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Abstract

· Introduction Important nutrients in forest soils such as
nitrogen and phosphorus are mostly recycled from natural
polymeric compounds contained in litter and organic debris—
for example nucleic acids, proteins, or chitin.

·Objectives Activities of enzymes such as phosphatases,
proteases, cellulases, chitinases and laccase were shown
in saprotrophic but also in ectomycorrhizal fungi and
there is increasing evidence that these enzymes contrib-
ute not only to the functioning of the symbiosis but also
to the mobilisation of nutrients. In the present review, we
describe how enzyme secretion and localisation on
fungal hyphae may be connected to the potential role in
soil nutrient cycling.

· Results Recently developed methods for enzyme activity
studies of ectomycorrhizae directly assayed in or collected
from the field such as enzyme activity profiling and soil
imprinting are described. Their value and limitations in
different examples of ecological studies is highlighted and
discussed also with respect to the role of other soil
microorganisms associated with ectomycorrhizae.

· Conclusion The conclusion from our review is that
enzyme activities of ECM and their associated micro-
organisms provide a potentially enormous plasticity of
mycorrhizosphere functionality which is an open field for
further research. Enzymes secrétés par les champignons
ectomycorhiziens et exploitation des éléments minéraux
contenus dans la matière organique du sol.

Keywords Extracellular enzymes . Ectomycorrhiza .

Nutrient mobilisation

1 Introduction

2 Ectomycorrhizal fungi and nutrient exploitation

The roots of the dominant and economically most
important forest trees in temperate and boreal forests
form ectomycorrhizal (ECM) symbioses with higher
fungi. Over 100 different ECM species can occur in a
single forest stand. This high diversity of fungal
symbionts adds multiple functions to the plant host
root. While many studies have been performed address-
ing biodiversity in forest ecosystems, only little is
known on the expression of functional traits of
ectomycorrhizae in the field.

Colonising the absorbing fine roots of their host
plants, ECMs are involved in nutrient acquisition of
their host (Smith and Read 2008). The fundamental
structures of the functional symbiosis are the colonised
root tips which are formed of the zone of interaction
(Hartig net), the hyphal mantle, and the external myce-
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lium (Kjøller 2006). The structure of the hyphal mantle
and external mycelia are mainly determined by the
respective fungal symbionts. A considerable variety of
mantle anatomies, surface properties, and types of
extramatrical mycelia have been described with respect
to their representation in different taxonomic groups
(Agerer 2007). Focusing on the potential to exploit
nutrients in forest litter and soil, Agerer (2001) has
proposed five different exploration types according to the
structure of extraradical mycelia of ECMs. Contact types
have a smooth mantle with almost no extramatrical
mycelium and are closely attached to the substrate. Short
distance types usually have many short extramatrical
hyphae and explore the soil in a distance below 1 mm
from the root surface. Medium distance types are
separated into smooth and fringe types forming rhizo-
morphs or hyphal bundles that mostly reach less than
1 cm into the soil, while long distance types have
differentiated rhizomorphs with the potential to grow
several dm into the soil. Additionally, surface properties
such as hydrophobicity and hydrophily determine the
interaction of ECMs with their environment. These
different structural adaptations may enable mycorrhizal
communities to explore different niches and optimally
use nutrients therein (Bruns 1995).

Except for nitrogen which can be fixed biologically
by prokaryotes, nutrient availability in soils primarily
depends upon soil chemical properties and microbial
nutrient cycles. Soil microorganisms including mycor-
rhizal fungi use several mechanisms for nutrient
exploitation. Nutrient mobilisation from minerals using
organic acids and siderophores has been reviewed by
Rosling (2009). We will focus here on nutrient mobi-
lisation from organic substances and especially on
secreted enzymes of ectomycorrhizal fungi possibly
involved in nutrient exploitation from forest litter and
soil organic matter.

Enzymes catalyse biochemical reactions and therefore
are involved in all biological processes including bio-
geochemical nutrient cycles. Several enzymes and en-
zyme activities similar to those of typical decomposers
have been demonstrated in ectomycorrhizae and the
results from mainly pure culture experiments and
laboratory studies are reviewed by Leake and Read
(1997). The saprotrophic potential of ECMs may reflect
the fact that the ectomycorrhizal symbiosis has evolved
several times independently from presumably saprotrophic
groups within basidio- and ascomycetes (Bruns and
Shefferson 2004; Hibbett and Matheny 2009). ECM
evolution has even been related to nutrient-poor conditions
with nutrients patchily distributed and often protected
from mineralization by surrounding organic material
(Lambers et al. 2009; Read and Perez-Moreno 2003).

3 Forms of nutrients and natural substrates
for utilisation by ECM fungi

Radio tracer studies using 14 C-labelled litter demon-
strated that ECM root tips in the field predominantly
receive carbon from plant photosynthesis rather than
from litter (Treseder et al. 2006). Under conditions of
reduced photosynthesis after defoliation, Cullings et al.
(2008) studied enzyme activities on ECM tips of Suillus
granulatus and found an increase in enzymes typical for
wood rotting fungi. Saprotrophic and mycorrhizal fungi
appear to use different sources within the different soil
layers with ECM fungi preferentially taking up nitrogen
and saprotrophic fungi favouring carbon (Hobbie and
Horton 2007). However, stable isotope signatures of fruit
bodies of some ECM revealed a signature intermediate
between what would be expected if carbon only was
provided by plant photosynthesis or from soil carbon
sources, respectively (Taylor et al. 2003). This suggests
differences in carbon use between ECM species. Al-
though there is some debate on the saprotrophic capac-
ities of ectomycorrhizae (Baldrian 2009) it is reasonable
to assume that there is a biotrophic–saprotrophic contin-
uum in ECM fungi as summarised and discussed by
Koide et al. (2008) and Cullings and Courty (2009).
Especially those ECM types with extensive mycelia are
candidates to search for saprotrophic capacities and
uptake of carbon from litter in parts of their mycelia
remote from the carbon supply of their plant host.

Litter predominantly contains dead plant material,
but also debris of animal, fungal, and prokaryote origin
altogether affecting litter composition and degradability.
Litter degradation itself is a complex process involving
different trophic groups of organisms (Ponge 2003;
Ponge 1991). The decaying litter material is gradually
transformed and incorporated either into biomass or into
different soil organic matter pools (Kalbitz et al. 2000).
Each of these pools is again subject to further degradation
and uptake into biomass or to sequestration into stable
carbon pools. Altogether, a complex spatial and temporal
dynamic in nutrient quality and quantity results from
biological cycles.

4 Enzymes of ECMs possibly involved in utilising
organic bound nutrients

In natural forest soils, the major nutrients phosphorus
and nitrogen are present as organic macromolecules
that need to be broken down into forms that can be
taken up by plants and fungi. In addition, enzymes
involved in the degradation of plant cell wall compo-
nents are important to get access to nutrients enclosed

26 K. Pritsch, J. Garbaye



in dead plant tissues (Leake et al. 2002; Perez-Moreno
and Read 2000). To attack plant cell walls, a number of
enzymes are needed: cellulases, hemicellulases, pecti-
nases, and possibly lignin degrading enzymes. Organic
nitrogen and phosphorus sources are mostly macro-
molecules such as proteins, chitin, and phytate or they
are only accessible after degradation of surrounding
materials and matrices as they are bound to or embedded
in plant and fungal cell walls or humic acids (Leake et al.
2002; Read and Perez-Moreno 2003).

Organic phosphorus compounds account for 30–65%
of total phosphorus in soils. Some phosphorus com-
pounds that enter the soil such as nucleic acids and
phospholipids are rapidly mineralised whereas others
such as phytate are more recalcitrant thus accumulating
in soils (cf. Lim et al. 2007).

Acid phosphatases or phosphomonoesterases are a
group of extracellular enzymes involved in releasing
phosphate groups from organic phosphates and are very
widely distributed in ECM (Alexander and Hardy
1981; Alvarez et al. 2006; Antibus et al. 1992; Bae and
Barton 1989; Bartlett and Lewis 1973; Conn and Dighton
2000; Courty et al. 2006; Ho 1989; Ho and Zak 1979;
Hrynkiewicz et al. 2009; McElhinney and Mitchell 1993;
Pasqualini et al. 1992; Tibbett et al. 1998). Phytase
activity has also been found in ECM fungi, indicating
their potential to access this more recalcitrant organic
phosphorus resource (Antibus et al. 1992). The diversity
of phosphorus mobilisation and uptake in ectomycor-
rhizal fungi is addressed in detail by Plassard et al. (2011)
in this issue.

Sources of organic nitrogen in soils are proteins and
especially in forest soils also chitin. Proteins can be
used by many although not all ECM fungi as sole
nitrogen source (Abuzinadah et al. 1986; Abuzinadah
and Read 1986; Finlay et al. 1992; Guidot et al. 2005;
Hutchison 1990; Keller 1996; Lilleskov et al. 2002;
Lundeberg 1970; Rangel-Castro et al. 2002). Proteins
often form protein–phenol complexes with tannins and
thus become less easily degradable for microorganisms.
Enzymes with the potential to break phenol–protein
complexes (Bending and Read 1996; Joanisse et al.
2009; Wu et al. 2003) are largely the same as those
involved in lignin degradation, namely phenoloxidases
and peroxidases. While laccase genes were demonstrated
in several ECM (Chen et al. 2003; Luis et al. 2005), there
is only limited evidence for the presence in ECM of other
lignolytic enzymes, e.g. lignin peroxidase or manganese
peroxidase (Baldrian 2006; Cairney et al. 2003).

Chitin is entering soils as fungal cell walls and arthropod
exoskeletons. The potential to use chitin as a nitrogen
source for ECM fungi is widespread (Leake and Read
1990; Lindahl and Taylor 2004).

Within the group of secreted enzymes, those local-
ised in the Hartig net are involved in symbiotic
interactions and in regulating compatibility, modelling
cell walls, and enabling the exchange of nutrient and
energy flow between partners, such as invertases,
ATPases, chitinases, and cellulases (Smith and Read
2008). These enzymes have been intensively studied to
understand the processes leading to a functional symbi-
otic relationship (Martin et al. 1995; Martin et al. 1999)
and are not further considered here.

5 Possible mechanisms used by ECM fungi to secrete
extracellular enzymes

At the subcellular level, enzymes that are effective
outside the fungal cell (extracellular enzymes) have to
pass the fungal cell wall after synthesis. Enzymes
secreted by fungi can be released in the surrounding
environment where they act and break down macro-
molecules. However, this strategy is often observed
under nutrient-rich conditions and effectively used for
biotechnological production of enzymes but may be a
waste of resources under conditions of nutrient com-
petition with other fungi, microbes, plants and animals.
Once released in the surrounding, enzymes may be
degraded or the products of the enzyme reaction may
be taken up by other soil living organisms. Thus,
uncontrolled release is an uneconomic way to spend a
costly resource, and indeed, several strategies have
been developed by soil microbes and fungi to keep
enzymes close to the producing cell. Enzymes can be
embedded in extracellular polysaccharide matrices or
bound to the cell wall as realised by many soil bacteria
and fungi. Microscopical enzyme activity stains showed
for example that phosphatase activity is localised at the
cell surface of ECM fungi (Alvarez et al. 2006; Nygren
and Rosling 2009; van Aarle et al. 2007).

Using sequential extraction, the following binding
forms of enzymes on fungal cell walls were identified.
Fungal enzymes aimed at being secreted are synthes-
ised at ribosomes, glycosilated in the endoplasmatic
reticulum, eventually modified during transport in
Golgi vesicles and finally transported to the plasma-
lemma where they leave the cell interior. Besides the
classical way, alternatives of enzyme secretion are also
reported (Latgé 2007). Irrespective of the secretion
system, once transported to the outside of the cell,
enzymes are either released as free enzymes or are
bound in different ways at the outside. This can be at the
outside the plasmalemma with GPI anchors or by
binding to cell wall components after transglycosilation.
Other binding forms that have been detected by
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sequential extraction of cell wall enzymes are weak ionic
forces or disulfide bridges (Pitarch et al. 2002; Rast et al.
2003). Experimental evidence for the presence of
relatively stable bonds of extracellular enzymes in intact
ECMs is given by studies with excised ECM that after
repeated washing steps in buffer maintained their
activity (Pritsch et al. 2004).

6 Methods to measure enzyme activities of field grown
ECMs

6.1 Enzyme activity profiling of excised mycorrhizal tips

Most of the results discussed above were obtained in
pure cultures, in controlled experiments with inoculat-
ed seedlings or on a limited number of field samples.
This was due to the lack of methods suitable for large
scale studies of ectomycorrhizal enzymes. Only re-
cently, the method of enzymatic activity profiling has
been developed to study potential activities of extra-
cellular enzymes as functional traits of field sampled
mycorrhizae (Courty et al. 2005; Pritsch et al. 2004).
This method is based on measurement of potential
enzymatic activities on the surface of individual excised
tips of ECMs using 96-well microplates with fluores-
cent or colorimetric enzyme substrates. Up to now, eight
different enzyme assays have been implemented
addressing the degradation of plant cell wall compo-
nents (cellulose, hemicellulose, phenolic compounds,
pectin), organic nitrogen (proteins/peptides, chitin), and
organic phosphorus (nucleotides, phospholipids). An
example of enzyme profiles of two common ectomycor-
rhizal types is given in Fig. 1 showing complementary
functions such as phosphatase activity and specific
functions such as phenoloxidase activity mainly occur-
ring in one of the exemplified species. Considering the
diversity of available substrates (Orenga et al. 2009),
there is certainly a potential to extend these enzyme
activity measurements to other substrates and functions
of interest. This includes enzymes involved in mobi-
lisation of nutrients not yet covered as for example
organic bound sulphur which becomes a limiting
nutrient in some soils due to the successful reduction
of sulphate emissions from coal burning. In addition,
other enzymes involved in phosphate mobilisation
(phosphodiesterase, phytase), nitrogen cycling (prote-
ase), or general activity measurements such as fluores-
cein diacetate cleavage (Verma et al. 2008) could be
adapted for microplate assays.

A last issue to mention is the possible contribution of
microorganisms (bacteria) to the enzyme activity measured
on field grown ECM. Addition of antibiotics to the enzyme

assays had no influence on enzyme activities (Cullings et al.
2008) suggesting a minor contribution of bacteria.

6.2 Possible approaches to include mycelia in enzyme
activity profiling

Enzyme activity measurements have several advantages.
They are relatively fast and inexpensive allowing high-
throughput functional analyses. Moreover, especially when
using fluorogenic substrates, enzyme activity detection is
very sensitive enabling rapid analyses on minute sample
materials or weakly active samples. However, also some
disadvantages and restrictions in use are connected with the
method of enzyme activity profiling.

The necessity to extract ECM root tips from soil
involves a cleaning step and the removal of soil particles
before assaying. For contact and short distance exploration-
type mycorrhizae, the activity of an excised tip may
represent the activity of the whole mycorrhizal functional
unit. In the case of medium and long-distance exploration
types, it is inevitable that the external mycelia are almost
entirely removed. Thereby, the structure considered to be
most important for soil exploration and thus for nutrient
exploitation is ignored. This problem has already been
discussed by Courty et al. (2005), and is still not solved
because of the obvious difficulties in getting access to field
grown mycelia. Possible approaches separating mycelia
from soil could be the use of mesh bags filled with sand and
buried in the forest floor which was shown to become
colonised by mycelia of saprotrophic and mycorrhizal fungi
(Kjøller 2006; Wallander et al. 2001). Alternatively, flat
rhizoboxes constructed from slim cases and separated from
soil by a fine mesh could be used to obtain field grown
roots and mycelia (Nikolova et al. 2006). Mycelia obtained
by either technique can be harvested relatively easily
without contaminating soil, subjected to enzyme activity
measurements, and identified using standard PCR techniques.
It would be an important step in addressing the question how
enzyme activities of external mycelia differ from those of the
mantle or from fruiting bodies (Agerer et al. 2000).

6.3 In situ measurements of enzyme activities
using the enzyme imprint technique

Another approach to study nutrient exploitation by ECM
communities through enzyme activities is enzyme imprinting
of undisturbed soil profiles (Dong et al. 2007; Grierson and
Comerford 2000). For this purpose, root windows have to be
installed in place at forest sites to allow development of roots
and mycelia. For enzyme imprinting, root windows are
opened and their surface is brought in contact with nylon
membranes coated with enzyme substrates. This method has
the striking advantage that enzyme activities can be localised
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and assigned to specific compartments of the studied soil
profile, i.e. non-mycorrhizal roots, mycorrhizae, mycelia,
rhizomorphs, and bulk soil (Dong et al. 2007).

A disadvantage of this method is that root windows have
to be installed well in advance before analyses can be made,
thus limiting the number of samples and sites of study.
However, it is a very interesting approach that may also
enable targeted studies of the distribution of nutrients in
relation to the distribution of enzyme activities in different
compartments and fungal structures in the soil.

7 Factors influencing the enzyme activities of ECM
communities

Increasing datasets on enzymatic profiles of ECMs reveal
a high functional diversity among different members of
ECM communities, with rather individual enzyme pro-
files. However, essential functions such as phosphatase
activity seem to be redundant within the ECM commu-
nity while specific functions such as phenoloxidase
activity seem to be restricted to some species (Buée et
al. 2007; Courty et al. 2006; Courty et al. 2005; Rineau
and Garbaye 2009) and Fig. 1. In addition, several studies
showed the influence of location and soil horizon on
enzyme activities of a single species suggesting that the
secretion of extracellular enzymes can—at least within a
certain range that has to be tested for each fungal species or
even genet—be adapted to the environment (Buée et al.
2007; Courty et al. 2005).

During the course of a year, shifts in the availability of
carbon and nutrients may not only shape the structure of the
ECM community but consequently also its enzymatic
activities. Carbon and nutrient availability in forest ecosys-
tems is determined by annual cycles of temperature and
depends on water supply and carbon source availability
(litter fall in autumn, starch accumulation in roots during
winter, remobilisation of starch and root growth in spring,
and maximal photosynthesis in summer with ample supply
of easily available carbon). Buée et al. (2005) and Courty et
al. (2006) found changes in enzyme activities in the annual
course of distinct species suggesting that different ECM
types perform complementary functions depending on the
season. Mosca et al. (2007) generally found strongly
increased enzyme activities in ECM communities during
winter compared with spring in a declining oak stand
suggesting a stimulation of enzyme activities by the amount
of nutrients contained in or released from recent litter.

Anthropogenic disturbances are manifold and may
severely influence soil processes. Enzymatic profiles within
a single species differed according to the location and the
position in the soil profile suggesting that each species may
adapt to local soil conditions (Courty et al. 2005). Because
of its direct enzyme inhibiting properties, heavy metal
contamination has been shown to decrease all tested
enzyme activities in a study with artificially polluted
lysimeters (Pritsch et al. 2006). More indirect effects on
enzyme activities could be expected when the imposed
stress factors alter carbon source availability. Elevated CO2

is increasing carbon supply and improving litter quality. In

Fig. 1 Distinct enzymatic profiles of two common ECMs on Norway
spruce (Picea abies (L.) Karst.) sampled within the O-horizon a
Cenococcum geophilum Fr., b Russula ochroleuca (Pers.) Fr..
Sampling took place in October 2007 at the mixed beech-spruce
stand “Kranzberger Forst” in Germany (for a site description see
Pretzsch et al. 1998). The grey area indicates the proportion of the
morphotype within the ECM community (number of tips colonised by
morphotype/total number of tips) which was 59/372=15.8% for C.
geophilum and 30/372=8.1% for R. ochroleuca; the black area shows
the relative contribution [%] of each morphotype to the total
enzymatic activities of the community (activity×proportion of each

morphotype/sum of activities of all morphotypes). The contribution of
C. geophilum and R. ochroleuca to the activity of the total community
was lower for most enzyme activities than could be expected from
their proportion in the community with few exceptions: C. geophilum
had relatively high phenoloxidase activity, and R. ochroleuca showed
relatively high phosphatase and N-acetylglucosaminidase activities.
Both ECMs lack leucine aminopeptidase activity. glr glucuronidase,
xyl xylosidase, cel cellobiohydrolase, gls ß-glucosidase, nag N-
acetylglucosaminidase, pho acid phosphatase, leu leucine aminopep-
tidase, phe phenoloxidase. Data for this figure were kindly provided
by Jana Ernst
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the contrary elevated ozone decreases the quantity and
quality of carbon either translocated directly to the root or
indirectly through litter fall. Other factors connected to
global climate change such as untimely or prolonged
periods of drought, altered precipitation and temperature
patterns may affect enzyme activities related to carbon
cycling in forest ecosystems.

The ubiquitous presence of prokaryotes (archaea, bacte-
ria) and eukaryotes in the mycorrhizosphere and on the
surface of ectomycorrhizae is well documented (Garbaye
1994; Bomberg and Timonen 2007; Calvaruso et al. 2007;
Frey-Klett et al. 2007, Buée et al. 2009). There are
increasing reports on interactions of saprotrophic fungi
and bacteria with ECM in nutrient release from complex
substrates (Koide and Kabir 2001; Leake et al. 2002;
Nurmiaho-Lassila et al. 1997; Timonen et al. 1998; Wu et
al. 2005; Wu et al. 2003). This functional assembly may
vary with time, i.e. having different colonisers on younger
than older parts of the mycorrhizosphere or with environ-
mental conditions, for example a reduction of bacterial
colonisation of the hyphal mantle under drought conditions
(A. Hartmann, personal communication). These multitro-
phic associations deserve further studies addressing struc-
tural and functional dynamics as well as possible synergies
within the resulting microbial communities.

Nevertheless, when studying the role of tree stands in
nutrient cycling at the ecosystem level, the relevant actor is
the whole ECM root tip and its emanating mycelial
structures, whatever the diversity of active bacteria they
contain. This is precisely what is used in the methods
described here.

8 Summary and conclusions

There are several open research questions connected to the
role of ECMs in nutrient cycling of forests that may be
important when changes in ECM communities have to be
interpreted with respect to ecosystem resistance and resilience
towards environmental stress. Interesting topics have been
raised: do plants select their fungal symbionts for specific
functions (Koide et al. 2007), or from the fungal side, what
determines the plasticity of ECM functions related to nutrient
availability and how do they react to disturbances? The
relation between nutrient and carbon source availability and
functions of ectomycorrhizal and decomposer communities
particularly deserve further research efforts. These multi-
trophic ectomycorrhizosphere associations should be ex-
plored towards their functional potential and versatility under
changing environmental conditions.
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