM fungi seems to be relevant of the
field conditions encountered by ECM fungi.

Different abilities to release ACP were reported
among ectomycorrhizal species and strains when
grown in pure culture (e.g. Matumoto-Pintro 1996 in
Quiquampoix and Mousain 2005; Tibbett et al. 1998;
Nygren and Rosling 2009). For example, the measure-
ment of pNPPase activities in ten strains of Basidiomy-
cetes (Laccaria laccata, Suillus collinitus (three strains),
Suillus granulatus, Suillus luteus, H. cylindrosporum
(two strains), P. involutus and Rhizopogon rubescens)
after culture of the mycelia in a low-phosphate medium
showed that only six of them had free extracellular
pNPPase activity (one strain of S. collinitus, S. gran-
ulatus, S. luteus; both strains of H. cylindrosporum and
R. rubescens). In addition, the two H. cylindrosporum
strains presented exceptional high level of ACP activi-
ties they secreted into the external medium (Quiquam-
poix and Mousain 2005). The ability of Hebeloma
species to increase the proportion of extracellular
pNPPase compared to the surface-bound activity in the
case of Pi depletion was also reported by Tibbett et al.
(1998). The high ability to release acid phosphatases
into the external medium was recently confirmed in
another isolate of H. cylindrosporum by Louche et al.
(2010). In this study, four fractions containing ACPase
activity were separated from the culture medium,
suggesting that this fungal species could be able to
produce several isoforms of acid phosphatase. Each
fraction was able to hydrolyse a range of phosphomo-
noesters, but the characteristics of the corresponding
proteins remain to be determined. From a molecular
point of view, a gene coding for an acid phosphatase
(XP 001887867, http://www.ncbi.nlm.nih.gov/) is
available from the genome of L. bicolor recently
completely sequenced (Martin et al. 2008). The pre-

dicted protein is very close to the acid phosphatase
AfPhoA (Q8X176) characterised in Aspergillus fumi-
gatus (Bernard et al. 2002) as well as to two other acid
phosphatases identified in the basidiomycete Pholiota
nameko (PNAP1: BAD00139 and PNAP2: BAD00140;
Fig. 2). Interestingly, the different polypeptides share
three domains that are highly conserved among these
acid phosphatases (Bernard et al. 2002; Fig. 2).
However, no specific functions have been attributed
yet to these conserved domains. Whether acid phos-
phatase fractions separated from the culture medium of
H. cylindrosporum correspond to one gene homologous
to PhoA or to four different genes remains to be
determined.

Among the different forms of organic P extracted
from soil, phytate, corresponding to the salt of myo-
inositol hexakisphosphate (IP6), is often the dominant
form of organic P (Turner et al. 2002). To be used as a P
source, orthophosphate groups linked to the inositol ring
with an ester bond must be released by the action of
phosphatases named phytases. Saprotrobic fungi are able
to release these enzymes that belong to the class of
histidine acid phytase (HAPhy) that can be 6-phytase
(EC 3.1.3.26) or 3-phytase (EC 3.1.3.8), depending on
the position of the first phosphate group released by the
enzyme (Mullaney and Ullah 2007). Alignment of
available amino acid sequences of HAPhys show that
the N-terminal motif RHGXRXP and the C-terminal
motif HD that compose the active site are the only ones
conserved among the HAPhy identified in prokaryotes
or eukaryotes (Mullaney and Ullah 2007).

These enzymes are acid phosphatases and have been
shown to release up to five Pi and inositol mono-
phosphate per inositol hexakisphosphate. Experimen-
tally, phytase activity measurement is based on the
release of Pi from phytate salt supplied in incubation
medium because there is no artificial substrate as
convenient as pNPP or MUP. However, the sensitivity
of Pi release from phytate hydrolysis is higher when the
green malachite method is used (Ohno and Zibilske
1991) as the minimal Pi concentration that could be
detected with this method is around 2 pM. In ectomy-
corrhizal fungi, phytase activity has been measured in
the ten ectomycorrhizal isolates cited above (Matumoto-
Pintro 1996 in Quiquampoix and Mousain 2005). Only
four isolates had free extracellular phytase activity (one
strain of S. collinitus, S. granulatus, and both strains of
H. cylindrosporum; Quiquampoix and Mousain 2005).
However, the rate of Pi release was low compared to that
measured for para-nitrophenol release, with values
ranging from 1% to 8% in the four fractions separated
from the culture medium of H. cylindrosporum (Louche
et al. 2010).

i
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Fig. 2 Comparison of the pre-  pnap1 S THViIF SSLVERAQAIRGSE
dicted amino acid sequences of LbPhoA I e MHIAKLVEFLIFAGCiRiNAF ANS S PDSIRHISR ) gl
four acid phosphatases identi- PNAP2 1 mmmmmmmm oo LLSELTCher TGAERRIFIL PR PP FISR DRy

fied in the ectomycorrhizal L. AfPhoA 1 MKPSVATLLATVSLyYAQUATEKEPSISIAT ESAAASTQPRRSPIENYEE

bicolor, LbPhoA (accession XP
001887867); the ascomycete A.

fumigatus, AfPhoA (accession PNAP1
Q8X176) and in the saprotroph LbPhoa
basidiomycete P. nameko, PNAP2
PNAPI (accession BAD00139) ~ AfPhoA
and PNAP2 (accession
BADOOlflO). The sequences PNAP1
were retrieved from NCBI LbPhok
(http://www.ncbi.nlm.nih.gov/). DPNAP2
Identical residues are indicated AfPhoA
by solid boxes; similar residues
are indicated by grey boxes. The
lines indicate highly conserved PNAP1
motifs among the proteins LbPhoA
PNAP2
AfPhoA
PNAP1
LbPhoA
PNAP2
AfPhoA
PNAP1 272 DAPT KIL SYPGPFNS 1\SGIEL.PIPNTSL
LbPhoA 289 R TLQ SYPGNFNS IEL.PTPNTSL
PNAP2 286 NPAD - - - PEKFT PN
AfPhoA 300 G N———YDVDT L EYSKYSPVWPNAIET
* Rk L . e e
PNAP1 332
LbPhoA 349
PNAP2 343
AfPhoA 357
PNAPL ~  mmmmmmmm e
LDPhOA ~ mmmmmmmmmmm e
PNAP2 ~ mmmmmmmmmm e mmmmmmm oo
AfPhoA 417 SPSASSNAAVSAVAPAAGVSGLLLGLALNLL

When measured in vitro, an inverse relationship has
generally been reported between Pi concentration in
culture media and ACP, indicating that ACP is dere-
pressed by Pi starvation (Tibbett 2002). Higher values
of surface-bound ACP have also been measured in
ectomycorrhizal roots (see, e.g. Ali et al. 2009; van
Aarle and Plassard 2010) and hyphae (van Aarle and
Plassard 2010) belonging to ectomycorrhizal plants
grown in soil with a low level of available P, confirming
the results obtained in vitro. In contrast, it seems that the
presence of organic P did not activate the production of
ACP in ECM fungi as no differences in enzyme
production were found after growth on inorganic and
organic P sources (Antibus et al. 1992; Nygren and
Rosling 2009). The release of extracellular enzymes is
costly and one can imagine that this strategy—synthesis

@ Springer

and release of ACP only in low P availability—will
avoid a waste of energy for the fungus when Pi is
available in the external solution. However, in addition
to Pi availability, N fertilisation applied in the field
appears also as an important factor to regulate ACP
activity, as shown by a recent study made by Taniguchi
et al. (2008). The authors used seven ECM fungi to
inoculate Pinus thunbergii seedlings in control condi-
tions: C. geophilum, Rhizopogon sp., S. granulatus,
Tomentella sp. 1, Tomentella sp. 2, Amanita sp. and one
unidentified ECM fungus TOl. Once inoculated, the
seedlings were cultivated in sterilised soil, whether or
not supplemented with N supplied as ammonium nitrate.
ACP was measured using pNPP, and the results showed
that in non-fertilised conditions (control group),

activity was significantly higher in Tomentella sp. 1,
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Tomentella sp. 2 or Amanita sp. than in S. granulatus or
Rhizopogon sp., unidentified ECM fungus TOl and in
the non-mycorrhizal root tips. In fertilised conditions (N
group), activity of root tips was significantly higher in
the seedlings inoculated with Tomentella sp. 1 or
Tomentella sp. 2 than in the seedlings inoculated with
S. granulatus or Rhizopogon sp. and in the non-
inoculated seedlings. The application of N significantly
increased the activity measured in NM and S. granulatus
root tips. This increase of p-PNPase activity was
attributed to the depletion of Pi due to better P uptake
and accumulation in plant or fungal tissues following the
enhanced N availability (Taniguchi et al. 2008).

Despite the fact that ECM fungi are able to release
ACPase, especially when Pi availability is low, the
efficiency of these enzymes to mobilise Pi from organic P
in forest soils is still a matter of debate. As an example,
studies using ectomycorrhizal roots and their external
mycelium reported opposite conclusions regarding the use
of inositol phosphate P by the mycorrhizal fungus (Antibus
et al. 1997; Colpaert et al. 1997). These experiments were
carried out in simplified conditions (perlite as growing
medium and solution containing *?P-labelled inositol
phosphate, respectively) that overestimate the actual effect
of ECM fungi as the availability of the substrate is not
limiting. Indeed, it is important to keep in mind that the
studies measuring P accumulation in mycorrhizal plants
grown in substrate containing added soluble organic P
compounds may overestimate the actual role of ECM fungi
to use organic P in field conditions. This is particularly
important in the case of inositol phosphate, a polyanion that
can be easily combined with mineral surfaces (iron and
aluminium oxides, calcium) and thus made unavailable to
phytases (Giaveno et al. 2010). However, the ability to
hydrolyse a large spectrum of phosphomonoesters, as
shown by Louche et al. (2010), may be an advantage in
soil conditions. The phosphatases could also be involved in
recapturing of excreted plant or fungal compounds (Barrett-
Lennard et al. 1993) or breaking down and recycling the
phospholipids from old hyphae (Nygren and Rosling 2009),
avoiding therefore the loss of P into the environment.

4 Diversity in P uptake

Considerable increased soil exploration by mycorrhizal
fungi is thought to play a major role in overcoming the Pi
depletion zone occurring around the roots. As an example,
data obtained in young pot-grown Pinus taeda showed that
the absorbing surface contributed by the hyphae of the
ectomycorrhizal species Pisolithus tinctorius represented
about 75% of the uptake potential absorbing area and over
99% of the absorbing length of the whole root system

(Rousseau et al. 1994). Inoculation of P. taeda plants with
C. geophilum was by far less efficient to improve P
nutrition of the host plant. This was attributed to a much
lower hyphal growth of C. geophilum (2.80 mg ' soil)
compared with that measured in P tinctorius (6.78 mg '
soil), in combination with the absence of rhizomorphs
formed by C. geophilum (Rousseau et al. 1994). These data
illustrate the importance of hyphal growth and rhizomorph
formation on P uptake and its net transfer to the
ectomycorrhizal plant. However, it should be noticed that
ectomycorrhizal species can display different patterns to
explore the soil according to the classification proposed by
Agerer (2001). Some examples of species belonging to
different exploration types are given in Table 2 (Hobbie and
Agerer 2010). In theory, species belonging to “long-
exploration” type or to “medium-distance” should ensure
a better soil exploration than the species of the “contact”
type. However, determining the relationships between
hyphal density, exploration type and the actual efficiency
of ECM species to improve P uptake of trees in natural
conditions is still a challenging issue.

From a functional point of view, studies carried out with
intact plants grown in microcosms showed that extraradical
hyphae and mycelial strands of Suillus bovinus intercon-
necting Pinus contorta and Pinus sylvestris plants were also
able to take up *?P-Pi and to translocate labelled P to the
shoots (Finlay and Read 1986). This transport of P is
unidirectional (from the fungal to the host cells) as no
translocation of **P supplied to non-mycorrhizal roots was
detected in S. bovinus mycelium (Finlay and Read 1986).
External hyphae associated with young P. sylvestris grown
in perlite strongly enhanced the Pi uptake capacity of the
pine root system by decreasing the K, and increasing V.«
of Pi uptake rates in ECM plants compared with non-
mycorrhizal plants (Van Tichelen and Colpaert 2000).
However, plants associated with P. involutus were more
efficient to take up Pi than those associated with S. bovinus
and Thelephora terrestris (Table 3), suggesting that the Pi
transporters may exhibit different properties among the
associated fungal species.

Regarding the identification of phosphate transporters in
fungi, two types of high-affinity Pi transporters have been
characterised, which are either Pi:H" or Pi:Na" transporters.
In yeast, these two transporters are encoded by two genes,
PHO84 (Bun-ya et al. 1991) and PHO89 (Martinez and
Persson 1998), whose expression is activated when the cells
meet a limitation in external Pi (Persson et al. 2003). The
PHOB84 transport system displayed K, values for external
Pi ranging from 1 to 15 puM, whereas PHO89 displayed a
K, for external Pi of 0.5 uM (Persson et al. 2003). In
mycorrhizal fungi, the first data regarding the identification
of phosphate transporters possibly involved in Pi uptake
were obtained in the AM species Glomus versiforme
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Table 2 Exploration type of different genera of ectomycorrhizal species

Exploration type Genus

Long Boletus, Leccinum, Paxillus, Rhizopogon, Suillus, Tylopilus, Xerocomus

Medium-mat

Boletopsis, Gomphus, Hydnellum, Phellodon, Ramaria, Sarcodon

Medium-fringe Cortinarius, Hebeloma, Hydnum, Lyophyllum, Tricholoma

Medium-smooth Albatrellus, Amanita, Cantharellus, Craterellus, Gomphidius, Laccaria, Russula
Short Inocybe, Rocites

Contact Hygrophorus, Lactarius, Chroogomphus

Exploration types were defined by Agerer (2001). Long is for long distance, medium is for medium distance, short is for short distance of
emanating hyphae from ectomycorhhizal roots. Contact ectomycorrhizae have no emanating hyphae. Redrawn from Hobbie and Agerer (2010)

associated with Medicago truncatula (Harrison and van
Buuren 1995). Pi uptake mediated by the transporter
(named GVPT) in yeast is dependent on external pH,
suggesting that it is operating via a proton-coupled symport
and exhibited an apparent K,,, value of 18 uM Pi (Harrison
and van Buuren 1995). Furthermore, one partial cDNA
(GmosPT) and one full-length ¢cDNA (GiPT) putatively
coding for Pi transporters have been identified in two AM
species, Glomus mosseae and Glomus intraradices, respec-
tively (Benedetto et al. 2005; Maldonado-Mendoza et al.
2001). Although the polypeptides encoded by GmosPT and
GiPT were not functionally characterised yet, they all
clustered with fungal Pi:H" polypeptides (Tatry et al.
2009). All these transcripts have been predominantly
detected in extraradical hyphae, with their expression level
enhanced by low P availability, such as reported in G.
intraradices (Maldonado-Mendoza et al. 2001; Olsson et al.
2006) and G. mosseae (Benedetto et al. 2005). Taken as a
whole, these data suggest a role in Pi acquisition from the
soil for all these Pi transporters despite the rather high value
of K, measured for Pi uptake mediated by GvPT expressed
in yeast.

Regarding ECM fungi, data are available from three
species: two Basidiomycetes, L. bicolor and H. cylindrospo-
rum, and one Ascomycete, Tuber melanosporum. In L.
bicolor, whose the genome has been completely sequenced,
five genes possibly coding for Pi transporters belonging to
the Mafor Facilitating Superfamily (MFS) of transporters
have been identified and named LbPhti;1 to LbPhtl;5

(http://genome.jgi-psf.org/Lacbil/Lacbil.home.html). Two
other genes, HcPT1 and HcPT2, have been identified in H.
cylindrosporum (Tatry et al. 2009). The peptide sequence of
HcPT1 is very close to two L. bicolor predicted polypeptides
(LbPhtl;4 and LbPhtl;5) and HcPT2 is close to the three
other ones (LbPhtl;1-3). As in AM fungi, the seven
polypeptides cluster fungal Pi:H' transporters. However,
the genome of 7. melanosporum (http://www.genoscope.cns.
fr/externe/GenomeBrowser/Tuber/) contains at least three
genes coding for Pi transporters. Two of them encode
putative Pi:H" transporters belonging to the MFS, homolo-
gous to PHOS84 (high affinity) and to PHO87 (low affinity)
in yeast. The last gene should encode a protein belonging to
another transporter family, the Inorganic Phosphate Trans-
porter (PiT) family, very close to the high-affinity Pi:Na"
polypeptide NcPHO4 characterised in the mould Ascomy-
cete Neurospora crassa.

The polypeptides encoded by the genes identified in L.
bicolor or T. melanosporum have not been characterised
yet. However, this was done for HcPT1 and HcPT2 (Tatry
et al. 2009) which were shown able to mediate Pi:H"
symport with different affinities for Pi, the K, values being
55 and 4 pM, respectively, for HcPT1 and HcPT2. The
apparent K, of HcPT2 was therefore comparable to that
reported for PHO84 and lower than that of the gene GvPT
(18 uM), which is the only value for a Pi transporter of AM
fungi currently available for comparison (Harrison and van
Buuren 1995). The value of K, found for HcPT2 was in the
same range as those found in intact plants of P. sylvestris

Table 3 Kinetic parameters of

the high-affinity Pi uptake sys- Plant age (weeks)

Inoculation treatment

Apparent K, (UM Pi) Apparent V.« (nmol g1 sfl)

tem in intact mycorrhizal and

non-mycorrhizal P. sylvestris 7 Paxillus involutus 3.5 (2.4-4.5)* 0.57 (0.50-0.66)
root systems Suillus bovinus 7.5 (5.1-10.1) 0.49 (0.45-0.55)
Thelephora terrestris 8.7 (6.5-10.1) 0.13 (0.09-0.17)

9 Paxillus involutus 5.9 (4.1-7.2) 0.62 (0.48-0.70)

Adapted from van Tichelen and Suillus bovinus 10.2 (7.2-12.3) 0.52 (0.48-0.54)
Colpaert (2000) Thelephora terrestris 7.3 (4.6-9.9) 0.15 (0.10-0.19)

®Means and range of variation
(between parentheses) are shown
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None (non-mycorrhizal)

12.1 (7.8-16.4)

0.08 (0.07-0.10)
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(see Table 3), suggesting that this phosphate transporter
could play a great role in Pi uptake into fungal cells.
Expression levels of HcPTI and HcPT2 were quantified as
a function of external Pi availability in the hyphae grown in
pure culture or associated with their host plant P. pinaster.
Levels of HcPTI transcripts were always higher in fungal
cells exposed to Pi starvation in solution or to low Pi
availability in soil, suggesting that the regulation of this
transport system is close to that of PHO84 in yeast. In
contrast, transcript levels of HcPT2 were less dependent on
Pi availability in fungal cells grown in vitro and were
upregulated in ectomycorrhizal roots grown in soil with
high P availability (Tatry et al. 2009). Taken as a whole,
these results indicate that H. cylindrosporum might use
HcPT1 to mediate Pi uptake when soil P availability is low
and HcPT2 when soil P availability is high. It is therefore
intriguing to find such rather high apparent affinity value
measured for HcPT1 expressed in yeast and its functioning
when Pi availability is low. As proposed by Tatry et al.
(2009), this could be due to heterologous expression that
may modify the actual rates of Pi uptake and particularly
the apparent K, value. Indeed, one would expect a low
value of apparent K,,, of Pi uptake in ectomycorrhizal fungi
(see Table 3), close to that found in HcPT2. It should be
noticed that the heterologous expression of HcPT1 required
starving the yeasts for Pi (Tatry et al. 2009), a feature that
was not observed for HcPT2. These data suggest that
HcPT1 expression may have been significantly modified by
the yeast machinery, contrary to HcPT2, leading to the
overestimated apparent K,,, value. In this context, it will be
very interesting to carry out the functional characterization
of Pi transporters identified in other ectomycorrhizal fungi,
particularly those close to HcPT1. These data will be
helpful to get a better quantification of the actual capacities
of Pi transport by these proteins. Also, the functional
characterization of the polypeptides encoded by the genes
discovered in 7. melanosporum genome will confirm
whether this fungus is able to take up Pi in alkaline
conditions, where protons are not available.

5 Concluding remarks

From this review, it is clear that mycorrhizal fungi exhibit a
large diversity in their ability to mobilise mineral or organic
P from the soil, as well as in their efficiency to explore the
soil and to take up Pi from the soil solution. It is clear also
that most of the data have been obtained by carrying studies
on a small number of fungal species. The challenge will be
now to find tools to extend our studies in situ to increase
our comprehension of the functioning of forest ecosystems.
Regarding insoluble mineral P mobilisation, it seems that
the release of LMWOAs such as oxalate is of great

importance to enhance P availability. However, we need
to know better what the diversity is and how this
production of oxalate is regulated by environmental factors
such as nitrogen source. There is no molecular tool
available yet, but measurement of oxalate production
capacities by ectomycorrhizal tips (Rineau et al. 2008) in
various environmental conditions, together with the deter-
mination of available sources of N (that could be identified
by incubating field soil samples in laboratory conditions),
should help us improve our knowledge of this regulation in
the field. However, despite the importance of the accom-
panying cation on the actual efficiency of LMWOA release,
determining whether oxalate—or other LMWOAs—are
released with or without protons in situ remains a
challenging issue.

Regarding the mobilisation of organic P, the extensive use
of microplate assay (Pritsch et al. 2004; Courty et al.; 2005;
Pritsch and Garbaye 2011, this issue) for measuring acid
phosphatase activities on individual root tips, together with
the molecular identification of the fungal species forming the
ectomycorrhizal tip, should be a valuable tool to extend our
knowledge about the factors that regulate the abundance of
phosphatases released into the soil. Alternatively, molecular
tools could be designed to study the diversity of these
enzymes in the field. Finally, regarding soil exploration and
Pi uptake efficiency, the diversity of Pi transporters among
ectomycorrhizal species is still a challenging question in the
field. It should be useful to combine studies dealing with
exploration types and variability of Pi transporters that could
be assessed using molecular tools.

Acknowledgements This review was discussed during the exploratory
workshop on “Diversity and Function in Ectomycorrhizal Communities”
held in Nancy (December 6-9, 2009) and funded by European Science
Foundation. C. Plassard thanks Dr J. Garbaye (INRA Nancy, France) for
his invitation to attend this meeting. The authors thank also two
anonymous reviewers for their helpful comments.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.

References

Agerer R (2001) Exploration types of ectomycorrhizae. A proposal to
classify ectomycorrhizal mycelial systems according to their
patterns of differentiation and putative ecological importance.
Mycorrhiza 11:107-114

Ali MA, Louche J, Legname E, Duchemin M, Plassard C (2009)
Pinus pinaster seedlings and their fungal symbionts show high
plasticity in phosphorus acquisition in acidic soils. Tree Physiol
29:1587-1597

Antibus RK, Kroehler CJ, Linkins AE (1986) The effects of
external pH, temperature and substrate concentration on acid

%i%% Im @ Springer



4

C. Plassard et al.

phosphatase activity of ectomycorrhizal fungi. Can J Bot
64:2383-2387

Antibus RK, Kroehler CJ, Linkins AE (1992) Phosphatase activities
and phosphorus uptake from inositol phosphate by ectomycor-
rhizal fungi. Can J Bot 70:794-801

Antibus RK, Bower D, Dighton J (1997) Root surface phosphatase
activities and uptake of 3?P-labelled inositol phosphate in field-
collected gray birch and red maple roots. Mycorrhiza 7:39-46

Arvieu J-C, Leprince F, Plassard C (2003) Release of oxalate and
protons by ectomycorrhizal fungi in response to P-deficiency and
calcium carbonate in nutrient solution. Ann For Sci 60:815-821

Bae KS, Barton LL (1989) Alkaline phosphatase and other hydrolases
produced by Cenococcum graniforme, an ectomycorrhizal
fungus. Appl Environ Microbiol 55:2511-2516

Barber S (1984) Soil nutrient bioavailability. A mechanistic approach.
Wiley, New York, 398 pp

Barrett-Lennard EG, Dracup M, Greenway H (1993) Role of
extracellular phosphatases in the phosphorus nutrition of clover.
J Exp Bot 44:1595-1600

Benedetto A, Magurno F, Bonfante P, Lanfranco L (2005) Expression
profiles of a phosphate transporter gene (GmosPT) from the
endomycorrhizal fungus Glomus mossae. Mycorrhiza 15:620-627

Bernard M, Mouyna I, Dubreucq G, Debeaupuis J-P, Fontaine T,
Vorgias C, Fuglsang C, Latge J-P (2002) Characterization of a
cell wall acid phosphatase (PhoAp) in Aspergillus fumigatus.
Microbiology 148:2819-2829

Bieleski RL (1973) Phosphate pools, phosphate transport and
phosphate availablility. Ann Rev Plant Physiol 24:225-252

Borggaard OK, Raben-Lange B, Gimsing AL, Strobel BW (2005)
Influence of humic substances on phosphate adsorption by
aluminum and iron oxides. Geoderma 127:270-279

Bucher M (2007) Functional biology of plant phosphate uptake at root
and mycorrhizal interfaces. New Phytol 173:11-26

Bun-ya N, Nishimura M, Harashima S, Oshima Y (1991) The PHO84
gene of Saccharomyces cerevisiae encodes an inorganic phos-
phate transporter. Mol Cell Biol 11:3229-3238

Burleigh SH, Cavagnaro T, Jakobsen I (2002) Functional diversity of
arbuscular mycorrhizas extends to the expression of plant genes
involved in P nutrition. J Exp Bot 53:1593-1601

Casarin V, Plassard C, Souche G, Arvieu J-C (2003) Quantification of
oxalate ions and protons released by ectomycorrhizal fungi in
rhizosphere soil. Agronomie 23:461-469

Casarin V, Plassard C, Hinsinger P, Arvieu J-C (2004) Quantification
of ectomycorrhizal effects on the bioavailability and mobilization
of soil P in the rhizosphere of Pinus pinaster. New Phytol
163:177-195

Chalot M, Javelle A, Blaudez D, Lambilliote R, Cooke R, Sentenac H,
Wipf D, Botton B (2002) An update on nutrient transport
processes in ectomycorrhizas. Plant Soil 244:165-175

Colpaert JV, van Laere A, van Tichelen KK, van Assche JA (1997)
The use of inositol hexaphosphate as a phosphorus source by
mycorrhizal and non-mycorrhizal Scots pine (Pinus sylvestris).
Funct Ecol 11:407-415

Condron LM, Turner BL, Cade-Menun BJ (2005) The chemistry and
dynamics of soil organic phosphorus. In: Sims JT, Sharpley AN
(eds) Phosphorus: agriculture and the environment. ASA-CSSA-
SSSA, Madison, pp 87-121

Courty P-E, Pritsch K, Scholter M, Hartman A, Garbaye J (2005)
Activity profiling of ectomycorrhiza communities in two forest
soils using multiple enzymatic tests. New Phytol 167:309-319

Courty P-E, Pouysegur R, Buée M, Garbaye J (2006) Laccase and
phosphatase activities of the dominant ectomycorrhizal types in a
lowland oak forest. Soil Biol Biochem 38:1219-1222

Courty P-E, Buée M, Diedhou AG, Frey-Klett P, Le Tacon F, Rineau
F, Turpault M-P, Uroz S, Garbaye J (2010) The role of
ectomycorrhizal communities in forest ecosystem processes:

@ Springer %g%f% Im

new perspectives and emerging concepts. Soil Biol Biochem
42:679-698

Finlay R (2009) Ecological aspects of mycorrhizal symbiosis: with
special emphasis on the functional diversity of interactions
involving the extraradical mycelium. J Exp Bot 59:1115-1126

Finlay R, Read DJ (1986) The structure and function of the vegetative
mycelium of ectomycorrhizal plants. II. The uptake and
distribution of phosphorus by mycelial strands interconnecting
host plants. New Phytol 103:157-165

Gharieb MM, Gadd GM (1999) Influence of nitrogen source on the
solubilization of natural gypsum (CaSO4-2H,0) and the forma-
tion of calcium oxalate by different oxalic and citric acid-
producing fungi. Mycol Res 103:473-481

Giaveno C, Celi L, Richardson AE, Simpson RJ, Barberis E (2010)
Interaction of phytases with minerals and availability of substrate
affect the hydrolysis of inositol phosphates. Soil Biol Biochem
42:491-498

Guppy CN, Menzies NW, Moody PW, Blamey FPC (2005)
Competitive sorption reactions between phosphorus and organic
matter in soil: a review. Austr J Soil Res 43:189-202

Harrison MJ, van Buuren ML (1995) A phosphate transporter from
the mycorrhizal fungus Glomus versiforme. Nature 378:626—629

Hinsinger P (2001) Bioavailability of soil inorganic P in the
rhizosphere as affected by root-induced chemical changes: a
review. Plant Soil 237:173-195

Hobbie EA, Agerer R (2010) Nitrogen isotopes in ectomycorrhizal
sporocarps correspond to belowground exploration types. Plant
Soil 327:71-83

Hunt JF, Ohno T, He Z, Honeycutt CW, Dail BD (2007) Inhibition of
phosphorus sorption to goethite, gibbsite, and kaolin by fresh and
decomposed organic matter. Biol Fertil Soils 44:277-288

Jones DL (1998) Organic acids in the rhizosphere—a critical review.
Plant Soil 205:25-44

Lambers H, Raven JA, Shaver GR, Smith SE (2008) Plant nutrient-
acquisition strategies change with soil age. Trends Ecol Evol
23:95-103

Lapeyrie F (1988) Oxalate synthesis from soil bicarbonate by the
mycorrhizal fungus Paxillus involutus. Plant Soil 110:3-8

Lapeyrie F, Chilvers GA, Bhem CA (1987) Oxalic acid synthesis by
the mycorrhizal fungus Paxillus involutus (Batsch. Ex Fr.) Fr.
New Phytol 106:139-146

Lapeyrie F, Ranger J, Vairelles D (1991) Phosphate-solubilizing
activity of ectomycorrhizal fungi in vitro. Can J Bot 69:342-346

Louche J, Ali MA, Cloutier-Hurteau B, Sauvage F-X, Quiquampoix
H, Plassard C (2010) Efficiency of acid phosphatases secreted
from the ectomycorrhizal fungus Hebeloma cylindrosporum to
hydrolyse organic phosphorus in podzols. FEMS Microbiol Ecol
73:323-335

Lynch JP, Brown KM (2008) Root strategies for phosphorus
acquisition. In: White PJ, Hammond JP (eds) The ecosphysi-
ology of plant—phosphorus interactions. Springer, Berlin, pp
83-96

Magid J, Tiessen H, Condron LM (1996) Dynamics of organic
phosphorus in soils under natural and agricultural ecosystems. In:
Piccolo A (ed) Humic substances in terrestrial ecosystems.
Elsevier, Amsterdam, pp 429-466

Maldonado-Mendoza IE, Dewbre GR, Harrison MJ (2001) A
phosphate transporter gene from the extra-radical mycelium of
an arbuscular mycorrhizal fungus Glomus intraradices 1is
regulated in response to phosphate in the environment. Mol
Plant Microb Interact 14:1140-1148

Marmeisse R, Guidot A, Gay G, Lambilliotte R, Sentenac H, Combier
J-P, Melayah D, Fraissinet-Tachet L, Debaud J-C (2004)
Hebeloma cylindrosporum—a model species to study ectomy-
corrhizal symbiosis from gene to ecosystem. New Phytol
163:481-498



Ectomycorrhizal diversity for P mobilisation

43

Martin F, Aerts A, Ahrén D, Brun A, Danchin EGJ, Duchaussoy F,
Gibon J, Kohler A, Lindquist E, Pereda V, Salamov A, Shapiro
HJ, Wuyts J, Blaudez D, Buée M, Brokstein P, Canbiack B,
Cohen D, Courty PE, Coutinho PM, Delaruelle C, Detter JC,
Deveau A, DiFazio S, Duplessis S, Fraissinet-Tachet L, Lucic E,
Frey-Klett P, Fourrey C, Feussner I, Gay G, Grimwood J,
Hoegger PJ, Jain P, Kilaru S, Labbé J, Lin YC, Legué V, Le
Tacon F, Marmeisse R, Melayah D, Montanini B, Muratet M,
Nehls U, Niculita-Hirzel H, Oudot-Le Secq MP, Peter M,
Quesneville H, Rajashekar B, Reich M, Rouhier N, Schmutz J,
Yin T, Chalot M, Henrissat B, Kiies U, Lucas S, Van de Peer Y,
Podila GK, Polle A, Pukkila PJ, Richardson PM, Rouzé P,
Sanders IR, Stajich JE, Tunlid A, Tuskan G, Grigoriev IV (2008)
The genome of Laccaria bicolor provides insights into mycor-
rhizal symbiosis. Nature 452:88-92

Martinez P, Persson B (1998) Identification, cloning and character-
ization of a derepressible Na'-coupled phosphate transporter in
Saccharomyces cerevisiae. Mol Gen Genet 258:628—638

Mullaney EJ, Ullah AHJ (2007) Phytases: attributes, catalytic
mechanisms and applications. In: Turner BL, Richardson AE,
Mullaney EJ (eds) Inositol phosphates: linking agriculture and
the environment. CAB International, Wallingford, pp 97-110

Nygren CMR, Rosling A (2009) Localisation of phosphomonoester-
ase activity in ectomycorrhizal fungi grown on different
phosphorus sources. Mycorrhiza 19:197-204

Ohno T, Zibilske L (1991) Determination of low concentrations of
phosphorus in soil extracts using malachite green. Soil Sci Soc
Am J 55:892-895

Olsson PA, Hansson MC, Burleigh SH (2006) Effect of P availability
on temporal dynamics of carbon allocation and Glomus intra-
radices high-affinity P transporter gene induction in arbuscular
mycorrhiza. Appl Environ Microbiol 72:4115-4120

Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root
endosymbioses. Nat Rev Microbiol 6:763—775

Persson BL, Lagerstedt JO, Pratt JR, Pattison-Granberg J, Lundh K,
Shokrollahzadeh S, Lundh F (2003) Regulation of phosphate
acquisition in Saccharomyces cerevisiae. Curr Genet 43:225-244

Plassard C, Fransson P (2009) Regulation of low-molecular weight
organic acid production in fungi. Fungal Biol Rev 23:30-39

Pritsch K, Garbaye J (2011) Enzyme secretion by ECM-fungi and
exploitation of mineral nutrients from soil organic matter. Ann
For Sci 68. doi:10.1007/s13595-010-0004-8

Pritsch K, Raidl S, Marksteiner E, Blaschke H, Agerer R, Schloter M,
Hartmann A (2004) A rapid and highly sensitive method for
measuring enzyme activities in single mycorrhizal tips using 4-
methylumbelliferone-labelled fluorogenic substrates in a micro-
plate system. J Microb Meth 58:233-241

Quiquampoix H, Mousain D (2005) Enzymatic hydrolysis of organic
phosphorus. In: Turner BL, Frossard E, Baldwin DS (eds)
Organic phosphorus in the environment. CAB International,
Wallingford, pp 89-112

Raghothama KG (1999) Phosphate acquisition. Ann Rev Plant
Physiol Plant Mol Biol 50:665-693

Richardson AE, Barea J-M, McNeill AM, Prigent-Combaret C (2009)
Acquisition of phosphorus and nitrogen in the rhizosphere and

plant growth promotion by microorganisms. Plant Soil 321:305—
339

Rineau F, Courty P-E, Uroz S, Buée M, Garbaye J (2008) Simple
microplate assays to measure iron mobilization and oxalate
secretion by ectomycorhizal tree roots. Soil Biol Biochem
40:2460-2463

Roelofs RFR, Rengel Z, Cawthray GR, Dixon KW, Lambers H (2001)
Exudation of carboxylates in Australian Proteaceae: chemical
composition. Plant Cell Environ 24:891-904

Rosling A (2009) Trees, mycorrhiza and minerals—field relevance of
in vitro experiments. Geomicrobiol J 26:389-401

Rousseau JVD, Sylvia DM, Fox AJ (1994) Contribution of ectomy-
corrhiza to the potential nutriment-absorbing surface of pine.
New Phytol 128:639-644

Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn.
Academic, Amsterdam, 787 pp

Smith FW, Rae AL, Hawkesford MJ (2000) Molecular mechanisms of
phosphate and sulphate transport in plants. Biochim Biophys
Acta 1465:236-245

Tabatabai MA, Bremner JM (1969) Use of p-nitrophenyl phosphate
for assay of soil phosphatase activity. Soil Biol Biochem 1:301—
307

Taniguchi T, Kataoka R, Futai K (2008) Plant growth and nutrition in
pine (Pinus thunbergii) seedlings and dehydrogenase and
phosphatase activity of ectomycorrhizal root tips inoculated with
seven individual ectomycorrhizal fungal species at high and low
nitrogen conditions. Soil Biol Biochem 40:1235-1243

Tatry M-V, El KE, Lambilliotte R, Corratgé C, van Aarle I, Amenc LK,
Alary R, Zimmermann S, Sentenac H, Plassard C (2009) Two
differentially regulated phosphate transporters from the symbiotic
fungus Hebeloma cylindrosporum and phosphorus acquisition by
ectomycorrhizal Pinus pinaster. Plant J 57:1092-1102

Tibbett M (2002) Consideration on the use of the p-nitrophenyl
phosphomonoesterase assay in the study of the phosporus
nutrition of soil borne fungi. Microbiol Res 157:221-231

Tibbett M, Sanders FE (2002) Ectomycorrhizal symbiosis can enhance
plant nutrition through improved access to discrete organic
nutrient patches of high resource quality. Ann Bot 89:783-789

Tibbett M, Sanders FE, Cairney JWG (1998) The effect of
temperature and inorganic phosphorus supply on growth and
acid phosphatase production in arctic and temperate strains of
ectomycorrhizal Hebeloma spp. in axenic culture. Mycol Res
102:129-135

Turner BL, Paphazy MJ, Haygarth PM, McKelvie ID (2002) Inositol
phosphates in the environment. Phil Trans R Soc Lond B
357:449-469

van Aarle IM, Plassard C (2010) Spatial distribution of phosphatase
activity associated with ectomycorrhizal plants is related with soil
type. Soil Biol Biochem 42:324-330

van Tichelen KK, Colpaert JV (2000) Kinetics of phosphate
absorption by mycorrhizal and non-mycorrhizal Scots pine
seedlings. Physiol Plant 110:96-103

Vance C, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and
use: critical adaptations by plants for securing a nonrenewable
resource. New Phytol 157:423-447

% Im @ Springer


http://dx.doi.org/10.1007/s13595-010-0004-8

	Diversity in phosphorus mobilisation and uptake in ectomycorrhizal fungi
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Diversity of fungal species to mobilise mineral P
	Diversity of fungal species to mobilise organic P
	Diversity in P uptake
	Concluding remarks
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


