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Abstract The goal of this study was to assess the effect of methods of inoculation
on the viability of probiotic bacteria during cheddar cheese manufacture as well as
their stability during storage. Bifidobacterium longum ATCC 15708 was freeze-dried
and microencapsulated by spray-coating. The effect of inoculation of free whole cell
or microencapsulated cells at three points during manufacture (milk before
renneting, at cheddaring or at salting) on the viable counts in cheese and whey
was investigated. Microencapsulation had no effect on viable counts, chemical
parameters (lactose, lactic acid, total nitrogen, nitrogen soluble in TCA, moisture) or
sensory properties during manufacturing or storage of the fresh cheeses for 14 days.
Inoculation of the bifidobacteria in milk before renneting resulted in higher viable
counts in comparison to other points of inoculation. Bifidobacteria added at the
salting step, which survived pressing, were subsequently more stable during storage
than those inoculated in milk. The stability of B. longum 15708 during storage was
greater in the pressed cheeses that in the free curds. The results of this study provides
technological data for cheese makers on the optimum point of inoculation as well as
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the benefit of pressing the curds in order to ensure high levels of probiotics in fresh
cheddar cheese.

微胶囊和接种时段对长双歧杆菌 (Bifidobacterium longum) 在切达干酪中活菌数的影响

摘要 本文主要目的是分析益生菌的接种方法对其在新鲜切达干酪中活菌数以及对益生菌贮

藏稳定性的影响。以冷冻干燥和喷雾涂布微胶囊化的长双歧杆菌ATCC 15708 (Bifidobacterium
longum) 为目标菌株, 将游离细胞和微胶囊的长双歧杆菌ATCC 15708分别在干酪加工的三个

阶段 (凝乳前、凝块切割和加盐) 进行接种, 研究了不同的接种过程对长双歧杆菌ATCC
15708在干酪和乳清中存活数的影响。干酪的加工过程以及新鲜干酪贮藏 (14d) 对微胶囊化

长双歧杆菌ATCC 15708在干酪中活菌数没有产生影响, 并且对干酪的化学成分 (乳糖、乳

酸、总氮、三氯乙酸可溶性氮和水分) 以及感官特性也没有影响。比较了长双歧杆菌分别在

凝乳前、凝块切割和加盐过程接种的三组干酪,在凝乳前接种的干酪中长双歧杆菌的活菌数

最高。而在加盐过程中接种的干酪, 由于长双歧杆菌经历了高盐渗透压的作用, 使得这些长

双歧杆菌在贮藏期间的稳定性较高。长双歧杆菌ATCC 15708在压榨后干酪中的稳定性比在

鲜凝块中高。该研究可为干酪生产者在实际生产过程中有效的添加益生菌提供了技术支

持。

Keywords Probiotic bacteria . Stability. Microencapsulation . Cheddar cheese
manufacturing . Inoculation point . Storage
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1 Introduction

The market for products containing probiotic bacteria is in expansion throughout the
world principally because of the growing number of clinical studies concluding that
these microorganisms may be linked to beneficial health effects (Ouwehand et al. 2003).
There is a growing consumer interest for functional foods enriched with these bacteria,
in preference to powder supplements or pills (Bruhn et al. 2002). Although yoghurt
has been the main food matrix to which probiotics have been incorporated, cheese is
increasingly considered as a valuable delivery vehicle (Gomes da Cruz et al. 2009).

Cheddar cheese is most commonly consumed in the form of pressed blocks of
ripened cheese. A niche market in Canada is non-pressed salted cheddar curds
obtained after milling. Immediately after manufacturing, these curds are placed in
bags and shipped to retailing points, which are allowed to place the product on the
shelf at room temperature for 24 h. Subsequently, the cheese curds must be
refrigerated. This type of product is typically consumed within 1 week. In some
cases, the curds are pressed and also sold immediately under the same conditions. It
was our hypothesis that such a fresh product would constitute a good matrix for
highly sensitive probiotic bacteria which otherwise loose viability during the
ripening period of cheddar. This hypothesis constitutes the rationale for the
manufacturing and storage conditions used in this study as well as for the selection
of a highly sensitive probiotic strain.

In cheddar cheese, many studies report severe declines in viable counts of
probiotics during storage (Godward and Kailasapathy 2003; Lynch et al. 1996; Sharp
et al. 2008), but some studies report more successful results (Daigle et al. 1999;
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Stanton et al. 1998). Viability losses seem to be mostly related to the probiotic strain
(McBrearty et al. 2001; Ong et al. 2007). In the past, manufacturers used to select
probiotic cultures which were stable in their particular product. However, strain
selection is increasingly based on purported health benefits, and a desired culture
might show viability problems during manufacture and storage. Thus, there is still a
need to develop technological strategies to protect probiotic bacteria in cheddar
cheese.

Technologies can be adapted to prevent viability losses of probiotic bacteria in
foods. In yoghurt, such adaptations include carrying out lactose hydrolysis,
modifying the starter strains and inoculation levels, adding antioxidants, packaging
in anaerobic environments and microencapsulating the probiotic cultures (Champagne
et al. 2005; Stanton et al. 2005). Much less has been done in this area in cheese, but
selection of compatible starter, probiotic inoculation practices, microencapsula-
tion and packaging (Gomes da Cruz et al. 2009) have been proposed. In most
studies, only one treatment has been applied at a time, and little data are available
on combined treatments. There is a need to examine interactions between
technological adaptations on the survival of probiotics in cheese. In this study, it
was hypothesized that targeting a fresh cheese, using a novel microencapsulation
technology and carrying out novel inoculation points, would provide such
technological tools. Furthermore, the combined effects of microencapsulation and
inoculation practices were examined.

Microencapsulation has been suggested as a potential solution to losses in
viability due to salting or extended storage (Gomes da Cruz et al. 2009). In most
cases, the microencapsulation technology was based on microentrapment in gel
particles, particularly alginate. Contrary to yoghurt, microencapsulation of probiotics
in alginate beads does not seem to improve their stability during cheese storage or
ripening (Gobbetti et al. 1998; Godward and Kailasapathy 2003). Although
microencapsulation by spray-coating is the main technology used by the industry,
only one study has examined the benefits of this microencapsulation methodology
on bacterial stability during storage. There is no data on the benefits of
microencapsulation by spray-coating on stability of probiotics during cheese
processing or on cell retention in the curds.

Inoculation practices are an important means of adapting a milk fermentation
process to enhance probiotic survival. Most data on the benefits of inoculation
strategies are found in yoghurt manufacture, and little is known in cheesemaking. In
cottage cheese, it was suggested to add the probiotic culture in the cream dressing
rather than in the curds (Blanchette et al. 1996). Other studies have examined
inoculation at the cheddaring step or at salting (Dinakar and Mistry 1994; Fortin et
al. 2011; Gomes da Cruz et al. 2009). With free cells, these inoculation practices
raise the concern of cell losses in whey. However, no study has examined the effect
of microencapsulation by spray-coating on cell recovery and stability in the cheese
curds under various inoculation procedures.

The goal of this study was to examine the combined effects of microencapsulation
of Bifidobacterium longum by spray-coating and the processing step chosen for
inoculation on the viable counts of the bifidobacteria in cheddar cheese curds during
production and storage. The effects of these technological adaptations on cheese
composition and sensory properties were also examined.
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2 Materials and methods

2.1 Cultures

B. longum ATCC 15708 was purchased from the American Type Culture Collection.
Stock cultures were obtained by mixing MRS-grown (Difco, Detroit MI, USA) cell
suspensions with sterile BHI media (Difco) containing 15% (w/v) of glycerol
(Sigma, St-Louis, MO, USA) in a 1:5 ratio, adding 1 mL of the cell suspension in
Cryovials (Nalgene, Rochester, NY, USA) and freezing at −80 °C.

The starter used for pilot-scale cheese manufacture was prepared by inoculating 0.2%
(w/w) of a thawed commercial culture of lactic acid bacteria (Lactococcus lactis ssp.
cremoris and L. lactis ssp. lactis H-102 from CH-Hansen, Milwaukee, WI, USA) into
rehydrated skim milk (12% w/w), previously sterilized at 110 °C for 10 min. The
culture was incubated to 21 °C for 15 h and used within 2 h after this incubation time.

2.2 Production of freeze-dried and microencapsulated probiotic cultures

B. longum was grown in MRS broth (Becton, Dickinson and Company, France)
supplemented with 1% (v/v) of a sterile solution of 10% (w/v) ascorbic acid (Bioshop
Canada Inc., Burlington, ON, Canada) and 5% (w/v) L-cysteine hydrochloride
(Sigma–Aldrich, St. Louis, MO, USA). The culture was concentrated by
centrifugation at 6,000×g for 20 min at 4 °C. The cell pellet was resuspended in
one tenth of its original volume in a cryoprotective medium composed of 20% (w/w)
rehydrated skim milk powder (Agropur, Granby, Canada) and 5% (w/v) of sucrose to
which 2% (v/v) of an ascorbic acid solution (17.5% w/v) was added. The cell
suspension was poured in metal trays and frozen at −20 °C for 18 h. Trays were
placed in a freeze-dryer (FTS Systems, Stone Ridge, N.Y., USA) to lyophilise under
the following programme: −40 °C for 4 h under atmospheric pressure, 16 h at 0 °C
and 100 mTorr vacuum, 16 h at 20 °C and 100 mTorr vacuum, 60 h at 20 °C and
10 mTorr vacuum. The powder was grinded using a Ultra Centrifugal Mill ZM-1 unit
(Retsch Inc. Newtown, PA, US) equipped with a sieve size of 1 mm and then filtered
in stainless steel mesh (W.S. Tyler Canada Ltd, St. Catharines, Ontario, Canada) to
only retain the particles sizes varying between 53 and 250 μm. The powders were
subsequently placed in hermetic glass bottles and kept at 4 °C The final powder had
a concentration of 2.2×109 CFU.g−1 and this product was referred to as the “free-cell
culture”.

Microencapsulation was carried out by spray-coating as described by Durand and
Panes (Durand et al. 2003) in a STREA-1 fluid bed system (GEA, Columbia, MD,
USA) equipped with a bottom-coating Würster vessel assembly. The air used for
fluidization was previously dried (relative humidity of approximately 5%) and
injected at room temperature. The spraying air was injected at a velocity of 30 L.
min−1. The fat used for coating was the DP108 blend of fractionated palm kernel oil
and palm oil from Aarhus United (Port Newark, NJ, USA). The fat was heated at
80 °C and distributed at 10 mL.min−1 over 400 g of the free-cell culture. In all, 160 g
of fat was sprayed over the 400 g of powder. The resulting spray-coated product of
B. longum ATCC 15708 will be referred to as the “ME culture”. The viable count
was of 1.1×109 CFU.g−1. This was half the bacterial density of the free-cell culture
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(per g of powder) because of the addition of fat and because a small loss of viability
occurred during the spray-coating process. As a result, a greater quantity of ME
culture powder was required to carry out the same CFU inoculation level as the free
cell culture.

2.3 Cheese production

Cheese vats having a 270-L capacity equipped with double-wall, adjustable outlet
and stirrer blades (Kusel Equipment Co., Watertown, WIS, USA) were used. Raw
milk was provided by Agropur (Granby, QC, Canada). On each production day, milk
was pasteurized using a continuous flow plate exchanger at 73 °C for 16 s.

The starter was inoculated at 1.5% (w/w). Addition of 0.026% (v/v) of a 30% (w/v)
CaCl2 solution and 0.01% (v/v) double force rennet Maxiren (Danisco, Copenhague,
Danemark) was done 1 h after starter addition. The coagulum was cut after 30 min and
curds were cooked at 38 °C until pH reached 6.0 to 6.1. After whey drainage, curds
were piled in order to carry out the cheddaring step, until the pH dropped to 5.2±0.1.
Finally, the cheese was cut in small pieces and salted at 1.8% (w/v) with iodine-free
salt, which resulted in a salt-in-humidity level of 4.5%. Some free curds were kept
separately, and the rest of the salted cheddar curds were then put in moulds and
pressed under 0.205 MPa for 1 h. During cheese making, temperature, pH and
titratable acidity were followed at defined intervals for ascertain reproducibility of the
fermentation. The packaged blocks were then stored at 4 °C for up to 14 days. At
days 1, 4, 7 and 14, bags were opened and 500 g portions were taken for chemical,
microbiological or sensory analyses.

2.4 Incorporation of probiotics during cheese manufacturing

Since three cheese vats were available and since seven treatments were carried out, two
series of productions were carried out. In the first series, the following treatments were
done: vat nos. (1) inoculation of 20 g free cells in 150 L of milk (0.13%), just before
rennet addition, (2) inoculation of 40 gME cells in 150 L of milk (0.27%), before rennet
addition, (3) no inoculation in milk nor at the cheddaring step; the unsalted curds
obtained after milling were divided in three; at the salting step, one third was kept as
control, one third was inoculated with 6.7 g of free cells and one third was inoculated
with 13.4 g of the ME culture. In the second series of productions, the same pattern was
carried out except that for vats #1 and #2, instead of inoculation in milk prior to rennet
addition, the free (20 g) or ME (40 g) cultures were blended into the small grains
obtained after the first whey drainage prior to cheddarization.

These inoculation levels were expected to result in curd viable counts around
106 CFU.g−1, which is rather low since the laboratory-made culture obtained had
only 2.2×109 CFU.g−1. Such a viable count in a powder is much lower than
commercial products, which typically have between 1010 and 1011 CFU.g−1 of
powder. In the attempt to duplicate industrial conditions, it was decided to add the
quantity of culture powder that would apply under commercial conditions. Thus, the
quantity of bifidobacteria-containing powder added at the various steps followed the
quantities of freeze-dried powder that would currently be inoculated in industry. It
was considered that the quantity of powder added would affect distribution
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properties in the curds as well as texture and that applying industrial parameters was
critical to the value of the experimentation. Although viable counts in cheese were
lower than what would be expected or commercially recommended, it still enabled
the evaluation of the hypotheses.

In each assay, the pasteurized milk was distributed in three cheese vats. In
experimental treatments based on inoculation in milk or at cheddaring step, vats
filled with 150 L of milk were inoculated with free cell or ME B. longum. For the
treatment of addition at salting step, a vat was filled with 270 L of milk, and
fabrication was followed normally without inoculation of bifidobacteria until salting
step. Curds were salted all together and then divided in three equal masses: one third
was inoculated with free bacteria, one third with ME bacteria and the other was not
inoculated and represented the control treatment. Three independent repetitions were
done using three separate culture batches and milk lots.

One of the aims of this study was to examine the effect of air on B. longum
viability in products having free and ME cells. Thus, individual salted curds and
pressed cheese blocks were analyzed separately, except for inoculation at the salting
step where only blocks were analyzed. In this latter treatment, the decision was taken
not to test curds, because powder particles might not adhere to the surface, and cells
would be lost in the packaging.

The individual curds (portions of approximately 250 g) were kept in sealed plastic
bags in an air atmosphere. They were placed at 23 °C for 24 h and then stored at 4 °C for
up to 14 days. A portion of the curds was pressed in 10 kg blocks that were subsequently
cut and vacuum-wrapped in 500 g portions and kept for 16 h at 23 °C.

2.5 Analyses

Milk, curds and whey were analyzed for viable counts throughout cheese
manufacturing as well as at days 1, 4, 7 and 14 of storage. For microbiological
analyses, homogenization of the casein matrix was carried out by adding 4 g of curds
to 36 g of a 2% sodium citrate solution (Anachemia, Montreal, Canada) kept at 45 °C
and blending themwith sterilized Polytron-type high-shear generator probes (OMNI TH
International, Model TH-115, Marietta, GA, USA) for 30 s at high speed (20,000 rpm).
When liquid samples were analyzed, 1 mL of milk or whey were mixed with 9 mL of
sodium citrate solution and homogenized with Omni-Tips generator probes (Omni TH
unit; Marietta GA, USA) at high speed for 30 s. For both liquid and solid samples, serial
decimal dilutions were done in 0.1% peptone water tubes (w/v) (Becton Dickinson,
Mississauga, ON, Canada). Viable counts of B. longum were determined by plating on
LP medium pH 6.7 since this medium was found to effectively select B. longum from
lactic acid bacteria (Lapierre et al. 1992). The LP medium contained, per L of
medium: 35 g liver infusion, 10 g lactose, 10 g bacto-peptone, 2 g NaCl, 2 g LiCl and
3 g sodium propionate. The appropriateness of LP medium for selective counts of B.
longum 15708 in whey and curds, in the presence of the cheese starter cultures, was
confirmed in a previous study (Fortin et al. 2011). Colonies of bifidobacteria were
counted after a 48 h incubation period at 37 °C in an anaerobic incubator (85%N2/
10%H2/5%CO2). Lactococci populations from the starter were obtained on M17
medium (Becton, Dickinson and Company, France) following 48 h incubation at 30 °C
under aerobic conditions.
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Carbohydrates and organic acids of interest (acetic acid, lactic acid, glucose, lactose)
were analyzed at days 1 and 14 by ion exchange HPLC (Dionex, Model DX-500;
Oakville, ON, Canada), following the procedure of St-Gelais et al. (1991). Total protein
and soluble nitrogen in trichloroacetic acid (TCA-SN) were analyzed at days 1, 7 and
14 with the Kjeldhal technique (Christensen et al. 1991; Turcot et al. 2002), using a
Kjeltec 1030 distillation unit (Foss, Eden Prairie, MN, USA). For practical reasons, not
all analyses could be done on day 1. Since cheeses were packaged in sealed bags, some
parameters were not expected to change throughout the 14-day storage period. Thus,
total lipid concentrations were analyzed at day 7 by the Mojonnier technique
(Mojonnier Bros. Co., Chicago, IL, USA) (Atherthon et al. 1977), salinity was
ascertained at day 6 with a Chloride Analyzer 326 unit from Corning (Nelson-Jameson
Inc., Marshfield, WI, USA) and humidity was measured at day 6 by gravimetry
following drying at 100 °C for 24 h (Fortin et al. 2011).

A sensory analysis was also carried with 20 panellists at the 4th day of storage.
The sensory analysis was delayed a few days in order to carry out microbiological
analyses (coliforms, Staphylococcus aureus) ensuring safety for the tasters. This was
a requirement from the ethics committee. Tasters had to smell and taste pressed
cheese only and compare it to the control cheese in order to monitor any difference
in appearance (particles of ME cultures), texture, mouth-feel and flavour between the
various pressed cheeses produced. Free curds were not tested by the sensory panel.

2.6 Calculations

On average, from 100 L of milk, we obtained 83 L of whey at the first drainage, 5 L of
whey during cheddarization and 1 L of whey during pressing. Final cheese curd mass
varied between 10 and 11 kg. The CFU were measured at every processing step, which
enabled the estimation of total bacterial populations in the whey and curd products.

The following equations were used to evaluate cheese yield and bacterial balances.

Equation 1. Yields for cheese production:

½ Pressed cheese final massþ Curds final massð Þ � Milk massð Þ� � 100

Equation 2. Ratio of cells recovered to those inoculated (ratio R/I)

g of final curd mass� CFU:g�1
� �þ g of whey recovered � CFU:g�1

� �� �

� g of culture added � CFU:g�1
� �� �

Equation 3. Distribution of probiotics between curds and whey:

½½ Final curds massð Þ � ðCFU:g�1of probiotics in curdsÞ�
� ½ð Final curds massð Þ � ðCFU:g�1of probiotics in curdsÞÞ
þ ð Total whey massð Þ � ðCFU:g�1of probiotics in wheyÞÞ�� � 100

It must also be kept in mind that the distribution of cells between curds and whey
(Equation 3) is only an indicator of a percentage or recovery in curds; indeed CFU
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values in whey and cheese at the end of processing are the result of cell recovery (or
loss in whey) as well as potential growth or viability losses in each matrix.

2.7 Statistical analyses

Statistical analyses were done with InStat (GraphPad, La Jolla, CA) on Log10 values
of viable counts. When comparing multiple treatments, the ANOVA test was carried
out. In some instances where the specific effects of ME or pressing were examined,
paired t test were used. Differences between means were considered significant when
P value was lower or equal to 0.05.

3 Results and discussion

A preliminary study had been carried out on a laboratory scale (2 L) where
inoculation points of probiotics in milk and at cheddaring had been compared (Fortin
et al. 2011). This study expanded the preliminary work by verifying the observations
on a 100-fold larger scale, by including a microencapsulated culture, by adding the
cells at salting and by examining the effect of curds pressing.

3.1 Effect of ME on viable counts during production

Spray-coating efficiency in delaying the release of probiotic cells was studied in a
previous work (Champagne et al. 2010), and its application to this condition was
first examined. This was carried out by evaluating the rates and levels of solids
released in water after addition of the powder. Commercial powders of ME cultures
obtained from spray-coating technology show ∼50% of their non-fat solids released
after 15 min dispersion, while the ME powders prepared in our lab released 85% of
their non-fat solids (Champagne et al. 2010). Therefore, the ME culture prepared in
this study was not as well coated as that of commercial products. It is well known
that spray-coating is a difficult technology to master and that the products are only
partially microencapsulated. It was tested nevertheless since viability losses can
reach four logs during storage (Fortin et al. 2011) and partial ME could still have a
significant benefit, especially since ME protects cells against oxygen (Talwalkar and
Kailasapathy 2004), and B. longum 15708 is sensitive to oxygen (Bolduc et al. 2006;
Fortin et al. 2011).

When ME cultures were incorporated into milk before renneting, greater CFU
losses in whey were observed at most steps during the production cycle than with the
free-cell cultures (Table 1). A greater loss of cells in whey would suggest that lower
CFU values would be obtained in the curds ultimately resulting from milk
inoculation with the ME culture. However, viable counts in curds were not
significantly affected by the form of the probiotic inoculated (Table 1). This is
explained by the observation that between 64% and 72% of the cells inoculated in
milk are recovered in curds (Table 2). Consequently, the fraction that ends up in
whey is only a minor portion of the cells added; as a result, the different cell losses in
whey did not ultimately affect the viable counts in the curds. When the ME culture
was inoculated in milk, it was observed that particles were floating at the surface of
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milk and oil at the surface of whey. This could partially explain the higher losses of
the ME cells in whey. There was no further effect of ME on viable counts in whey or
curds when the inoculation was carried out at cheddaring or at salting (Table 1).

Irrespective of the distribution of the viable cells between curds and whey,
calculations were made to examine the evolution of total bacterial populations
during the processing steps. As the cells recovered to those inoculated (Ratio R/I)
show, in many cases, there were lower CFU counts in whey and curds at the end of

Table 1 Effect of microencapsulation (ME) and of the point of inoculation on viable counts of B. longum
15708 (Log CFU.mL−1or .g−1) during cheddar cheese production

Cheddar production step or sample Point of inoculation

Milk Cheddaring Salting

Free cells ME cells Free cells ME cells Free cells ME cells

Milk before renneting 5.3 a 5.2 a – – – –

Coagulum before cutting 5.1 a 5.9 a – – – –

Whey after cutting 4.8 a 6.2 b – – – –

Coagulum after 30 min cooking 5.6 a 5.8 a – – – –

Whey after 30 mincooking 4.9 a 5.3 a – – – –

Curds after drawing off whey 6.3 a 6.2 a – – – –

Whey draw off 4.7 a 5.4 b – – – –

Curds after inoculation of probiotics – – 5.6 a 5.6 a – –

Curds after 30 min cheddaring 6.3 a 6.6 a 5.9 a 5.6 a – –

Residual whey at cheddaring 3.9 a 4.0 a 6.6 b 6.2 b – –

Curds before salting 6.8 a 6.7 a 5.9 b 5.8 b – –

Salted curds 6.6 a 6.8 a 5.4 b 5.6 b 5.3 b 5.6 b

Residual whey after pressing 4.6 a 4.9 ab 4.7 ab 5.3 bc 5.7 c 5.9 c

Cheese after pressing 6.6 a 6.7 a 5.6 b 5.0 b 5.0 b 5.2 b

In a given row, values which are followed by the same letter are not significantly different (P≥0.05)

Table 2 Effect of the point of inoculation on cell distribution and on the evolution of the ratio of B.
longum 15708 cells recovered to those inoculated (Ratio R/I) during Cheddar cheese production

Production parameter Viable counts

Curds Point of inoculation Distribution (% of probiotics in curds)a Ratio (R/I)b

Pressed cheese Milk 72 a 1.7 a

Cheddaring 18 b 1.1 ab

Salting 83 a 0.12 b

Free curds Milk 64 a 1.4 a

Cheddaring 12 b 0.98 ab

For a given column, means that are followed by the same letter are not significantly different (P≥0.05)
a Calculated with Equation 3
b Calculated with Equation 2
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the cheddar manufacture than there were bifidobacteria cells inoculated (Table 2).
This would suggest viability losses during production. There was no statistically
significant effect of ME on the growth or mortality of the probiotic bacteria during
cheddar manufacture (P < 0.05).

3.2 Effect of point of inoculation on viable counts during cheddar manufacturing

When B. longum cultures were inoculated in milk, higher viable counts were
obtained in cheese curds than when inoculation was carried out at cheddaring
(Table 1). These data confirmed the results from a previous study (Fortin et al. 2011).

In addition to the viability losses, which occurred immediately at the moment of
inoculation, there might also be continued viability losses during the final processing
steps. Indeed, when the probiotic bacteria were added in milk, there was an increase
in curds CFU counts of about 0.2 log between the “30 min after cheddaring” and in
the “salted curds” (Table 1). No such increase was noted when the bifidobacteria
were added at cheddaring, and in fact, a 0.5 log decrease was even noted in one
instance (free cells; Table 1). Since curds expel whey and contract during
cheddaring, an increase in CFU would normally occur due to gel contraction. All
these data point to a loss of viability of the cells inoculated at cheddaring during the
final processing steps and particularly at salting (Table 1). The detrimental effect of
salting on viability had already been observed (Fortin et al. 2011), but this is the first
observation on the effect of inoculation point on subsequent viability during
processing. Apparently, the potential benefit of reducing exposure to oxygen by
adding the cells at a later processing stage was outweighed by the detrimental effects
of rehydration in more acidic and salty environments. The literature reports variable
situations with respect to viable counts of bifidobacteria added during cheddar
cheese making. In one instance, no growth was noted (Daigle et al. 1999), as in this
study, while in other instances, significant CFU increases occurred (Ong et al. 2007).
Evidently, this is strain-related, and the fact that we selected an oxygen-sensitive
culture (Bolduc et al. 2006; Fortin et al. 2011) might explain our results.

Little information is available on the recovery level of probiotics in curds. The
more cells are entrapped in the curd, the less is lost in the whey. Ong et al. (2007)
observed differences between CFUs in whey and those in curds ranging from 0.6
and 4.6 log with an average of 1.8 log CFU. Data from this study tend towards a 2
log CFU difference (Table 1), which is therefore in line with the literature.

Data show that the highest proportion of cells in curds was observed when they were
added at salting (Table 2). This would erroneously suggest that the best inoculation point
for high cell recovery in curds is at salting. This is not the case. High losses in viability
occur at this inoculation point as evidenced by the lowest R/I ratio (Table 2). The
high % of viable cells in pressed curd is presumably due to the very small quantity
of whey produced during pressing (about 1% of original milk volume) as well as higher
loss of viability of the probiotic culture during rehydration in this salted and acid whey.

3.3 Viable counts during storage

Microencapsulation in alginate beads was shown to reduce viability losses due to
oxygen in yoghurt (Talwalkar and Kailasapathy 2004), and it was hoped that ME by
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spray-coating would also reduce viability losses during storage by reducing the
exposure to both acidity and oxygen. Paired t tests between comparative viability
data during storage showed that there was no significant difference (P=0.08) in
viability patterns between products inoculated with free or ME cultures. This was in
line with the data of Belvis et al. (2006). The limited effect of ME might be due to
the low encapsulation level of the product used in this study, which was estimated to
be less than 10% (Champagne et al. 2010). Further studies are required to determine
the benefits of using encapsulated cultures similar to those currently marketed by
industry, which have up to 50% coating efficiency.

In the province of Québec (Canada), a fraction of cheddar cheese is marketed as
fresh curds. The cheese curds are packed in plastic bags and marketed fresh, instead
of being pressed and sold in blocks. Viable counts of these two products during
storage showed important viability losses of B. longum 15708 (Fig. 1). They were
much higher when curds were not pressed into typical cheddar blocks but packaged
in plastic bags as free curds; paired t tests showed this difference to be statistically
significant (P=0.002). A lower oxygen level is expected in pressed curds, which
were subsequently packaged under vacuum than in the free curds packed in plastic
bags. The probiotic strain used in the present study is sensitive to oxygen (Bolduc et
al. 2006; Fortin et al. 2011), and it is presumed that exposure to oxygen was much
lower in pressed cheese. In addition, the level of salt in moisture was higher in the
free curds than in the corresponding pressed cheese (P≤0.01 for both inoculation
points) (Table 3). It has been shown that the stability of this strain was lower in
salted cheese than in unsalted curds (Fortin et al. 2011). It must be kept in mind that
the salt distribution in the cheese matrix varies initially. During the first hours
following salting, it is high at the surface of the grains and it gradually decreases as
the minerals diffuse towards the core. It could be argued that cells at the surface of
the grains suffer a salt shock. It is unknown if the effect of salt on viability which
was observed is linked to these initial differences in salt distribution throughout the
food matrix.

The effect of the point of inoculation on subsequent stability during storage is not
clear. A reduction of 0.4 log CFU.g−1 during pressing was noted in products
inoculated at salting while no such loss in viability was noted in cheeses inoculated
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in milk (Table 1). However, during storage, the products inoculated at salting were
more stable than those inoculated in milk (Fig. 2), and paired t tests showed this
difference was statistically significant (P=0.03). A previous study had also shown
that cells added at salting were stable during storage (Dinakar and Mistry 1994), but
no comparison with other points of inoculation had unfortunately been carried out.
The cultures inoculated at the cheddaring step basically had the same pattern as

Table 3 Effect of the point of inoculation of B. longum 15708, the pressing of curds as well as storage
time on some cheese chemical characteristics

% Day Pressed cheese
Control

Pressed cheese inoculated at Free curds inoculated at

Milk Cheddaring Salting Milk Cheddaring

WSN/TN 1 8.0 a 7.9 a 7.4 a 7.4 a 9.2 a 8.1 a

7 9.7 a 9.9 a 9.5 a 9.3 a 10.6 a 10.8 a

14 12.7 a 12.4 a 11.5 a 12.4 a 13.7 a 14.0 a

TCA-SN/TN 1 4.6 a 4.5 a 4.1 a 4.1 a 4.7 a 4.3 a

7 5.3 a 5.3 a 5.6 a 5.3 a 5.7 a 5.7 a

14 6.4 a 6.0 a 6.7 a 6.5 a 6.2 a 6.8 a

TN 7 23.8 a 23.1 b 24.0 a 23.8 a 21.7 c 22.1 c

Moisture 6 37.9 a 38.8 a 37.4 a 38.2 a 42.0 b 41.4 b

Salt in moisture 6 4.0 a 3.6 a 3.9 a 4.1 ab 4.4 b 4.6 b

Total lipids 7 32.8 a 31.4 a 32.7 a 32.6 a 28.6 b 29.8 b

Lactose 1 0.46 a 0.38 a 0.41 a 0.40 a 0.45 a 0.43 a

14 0.40 a 0.29 a 0.29 a 0.27 a 0.31 a 0.34 a

Lactic acid 1 0.99 a 1.05 a 1.07 a 1.00 a 0.98 a 0.99 a

14 1.20 a 1.16 a 1.18 a 1.13 a 1.08 a 1.09 a

WSN water-soluble nitrogen, TN total nitrogen, TCA-SN nitrogen soluble in trichloroacetic acid

For a given row, means that are followed by the same letter are not significantly different (P≥0.05) using
ANOVA. The average values presented are from the combined data of free and ME cultures
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those inoculated at salting (data not shown). Therefore, different patterns in viability
losses were noted as a function of inoculation point and storage period. More data
are needed to clarify these observations.

A common observation was the high loss of viability during the first day of
storage (Figs. 1 and 2) likely due to the higher temperature (23 °C). It has frequently
been observed that refrigeration improves the stability of probiotics during storage
(Champagne et al. 2005). This distribution and marketing practice is carried out to
obtain desirable texture and flavour of the curds. Clearly, however, the 24-h room
temperature storage practice provides a challenge in maintaining probiotics viability.
Interestingly, other studies without this particular storage pattern also show initial
viability losses, which are then followed by stabilization (Daigle et al. 1999) or even
growth (Ong et al. 2007). Therefore, although the high storage temperature on day 1
might have accelerated the initial loss in viability of the bifidobacteria, high rates of
viability losses during the first few days or weeks of ripening/storage seem to be a
common occurrence in cheddar.

The fresh curds are typically consumed within 1 week, while the pressed cheese
can be stored and marketed over many weeks. Whatever the product, fresh or
pressed, this high initial viability loss limits the application of probiotics to cheese
with such a strain. The Canadian Food Inspection Agency (2009) requires that one
billion (109) viable cells per portion be present in the product when consumed in
order to allow a general non-strain-specific claim. Even considering a cheese portion
to be 50 g, none of the experimental conditions used in this study (ME, inoculation
point) enabled reaching this population level. Therefore, strain selection, inoculation
in milk and high inoculation level still appear to be the best methods of achieving
high viable counts of probiotics in cheddar.

3.4 Effect of inoculation methods on the chemical composition of cheeses

Yields in cheese varied between 10.3 and 10.7 kg cheese per 100 L of milk, but these
differences were not found to be statistically significant. Cheddar cheese productions
typically give yields around 9.5% (Mahaut et al. 2000). Since our humidity levels
(∼39%) were higher than those typically obtained for cheddar cheese undergoing
ripening (∼37%) (Mahaut et al. 2000), these yield values were anticipated. There
was a relationship between yields and moisture in cheese (R=0.6). It must also be
kept in mind that both curds and pressed cheese were used in calculating the overall
yield in this study while the typical calculation is based on pressed cheese.

Cheese composition is presented in Table 3. Paired t tests showed that the cheeses
produced with the ME culture did not significantly differ from those produced with
free-cell cultures (data not shown). In all cheeses, glucose and acetic acid
concentrations were below 0.1 g.L−1 (data not shown). A high acetic acid level
would have indicated fermentative activity by the bifidobacteria (Ong and Shah
2009). However, since the population in probiotic cultures was only around one
million cells per gram of cheese (Table 1), it was presumably insufficient to generate
significant changes in the chemical composition.

Statistical analysis showed no significant effect of the point of inoculation of B.
longum on the chemical parameters in both products tested: pressed cheese and free
curds (Table 3). However, moisture and salt-in-moisture readings were significantly
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higher in the free curds than in the pressed cheese while the opposite was observed
for TN and fat (Table 3). A higher moisture level in the free curds indicates higher
whey content. As a result, higher levels of compounds mainly found in whey
(soluble nitrogenous fractions, lactose and lactic acid) were expected to be detected
in the free curds. When individually comparing all six treatments in the ANOVA
analysis, the higher levels of lactose, lactic acid and soluble nitrogen in free curds
were not found to be statistically significant from those in the pressed cheese
(Table 3), but paired t tests did detect the difference. As a rule the higher WSN,
TCA-SN, lactose and lactic acid values observed in free curds, as compared to
pressed cheese, were in correlation with the curds’ higher moisture content.

Chemical composition of the cheeses was altered during storage. Thus, an
increase in lactic acid concentration during storage (P<0.05) was accompanied by a
decrease in lactose (Table 3). There were also increases in various soluble
nitrogenous fractions during the 14-day storage period (Table 3) (P<0.05) as
previously reported for cheese ripening (Lacroix et al. 2010). This is attributed to
proteinase and peptidase activities of the mesophilic starter culture (Lane and Fox
1997). The population in lactococci was around 109 CFU.g−1 of cheese, which was
at least 100 times higher than that of the bifidobacteria. Therefore, the changes in
nitrogenous fractions, lactose and lactic acid were probably due to the action of the
starter culture.

3.5 Sensory analyses

The panel did not find any significant difference in texture between any of the
pressed cheese samples. This suggested that the addition ofME particles at a 0.27 g/L of
milk did not influence sensory properties, whatever its addition time. This is noteworthy
because the ME cultures average particle size was above 250 μm (Champagne et al.
2010). The addition of alginate-encapsulated cultures with particle size above 100 μm
was shown to affect sensory properties of ice cream (Sheu et al. 1993), and it was a
concern that cheese made with the ME culture would suffer the same defect. The low
level of powder used during cheese making might explain the absence of defect. It
should be kept in mind that such a low level of powder addition is typical of that
encountered in industrial practice.

The addition of probiotics had no effect on flavour attributes of the pressed
cheeses, which was in line with the absence of a significant effect on cheese
composition (Table 3). This observation was expected because the concentration of
probiotics inoculated was low. At such CFU levels, another study also showed that
bifidobacteria do not influence the sensory properties of cheddar (Ong and Shah
2009). It can then be concluded that addition of free or ME B. longum 15708 to
cheese does not alter its sensory qualities, still keeping in mind that further
experiments with higher bacterial concentrations need to be done.

4 Conclusion

This study confirmed various data in the literature with respect to the addition of
probiotics to cheese: (1) the highest CFU levels in cheese curds were obtained when
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inoculation was carried out in milk rather that at the cheddaring step, (2) when milk
was inoculated with bifidobacteria before renneting, the viable cells recovered at the
end of cheesemaking increased, suggesting that growth occurred during processing;
however, the opposite was noted when inoculation was carried out at the cheddaring
step and (3) salting of the cheddar curds is detrimental to the viability of
bifidobacteria.

In addition, many new observations were made: (1) there were increased cell
losses in whey when ME cultures of the bifidobacteria were added before renneting,
(2) inoculation with probiotics at the salting stage resulted in lower CFU counts in
pressed cheese than when they were added to milk prior to renneting, (3) ME did not
affect cell recovery in curds, (4) the 1-day storage period at room temperature of
fresh cheddar cheese is highly detrimental to the viability of B. longum, (5) viability
losses during a 14-day storage were lower when the curds were pressed and vacuum-
packed than when marketed as free curds in bags, (6) bifidobacteria added at the
salting step which survived pressing were subsequently more stable during storage
than those inoculated in milk and showed similar behaviour to bifidobacteria added
at the cheddaring step, (7) addition of probiotics did not significantly affect pressed
cheese composition, (8) addition of ME culture particles did not affect sensory
properties of pressed cheese.

In the past, probiotic cultures were selected for their ability to survive in the food
product. Today, strain selection is mostly based on demonstrated clinical effects.
Data from this study show that the fresh cheddar cheese environment can be highly
detrimental to probiotics viability, particularly during storage. As a result, CFU
decreased more than 1 log, which arguably, is the limit for commercial acceptability.
The point of inoculation is an important technological parameter to ensure recovery
and stability of the cultures in cheese. However, for some strains, improvements in
microencapsulation or additional technological means to prevent viability losses still
need to be developed.
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