N

N

A high resolution map of French soil organic carbon
Jeroen Meersmans, Manuel P Martin, Eva Lacarce, Sarah de Baets, Claudy
Jolivet, Line Boulonne, Nicolas Saby, Sébastien Lehmann, Antonio Bispo,

Dominique Arrouays

» To cite this version:

Jeroen Meersmans, Manuel P Martin, Eva Lacarce, Sarah de Baets, Claudy Jolivet, et al.. A high
resolution map of French soil organic carbon. Agronomy for Sustainable Development, 2012, 32 (4),
pp.841-851. 10.1007/s13593-012-0086-9 . hal-00930565

HAL Id: hal-00930565
https://hal.science/hal-00930565

Submitted on 11 May 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00930565
https://hal.archives-ouvertes.fr

Agron. Sustain. Dev. (2012) 32:841-851
DOI 10.1007/s13593-012-0086-9

RESEARCH ARTICLE

A high resolution map of French soil organic carbon

Jeroen Meersmans - Manuel Pascal Martin -
Eva Lacarce - Sarah De Baets - Claudy Jolivet -
Line Boulonne - Sébastien Lehmann -

Nicolas Philippe Anthony Saby - Antonio Bispo -
Dominique Arrouays

Accepted: 20 February 2012 /Published online: 23 March 2012
© INRA and Springer-Verlag, France 2012

Abstract Soil is a major carbon pool ruling the global C cycle
and in climate change because soil carbon is a source and a
sink of atmospheric CO,. Soil organic carbon also controls
many beneficial properties such as fertility, aggregate stability
and degradation of groundwater pollutants. Therefore mapping
soil carbon at landscape scale is needed to define appropriate
management that will favour higher soil quality. Actual soil
carbon maps of France have a too coarse resolution, i.e. 8 and
12 km, to define efficient land management practices. There-
fore, here, we model soil organic carbon in France at a resolu-
tion of 250 m. We study the impact of land use, soil type,
climate and agro-management on soil organic carbon. We
found that the total soil carbon stock in France is about 3.7+
1.3 Pg. Results also show that the precipitation pattern domi-
nates the overall spatial distribution of soil carbon. Land use is
the most important factor controlling organic carbon changes
at landscape scale. Our high resolution national map of soil
organic C will be useful to define land management practices
that will improve soil quality.
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Abbreviation list

ADEME French Environment and Energy Management
Agency

AGRESTE French Ministry of Agriculture Food and
Fishery

AIC Akaike information criterion

AlCc Corrected Akaike information criterion

BIC Bayesian information criterion

CEC Commission of the European Communities

dg geometric mean particle size

EEA European Environment Agency

FAO Food and Agriculture Organization of the
United Nations

FYM Farm yard manure

GEFSOC  Global Environment Facility Soil Organic
Carbon

GIS Geographical Information System

GtC Giga ton carbon

INRA French National Institute for Agricultural
Research

Pg C Peta gram carbon

RMSE Root mean square error

RMQS French National Soil Survey (Réseau de
Mesures de la Qualité des Sols)

RothC Rothamsted carbon model

model

RPD Ratio of performance to deviation

Radj2 Adjusted coefficient of determination

SMU Soil mapping units

SOC Soil organic carbon

STU Soil topological units
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1 Introduction

Soil organic carbon (SOC) is a key element of soil quality as
it is the main indicator of soil fertility. For example, it
diminishes the risk of groundwater pollution because of its
capacity to adsorb, immobilize and degrade contaminants
such as pesticides and nitrates (e.g. Reeves 1997; Olvera-
Velona et al. 2008). Furthermore, different studies have
shown that soil organic matter has a positive influence on
soil aggregate stability and so should be considered as
crucial in controlling soil erosion (e.g. Chenu et al. 2000;
Chaney and Swift 1984) Moreover, given the active
C-exchange between soil and atmosphere, this reservoir is
considered as a dynamic element in the global C-cycle,
which underlines its potential to act as a driving factor on
climate change feedbacks. Consequently, monitoring soil
organic carbon is considered crucial in the framework of
different international treaties such as the European Union
Soil Thematic Strategy and the Kyoto Protocol. Hence, during
the last decades, many studies were conducted to unravel the
influence of different (agro-) management practices on the
quantity and quality of carbon stored in the soil, such as land
use change (e.g. Batlle-Aguilar et al. 2011), tillage or manure
application (e.g. Morra et al. 2010; van Wesemael et al. 2010).
In general, no-tillage or reduced tillage practices seems to
result in higher SOC stocks as compared to conventional
tillage (e.g. Stavi et al. 2011). Ludwig et al. (2011) concluded
that the application of manure has the most beneficial effects
on soil organic carbon in labile and intermediate pools, i.e.
characterized by turnover times of <10 and 10-100 years.
Early estimates of total soil organic carbon stock
were made at the global scale by combining worldwide
soil databases with vegetation, land use or soil type
maps and vary a lot, i.e. between 700 (Bolin 1970)
and 3,000 Gt C (Bohn 1976). These values are higher
than the total C amount stored in atmosphere. Given the
rather complex interactions of soil carbon with many
determining factors at smaller scales, recent studies in-
vestigated the spatial variability of SOC at the regional
or national level. Therefore, these studies focus in detail
on factors and processes explaining the heterogeneity of
soil carbon, but they aim to combine this detailed in-
formation in order to predict and map carbon stocks and
its evolution. Different methods are applied to catch the
spatial distribution of SOC. For example, the traditional
class matching approach predicts average carbon stocks
by land use and/or soil type combination, whereby the
carbon stocks are attributed to grid cells or polygons of
the corresponding (overlay) map (Kern 1994; Arrouays et
al. 2001; Batjes 2002). More enhanced geo-statistical inter-
polation techniques to map SOC also exist, i.e. ordinary
kriging (Mishra et al. 2009) and scorpan kriging (Ungaro et
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al. 2010). Moreover, the Global Environment Facility Soil
Organic Carbon (GEFSOC) modelling system links soil,
climate, historical and current land use and land manage-
ment data with existing process-based C-models (i.e. Cen-
tury and Roth C), via a geographical information system
(GIS) interface, to make spatially explicit carbon stock and
stock change predictions at the national and sub-national
scale (Milne et al. 2007). Alternatively, a multidimensional
empirical model can be constructed to predict soil organic
carbon as a function of a set of environmental variables
such as land use, soil type, climate and agricultural man-
agement. Such models can also be applied in a spatial
context by combining its output with spatial data layers of
the different input variables. For example, Martin et al.
(2011) constructed a boosted regression tree model to study
the spatial distribution of organic carbon in France, and
Jones et al. (2005) developed a rule-based system provided
by pedotransfer rules to map SOC in topsoil across Europe.
Furthermore, Meersmans et al. (2011) developed a multiple
linear regression model to map soil organic carbon in Belgium,
in which the model terms (i.e. variables and their interaction
terms) were added following a trial and error procedure in a
way to maximize the adjusted coefficient of determination
(Radjz) under the condition that all parameters are significant
(p<0.05).

So far the spatial distribution of soil organic carbon in
France is estimated at rather coarse resolutions, i.e. follow-
ing a 8x8-km grid in Arrouays et al. (2001) and a 12x
12 km grid in Martin et al. (2011), which is the conse-
quence of a relatively low level of spatial detail of the input
data used in these studies when mapping this dynamic soil
property at the national scale. For example, Martin et al.
2011 used relative proportions of the different land uses
aggregated at the departmental level when applying the
boosted regression tree model in a spatial context. So,
one can conclude that a refined soil organic carbon map
for France could be made if more spatially detailed input
data would be used, such as a land use map with higher
resolution.

In this study, we aim to create a refined baseline map and
total stock estimation of soil organic carbon for metropolitan
France. Therefore, an existing empirical model, incorporat-
ing the effects of land use, soil type, climate and agricultural
management calibrated at the national scale (Meersmans et
al. 2012), is combined with detailed spatial data of the
considered input variables (e.g. CORINE land cover map
at resolution of 250 m, Fig. 1). In comparison to earlier
studies, Meersmans et al. (2012) presented a novel carbon
model approach where the terms were not added following a
trial and error process but following an automated model
construction procedure, based on stepwise regression in
combination with model selection criteria.
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2 Material and methods
2.1 Study area

France is situated in West Europe between approximately 5°W
and 8°E and between 42°N and 51°N. This country is rather
diverse from a landscape, climatologic and pedologic point of
view. The altitude ranges from sea level up to more than
4,000 m in the mountainous eastern part of the country (Alps).
Climate is influenced by both latitudinal (north-south) and
oceanic-continental (west-east) gradients and by relief-related
effects. In general, temperature increases from the north, char-
acterized by a temperate climate, to the south, characterized by
a Mediterranean climate. Moreover, precipitation increases and
temperature declines with increasing altitude. The Atlantic
Ocean has an important influence on the climate because it
diminishes intra-annual fluctuations. Nevertheless, the climate
tends to become more continental further away from the ocean
(Fig. 2) Despite the great heterogeneity in soil type, the 1/
1,000,000 European soil map (King et al. 1995) allows us to
distinguish some large areas dominated by specific soils: i.e.
sandy soils in the south-west (Podsols in the Landes region),
fertile loess soils (Luvisols) in the North, various shallow soils
(Leptosols) developed from calcareous rocks (e.g. Champagne
region, Jura and southern Alps mountains), and large areas of
dystric Cambisols developed from the moderate weathering of
different kinds of parent materials (Brittany, Massif Central
mountains). The northern, western and central parts of the
country are dominated by cropland, except in the Landes
region, which is covered by coniferous forest and Normandy,
characterized by vast areas of grassland. Moreover, forest and
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Fig. 1 General land use map of France obtained after reclassifying the
CORINE land cover map 2006 (resolution 250 m)

permanent grasslands are the most common land uses in
mountainous regions at altitudes of over 500 m above sea
level. Vineyards and orchards can be found mainly in the south
along the Mediterranean coast (Fig. 1).

2.2 Climate data

Average yearly temperature (°C) and total annual precipita-
tion (mm) maps are obtained from a 0.125°x0.125° climatic
grid distributed by Meteo-France, which has been obtained
by interpolating observational data from the period 1993—
2004 (Fig. 2).

2.3 Manure data

Manure application and animal excrement production statis-
tics (t ha year ') at departmental level (ADEME, 2007) were
combined with dry matter C concentration values, i.e. 37.7%
for farm yard manure and 36.6% for slurry (Lashermes et al.
2009). Land use area statistics (AGRESTE, 2009) were then
used to calculate average yearly C input related to farm yard
manure and slurry production on agricultural soils as well as
direct C input from animal excrements on grassland by de-
partment (Fig. 3).

2.4 Land use map

A general land use map for all of France with the following
four land use classes was created: cropland, grassland, forest
and vineyard/orchard. The land use map was made by
reclassifying the most recent version of the CORINE 2006
land cover map, which has a resolution of 250 m and was
derived from the SPOT 4 IRS P6 satellite image of the
year 2006 (EEA 2007; Fig. 1).

2.5 Soil type map

The 1/1,000,000-scale Soil Geographical Database of
France (i.e. based on European soil map) was used in this
study (King et al. 1995). The database links the soil map-
ping units (SMU) to soil topological units (STU) with
annotation of their proportion (in percent of area) within a
SMU. Topsoil texture class, according to the CEC revised
FAO classification triangle (CEC 1985), rock fragment con-
tent and maximal soil profile depth by STU were extracted
or estimated using pedotransfer rules from this database.
Moreover, clay and silt contents could be attributed to the
corresponding STU by calculating median values by texture
class using the entire French national soil inventory database
(i.e. DoneSol 2.0, N=17,484 horizons; Meersmans et al.
2012). Finally, to map these soil properties, they were cal-
culated by SMU after taking the weighted mean of their
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Fig. 2 Yearly average total precipitation (mm) and temperature (°C) map of France distributed by Meteo-France (1993-2004)

values by STU with the proportion of the STUs as weights
(Fig. 4). Here we refer, according to the definition given by
Poesen and Lavee (1994), with fine earth to soil particles
with a diameter smaller than 2 mm and with rock fragments
to particles with a diameter of 2 mm or larger.

2.6 Soil organic carbon model

In this study, SOC is mapped using an existing model
(Meersmans et al. 2012) that has been calibrated based on
the above mentioned climate and manure data in combina-
tion with soil data from a recent national soil survey
(RMQS, Réseau de Mesures de la Qualité des Sols). This
soil survey has been conducted by the French National

FYM and slurry production related C input (ton C / ha year)

Kilometres

Institute for Agricultural Research (INRA), between 2000
and 2009, and contains 2,158 profiles continuously distrib-
uted over whole France following a 16x16-km grid
(Arrouays et al. 2002).

Meersmans et al. (2012) constructed multiple linear re-
gression models, predicting topsoil (0.3 m) organic carbon
concentrations in fine earth as a function of land use, soil
type, management and climate data using a stepwise regres-
sion method in combination with model selection criteria.
First and second order interactions between the input varia-
bles were also taken into consideration. The following three
different model selection criteria were considered: the
Akaike information criterion (AIC), the corrected Akaike
information criterion (AICc) and the Bayesian information

manure direct on field related C input (ton C [ ha year)
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Fig. 3 Farm yard manure (FYM) and slurry production related C input and manure direct-on-field related C input by department map of France

(ton C/ha/year)
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Fig. 4 Clay, silt, sand and rock fragment content (%) map of France created based on 1,000,000-scale Soil Geographical Database of France (i.e.

European soil map) and the French Soil inventory (Donesol 2.0)

criterion (BIC) (Akaike 1974; De Ridder et al. 2005). Using
this automated model construction procedure, Meersmans et
al. (2012) aimed to balance precision and accuracy in order
to determine the terms that contribute to explaining the
identified system. Model fit quality (adjusted coefficient of
determination (Radjz)) and validation measures (ratio of per-
formance to deviation (RPD)) of the AIC and the AICc
model were comparable, i.e. Radjz=0.492 and RPD=1.40
for AIC and Radj2=0.491 and RPD=1.39 for AICc. The AIC
model had 36 parameters, of which only 30 are significant
(»<0.05), whereas the AICc model had 30 parameters that
are all significant. Furthermore, the model quality measures
were remarkably lower for the BIC model (i.c. Radj2 =0.459

and RPD=1.36). Consequently, they focused on AIC and
AICc model output and illustrated that under most climate,
soil type, land use and agro-management settings, charac-
terized by high sample density and output from both mod-
els, were rather comparable. Nevertheless, contrasting
tendencies were identified under specific environments such
as under croplands in relatively cold climates. More meth-
odological information and detailed results concerning these
models can be found in Meersmans et al. (2012).

The entire database used in Meersmans et al. (2012) is
used in this study to perform an extra validation procedure.
This dataset was sorted on soil organic carbon content and
divided in 50 equal sub-datasets. Hence a repeated tenfold
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external cross-validation procedure (e.g. Hastie et al. 2001)
could be applied on each sub-dataset in order to obtain a
RMSE and to study the model predictive performance (RMSE)
as a function of average estimated SOC concentration.

2.7 Soil organic carbon mapping and stock estimations

Here, the AIC and AICc model output of Meersmans et al.
(2012) is combined with spatial data layers of land use,
climate and soil type in order to map the spatial distribution
of topsoil (0.3 m) organic carbon concentrations for metro-
politan France. The resulting carbon map has a resolution of
250 m and covers approximately 92% of the total surface of
metropolitan France. The total SOC stock is calculated after
taking bulk density of the fine earth, soil depth and rock
fragment content into account (Eq. 1). Soil bulk density of
the fine earth is predicted based on modelled soil organic
carbon values using the general PTF of Manrique and Jones
(1991; Eq. 2). Country-wide total SOC storage is obtained by
summing organic carbon stocks of all pixels multiplied by the
pixel area (i.e. 62,500 m?).

SOCstock = %D(l - RF/]OO)pS (1)

100

where SOCg. 18 soil organic carbon stock (kg m %), SOC is
soil organic carbon concentration (%), D is depth (m), RF is
volumetric rock fragment content (%) and p; is bulk density of
fine earth (kg m’).

P = (1.66 - O.318\/SOC) 1,000 2)

where SOC is soil organic carbon concentration (%) and pj is
bulk density of fine earth (kg m?).

2.8 Model error propagation estimation

The model uncertainty on total carbon mass for France due
to parameter uncertainty is predicted using the Monte Carlo
(MC) error propagation technique. In each MC simulation,
the parameter values are randomly perturbed following a
normal probability distribution with a mean equal to the
parameter value and a standard deviation equal to the esti-
mated error of the parameter in order to calculate SOC
concentration and in a second stage bulk density (Eq. 2)
and SOC mass (Eq. 1) values. Due to computational restric-
tions (i.e. insufficient memory—RAM), it was not possible
to apply this technique on all map pixels (i.e. ~8x10° pix-
els). Hence, the error was calculated for a randomly selected
0.5% portion of the total pixel amount (i.e. ~4x 10* pixels)
and by performing 500 MC iterations. So, the summed soil
organic carbon mass from the selected pixels was extrapo-
lated in each MC simulation to a total countrywide SOC
mass for entire France (i.e. after multiplying by 200). The
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standard deviation of the different calculated total carbon
masses from all MC simulations was used as error on the
total countrywide organic carbon mass prediction.

2.9 Software

Spatial analysis and mapping were carried out using the
ArcGIS 9.3 software (ESRI, Redlands, California, USA).
The R-software (version 2.9.0) was used for model valida-
tion and error propagation calculations.

3 Results and discussion
3.1 Map and total stock

Figure 5 shows the spatial distribution of soil organic carbon
after combining the AICc model output with maps of different
input variables. This map underlines the overall influence of
climate on SOC. The strong correlation between climate and
soil organic carbon has been as well identified at the continen-
tal scale by Rusco et al. (2001). They pointed to a general
decline in SOC following a north west—south east increasing
temperature gradient and a north—south decreasing precipita-
tion gradient. The SOC map of France presented in this study
clearly suggests that foremost precipitation dominates the spa-
tial distribution of SOC with high concentrations of organic
carbon in wet regions (i.e. mountainous areas; Figs. 2 and 5).
This is in accordance with Martin et al. (2011) for France and
with Meersmans et al. (2011) for Belgium, showing as well a
stronger correlation with precipitation as compared to
temperature.

On a smaller spatial scale, land use seems to be the most
important factor explaining SOC variability within the land-
scape. Forested areas and grassland-dominated regions (e.g.
Normandy in the north west (I, Figs. 1 and 5)) are charac-
terized by much higher soil carbon contents compared to
cropland-dominated areas (II, Figs. 1 and 5). Moreover, the
very high SOC in regions characterized by high rainfall
amounts are the result of a combined effect of climate and
land use, because these regions are mainly covered by grass-
lands and forests.

High soil organic carbon contents under agricultural land
in Brittany (I, Fig. 5) can be related to rather high precip-
itation amounts in this area but also to the very high farm
yard manure and slurry production related C input (Figs. 2
and 3). Moreover, vineyard/orchard and croplands in the
Mediterranean region are characterized by extremely low
values, below 1% or even 0.5%, SOC concentrations (IV,
Fig. 5). The extremely low carbon contents (with values
below 1% or even 0.5%) in vineyard/orchard and croplands
in the Mediterranean region need special attention (IV,
Fig. 5). These soils are probably depleted due to intensive
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Fig. 5 Spatial distribution of SOC as predicted by the corrected
Akaike information criterion (AICc) model. White areas correspond
to environments where no soil organic carbon (SOC) prediction could
be made (e.g. urban areas, intertidal zones, permanent snowfields,
bedrock). This map shows that climate and land use dominate the
spatial distribution of soil organic carbon in France. Most (mountain-
ous) regions with high precipitation amounts are characterized by high

agricultural management practices applied over a long time
period under favourable C mineralization conditions (i.e.
relative low precipitation amounts and high temperatures).
Because SOC is an important factor controlling aggregate
stability (Chaney and Swift 1984; Saha et al. 2011), these
soils risk losing aggregate stability and have serious fertility
stress problems.

Many studies clearly illustrate that fine textured soils
store much more soil organic carbon than coarse textured
soils (e.g. Razafimbelo et al. 2008; Tan et al. 2004).
Meersmans et al. (2012) confirm this relationship for
France using the models applied in this paper. However,
this effect is not well reflected in the spatial pattern of soil
organic carbon at the national scale (Figs. 4 and 5). Never-
theless, one can find remarkably low carbon contents in
some sandy soils situated in large river valleys. The poor
spatial correlation between texture and soil organic carbon
can be the consequence of the fact that in many cases land
use depends on soil type. For example, one can expect very
low carbon contents in the poor sandy soils of South West
France (i.e. Podsols in Landes region), but as this particular

Kilometres

250 500

organic carbon concentrations. Furthermore, low carbon concentra-
tions are predicted in cropland-dominated regions (II) as well in the
vineyard/orchards in the Mediterranean region (IV), while relative high
carbon concentrations are detected in the vast grassland areas in Nor-
mandy (I) and coniferous forests in the South West (Landes, V). High
soil organic carbon values in Brittany (III) can be related to rather high
precipitation amounts and high manure application rates

region is of less interest for agricultural purposes it is
almost entirely covered by forest (Fig. 1) and has relatively
high carbon contents (V, Fig. 5). Or the other way round,
regions dominated by fertile clay and/or silt-loam soils are
of great interest for agriculture. As a consequence, they are
most often characterized by vast areas of cropland and have
rather low carbon contents (IL, Fig. 5).

Figure 6 illustrates the spatial distribution of absolute
differences between SOC obtained by the AIC model and
by the AICc model. Differences in AIC and AICc spatial
model outputs are limited and are most often below the
absolute value of 1% C (Fig. 6). This indicates that both
methods give consistent results. Nevertheless, a few envi-
ronments are characterized by rather big differences (up to
more than 1.5% C). Lower values were obtained by apply-
ing the AIC instead of the AICc model under the following
conditions: sandy, stony (i.e. a rock fragment of approxi-
mately 20%) grassland soils under relatively wet conditions
(i.e. more than 1,000 mm; I, Fig. 6); sandy cropland soils
under wet conditions (i.e. 1,500-2,000 mm; e.g. in valleys
of Vosges Mountains, II, Fig. 6) and in silt-dominated
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Akaike information criterion versus
corrected Akaike information criterion
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Fig. 6 Spatial distribution of difference in soil organic carbon (SOC)
predictions made by the Akaike information criterion (AIC) model
versus the corrected Akaike information criterion (AICc) model. In
general, differences in AIC and AICc spatial model outputs are limited
and are most often below the absolute value of 1%. Lower values were
obtained by applying the AIC instead of the AICc model under the
following conditions: sandy, stony grassland soils under relatively wet
conditions (I); sandy cropland soils under wet conditions (II); silt-
dominated grassland soils in relatively warm climates (III). Higher
values are obtained by applying the AIC instead of the AICc model
in many forested and grassland soils determined by very wet climate
conditions in mountainous regions (IV) or stony silt-dominated forest
soils in the Jura region (V)

grassland soils in relatively warm climates (i.e. more than
13°C; 111, Fig. 6). Higher values are obtained by applying
the AIC instead of the AICc model in many forested and
grassland soils determined by very wet climate conditions (i.
e. more than 1,500 mm) in mountainous regions (IV, Fig. 6)
or stony silt-dominated forest soils in the Jura region (V,
Fig. 6). This is in accordance with the finding of Meersmans
et al. (2012), who illustrate that AIC and AICc model out-
puts diverge towards higher rock fragment contents (i.e.
above 25%) as well as for wet climates under cropland or
coarse textured grassland soils. Most of these environments
are characterized by a limited number of samples and rather
high uncertainties. But, as their spatial occurrence is

restricted, this does not affect the present carbon map and
total stock predictions at the national scale much.

By taking soil bulk density, soil depth and rock fragment
content into account, total soil organic carbon stock for entire
France was calculated at 3.75+1.27 and 3.72+1.26 Pg C
using the AIC and AICc models, respectively. This corre-
sponds to an overall average carbon stock of 7.40 (AIC) and
7.36 kg C m™? (Table 1), indicating that the influence of the
model choice is limited on total countrywide SOC mass
predictions. The total organic carbon stock in the top 0.3 m
for France obtained in the present study is higher than the
values published by Arrouays et al. (2001) and Martin et al.
(2011; i.e. 3.10 and 3.26+0.84 Pg, respectively), but as the
values illustrate these differences are not significant. It is
rather difficult to identify the main causes of these differences
in countywide total carbon stock estimates. One reason might
be the fact that different methods have been used to predict
and map SOC. Arrouays et al. (2001) attributed mean carbon
stock values to land use—soil type combination and Martin et
al. (2011) constructed a boosted regression tree model to
predict soil organic carbon based on land use, soil type,
climate and net primary productivity. Another possible factor
is the difference in mapping scale. In this study, SOC stocks
are mapped at a resolution of 250 m, whereas Arrouays et al.
(2001) and Martin et al. (2011) mapped soil carbon in
8x8 and 12x12 km grids, respectively. Moreover, different
land use maps were used to apply the model in a spatial
context. Finally, Martin et al. (2011) first converted soil
organic carbon concentrations (in fine earth) into stocks by
site and then calibrated the boosted regression tree model
based on these SOC stocks, whereas we calibrated the model
based on SOC concentrations and later converted the
predicted concentrations into SOC stocks.

Land use specific average SOC stocks are also comparable
between both methods. Average SOC stock under forest (i.e.
9.48 (AIC)-9.41 kg C m 2 (AICc)) is somewhat higher than
under grassland (i.e. 8.55 (AIC)-8.58 kg C m 2 (AICc)),
whereas average SOC stock under vineyard and orchard (i.e.
3.14 (AIC)-3.27 kg C m? (AICc)) is lower than under
cropland (i.e. 5.64 (AIC)-5.57 kg C m 2 (AICc); Table 1).
These values are also higher than the ones reported by Martin
etal. (2011), i.e. 7.57 kg C m ™2 for forest, 7.00 kg C m ™ for

Table 1 Overall and land use

specific total soil organic carbon Land use Area (km?) Total SOC mass (Pg C) Average SOC stock (kg C m™2)

(SOC) mass (Pg C) and average

SOC stock (kg Cm 2) AIC AlCc AIC AlCc
Cropland 226276 1.277 1.261 5.64 5.57
Grassland 106537 0.910 0.914 8.55 8.58
Forest 160053 1.517 1.506 9.48 9.41

AIC Akaike information criteri- Vineyard/orchard 13278 0.042 0.043 3.14 3.27

on, AICc corrected Akaike in- All 506144 3.746 3.725 7.40 7.36

formation criterion
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grassland, 3.20 kg C m 2 for vineyard/orchard and 4.74 kg C
m 2 for cropland. Nevertheless, we can state that the general
spatial distribution pattern of these studies can be compared
rather well. All studies identified high SOC values in Moun-
tainous regions (characterized by wet climates), in Normandy
and in Brittany and low SOC values in cropland-dominated
regions and for the Mediterranean area.

3.2 Error, validation and evaluation

The median relative model error (i.e. model error divided by
predicted value) on the total national SOC stock was 33.9%
as calculated using the MC method for both models. This is
rather low as compared to the model error values for indi-
vidual organic carbon predictions obtained by Meersmans et
al. (2012), i.e. a median relative model error of 46.6% for
the AICc model and 59.7% for the AIC model. Moreover,
the average RMSE values for the 50 sub-datasets ranged
between 1/2 and 1/3 of their estimated SOC value (Fig. 7),
except for extremely low carbon values (below 1%) for
which the relative RMSE value is considerably higher. This
high relative RMSE for low values is most pronounced for
the AIC model, which occasionally predicts irrational

Average Root Mean Square Error (RMSE) (%)

1.5

1.0

7
-} \ = ‘/—Akaike information criterion (AIC) model

T T T T T T T
1 2 3 4 5 6 i’

Average predicted soil organic carbon (SOC) concentration (%)

05

Fig. 7 Average Root Mean Square Error (RMSE; %) versus average
predicted soil organic carbon (SOC) concentration (%) of 50 sub-
datasets. Dashed lines present 95% confidence interval limits on the
average predicted RMSE error obtained by external cross validation.
Black indicates Akaike information criterion (AIC) model; grey indi-
cates corrected Akaike information criterion (AICc) model. Average
RMSE values for the 50 sub-datasets ranged between 1/2 and 1/3 of
their estimated SOC value, except for extremely low carbon values
(below 1%) for which the relative RMSE value is considerably higher.
This high relative RMSE for low values is most pronounced for the
AIC model

negative organic carbon concentrations (i.e. for stony sandy
grassland soils occupying 0.1% of the total study area). We
therefore recommend using the less complex AICc model in
order to map soil organic carbon. In the stock predications,
we set these negative values to 0% to avoid a systematic
under prediction of the total SOC mass.

Despite the rather high RMSE and relative model error
values, the model choice has little effect on the spatial
prediction of soil organic carbon and total stock calculations
(Fig. 7 and Table 1). This indicates that the stepwise multi-
ple linear regression model approach in combination with
model selection criteria is a powerful tool for SOC mapping
at the regional or national scale and the risk of systematic
over/underprediction of total soil carbon storage by using
different model selection criteria is limited. In the context of
current-day climate change and soil fertility problems, these
maps appear to be a reliable tool for developing appropriate
soil management practices.

Nevertheless, one should notice the inconsistency be-
tween the SOC mapping resolution of 250 m and manure
application data at departmental level. Probably a more clear
relation between soil carbon and manure could be identified
and more detailed and reliable carbon maps could be
obtained if this variable was available at a finer spatial scale.
This underlines the importance of collecting manure data at
the field scale, e.g. detailed agro survey completed by the
farmers at the sample sites. Furthermore, one can see that
the climate grid is reflected in the SOC map. This indicates
that if this type of data was available at a finer grid, this
would probably result in more accurate and detailed spatial
predictions. Moreover, Meersmans et al. (2008) integrated
soil drainage (i.e. maximal and minimal depth of the ground
water) in their model and showed that this variable is one of
the main factors explaining soil carbon variability at the
regional scale. This variable was not available for France.
We believe that the overall model uncertainty of the present
study would be considerably lower if we would have been
able to integrate soil drainage (e.g. depth of ground water) in
the model. Other potentially interesting variables to increase
the predictive power of the model can be topography (i.e.
slope, curvature; e.g. Van Oost et al. 2007), net primary
production (Martin et al. 2011), land use history (i.e. years
since land use change or abandonment; e.g. Stevens and van
Wesemael 2008), total soil depth and tillage depth (e.g.
Meersmans et al. 2009)

4 Conclusions
Climate dominates the general spatial pattern of SOC in met-
ropolitan France. There are noticeably high organic carbon

concentrations in mountainous areas characterized by high
precipitation amounts. Land use seems also to be a very
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important factor influencing SOC heterogeneity. Forested areas
and grassland-dominated areas are characterized by much
higher carbon contents compared to cropland-dominated
regions. Furthermore, croplands and vineyards/orchards in the
Mediterranean region are characterized by extremely low SOC
concentrations, with values dropping even below 0.5%. High
soil organic carbon contents in the West can be related to high
manure application rates. Despite the fact that the models used
in this study identified an important effect of texture on soil
carbon (Meersmans et al. 2012), it was not obvious to detect
this relationship on the map. The differences between the soil
organic carbon maps created by applying the AIC and AICc
models are rather small, indicating that the choice of the model
does not have a large effect on the spatial prediction and total
stock calculation. The total SOC stock for France is calculated
at 3.75+1.27 (AIC model) or 3.72+1.26 Pg C (AICc model).
Nevertheless, the AIC model has a surprisingly high relative
RMSE for extremely low soil carbon concentrations (i.e. less
than 1%) and predicts in very few cases unrealistic negative soil
carbon values (0.1% of the total study area), which is probably
the consequence of overfitting. We therefore recommend using
the less complex AICc model in order to map SOC for France.
More spatially detailed information regarding manure and cli-
mate would probably result in more accurate carbon maps. The
refined soil organic carbon map presented in this study appears
to be useful as a policy tool in conducting sustainable soil
management at the national scale.
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