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Abstract The consequences of mastitis on the technological properties of milk and on
the quality of milk products are widely reported in the literature. Besides, recent advances
have shed light on the mechanisms involved in the udder response and subsequent milk
changes in mastitis cases. This review gives an update on the literature regarding the
impact of mastitis on milk composition and processing properties and collates recent data
regarding the mechanisms involved in mastitis effects. It is an attempt to link field
observations and experimental studies in order to better understand how mastites affect
so dramatically the technological properties of milk. Both bovine and small ruminant
milks are considered and a special emphasis is given on the role of staphylococci,
streptococci, and Escherichia coli, the most common causative agents of mastitis.

乳腺炎对乳制品质量和乳加工特性的影响

摘要关于乳房炎对乳的加工特性和乳制品质量影响的文献报道非常多。近年来关于此方面

的研究重点在乳房炎对乳房的反应以及对影响乳成分变化的机制。本文对近年来乳房炎对

乳组成和加工特性的影响及其影响机制方面的相关文献进行了对比和分析。目的是说明乳

房炎的发生会对乳的加工特性产生巨大的作用。不但是对牛乳, 而且一些小反刍动物乳的加
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工特性都受乳房炎的影响。值得强调的一个现象是葡萄球菌、链球菌属和大肠杆菌是乳房

炎发病最主要的原因。

Keywords Mastitis . Milk . Ruminant . Dairy product . Bacterial pathogen
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1 Introduction

Milk composition can be affected by a wide array of factors: breed, age, stage of
lactation, and diet of the animal. In addition, infectious mastitis (hereafter referred to
as mastitis), an inflammatory reaction of the mammary gland to an infection, is also
known to have a multitude of effects on the quantity, quality, and processing
properties of the produced milk. Mastitis is the most frequent disease in dairy herds
and is the main source of economic loss in milk production worldwide. The average
annual cost of mastitis caused by Staphylococcus aureus, Streptococcus agalactiae,
Streptococcus uberis, and Escherichia coli is estimated to be 4,896 € in a herd of
100 dairy cows (Halasa et al. 2009). Beyond animal health and food safety issues,
mastitis is also a problem for the dairy industry because of the induced milk changes.
This review gives an update of the literature regarding the impact of mastitis on milk
composition and processing properties and collates recent data regarding the
mechanisms involved in these effects. Staphylococci, streptococci, and E. coli are
the most common causative bacterial agents of mastitis in both bovine and small
ruminant hosts and therefore have been more documented. Special emphasis is given
to the impact on milk quality and technological properties.

2 Milk and milk product changes caused by mastitis

2.1 Milk changes

2.1.1 High somatic cell count as a marker of mastitis

Many reports have described the changes in milk yield and or composition associated
with mastitis. Regarding quality control, the increase of somatic cell count (SCC) in
milk is the main marker for the detection and diagnosis of mastitis (Viguier et al. 2009).
The direct link between changes in SCC and the onset of mastitis has indeed been
known for a long time. Therefore, in a wide array of scientific reports, authors have
considered an increase in SCC as a marker of mastitis and the identification of the
bacterial species causing the mastitis was most often neglected. However, recent data
regarding the pathogenesis of mastitis has shown that the effects of mastitis on milk
yield and composition may vary greatly with regard to the causative agent. These
differences may in turn explain some previous conflicting reports in the field.

The host immune response to the different pathogens appears to vary among species
(Bannerman et al. 2004b; Leitner et al. 2006) and each pathogen induces specific
changes in the milk (Leitner et al. 2006). Normal SCC is 68,000 cells·mL−1 in cows
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milk (Djabri et al. 2002), around 75,000 cells·mL−1 in ewes milk (Ariznabarreta et al.
2002; Gonzalo et al. 2002) and varies between 210,000 and 1,120,000 cells·mL−1 in
goats milk (Leitner et al. 2004c; Manser 1986). A meta-analysis of the data concerning
the rise in SCC during mastitis infection in cows has actually shown differences
depending on the pathogen involved. SCC range from 105,000 cells·mL−1 in
Corynebacterium bovis mastitis up to 1,151,000 cells·mL−1 in E. coli mastitis (Djabri
et al. 2002). The two other major pathogens, S. aureus and S. uberis induce a SCC
increase of 357,000 cells and 1,024,000 cells·mL−1, respectively (Djabri et al. 2002).

The rise in SCC also varies depending on the causative pathogen during mastitis
in small ruminants. In ewes, the SCC ranges from 187,000 cells·mL−1 in
Corybacterium spp. mastitis up to 7,461,000 cells·mL−1 in Pasteurella spp. or S.
agalactiae mastitis (Gonzalo et al. 2002). Coagulase negative staphylococci (CNS),
micrococci, and corynebacteria induce mastitis with SCC under 200,000 cells·mL−1

(Raynal-Ljutovac et al. 2007). In S. aureus mastitis, SCC varies between 3,035,000
and 4,800,000 cells·mL−1 according to studies (Ariznabarreta et al. 2002; Gonzalo et
al. 2002) (No data are available for E.coli and S. uberis). In goats milk, SCC
ranges from 444,000 to 1,480,000 cells·mL−1 in CNS mastitis and rises to above
3,000,000 cells·mL−1 in S. aureus mastitis (Leitner et al. 2004c; Manser 1986).
Variations in the SCC can be observed during mastitis with a specific profile for
each pathogen. For example in coliform mastitis, the SCC is low before and after
the clinical mastitis. On the contrary, in the case of clinical S. aureus mastitis, the
SCC increases before and remains high after cure. In the same way, streptococci
induce a continuous rise in SCC until clinical mastitis is settled and the SCC
remains at a high level after mastitis (de Haas et al. 2002).

Different pathogens can also induce different symptoms and can be associated with
different types of mastitis. Mastites indeed range from subclinical mastitis to clinical
mastitis. These latter clinical mastites can be classified into mild, moderate, and severe
mastitis (Table 1). In small ruminants, severe clinical mastitis can turn into gangrenous
mastitis with the destruction of tissues and loss of the infected udder. A given pathogen

Table 1 Definition of the mastitis types with regard to the severity of the symptoms

Mastitis type Definitiona

Subclinical mastitis Inflammation of the mammary gland that is not visible and requires a diagnostic test for
detection. The most used diagnostic test is the milk somatic cell count. Subclinical
mastitis is the most prevalent form of the disease

Mild clinical
mastitis

Observable abnormalities in milk, generally clots or flakes with little or
no signs of swelling of the mammary glands or systemic illness.
Preferred terminology when describing severity of clinical cases

Moderate clinical
mastitis

Visibly abnormal milk accompanied by swelling in the infected
mammary quarter with an absence of systemic signs of illness.
The terminology is preferred when describing the severity of
clinical symptoms

Severe clinical
mastitis

Udder inflammation characterized by sudden onset with grave systemic
and local symptoms. This terminology is preferred to peracute clinical mastitis

a According to the mastitis terminology as defined in the Bulletin of the International Dairy Federation
338/1999
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(for example S. aureus) can be associated with different types of mastitis, notably in
small ruminants (Vautor et al. 2009). Consequences of each type of mastitis on milk
quality will differ. For example, clots appear in milk from animals with clinical mastitis
whereas none are present in milk from animals with subclinical mastitis. In the same
way, mastitis can affect all quarters or only one (with the others remaining healthy).

It also appears that the SCC is not a good criterion to diagnose mastitis in goats. The
SCC level in goats milk is indeed prone to significant changes through the lactation period
(Galina et al. 1996; Haddadi et al. 2006). In nonmastitic goats milk, the SCC can vary
between 200,000 to 500,000 cells at the beginning of lactation, to 200,000 to 350,000 in
the peak of lactation and to 1,000,000 to 3,100,000 or more at the end (Bergonier et al.
1994). It has recently been reported that no changes in goats milk composition is
observed when the SCC varies from 214,000 to 1 450,000 cells·mL−1 (Chen et al.
2010). The changes in milk presented in this paragraph are associated with a high SCC
level but it has to be noted that these changes cannot be assigned to a clear and
demonstrated onset of mastitis. In this paragraph, available data in the literature
regarding the changes observed in cows, ewes, and goats milks when the SCC (regarded
as a mastitis marker) increases will be summarised. Data regarding small ruminant milk
changes are fewer than these for cows milk which are reported in more detail.

2.1.2 Negative correlation between SCC and milk yield

Regardless of the ruminant species, an increase in the SCC in bulk milk is generally
associated with a decrease in milk yield (Barlowska et al. 2009; Baudry et al. 1997;
Caruolo 1974; El-Saied et al. 1999; Gonzalo et al. 1994; Leitner et al. 2003; 2004a, b;
Munro et al. 1984; Othmane et al. 2002; Pellegrini et al. 1997; Pizzillo et al. 1996;
Ying et al. 2002; Zeng and Escobar 1996). The decrease in cows milk yield is
observed at least 1 week before clinical mastitis is diagnosed (Bareille et al. 2003;
Grohn et al. 2004; Hagnestam et al. 2007; Lucey et al. 1986; Ostergaard and Grohn
1999; Rajala-Schultz et al. 1999; Wilson et al. 2004). This time lag is probably due to
the fact that mastitis is subclinical before the onset of clinical symptoms (Hagnestam et
al. 2007). The period of lactation modulates the impact of mastitis. The effects of
mastitis on production yields are indeed more severe when the mastitis developed in
early lactation before the peak yield (Bartlett et al. 1991; Hortet and Seegers 1998;
Rajala-Schultz et al. 1999; Santos et al. 2004; Wilson et al. 2004). Lower production
yields are also a consequence of mastitis. After clinical mastitis, cows produce less
milk throughout the rest of lactation in comparison to cows without mastitis (Bareille
et al. 2003; Hagnestam et al. 2007; Wilson et al. 2004) and never return to their
premastitic milk yield levels (Grohn et al. 2004; Wilson et al. 2004).

In cows, milk yield losses vary with the species of causative agent: among
primipara, S. aureus, Arcanobacterium pyogenes, E. coli, Klebsiella spp. caused the
greatest losses; among multipara, Streptococcus spp., S. aureus, A. pyogenes, E. coli,
and Klebsiella spp. caused the most significant losses. Milk loss persisted until at
least 70 days after diagnosis for Streptococcus spp., Klebsiella spp., and A.
pyogenes. (Grohn et al. 2004). Loss in milk yield in E. coli clinical mastitis is 15 kg
per day, whereas it is 1.6 kg per day in S. aureus clinical mastitis and 2.9 kg per day
in S. uberis clinical mastitis (Coulon et al. 2002). Gram-negative cases had more
severe milk loss (304 kg in multipara and 228 kg in primipara in the 50 days following

250 C. Le Maréchal, et al.



clinical mastitis) compared with gram-positive ones (128 kg in multipara and 133 kg in
primipara in the 50 days following clinical mastitis) (Schukken et al. 2009).

In ewes, milk yield loss varies according to the causative pathogen and to
unilateral or bilateral character of mastitis and ranges from 3% to 10%. Healthy ewes
produce 880 mL of milk per day whereas ewes infected by major pathogens with
bilateral mastitis produce 791 mL per day (Gonzalo et al. 2002). Even during
subclinical mastitis, milk yield of the infected halves (0.36 kg/milking) significantly
decreases (P<0.001) in comparison to the milk yield of the uninfected halves
(0.76 kg/milking) (Leitner et al. 2004a). This has also been described in goats, where
milk yield decreases during subclinical mastitis (0.69 kg/milking in goats with
mastitis compared with 0.98 kg/milking in healthy goats) (Leitner et al. 2004b).

2.1.3 Changes in milk associated with a rise in the SCC and variations according
to pathogens

Global changes All available data concerning changes in milk due to mastitis are
summarized in Table 2, many of which have already been reviewed (Auldist and
Hubble 1998; Raynal-Ljutovac et al. 2007). In summary, it has clearly been
determined that regardless of the ruminant species, there is a rise in the level of whey
proteins (notably in serum albumin and IgG) and in sodium and a decrease in the
level of lactose (except for goats milk for which the results are conflicting). Globally,
there is a rise in the level of proteins and proteinous compounds linked to the
inflammatory and immune response and a decrease in the endogenous milk proteins
such as caseins. Some of the changes in milk composition appear to be advantageous
for the defense of the mammary gland against bacterial pathogens (Schmitz et al.
2004). For example, a rise in the level of IgG2, which are opsonic antibodies has
been observed, as has the level of lactoferrin, which has bacteriostatic activities
while a decrease has been observed in the level of caseins, which normally inhibit
the myeloperoxidase-mediated oxygen-dependent bactericidal activity of neutrophils
(Cooray 1996; Watanabe et al. 2000). An effect of the SCC on milk pH has also
been reported in cows, goats, and ewes milk which increases with increasing SCC
(Raynal-Ljutovac et al. 2007; Vianna et al. 2008).

Data concerning the impact of mastitis on the total content of protein, fat and
calcium are conflicting and no trends for these parameters can be determined at the
moment. A clear and noncontroversial effect is a change in the protein profile: a rise
in the level of whey proteins (with a change in whey protein composition) and
changes in the casein profile. The impact of mastitis on caseins depends on the
species of ruminant. Mastitic cows milk shows a decrease in casein (a decrease in β-
and α-caseins, an increase in γ-casein) whereas the impact on ewes milk appears
variable while no impact has been observed on goats milk. Beside casein
concentration, it seems that mastitis affects the casein composition: concentration
of soluble caseins has been shown to be higher and concentration of micellar caseins
to be lower in mastitic milk than in healthy milk (detected by Wisconsin mastitis
test) (Sharma and Randolph 1974). These phenomena can result from the regulation
of the “lactation” genes in response to infection and from the induced hydrolysis of
milk proteins observed when the SCC slightly increases, with or without clinical
signs (Le Roux et al. 1995; Urech et al. 1999).
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A decrease in fat concentration during mastitis can be expected due to a reduced
synthetic and secretory capacity of the mammary gland (Auldist and Hubble 1998;
Raynal-Ljutovac et al. 2007). However, results are unclear. A rise in free fatty acids
has been reported in mastitic cows milk. This may be explained by the alteration of
the milk fat globule membrane by leucocyte lipases or by plasmin through the
hydrolysis of lipoproteins, both of which may enhance lipolysis. Nevertheless,
results regarding lipoprotein lipase activity in mastitic milk are also contradictory:
some authors found that its activity increased (Azzara and Dimick 1985b; Erwin and
Randolph 1975; Randolph and Erwin 1974; Tallamy and Randolph 1970) during
mastitis while others found that it decreased (Anderson 1982; Fitz-Gerald et al.
1981) or found no significant differences (Salih and Anderson 1979). Altogether
these results appear somehow conflicting and it is difficult if not impossible to draw
a clear conclusion upon the impact of high SCC on milk composition for most
parameters. This can partly be explained by the sample methods used to study milk
changes. Indeed, some studies are based on tank milk analysis, whereas others are
based on milk pooled from the four quarters of one cow and others on single quarter
milk. It can be hypothetized that analyses carried out on these different milk samples
might indeed lead to variable results. However, it has been reported that changes in
the bulk milk are similar to changes in the quarter milk (Le Roux et al. 2003). Many
other criteria concerning ruminant management (genetic characteristics, physiolog-
ical stage, and dietary factors) (Coulon et al. 2002; Raynal-Ljutovac et al. 2007) can
be implicated. Finally, conflicting results can also be explained by the different
pathogens involved in mastitis. As mentioned above, in most studies, the SCC is the
sole marker considered to define mastitic milk and the causative agent is not sought
and identified. Yet, mastitis symptoms and impacts on milk yield or composition
might dramatically differ depending on the bacterial species involved in the onset of
the disease.

Pathogen-specific changes in milk composition Among the pathogenic bacteria
involved in mastitis, some induced changes in milk composition whereas others do
not or barely affect milk composition. For example, C. bovis does not alter milk
composition whereas milk modifications are more marked in the case of E. coli
mastitis than in the case of mastitis induced by another pathogen (Coulon et al. 2002).

Each pathogen induces specific modification in milk during mastitis. For
example, specific volatile metabolites detected in mastitis milk samples are formed
by and are specific to each pathogen (Hettinga et al. 2009). Other components are
more or less affected depending on the pathogen. S. uberis mastitis is typically
associated with an increase in protein content, in casein, in calcium (Coulon et al.
2002) and in lactoferrin (Chaneton et al. 2008). On the contrary, Streptococcus
dysgalactiae mastitis is associated with a significant increase in proteose peptone
and plasmin, and no changes in fat, casein or protein content (Leitner et al. 2006;
Merin et al. 2008). S. agalactiae mastitis is characterized by a decrease in specific
milk proteins (caseins, α-lactalbumin, and β-lactoglobulin).

The impact of E. coli mastitis on milk has been particularly studied, either under
field conditions or in experimental infections (Fig. 1). During E. coli mastitis,
lactoferrrin (whose concentration increases with the acuteness of coliform
infections), protein content, proteose peptone and plasmin significantly increase
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whereas caseins, casein/protein ratio, calcium and phosphorus significantly
decrease (Coulon et al. 2002; Kawai et al. 1999; Leitner et al. 2006; Michelutti
et al. 1999). In E. coli mastitis, changes in whey proteins are rapidly observed and
include a lower abundance of α-S1 casein, β-casein, κ-casein, α-lactalbumin, and
β-lactoglobulin, and a huge increase in bovine serum albumin. The presence of
abundant proteins such as serotransferrin, fetuin (α-2-HS-glycoprotein), fibrino-
gen, and α-1-acid glycoprotein, and minor proteins such as α-1-antiproteinase,
complement C3 and C4, TTR, proteinS100-A12, and several antimicrobial
peptides (AMP) in the cathelicidin family have also been reported (Boehmer et
al. 2008). Proportions of β- and α-caseins are significantly lower at 24 h (−49%)
and between 48 and 72 h (−62%) respectively after E. coli injection (Michelutti et
al. 1999).

Finally, S. aureus clinical mastitis is associated with a rise in lactoferrin, protein
content, proteose peptone, plasmin and a decrease in casein/protein ratio, calcium,
and phosphorus (Coulon et al. 2002; Hagiwara et al. 2003; Kawai et al. 1999;
Leitner et al. 2006). Few changes are noticed during S. aureus subclinical mastitis
which is only associated with a decrease in lactose content (−2.1 g kg−1) and casein/
protein ratio (−2%) (Coulon et al. 2002) (Fig. 2). No difference between lactoferrin
and SCC levels during chronic cows mastitis due to S. aureus or CNS have been
reported (Komine et al. 2004).

As described in the first part, it is really difficult if not impossible to
determine a global trend for changes in milk parameters linked to mastitis. For
example, it has not been possible to determine whether there is an increase or a

E.coli

IL-8, TNF-

 milk barrier permeabilityMammary gland cells Immune responseMMP2, MMP9

Lactoferrin

IFN-Activation
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Fig. 1 Relationships between Escherichia coli intramammary infection, responses induced in the
mammary gland and changes observed on milk components. Black arrows (dashed bold lines )
indicate a direct impact observed in infections with live E. coli; grey arrows (dashed bold lines )
indicate a direct impact of experimental injection of E. coli lipopolysaccharide (LPS). All the other lines
and arrows indicate a link reported in the literature (the various styles do not have any significance and are
used for the readability of the figure). PMN polymorphonuclear neutrophils, MMP matrix metal-
loproteinases, ROS reactive oxygen species. Arrows indicate an increase (up) or a decrease (down).
Question marks indicate that the relationship is suspected but not clearly demonstrated
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decrease in calcium concentration in mastitic milk in comparison to normal milk.
This may be explained by the fact that S. uberis mastitis is characterized by a rise
in calcium whereas E. coli and S. aureus mastitis are characterized by a decrease in
calcium. This demonstrates that determination of the pathogen involved in mastitis
is crucial to understand the milk changes observed. The current scientific
knowledge regarding, notably, the caracterisation of the impact of the pathogen
presence on the mammary gland can partly explain why the impact on milk varies
among pathogens.

2.2 Impact of high SCC on dairy products

A wide proportion of milk is transformed and besides the risks of bacterial
contamination accompanying products based on raw milk, changes in the
composition of mastitic milk can impair the transformation processes. Even when
the composition of raw milk is hardly affected by mastitis, the quality of dairy
products can deteriorate (Merin et al. 2008). The impacts of mastitis on dairy
products, including pasteurized or UHT milks, cheeses and yogurts, are presented in
the following paragraphs.

2.2.1 Development of off-flavors in high SCC pasteurized and UHT milk

Pasteurized or UHT milk made with high SCC milk are characterized by the
developement of off-flavors which correspond to flavor or odor defects
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Fig. 2 Relationships between Staphylococcus aureus intramammary infection, responses induced in the
mammary gland and changes observed on milk components. Black arrows (dashed bold lines )
indicate a direct impact observed in infections with live S. aureus. All the other lines and arrows indicate a
link reported in the literature (the various styles do not have any signification and are used for the
readability of the figure). PMN polymorphonuclear neutrophils, MMP matrix metalloproteinases, ROS
reactive oxygen species. Arrows indicate an increase (up) or a decrease (down). Question marks indicate
that the relationship is suspected but not clearly demonstrated
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(rancidity, bitterness, oxidation, astringency, etc.). Three parameters can induce
the development of off-flavors in pasteurized milk: development of bacteria in
milk, proteolysis, and or lypolysis of milk components. The two latter
phenomena do not necessarily rely on the development of bacteria and result
from changes in endogenous enzymatic activities induced by the infection in
mastitic milk. When the bacterial counts in raw milk are low (i.e.,
<25,000 CFU·mL−1), the only parameters that are likely to alter the milk flavor
are the proteolysis and lipolysis of the milk components. At higher bacterial
counts, the bacterial enzymatic activities might act synergistically with these
phenomena to induce off-flavors (Barbano et al. 2006). Mastitic pasteurized or
UHT milk is characterized by high levels of native proteases and lipases, mainly
due to increased SCC and has been shown to be more susceptible to the
development of off-flavors than pasteurized or UHT milk with a low SCC
(Fernandes et al. 2008; Santos et al. 2003). For example, in high SCC pasteurized
milk, the increase in free fatty acids (resulting from lipolysis) and casein hydrolysis
were three and two times greater, respectively, than in low SCC pasteurized milk
(Ma et al. 2000). Elevated levels of free fatty acids have been associated with
rancidity (Ma et al. 2000; Shipe and Senyk 1981). Extensive proteolysis in milk
can so result in the accumulation of small hydrophobic peptides, causing bitterness
(Rouseff 1990) and astringency (Lemieux and Simard 1994). High SCC
pasteurized milk has scored higher for bitterness and astringency or rancidity than
low SCC milk (Ma et al. 2000; Rouseff 1990).

By increasing the SCC, mastitis can thus be responsible for the development of
off-flavors in consumption milk, even after pasteurization or UHT treatment.

2.2.2 Impact on yogurts

The SCC has little impact on cows yogurt but can induce off-flavor
development when exceeding 3,000,000 cells·mL−1 in ewes yogurt (Vivar-
Quintana et al. 2006). Regarding cows yogurts, the level of SCC does not seem to
affect pH and titrable acidity, fat and protein content or microbiological
characteristics (Fernandes et al. 2006; Oliveira et al. 2002). On the contrary, the
pH of high SCC ewes yogurt decreased much faster (when SCC is above
3,000,000 cells·mL−1) during fermentation and was significantly lower after
15 days of storage (Vivar-Quintana et al. 2006). The use of high SCC milk in the
manufacture of yogurt seems to reduce the storage period and shelf life of the
product. The use of cows milk containing less than 400,000 cells·mL−1 allowed the
yogurt to be stored for 30 days without organoleptic changes being detected. On
the contrary, high SCC cows yogurt have been characterized by a loss of
consistency after 20 days of storage at 5 °C and a decrease in taste after 30 days of
storage at 5 °C (Oliveira et al. 2002). In the same way, the viscosity of yogurts
made with high SCC milk increased during storage whereas no evolution was
observed for yogurts made with low SCC milk (Fernandes et al. 2006). It is worth
noting that only a few problems have been associated with cows high SCC yogurt
(Fernandes et al. 2006; Oliveira et al. 2002; Rogers and Mitchell 1994; Schott
1967) whereas ewes high SCC yogurts have been associated with a bitter and
piquant taste (Vivar-Quintana et al. 2006). Beside the impact on taste and shelflife,
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no correlation between the appearance and aroma and SCC level has been
observed (Oliveira et al. 2002).

2.2.3 Impact on cheeses

Cheese production represents a major use of milk especially regarding ewes and
goats milk which are mostly dedicated to cheese production. Studies on the impact
of SCC on the cheesemaking process or quality are however scarce and the impact
of high SCC on cheese properties has not yet been clearly determined. The impact
appears to vary among cheese types but in summary, the use of high SCC milk
seems to impair coagulation properties, to increase moisture content in most cows
cheeses and induce off-flavor development. The impact of high SCC on the
cheesemaking process and cheese properties are discussed in the following sections
and summarized in Table 3.

Coagulation properties Although some studies have reported no effect of high SCC
(>500,000 cells·mL−1) milk on rennet coagulation properties, in most studies, a high
SCC is associated with a significant increase in rennet clotting time, with a lower
curd firmness and a slower rate of curd firming, which can lead to poor yield and
low quality of the resultant cheese. There is a high positive correlation between pH
and coagulation properties (Raynal-Ljutovac et al. 2007). The rise in pH observed in
high SCC milk can be partly responsible for the coagulating problems observed with
mastitic milk.

Of note, casein concentration in milk affects the renneting behaviour of milk.
Peptides which are liberated from caseins during the proteolysis of milk seem to
have a negative effect on the clotting time and the curd firmness. For example,
proteose peptones, casein derivates, have been shown to be involved in issues with
the curd formation. Casein proteolysis and the subsequent liberation of peptides may
explain part of the rennet coagulation issues. Moreover, starter activity and growth
are reduced in mastitic milk. High SCC (>400,000 cells·mL−1) milk prolonged the
fermentation process by as much as 2 to 4 h. Acid producing microorganisms (i.e.,
starter LAB) are more affected by the antimicrobial components produced during
mastitis than aroma-producing microorganisms (nonstarter LAB and ripening flora).
The effect of high SCC might nevertheless depend on the LAB species considered as
the acidifying activity of Streptococcus thermophilus is increased while that of
Lactobacillus acidophilus is inhibited.

From a microbial perspective, the impact of some mastitic pathogens has been
clearly shown to negatively affect coagulation. For example, S. dysgalactiae has
such a huge impact on milk composition that no curd has been produced from
infected milk in experimental cheesemaking. S. dysgalactiae infection results in
reduced yields in both cheese and yogurt production. S. dysgalactiae directly
generates (through its enzymatic activities) or activates the formation of short-chain
peptides, which interfere with the coagulation process. Clotting time has also been
shown to be significantly higher in S. aureus mastitic milk than in normal milk and
curd firmness slightly decreased. Altogether these data show that most mastitis
pathogens directly or indirectly affect milk coagulation by impacting either rennet or
starter activity.

Mastitis impact on technological properties of milk 259



By affecting the renneting step, high SCC reduces the production yields of some
cheeses, e.g., cottage cheese, cheddar, whereas it does not affect the yield of Prato
cheese, mozzarella, or zamorano.

On the contrary, concerning goats cheese yield, studies have clearly shown that
high SCC has no impact.

Moisture content Moisture content is generally increased in cows cheese made from
high SCC milk. This was observed in dramatically different cheese types including
cheddar, cottage, and Prato cheeses. The mechanism by which SCC influences
cheese moisture has not yet been clearly determined. Goats cheese made with high

Table 3 Effect of high SCC milk on cheese characteristics

Ruminant Type of cheese Effect of mastitis Reference

Cow Swiss-type cheese Protein content ↓ and pH – Cooney et al. (2000)

Fat content ↑ and protein whey ↑

Cheddar Protein content ↓, fat content ↓, casein
content ↓, cheese yield ↓, texture ↓, and
flavor ↓

Ali et al. (1980), Auldist et al.
(1996), Barbano et al. (1991),
Donelly and Barry (1983),
Grandison and Ford (1986),
Leavitt et al. (1982), Marino et
al. (2005), Mitchell et al.
(1986), Munro et al. (1984),
Politis and Ng-Kwai-Hang
(1988a), Rogers and Mitchell
(1994), Verdi et al. (1987)

Moisture ↑

Cottage cheese Protein content ↓ and cheese yield ↓ Vianna et al. (2008)

Moisture ↑

Pratto cheese Protein content – and fat content – Mazal et al. (2007), Vianna et al.
(2008)Moisture ↑, clotting time ↑ and pH ↑

Texture ↓ and flavor ↓

Mozzarella cheese Yield – and physical parameters – Andreatta et al. (2007)

Protein content ↓ and casein content ↓

Free fatty acids ↑

Ewe Zamorano-type
cheese

Yield –, moisture –, and firmness – Revilla et al. (2007, 2009)

Hardness, cohesiveness ↓, and flavor ↓

Grainy ↑, crumbly, adhesiveness ↑,
guminess, and chewiness

Manchego type Total protein ↓, casein ↓, and fat content ↓ Jaeggi et al. (2003)

Free fatty acid ↑, moisture ↑, clotting time
↑, rancidity ↑, crumbly, and mealy
texture ↑

Canestrato pugliese
cheese

Moisture ↑ Albenzio et al. (2004)

Fat content ↓

Proteose peptone –

Goat Soft ripened goat
cheese

– Morgan and Gaspard (1999),
Zeng and Escobar (1996)

Arrows indicate an increase (↑) or a decrease (↓); a dash (–) indicates that no variation was
observed
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electrical conductivity milk, which corresponds to cheese made with mastitic milk, is
also associated with higher moisture content in comparison to cheese made with
milk from healthy goats (Romero et al. 2010).

Moisture content of fresh ewes milk increases with SCC but the difference does
not seem to be significant after 3 months of ripening between cheeses made with low
or high SCC.

Impact of mastitis on cheese composition Higher levels of proteolysis have been
observed in cheeses made with high SCC regardless the cheese type. This has been
observed in Swiss-type cheeses, cottage cheese, cheddar, Prato cheese, and
mozzarella. Mastitic milk influences primary proteolysis of caseins which results
in the increased proteolysis of β-caseins during the early stages of cheese ripening.
Moreover, it induces an accelerated breakdown of αS1-casein. As a consequence,
protein losses in the whey is increased.

Fat losses in the whey also increase whereas fat content in cheese decreases
except in Prato cheese.

Mastitis can induce the production off-flavors and texture defects The use of high
SCC milk also negatively impacts on flavor, body and texture grades. For
example, cheddar cheeses made with high SCC milk have been described as
having a “lipolytic” or “oxidized” flavor and the milk used to prepare these
cheeses had a higher concentration of free fatty acids, which can induce rancidity
in dairy products (Auldist et al. 1996). Flavor or texture defects have also been
reported for mozzarella, Prato or ewes cheeses made with high SCC milk. This
was explained by higher levels of lipolysis or proteolysis in the cheese
(Andreatta et al. 2007).

Sensory characterictics of goats soft cheeses do not seem to be affected by
high SCC (Chen et al. 2010; Morgan and Gaspard 1999; Zeng and Escobar
1996). Technological factors, notably the short ripening time in comparison with
semi-hard cows or ewes cheese, may explain the minor influence of SCC on
texture and flavors of goats soft cheeses (Raynal-Ljutovac et al. 2007). Indeed, it
has been shown that high SCC (1,000,000 cells·mL−1<SCC<1,500,000
cells·mL−1) in goats milk also affects the sensory quality of aged cheeses (Chen
et al. 2010).

Published literature has clearly shown that mastitis is a major problem in the
transformation of milk mainly because of a lower acceptance by the consumer
due to flavor and texture defects. Moreover, dairy products made from mastitic
milk seem to have a shorter storage time compared with dairy products made
from normal milk and always develop off-flavors especially in ewes and cows
milk cheeses.

In most of the studies presented here concerning both milk and dairy products, the
pathogen responsible for mastitis was not identified. As described in the first part,
reported data regarding many of the milk components are conflicting. This could be
explained by the very different impact of the causative microbial agents on milk and
on the mammary gland immune response and so on the milk composition. Except for
cheddar, studies on the impact of mastitis on cheeses are scarce and the impact of the
different causative agents should be tested. We will indeed see hereafter that the
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impacts of mastitis on the mammary gland and subsequently on milk changes vary
with the causative agents.

3 How do bacteria induce various milk changes?

Changes in milk composition due to mastitis can be explained by the physical
damage of the mammary tissue, which reduces the synthesis and secretory
function of the mammary gland (Kitchen 1981). Gene expression profile of
mammary cells is modified in incidences of mastitis. Notably, genes encoding
antimicrobial proteins are induced. Mastitis also induces a rise in endothelium
permeability which increases the passage of components from the blood to the milk
and the activity of endogenous and exogenous enzymes that destroy some milk
components. Among the causative agents of cows mastitis, S. aureus is the most
prevalent bacterium involved in contagious mastitis, with E. coli and S. uberis
being the main environmental pathogens (Chaneton et al. 2008). These species are
also the most studied among bacteria involved in mastitis. In small ruminants, S.
aureus is the main agent implied in clinical mastitis and CNS in subclinical mastitis
(Bergonier et al. 2003).

The aim of this part is to present up to date knowledge about the role played by
the main bacterial species implicated in mastitis and how they affect the composition
of milk and dairy products. In light of these data, it is possible to compare how these
mastitis causative agents differentially affect milk quality.

3.1 Direct impact of bacteria on milk composition?

E coli appear to be capable of degrading caseins in vitro (Haddadi et al. 2005).
Casein proteolysis is greater in an E. coli experimental infection compared with LPS
induced mastitis (Moussaoui et al. 2002; Moussaoui et al. 2004). This observation
seems to be related to a direct or indirect role of E. coli in casein proteolysis. The in
vitro activity of four proteases of the E. coli strain P4 on caseins was very low. To
explain caseinolysis, the authors hypothesized that these proteases are produced
at a higher level in vivo or that they posess a higher caseinolytic activity.
Alternatively, E. coli might have an indirect role on caseinolysis by increasing the
secretion of endogenous proteases or factors acting on the maturation of somatic
cells (Dufour et al. 2009). The mechanisms involved in caseinolysis observed
during E. coli mastitis remain to be further determined (Fig. 1).

S. aureus also produces proteases (serine protease, cysteine proteases, metal-
loprotease) that are capable of degrading caseins (Karlsson and Arvidson 2002). For
example, SplB and SplC can degrade casein (Reed et al. 2001). CNS also produce
proteases (Devriese et al. 1985; Miedzobrodzki et al. 1989; Zhang and Maddox
2000). But as for E. coli, no proof has so far clearly demonstrated that S. aureus or
CNS produce in vivo enzymes implied in caseinolysis.

3.2 Impact of the immune response on milk changes

Humoral and cellular defenses of the mammary gland in response to infection affect
milk composition or milk product quality.
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3.2.1 Humoral defenses

The complement system, lactoferrin, transferrin, lysosyme, lactoperoxidase-
thiocyanate-peroxide-system, xanthine oxydase, antibodies are components of the
humoral defenses (Rainard and Riollet 2006). They are present in normal milk but
increase during mastitis (Carlsson et al. 1989; Hiss et al. 2008; Schmedt Auf Der
Gunne et al. 2002; Seifu et al. 2005). Some of these immune response components
can be the source of problems related to milk product manufacturing. For example,
the presence of immunoglobulins in milk induces the formation of agglutins, which
can inhibit acid production in raw and pasteurized whole or skim milk. This has been
shown to cause problems in the manufacture of cottage cheese (Salih and Sandine
1984) but not in the manufacture of hard cheeses. During cottage cheese
manufacture, lactic streptococcal agglutinins can cause the starter bacteria to
separate from the milk components or result in the uneven distribution of lactic
acid production in the milk (Emmons et al. 1963; Emmons et al. 1966; Lucas 1962;
Salih and Sandine 1980). On the contrary, during the manufacture of hard cheese,
the rennet coagulum immobilizes the bacteria in the curd and prevents their
migration to the surface. However, the selection of strains which are resistant to
agglutination for the manufacture of cottage cheese can overcome this problem.

The lactoperoxidase system can also inhibit the activity of starter cultures. But, as
for agglutins, a screening of starter bacteria for resistance to the lactoperoxidase
system can overcome the problem (Seifu et al. 2003). Nevertheless, this can change
yogurt properties due to alterations in the formation of the gel network (Ozer et al.
2003) and the texture which is softer and smoother in yogurt made with milk with
high lactoperoxidase level (Hirano et al. 1998). It can also induce the oxidation of
proteins in milk (Ostdal et al. 2000).

Contrary to agglutins and lactoperoxidase, lysosyme does not seem to induce
problems in the manufacture of milk products. Observations of lactic acid bacteria
(LAB) challenged by lysozyme during the production of Grana Padano (Grazia et al.
1984; Neviani et al. 1996; Ottogalli et al. 1983) or Gouda (Bester and Lombard
1990) cheeses have shown that the functionality of the LAB population is not
impeded. Most of Lactobacillus sp. and S. thermophilus possess a natural resistance
to lysozyme or have developed a resistance by repeated exposure (Neviani et al.
1996; Ottogalli et al. 1983). Trials with goats milk have also demonstrated that the
presence of lysosyme throughout the cheesemaking process is not detrimental to
production (Scharfen et al. 2007).

Methods used to measure the concentration or activity of some milk components
(e.g., lactoferrin and lactoperoxydase system) are more or less sensitive, especially
when comparing ruminant species. For example, ELISA kits used for the
measurement of bovine lactoferrin do not work on goats milk (Hodgkinson et al.
2008) and false-positive results have often been obtained not only for lactoferrin but
also for the lactoperoxidase system (Raynal-Ljutovac et al. 2005). To overcome this
problem, techniques used to measure lactoferrin have been adapted at least to goats
milk (Chen et al. 2004; Hodgkinson et al. 2008).

Few data are available regarding the impact of each pathogen on the increase in
the components of humoral defenses. Among the three main mastitis agents, S.
uberis, E. coli, and S. aureus, all of which induce an increase in the lactoferrin
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content in milk, S. uberis induces the greatest increase but is also the most resistant
to lactoferrin activity (Carlsson et al. 1989). Finally, as reported here, solutions have
been found to solve most of the manufacturing troubles encountered with
components of humoral defenses.

3.2.2 Cellular defenses

As reported above, the increase in the SCC varies according to the pathogen and/or to
the mastitis type and symptoms. Besides the variations in the SCC levels in response to
pathogens, cytokine profiles can also be different. Several cytokines (IFN-γ, interleukin
(IL)-6, IL-10, IL-12, and C5a) are commonly induced by E. coli, S. aureus, and S.
uberis, as shown in Table 4. Nevertheless, some differences are observed, notably
concerning the time of cytokine induction. For example, in experimentally induced
mastitis by Staphylococcus epidermidis (CNS) in ewe, a permanent increase in the
level of IL-8 (even 10 weeks after infection) and a transient increase in the level of IL-
1β have been reported (Winter et al. 2003).

Each cytokine will have consequences on the milk barrier permeability, on the
gene expression profile, or on the polymorphonuclear leukocytes (PMN) recruit-
ment. Their implication in the mechanisms of milk modification is further described
in the following sections.

The main consequences of the presence of pathogens are the recruitment of
leucocytes, notably PMN, the synthesis of antimicrobial peptides or proteins by cells
from the mammary gland and the release of cytokines. This will induce
consequences on the properties of milk and milk products.

Release of leucocyte proteinases induces casein proteolysis As discussed in previous
paragraphs, the presence of a pathogen results in an increase in the SCC, notably in
PMN. The level or activity of leucocyte proteases (listed in Table 5) also increases
during mastitis (Barbano et al. 1991). The origin of this increase in proteases during
mastitis is linked to an increase in PMN and could be explained by two mechanisms:
the proteases can be released by vesicules like lysosomes from PMN or caseins or fat
globules can be endocytised by PMN with the degradation products being released
into the milk after intracellular digestion (Le Roux et al. 2003).

The order in which caseins are degraded by leucocyte proteinases are firstly αS1-
casein, followed by β-casein and to a lesser extent κ-casein (Grieve and Kitchen
1985; Napoli et al. 2007) and αS2-casein (Napoli et al. 2007). It has also been shown
that αS1-casein breakdown was associated with the presence of proteinases of
somatic cells with high SCC (Verdi et al. 1987).

Elastase
Elastase is a serine protease that digests a wide variety of protein substrates

(Brink et al. 1956). It lyses bovine β- (Considine et al. 1999) and αS1-caseins
(Considine et al. 2000). An increased activity of elastase is detected during
mastitis in PMN (Haddadi et al. 2006; Prin-Mathieu et al. 2002). Peptides
present in milk are linked to elastase activity (Wedholm et al. 2008) and certain
fragments in high SCC milk have been ascribed to elastase activity (Moussaoui
et al. 2003; Nabhan et al. 2004). Elastase contributes to increased proteolysis in
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Table 4 Inflammatory mediators’ variation during Staphylococcus aureus, Escherichia coli, and
Streptococcus uberis mastitis

Pathogen Inflammatory
mediators

Reference

E. coli IFN-γ Bannerman (2009), Lee et al. (2006)

IL-1β ↑ Bannerman et al. (2004b), Riollet et al. (2000), Shuster et al. (1995, 1997, 1996)

IL-6 ↑ Hagiwara et al. (2001), Nakajima et al. (1997), Ohtsuka et al. (2001), Shuster et
al. (1997)

IL-8 ↑ Bannerman et al. (2004b), Lee et al. (2003), Riollet et al. (2000), Vangroenweghe
et al. (2005, 2004)

IL-10 ↑ Bannerman et al. (2004b)

IL-12 ↑ Lee et al. (2006)

TGF-α ↑ Chockalingam et al. (2005, Sheffield 1997)

TGF-β ↑ Chockalingam et al. (2005)

TNF-α ↑ Bannerman et al. (2004b), Lee et al. (2003), Riollet et al. (2000), Shuster et al.
(1995, 1997, 1996)

LBP ↑ Bannerman et al. (2004b)

C5a ↑ Bannerman et al. (2004b), Riollet et al. (2000), Shuster et al. (1997),
Vangroenweghe et al. (2004)

S. aureus IFN-γ ↑ Bannerman (2009), Riollet et al. (2000)

IL-1β ? Bannerman (2009), Griesbeck-Zilch et al. (2008), Riollet et al. (2000)

IL-6 ↑ Griesbeck-Zilch et al. (2008), Hagiwara et al. (2001), Nakajima et al. (1997),
Ohtsuka et al. (2001), Shuster et al. (1997)

IL-8 ? (Bannerman 2009; Griesbeck-Zilch et al. 2008; Lee et al. 2006; Riollet et al.
2000; Tao and Mallard 2007)

IL-10 ↑ Bannerman et al. (2004b)

IL-12 ↑ Alluwaimi et al. (2003), Lee et al. (2006)

TGF-α ↑ Bannerman et al. (2006), Sheffield (1997)

TGF-β ↑ Bannerman et al. (2006)

TNF-α protein – Bannerman et al. (2004a), Riollet et al. (2000)

TNF-α RNA ↑ Bannerman et al. (2004a), Griesbeck-Zilch et al. (2008), Lutzow et al. (2008)

LBP ↑ Bannerman et al. (2004a)

C5a ↑ Bannerman et al. (2004a), Riollet et al. (2000)

IL-15 ↑ Tao and Mallard (2007)

IL-17 ↑ Tao and Mallard (2007)

IL-18 ↑ Tao and Mallard (2007)

S. uberis IFN-γ ↑ Bannerman (2009), Swanson et al. (2009)

IL-1β ↑ Bannerman et al. (2004a), Rambeaud et al. (2003), Swanson et al. (2009)

IL-6 ↑ Swanson et al. (2009)

IL-8 ? Bannerman et al. (2004a), Rambeaud et al. (2003), Swanson et al. (2009)

IL-10 ↑ Bannerman et al. (2004a), Swanson et al. (2009)

IL-12 ↑ Bannerman et al. (2004a)

TNF-α ↑ Bannerman et al. (2004a), Rambeaud et al. (2003), Swanson et al. (2009)

C5a ↑ Bannerman et al. (2004a)

Arrows indicate an increase (↑) or a decrease (↓); a question mark indicates that the relationship is
suspected but not clearly demonstrated; a dash (–) indicates that no variation was observed
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milk with an SCC above 500,000 cells·mL−1 (Wedholm et al. 2008). It also
influences the rheology of rennet gels and may influence the coagulation
properties of milk (Considine et al. 2002b), which could partly explain changes
observed in coagulation of high SCC milk.
Cathepsins D, G, and B

Cathepsin G is a neutral serine proteinase that displays specificity on β- and
αS1-caseins (Considine et al. 2002a). Therefore, it is possible that indigenous
cathepsin G in milk may be present at significant levels to impact on the
proteolysis of milk proteins.

Cathepsin B and D have been shown to be involved in the proteolysis of high
SCC milk (Wedholm et al. 2008). Cathepsin B is a cysteine proteinase that can
partially resist heat treatments such as conventional pasteurization. It was shown
to be capable of cleaveing β- and αS1-caseins (Considine et al. 2004) and hence
is involved in milk proteolysis. A correlation between cysteine proteinase and
SCC has previously been shown (Larsen et al. 2004; O’Driscoll et al. 1999;
Somers et al. 2003; Suzuki and Katoh 1990). Cathepsin B also seems to be
involved in proteolysis during cheddar cheese ripening (Marino et al. 2005) and
peptides derived from its activity have been detected in high SCC milk (Wedholm
et al. 2008). Finally, similar to elastase, cathepsin B has been shown to affect the
rheology of rennet gels and to influence the coagulation properties of milk
(Considine et al. 2002b).

Cathepsin D is a lysosomal enzyme (Kelly et al. 2006) and is regarded as a
macrophage proteinase. It hydrolyses the four types of caseins and is capable of
catalysing milk coagulation (Kaminogawa et al. 1980; Larsen et al. 1996;
McSweeney et al. 1995), which may explain the presence of clots in mastitic milk
(Kelly et al. 2006). Its level has been positively correlated with SCC (Larsen et al.
2006; O’Driscoll et al. 1999; Somers et al. 2003). Procathepsin D, the proenzyme
of cathepsin D, and cathepsin appear to have remained partially active after
commercial pasteurization processes (Larsen et al. 2000). Increasing evidence has
indicated a role for this enzyme in proteolysis in cheese during ripening (Marino
et al. 2005), especially in cheese where rennet activity is low, such as Swiss

Table 5 List of endogenous proteases involved in casein lysis

Protease Origin Type Substrate Reference

Plasmin Milk–blood
during mastitis?

Serine protease β-, αS2-, and
αS1-caseins

Bastian and Brown
(1996), Fox and
McSweeney (1996)

Cathepsin D Leucocyte
proteinase

Aspartyl protease αS1- and β-caseins
(κ- and αS2-caseins)

Grieve and Kitchen
(1985), Napoli et
al. (2007)

Cathepsin G Leucocyte
proteinase

Neutral serine protease β- and αS1-caseins
(κ-and αS2-caseins)

Considine et al.
(2002a)

Cathepsin B Leucocyte
proteinase

Cysteine protease β- and αS1-caseins
(κ- and αS2-caseins)

Considine et al.
(2004)

Elastase Leucocyte
proteinase

Serine protease β- and αS1-caseins
(κ-and αS2-caseins)

Considine et al.
(1999, 2000)

266 C. Le Maréchal, et al.



cheese, Quarg, and Feta (Hurley et al. 2000; Larsen et al. 2000). The activity of
cathepsin D is higher in milk with a high SCC than in milk with a low SCC and
contributes to the proteolysis observed in S. uberis mastitic milk (Larsen et al.
2004). Moreover, peptides derived from cathepsin D activity have been identified
in high SCC milk (Wedholm et al. 2008) and extensive hydrolysis of αS1-casein
in high SCC milk seems to be related to cathepsin D activity (Somers et al. 2003).
Link between pathogen and PMN proteases?

No data is available regarding the role of each pathogenic bacterium on
leucocyte protease release or activity. This has only been studied in E. coli
mastitis, where the level or activity of endogenous proteases increases and may
explain caseinolysis (Moussaoui et al. 2002). But as shown earlier, the increase
in the SCC varies dramatically depending on the pathogen. Thus, it could be
hypothetized that the release of proteases increases with SCC and may vary
depending on the pathogen. Moreover the activity of elastase and cathepsin G,
the predominant proteases produced by somatic cells during mastitis (Azzara
and Dimick 1985b) is promoted by pro-inflammatory cytokines at a transcrip-
tional level (Haddadi et al. 2006; Le Roux et al. 2003): IL-1 and IL-8 for
collagenase IV (Opdenakker et al. 2001) and IL-6, IL-2, tumor necrosis factor
alpha (TNF-α) for elastase, or cathepsin G (Bank and Ansorge 2001). The
cytokine profile appears to be pathogen specific which suggests that it may
differentially impact on protease gene transcription.

The mechanism involved in how PMN proteases can lyse caseins has yet to
be determined. Moreover up to now, no study has compared the impact of
pathogen species on this phenomenon. The specific increase in SCC and
cytokine specific profiles suggest that it may be different depending on the
pathogen but this still has to be demonstrated.

Release of other enzymes Several indigenous enzymes increase during inflammation,
notably there is an exponential increase in enzymes originating from phagocytes (N-
acetyl-D-glucosaminidase, beta-glucuronidase, and catalase) (Pyörälä 2003). They
are released into milk from neutrophils during phagocytosis and cell lysis, and to
some degree, damage epithelial cells (Kitchen et al. 1984).

It could be hypothesized that phagocytes also release lipases. A high level of lipolysis
is actually associated with a high level of PMN but the mechanism bywhich PMN affect
fat lipolysis remains to be determined (Gargouri et al. 2008). Milk SCC are suspected to
be involved in the lipolysis of the fat globule triglycerides and thus in off-flavor
development due to free fatty acids (Azzara and Dimick 1985a; Gargouri et al. 2008;
Ma et al. 2000; Murphy et al. 1989; Santos et al. 2003). Moreover, lipases can resist
pasteurization (Ma et al. 2000; Shipe and Senyk 1981) and high SCC pasteurized
dairy products are thus more likely to develop off-flavors than low SCC ones.

3.3 Increased endothelial permeability

Mastitis is characterized by an increase in milk barrier permeability. In the presence of a
pathogen, macrophages release IL-8 and TNF-α, which results in PMN recruitment from
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blood to milk (Watanabe et al. 2008; Lehtolainen et al. 2004; Shuster et al. 1996;
Watanabe et al. 2000). This requires an increase in endothelial permeability, which
induces not only the transfer of PMN from blood to milk but also other blood
components such as bovine serum albumin (BSA). Lipolysis in milk can be explained
by the disturbance of the milk–blood barrier which allows the transfer of esterases from
blood to mastitic milk (Hettinga et al. 2009). Another example of increased permeability
is found in transferrin (an iron transporter), which is not produced in the mammary
gland of ruminant (Sanchez et al. 1992) but comes from blood serum (Ollivier-
Bousquet 1998) and rapidly increases in E. coli mastitis (Rainard and Caffin 1983) .

Indigenous proteases can degrade the extracellular matrix and are involved in the
impairment of the milk barrier permeability. Elastase and cathepsin G degrade
fibronectin, thrombospondin, and von Willerbrand factor (Bonnefoy and Legrand
2000). BSA concentration varies significantly according to the pathogen (Coulon et
al. 2002). If the BSA content is considered as a marker of the impairment of the
blood barrier, it could then be concluded that the permeability of the blood barrier
increases by a different mechanism depending on the pathogen. BSA content in
E. coli mastitic milk is significantly higher than in S. aureus mastitic milk, which is
itself significantly higher than in S. uberis mastitic milk (Coulon et al. 2002).

3.4 Inhibition of milk component production

Mastitis is characterized by a decrease of and changes in milk components, which is
illustrated by a decrease in lactose. Loss in milk yield can be attributed to the loss of
mammary epithelial cells by necrosis or apoptosis during E. coli, S. aureus, or S.
uberis mastitis (Bayles et al. 1998; Long et al. 2001; Singh et al. 2006) or either by
downregulation of milk genes.

Most of the pathogens involved in mastitis induce cellular apoptosis during
infections (Weinrauch and Zychlinsky 1999). Experimentally induced mastites with
E. coli (Long et al. 2001), S. uberis (Swanson et al. 2009) and S. agalactiae
(Sheffield 1997) promote apoptosis and cell proliferation. The increased apoptosis
can be explained by the induction of pro-apoptotic cytokines such as TNF-α
(Mebmer et al. 1999) or IL-1. Increased cell proliferation may be part of the self-cure
after mastitis. Besides, S. aureus (Bayles et al. 1998) and S. dysgalactiae (Almeida
and Oliver 1995) can be internalized by epithelial or endothelial cells and can thus
induce apoptosis of bovine mammary epithelial cells.

E. coli and S. aureus have been shown to induce necrosis of the mammary
epithelium, especially during severe mastitis (Zhao and Lacasse 2008). E. coli
produces proteinases that contribute to the degradation of extracellular matrices
(Haddadi et al. 2005; Haddadi et al. 2006). Total level of gelatinases (notably matrix
metalloproteinases, MMP-2, and MMP-9), which destroy basal membrane and
interstitial tissue proteins was actually 300-fold higher in milk from cows with E.
coli mastitis than in milk from healthy cows and they injured the basal membrane
and interstitial tissues (Raulo et al. 2002). S. aureus infected quarters present less
alveolar luminal area and more stromal area than uninfected quarters and thus
exhibited less secretory and synthetic ability (Sordillo et al. 1989).

Downregulation of genes implied in milk component synthesis could be
explained by a direct role of pathogens or by an increase in cytokines. Some
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cytokines can actually directly induce suppression of some protein secretion. For
example, injection of IL-8 induced a decrease in α-, β-caseins suggesting that IL-
8 is involved in suppressing the secretion of milk-specific proteins (Watanabe et al.
2008). TNF-α has an impact on mammary epithelial cells (Ip et al. 1992; Rejman et
al. 1993). Injection of recombinant TNF-α induced a decrease in milk production, in
protein content of milk and an increase in fat content (Kushibiki et al. 2003). TNF-α
was also shown to inhibit casein secretion by bovine cells in vitro (Hurley et al.
1994) and to induce a decrease in α-casein, β-casein, α-lactalbumin, and β-
lactoglobulin concentrations in milk (Watanabe et al. 2000). The presence of TNF-α
in the mammary gland induced an increase in lactoferrin concentration (Watanabe et
al. 2000) although it has been shown that TNF-α does not directly induce lactoferin
production (Hurley et al. 1994): effects of some cytokines or hormones can indeed
be mediated by TNF-α (Cerami 1992), which could explain the increase of
lactoferrin in the mammary gland after TNF-α injection.

E. coli induced a complete reprogramming of the metabolism of the mammary
gland during infection (Gunther et al. 2009): within 24 h, E. coli mastitis induced a
downregulation of “lactation” genes and an upregulation of “defense” genes via
remethylation of some promoter areas such as the αS1-casein promoter, which results
in a complete shut-down of casein synthesis (Vanselow et al. 2006). On the contrary,
subclinical S. aureus mastitis is characterized by a sustained casein synthesis and no
remethylation of the genes remethylized during coliform mastitis (Vanselow et al.
2006). In this way, transcription of genes encoding β-casein is not altered after S.
aureus infusion and normal milk protein gene expression is maintained despite
remodeling of the mammary gland tissue (Lutzow et al. 2008).

3.5 Plasmin increase during mastitis

Plasmin is a serine protease that plays a role in several physiological processes in
mammals. For example, it is a key enzyme in fibrinolysis or degrades various
extracellular matrix components. Its inactive precursor is plasminogen, whose
conversion to plasmin is activated by proteolysis and regulated by activators and
inhibitors (Lahteenmaki et al. 2001). Plasmin is the main proteinase in bovine milk. It
hydrolyses β- and αS2-caseins, and, more slowly, αS1- and γ-caseins, proteose
peptones, and possibly λ-casein. It has a pH optimum around 7.5 (Bastian and Brown
1996; Fox and McSweeney 1996). In mastitis, increased SCC has been correlated with
an increased plasmin activity (Albenzio et al. 2005; Kalit et al. 2002; Politis et al.
1989a; Saeman et al. 1988; Somers et al. 2003) which can be explained by the
conversion of plasminogen to plasmin (Verdi and Barbano 1991) and or by plasmin
transport from blood (Politis et al. 1989b). Conversion of plasminogen to plasmin can
be induced by activators, whose levels increase due to the increase in epithelial barrier
permability (Dano et al. 1985) and to their synthesis by PMN (Moir et al. 2001; Politis
et al. 1991). Other physiological components (epidermal growth factor, insulin-like
growth factor I, and prostaglandin E2) and some PMN proteases (elastase and
cathepsin G) increase the activity of plasminogen activators (Le Roux et al. 2003).

Regardless of the bacterial species, the plasmin activity in milk from the infected
glands actually increased by ∼2-fold compared with uninfected quarters (Leitner et
al. 2006). Moreover, milk plasmin activity appears to remain higher than before
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infection even after elimination of the infection suggesting that the detrimental effect
of mastitis on milk quality persists after elimination of the infection and low SCC
being achieved (Saeman et al. 1988).

It has been shown that bacteria regulate directly or indirectly plasmin activity.
Streptococci produce streptokinase that forms a complex with plasminogen and
plasmin and thus activates plasminogen (Lahteenmaki et al. 2001). S. uberis
synthetises a streptokinase-type plasminogen activator, PauA which can activate
bovine plasminogen (Rosey et al. 1999). Some species of streptococci posess a
plasmin receptor (GAPDH and enolase) which can immobilize plasmin and so
activates plasminogen (Berge and Sjobring 1993; Lincoln and Leigh 1998; Pancholi
and Fischetti 1998). S. aureus can enhance the production of urokinase, a
plasminogen activator in bovine epithelial cells. So, S. aureus contributes directly
to induce an increase in plasmin concentration (Zavizion et al. 1997). Finally, S.
aureus also plays a role in plasminogen activation through the synthesis of
plasminogen receptors, which immobilize plasmin on the cell wall and so indirectly
activates plasminogen (Kuusela and Saksela 1990; Kuusela et al. 1992). E. coli
posesses a filamentous surface appendage fimbriae and flagella that form a class of
plasminogen receptor. The flagellar filaments of E. coli bind plasminogen and
induce its activation by tissue type plasminogen activator (Lahteenmaki et al. 2001).

Plasmin influences the quality of dairy products (Bastian and Brown 1996), notably by
hydrolyzing caseins. This in turn influences milk coagulation properties, cheese yield
(McSweeney et al. 1994) and cheese ripening (O’Farell et al. 2002). Moreover, plasmin
is heat stable with large amounts surviving pasteurization. Even after UHT treatment,
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30% to 40% of plasmin activity can be detected in the milk (Alichanidis et al. 1986).
Proteolysis of β-casein by plasmin has been shown to play a role in cheese flavor
enhancement (Farkye and Landkammer 1992; Farkye and Fox 1992). Plasmin activity
changes according to the pH and so varies from one dairy product to another. For
example, it slightly increases during cheddar (Barrett et al. 1999) or Danbo (Benfeldt et
al. 1997) cheese ripening and decreases during Saint-Paulin cheese ripening (Bastian et
al. 1991). It appears that proteolysis due to plasmin produces off-flavors earlier than
lipolysis due to lipase in pasteurized milk with high SCC (Ma et al. 2000).

4 Conclusions

Mastitic milk costs amount to billion dollar losses for dairy factories worldwide
(Napoli et al. 2007). In most studies, the increase in SCC is considered a marker of
mastitic milk. Numerous studies have reported on the impact of an increased SCC on
milk and subsequent changes in most parameters related to the biochemical aspects
and cheese processing. These modifications in the milk composition have a variable
impact on the quality of dairy products. In general, an increase in SCC has a
negative influence on cheese processing and in pasteurized milk grading during
storage. The scientific literature is quite abundant regarding these observed impacts
but nevertheless, the reported observations sometimes appear contradictory. Besides,
more and more is known regarding the impact of various pathogenic bacteria on the
mammary gland physiology upon intramammary infection. Some recent advances in
the bacteria–host interactions have revealed that the udder response to the infection
might differ from one pathogen to another. This review shows that some intriguing
observations in the field of SCC and milk modifications could be explained by the
specific bacteria–host interactions. It appears that a gap exists between these two
scientific fields. An attempt to link these two fields is presented in Fig. 3. In the
future, it would be more accurate and would result in clearer conclusions if the
phenomenon was studied as a whole, including relationships between the nature of
the mastitis causative agents, and the subsequent impacts on udder (including SCC
as one parameter among others), milk quality and milk products, especially when
subclinical mastitis is considered because such milks are collected, processed and
used for human consumption. Identifying the causative pathogens rather than using
the increase in SCC so as to detect mastitis may be more relevant, notably in order to
determine if the milk can be used and to which extent.
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