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inappropriate management practices. There is thus the
necessity to find more conservationist agricultural systems.
Agroforestry system is an alternative system that helps
prevent land degradation while allowing continuing use of
land to produce crops and livestock on a sustainable basis.
Agroforestry system is a form of sustainable land use that
combines trees and shrubs with crops and livestock in ways
that increase and diversify farm and forest production while
also conserving natural resources. This system enhances
organic carbon accumulation in soils by the inclusion of
cover crops and permanent vegetation, which is expected to
increase the soil microbial biomass. The use of microorgan-

isms aims at improving nutrient availability for plants.
Currently, there is an emerging demand to decrease the
dependence on chemical fertilizers and achieve sustainable
agriculture and agroforestry. Arbuscular mycorrhizal fungi,
plant growth-promoting rhizobacteria, and the association of
rhizobia with leguminous plants are mutualistic symbioses of
high economic importance for increasing agricultural produc-
tion. The biological nitrogen fixation (BNF) process is an
economically attractive and ecologically sound method to
reduce external nitrogen input and improve the quality and
quantity of internal resources. BNF by associative diazotro-
phic bacteria is a spontaneous process where soil nitrogen is
limited and adequate carbon sources are available. However,
the ability of these bacteria to contribute to increased crop
yields is only partly a result of BNF. The successful use of
legumes is dependent upon appropriate attention to the
formation of effective symbioses with root nodule bacteria.
An essential component for increasing the use of legumes is
the integration of plant breeding and cultivar development,
with appropriate research leading to the selection of elite
strains of root nodule bacteria. An expansion of the utility of
inoculants is also necessary to develop a broad conceptual
framework and methodology that is supported by scientific
arguments; it is destined to impact assessment of the use of
new biological products in agriculture.
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1 Introduction

Soil degradation can be attributed to unsuitable land use and
inappropriate land management practices. Deforestation of
fragile land, overcutting of vegetation, shifting cultivation,
overgrazing, repetitive tillage, and unbalanced fertilizer use
have resulted in progressive loss of soil quality (Miralles et al.
2009). Therefore, there is a need to develop sustainable
agricultural systems that maintain soil biological processes
and are less dependent on external inputs (i.e., fertilizers and
herbicides) and mechanical cultivation to reduce impacts on
the environment and conserve soils (Moonen and Bàrberi
2008). Agroforestry system (AFS) can be considered an
alternative system that help prevent land degradation while
allowing continuing use of land to produce crops and
livestock on a sustainable basis (Cacho 2001; FAO 2005).

AFS is a form of multi-cropping which involves combining
at least one woody-perennial species with a crop which results
in ecological and economic interactions between the two
components (Palma et al. 2007). Such systems are effective at
improving and conserving soil quality by continuous depo-
sition of plant biomass and turnover of leaf litter. This
provides a continuous stream of organic material to the soil
(Nair et al. 2008), especially because of the long roots of the
forest component that go deep into the soil (Albrecht and
Kandji 2003; Barreto et al. 2010), increasing soil organic
matter stocks (Manley et al. 2007; Fontes et al. 2010) and the
carbon sequestration potential (Roshetko et al. 2007; Sharrow
and Ismail 2004; Kirby and Potvin 2007; Nair et al. 2009).

Biological properties can be also optimized in the soil
under AFS (Yan et al., 2000; Udawatta et al. 2008; Yadav, et
al. 2010). Several authors have reported that soil microbial
biomass and microbial diversity are greater in the AFS due
to the ameliorative effects of trees and organic matter inputs
and the differences in litter quality and quantity and root
exudates (Gomez et al. 2000; Myers et al. 2001; Mungai et
al. 2005; Sørensen and Sessitsch 2007). The presence of a
large and diverse soil microbial community is crucial to the
productivity of any agroecosystem. Moreover, mixtures of

plant species in AFS usually allow a larger diversity and/or
abundance of mycorrhizal fungi than monocultures (Cardoso
and Kuyper 2006) and becomes more efficient the nitrogen
biological fixation, especially in tropical soils (Serraj 2004;
Freitas et al. 2010).

Although several benefits of agroforestry practices to soil
microorganisms are reported in the literature, more research is
needed to fill key knowledge gaps for a comprehensive
understanding of buffer effects on overall environmental
quality (Lowrance et al. 2002; Loveall and Sullivan 2006).

2 Soil microbial biomass

The soil microbial biomass comprises all soil organisms
with a volume less than approximately 5×103 μm3 (other
than plant tissue) and can be considered as the living part of
soil organic matter (Brookes 2001). The proportion present
as living microbial cells (microbial biomass carbon in
milligrams per kilogram of soil) typically comprises 1% to
5% (w/w) of the total organic carbon, and microbial
nitrogen accounts for 1% to 6% (w/w) of the total organic
nitrogen (Jenkinson and Ladd 1981).

The soil microbial biomass has important functions in the
soil, including nutrient cycling and the degradation of
pollutants (e.g., pesticides, urban and industrial waste) (Dick
1997; Haney et al. 2003; Watanabe and Hamamura 2003;
Araújo et al. 2003; Araújo and Monteiro 2006). According to
Powlson et al. (1987), the main function of microorganisms
is to mediate soil processes and high rates of turnover, which
is a sensitive indicator of changes in the soil organic matter.

The adoption of different management systems can have
negative or positive effects on the soil properties. AFS are
being increasingly recommended as a sustainable form of land
use because they are believed to provide the optimum level of
food production, a supply of firewood, and cash benefits,
while maintaining soil fertility (Heuvelop et al. 1988). AFS
generally enhance organic matter accumulation in soils
through the inclusion of different crops and permanent
vegetation cover, which would be expected to increase the
soil microbial biomass. Additionally, AFS have been
recognized as an alternative for the rehabilitation of degraded
areas through the use of different tree species with crops.
This management strategy improves the biological properties
of degraded soils due the high quantity of sources of organic
residues (Mendonça et al. 2001). These systems may restore
soil biodiversity and other important functions of the soil
community (Macdicken and Vergara 1990). Fisher (1995)
suggested that trees might improve soil quality in several
ways. Many tropical tree species can fix atmospheric
nitrogen and may therefore increase the soil nitrogen content.
The large root system of trees potentially accumulates
nutrients from a large volume of soil, whereas fallen litter

216 A.S.F. Araujo et al.



concentrates nutrients near the soil surface. Fallen litter and
fine-root turnover may increase the soil organic matter
concentration. Trees may also enhance the above- and
belowground microclimate around plant roots and may alter
the soil biological properties. In Kenya, Belsky et al. (1989)
found 35% to 60% greater soil microbial biomass under
Adansonia digitata and Acacia tortilis crowns than in the
open grassland areas, due to a better microclimate for the soil
microorganisms. Tangjang et al. (2009) noticed that plant
residues, added organic matter, vegetation, plant species
composition, and soil mineral nutrients altered the microbial
population and their species composition under traditional
AFS in Northeast, India. Instead of the effects of growing
trees in combination with field crops on soil microbial
biomass was evaluated by Chander et al. (1998) in soils
under a 12-year-old AFS, and the soil microbial biomass was
significantly affected by the AFS. Both the amount of
microbial biomass carbon and the enzymatic activities were
greater in soils under AFS than in conventional systems.
According to the same authors, the greater microbial biomass
reflected the response of the increased input of organic
matter to the soil under the AFS. Previously, Tornquist et al.
(1999) found that the soil microbial biomass carbon and
nitrogen were not significantly different in pastures and AFS
in Costa Rica. According to the authors, the soils evaluated
had a high soil microbial biomass.

Kaur et al. (2000) investigated the effects of the mono-
cropping of rice, forestry, and agroforestry on the soil
microbial biomass in India. The authors observed that the
soil microbial biomass was increased by 42% (microbial
carbon) and 13% (microbial nitrogen) in AFS compared to
monocropping. They attributed the higher soil microbial
biomass to the high quantity of carbon released by the AFS.
Their findings supported a study by Rao and Pathak (1996)
that demonstrated an increase in the microbial carbon and
nitrogen (10–60% and 17–43%, respectively) in AFS with a
large carbon source than in conventional soil with low carbon.

It seems likely that litter quality regulated the level of soil
microbial biomass in tree-based systems. The availability
of carbonaceous materials and substrates such as sugars,
amino acids, and organic acids to the soil from the roots is
important for supplying energy for the microbial popula-
tions (Bowen and Rovira 1991). The importance of root
exudates in maintaining a larger microbial biomass closer
to the trees has also been reported by Browaldh (1997).

In a Brazilian ecosystem, Almeida et al. (1997)
compared the influence of an AFS with coffee, native
vegetation, or a conventional system on the soil microbial
biomass. The author observed a decrease in the soil
microbial biomass under the conventional system; however,
the AFS was similar to the native vegetation. Furthermore,
the AFS showed greater potential to cycle nutrients than the
conventional system.

3 Biological nitrogen fixation

Biological nitrogen fixation (BNF) is known to occur to
various degrees and in different environments, including soils,
fresh and salt waters, and sediments; on or within the roots,
stems, and leaves of certain higher plants; and within the
digestive tracts of some animals. The potential for nitrogen
fixation exists for any environment capable of supporting the
growth of microorganisms. Biological systems that are
capable of fixing nitrogen are historically classified as non-
symbiotic or symbiotic, depending on the involvement of one
or more organisms, respectively (Hubbell and Kidder 2003).

Over the last few years, studies examining the nodulation of
legume tree species and the selection of highly efficient
rhizobial strains for legume trees have received more attention.
Species with potential use in different agrosystems, efficient
nitrogen-fixing rhizobia, have been selected and are available
for inoculant production (Faria 1995; Faria and Lima 1998;
Chen et al. 2005; Balachandar et al. 2007). New species of
rhizobia or bradyrhizobia have been described, and large
collections of isolates are being developed. These rhizobia are
of economic importance in low-input sustainable agriculture,
agroforestry, and land reclamation (Balachandar et al. 2007).

Until recently, it has been generally accepted that legumes
(and the non-legume genus Parasponia) are nodulated
exclusively by members of the family Rhizobiaceae in the
α-proteobacteria, which includes the genera Azorhizobium,
Bradyrhizobium, Mesorhizobium, Rhizobium, and Sinorhi-
zobium (Sprent 2001). Over the last few years, however,
several other species of α-proteobacteria have been shown to
nodulate legumes (Moulin et al. 2002). These include strains
of Methylobacterium that nodulate Crotalaria and Lotononis
(Jaftha et al. 2002; Sy et al. 2001a and b); Blastobacter
denitrificans, which nodulates Aeschynomene indica (van
Berkum and Eardly 2002); and Devosia strains that nodulate
Neptunia natans (Rivas et al. 2002). More controversially, a
few members of the β-proteobacteria, such as Burkholderia
spp. (originally isolated from Aspalathus carnosa and
Machaerium lunatum, Moulin et al. 2001) and Ralstonia
taiwanensis (isolated fromMimosa pudica; Chen et al. 2001)
have been discovered in nodules of tropical legumes. The
terms α- and β-rhizobia have been proposed to distinguish
the rhizobial α- and β-proteobacteria (Moulin et al. 2001).
Phylogenetic analysis of the available nodA and nifH genes
from α- and β-proteobacteria suggests that β-rhizobia
evolved from diazotrophs through multiple lateral gene
transfers (Chen et al. 2003).

All α-rhizobial genera belong to the Rhizobiales order,
whereas β-rhizobial genera belong to the Burkholderiales
order. A same genus or even species often contains both
rhizobial and nonrhizobial strains, each Rhizobium has a
defined host spectrum, but there is no strict correlation
between legume and bacterium taxonomy, although some
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associations are favored (e.g., Azorhizobium—Sesbania and
Burkholderia—Mimosa) (Masson-Boivin et al. 2009).

The taxonomic classification of rhizobia strains has
undergone a transformation since 2001, with the reclassi-
fication of some species to the β-proteobacteria suborder,
especially Burkholderia species (Moulin et al. 2001).
Burkholderia species are effective symbionts of several
plants species (Barrett and Parke 2005, 2006; Chen et al.
2005; Chen et al. 2003). Although some are important
pathogens for humans and animals (e.g., Burkholderia
cepacia, Burkholderia pseudomallei, and Burkholderia
mallei), studies show that the symbiont species are
phylogenetically distant of these (Bontemps et al. 2009).

According to Moulin et al. (2001), the characterization
of the symbionts of the yet unexplored legumes may reveal
the rhizobial nature of additional members of the beta-
proteobacteria and possibly other taxonomic classes. Such a
study may contribute significantly to the understanding of
the origin, and the evolution of, the legume–rhizobia
symbioses, and may open new perspectives for engineering
beneficial associations.

Besides, a number of isolates have been reported from
legume nodules, capable of nitrogen fixation but phyloge-
netically located outside the traditional groups of rhizobia
in the alpha-proteobacteria. New lines that contain nitrogen-
fixing legume symbionts includeMethylobacterium, Devosia,
Ochrobactrum, and Phyllobacterium in the alpha-
proteobacteria and Burkholderia, Ralstonia, and Cupriavidus
in the beta-proteobacteria. All these new nodulating bacteria
are phylogenetically (16S rDNA) distinct from the rhizobia,
but do carry nod genes similar to those of rhizobia. These
genes encode for Nod factors, signal molecules in the
bacterium–legume communication that accompanies nodula-
tion (Willems 2006).

Recently, the presence of γ-proteobacteria of the genera
Pseudomonas, Pantoea, Enterobacter, and Escherichia was
described in the nodules of Hedysarum spp. (Benhizia et al.
2004; Muresu et al. 2008), suggesting potential synergistic
interactions among various species and the existence of
other unidentified mechanisms. Another species belonging
to the Cohnella phaseoli suborder of γ-proteobacteria was
recently isolated from the nodules of Phaseolus in Spain.
However, this species was not detected in nodules from
three species of this genus, and no reported Nod genes have
been identified in this bacteria (García-Fraile et al. 2008).

Among the new genera capable of nodulating legumi-
nous species, the association between plants of the genus
Mimosa and bacteria should be emphasized. Burkholderia
spp. is more competitive when co-inoculated with strains of
Rhizobium tropici and Rhizobium etli (Elliott et al. 2009).
Another interesting point is the inability of Mimosa spp. to
form nodules when inoculated with Rhizobium sp. strain
NGR234, which has a broad spectrum of hosts (over 250

plants including Parasponia sp.) (Pueppke and Broughton
1999).

Studies using native plant species in tropical regions have
been conducted, and new rhizobia species have been described
(Martinez-Romero et al. 1991; Vandamme et al. 2002; Chen
et al. 2008), suggesting wide diversity for this bacteria group.
The selection of partners (macro and microsymbionts) based
on symbiotic specificity and the identification of those with
greater efficiency is part of the strategy to optimize the BNF,
especially given that nodulation in legumes does not occur
equally among the three subfamilies. Hirsch et al. (2001)
estimated that less than 25% of Caesalpinoidae are able to
nodulate, whereas over 90% of the Mimosoidae and
Papilionoidae subfamilies are capable of nodulation.

3.1 Improving the nodulation and nitrogen fixation ability

Microbial interactions, which are regulated by specific
molecules/signals, are responsible for key environmental
processes, such as the biogeochemical cycling of nutrients
and matter and the maintenance of plant health and soil
quality (Barea et al. 2004). Plant growth-promoting
rhizobacteria (PGPR), in combination with efficient rhizo-
bia, could improve growth and nitrogen fixation by
inducing the occupancy of the introduced rhizobia in the
nodules of the legume (Tilak et al. 2006). Some PGPR can
improve nodulation and nitrogen fixation in legume plants
(Zhang et al. 1996; Andrade et al. 1998; Lucas-Garcia et al.
2004). Studies carried out under field conditions (Bai et al.
2003), particularly those using 15N-based techniques
(Dashti et al. 1998), have highlighted these beneficial co-
operative effects between microbes. Research on the
mechanisms by which PGPR enhance nodule formation
has implicated their production of plant hormones in the co-
inoculation benefits. For example, Chebotar et al. (2001)
demonstrated that some Pseudomonas strains, but not all,
increased the number of nodules and lowered the acetylene
activity in soybean plants inoculated with Bradyrhizobium
japonicum. Silva et al. (2006) verified that some Bacillus
strains with effective Rhizobia resulted in enhanced
nodulation in cowpeas (Vigna unguiculata L.), soybeans
(Glycine max L.) (Araújo and Hungria 1999), and beans
(Phaseolus vulgaris L.) (Figueiredo et al. 2008). Further-
more, Vessey and Buss (2002) demonstrated that the
application of Bacillus species to seeds or roots caused
variation in the composition of the rhizosphere, which
resulted in increased growth and yield of different crops.

According to Saravana-Kumar and Samiyappan (2007),
Bradyrhizobium prompted the nodulation and growth of
legumes in combination with active 1-aminocyclopropane-
1-carboxylate (ACC) deaminase-expressing PGPR. More-
over, certain rhizobacteria also possess the enzyme ACC
deaminase, which hydrolyses ACC into ammonia and α-
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ketobutyrate (Mayak et al. 1999). ACC deaminase activity in
PGPR plays an important role in the host nodulation response
(Remans et al. 2007). PGPR expressing ACC deaminase
could suppress accelerated endogenous ethylene synthesis
and, therefore, may facilitate root elongation and nodulation,
which in turn could improve the growth and yield of the
plants (Zafar-ul-Hye 2008). In addition, the gene for ACC
deaminase has also been found in some rhizobia, including
Mesorhizobium loti, B. japonicum, and Rhizobium sp. ACC
deaminase also facilitates symbiosis by decreasing the
ethylene levels in the roots of the host (Okasaki et al. 2007).

Endophytes can also produce ACC deaminase. Whereas
this enzyme has no function in bacteria, it cleaves ACC, the
precursor of ethylene in plants, and therefore modulates the
ethylene levels that promote plant growth (Sziderics et al.
2007; Sun et al. 2009). Plant growth is also promoted by
the production of phytohormones, such as auxins, cytoki-
nins, and gibberellins (Steenhoudt and Vanderleyden 2000).
The most related phytohormone produced by endophytic
bacteria is the auxin indole-3-acetic acid, which is produced
by Gluconoacetobacter, Azospirillum, Herbaspirillum,
Methylobacterium, Erwinia, Pantoea, and Pseudomonas
(Kuklinsky-Sobral et al. 2004).

3.2 The role of arbuscular mycorrhiza fungi in improving
nodulation and rhizobial activity

The widespread presence of symbiotic arbuscular mycorrhiza
(AM) fungi in nodulated legumes and the role of AM fungi in
improving nodulation and rhizobial activity within the
nodules are both universally recognized processes (Barea et
al. 2005). AM fungi and rhizobia are two of the most
important plant symbionts; they play a key role in natural
ecosystems and influence plant productivity, plant nutrition,
and plant disease resistance (Demir and Akkopru 2007).
Mycorrhizas benefit the host through the mobilization of
phosphorus from non-labile sources, whereas Rhizobium
fixes nitrogen (Scheublin and Van der Heijden 2006). The
interactions between AM fungi and bacteria suggest a
beneficial effect of the fungi on bacterial development and
vice versa (De Boer et al. 2005). AM colonization has been
shown to improve nodulation and nitrogen fixation, and the
use of the isotope 15N has made it possible to ascertain and
quantify both the amount of nitrogen that is fixed in a
particular situation and the contribution of the AM symbiosis
to nitrogen fixation (Barea et al. 2002). Studies examining
the biochemical and physiological basis of the interactions
between AM fungi and rhizobia that improve legume
productivity have suggested that the main effect of AM
fungi in enhancing rhizobia activity is through the general-
ized stimulation of host nutrition. However, it should be
noted that some localized effects may also occur at the root
or nodule level (Barea et al. 1992). Additional experiments

have corroborated the positive effect of the interactions
between AM fungi and rhizobia under drought conditions
(Ruiz-Lozano et al. 2001). For example, inoculation with
AM fungi protected soybean plants against the detrimental
effects of drought and helped the plants tolerate the
premature nodule senescence induced by drought stress
(Porcel et al. 2003). Suitable combinations of AM fungi
and rhizobia bacteria may increase plant growth and
resistance to pathogens (Aysan and Demir 2009) and
improve nodulation and nitrogen fixation (Barea et al. 2002).

The bacteria involved in the establishment of mycorrhiza
and/or mycorrhiza function were therefore designated
mycorrhiza helper bacteria (MHB) by Garbaye (1994) and
are currently the most investigated group of bacteria that
interact with mycorrhizas (Frey-Klett et al. 2007). The
MHB strains that have been identified to date belong to
many bacterial groups and genera, such as Gram-negative
proteobacteria (Agrobacterium, Azospirillum, Azotobacter,
Burkholderia, Bradyrhizobium, Enterobacter, Pseudomo-
nas, Klebsiella, and Rhizobium), Gram-positive firmicutes
(Bacillus, Brevibacillus, and Paenibacillus) and Gram-
positive actinomycetes (Rhodococcus, Streptomyces, and
Arthrobacter) (Frey-Klett et al. 2007). Some species are
responsible for multiple helper effects because they
influence both plants and the associated mycorrhizal fungi.
The stimulating effect of MHB has been evaluated mostly
when symbiotic associations are exposed to stresses
ranging from drought to contamination with heavy metals
(Vivas et al. 2003a, b). A classic example illustrating the
helper effect is the rhizobia-producingACC deaminase, which
modulates plant ethylene levels, thereby increasing plant
tolerance to environmental stress and stimulating nodulation
(Ma et al. 2002). Changes in auxin and cytokinin levels have
been implicated in the normal infection and nodulation
processes of various species of legumes. However, rhizobial
inoculation has been reported to both increase and decrease
auxin levels in the roots (Ferguson and Mathesius 2003).

3.3 Inoculation technology: a strategy for sustainable
development

The success of inoculation technology is a result of the
knowledge accumulated over a century of research. The
first inoculants containing Rhizobium were marketed in the
United States. Today, the inoculants are marketed in most
of the world and are mainly destined for the agribusiness
cultures, and it has been estimated that some 2,000 t of
rhizobial inoculants are produced worldwide every year
(Ben et al. 2007). Nevertheless, its use is still restricted for
other species of legumes, such as those of interest in AFS. In
Brazil, this scenario does not reflect the potential use of
biological resources in a country that has an estimated 15–
20% of the planet’s biological diversity (Salati et al. 2006).
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However, in addition to the selection of the strain, the
inoculation vehicle is also part of the technology. Peat has
been used for about a century as the principal support vehicle
for inoculation of legumes. A number of practical issues, such
as unevenness in the composition and difficulties in obtaining,
handling, and the sterilization of peat, suggest new formula-
tions need to be tested, developed, and adequately assessed in
the field. Liquid formulations also have limitations, including
difficulties in transportation and storage (because they often
require refrigeration) and the difficulties in coating and
homogeneous mixtures in the seeds. The proper formulation
should be biodegradable and easy to handle and is even more
critical when mixed inoculants are developed or when the
inoculants contain additional plant growth-promoting bacteria
(Dobbelaere et al. 2003; Deaker et al. 2004). In order to
increase the inoculant quality and efficiency and to reduce
costs and environmental impacts, alternative carrier materials
have been studied (Ben et al. 2007; Albareda et al. 2008).

In an attempt to improve the inoculant quality in Brazil,
different carrier blends, together with diazotrophs, were
evaluated at room temperature, and their performance as an
inoculant was compared to a peat-based inoculant carrier.
Polymer blends functioned as an efficient carrier to
rhizobial inoculants and show competitive advantages
including biodegradability and being non-toxic and water
soluble. These blends enabled the pre-inoculation of the
seeds and the maintenance of the rhizobia numbers at room
temperature that were comparable to that of traditional peat
inoculants (Xavier et al. 2010). This product has been
tested in association with Bradyrhizobium and cowpeas
(Fernandes Júnior et al. 2009) and the inoculant for cane
sugar (Gluconacetobacter diazotrophicus, Herbaspirillum
seropedicae, Herbaspirillum rubrisubalbicans, Azospirillum
amazonense, and Burkholderia tropica) (Silva et al. 2009).

The use of inoculant strains differs from traditional
associations with rhizobia and legumes and is a promising
alternative to agriculture. Over the next few years, there
will be greater environmental awareness and sustainable
use of natural resources, leading to a policy of increased
demand for alternative sources of farm inputs and more
efficient use of plants. With these conditions, there will be
opportunities arising from the increased demand for more
efficient plant uptake of nitrogen from the air.

However, quality control standards must be established,
and few countries have identity standards and well-defined
parameters for the inoculants. Since 2004, Brazil, through
the Ministry of Agriculture and Livestock, has had
legislation dealing with registration and the patterns and a
catalog of authorized inoculants strains.

Expansion of the inoculants’ utility is also necessary to
develop a broad conceptual framework and methodology.
With regard to scientific arguments, it is destined to impact
the assessment of new biological products in agriculture.

Extensive discussions, with the participation of competent
institutions responsible for the standardization of biosafety
issues in the country, should be promoted, especially for the
recommendation of new microbial species for use as
inoculants.

To increase the efficiency of the product, the application
of a mixture of strains with different characteristics to
stimulate the synergy between the strains and adaptation to
the environment should also be considered. However, these
mixtures should be recommended cautiously because of the
difficulties involved in the registration and quality control
of these products.

Currently, BFN has also taken on a new meaning by the
Brazilian government as it is among the four measures (in
addition to the recovery of pasture, crop-livestock integra-
tion, and no-tillage on straw) to be adopted extensively in
agriculture in order to voluntarily reduce greenhouse gas
production. Therefore, BFN can also be viewed as a central
part of the strategy for the integration of the other proposed
actions.

3.4 Rhizobial biodiversity and its importance
for the inoculant industry

Bacterial symbionts are extraordinarily diverse for some
extremely beneficial traits, such as biological nitrogen fixation
efficiency and rate, soil survival, and competitiveness for
nodule formation (Brockman and Bezdicek 1989; Anyango et
al. 1995; Doyle and Doyle 1998; Handley et al. 1998;
Andronov et al. 1999; Caballero-Mellado and Martinez-
Romero 1999; Collins et al. 2002; Galli-Terasawa et al.
2003; Fagerli and Svenning 2005; Grange and Hungria
2004; Jesus et al. 2005; Alexandre et al. 2006; Bala and
Giller 2006; Duodu et al. 2006; Duodu et al. 2007; Langer et
al. 2008; Alexandre et al. 2009).

This diversity is considered one of the most basic
foundations of the inoculant industry, as it allows soil
microbiology researchers to find, assess, and identify
strains with higher nitrogen fixation potential, as well as
other useful traits, that would allow a commercial rhizobial
inoculant to increase the yield of legumes (Date 2000;
Hungria and Vargas 2000; Aguilar et al. 2001; Lesueur et
al. 2001; Faria 2002; Faria and Franco 2002; Mostasso et
al. 2002; Martins et al. 2003; Howieson and Ballard 2004;
Yates et al. 2005a; Yates et al. 2005b; Alberton et al. 2006;
Silva et al. 2007).

On the other hand, this potential benefit can only be
achieved by continuing research and evaluation of different
bacterial strains (Daba and Haile 2000; Catroux et al.
2001), resulting in similarities between the inoculant and
plant breeding industries. Both industries may be consid-
ered, from a pragmatic point of view, as essentially
consisting of finding new genetic resources to achieve
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higher plant yields than currently possible with the use of
the available genetic material.

This constant renewal leads to the development and
evaluation of a continually increasing amount of new
genetic material to maximize the probability of finding
new genetic resources to achieve higher plant yields, be it
via greater nutrient use efficiency, water use efficiency,
drought tolerance etc., than currently available. It would
seem to be a “Red Queen” phenomenon, in which the
industry has to run harder to be able to outpace its own past
successes. For example, the São Paulo state sugarcane
breeding program evaluated 300,000 new progenies in
2001, of which only 17 were deemed desirable for
performance testing (Bressiani 2001). On the other hand,
most scientific papers detailing strain evaluation cite much
lower evaluated strains numbers. Some examples are the
selection of strains for red clover (Trifolium pratense)
inoculation in northern Scandinavia based on 431 strains
(Duodu et al. 2007), high temperature-resistant strains for
soybean (G. max) in Iran based on 56 strains (Rhamani et
al. 2009), salt-resistant common bean (P. vulgaris) in
Tunisia based on 19 strains (Mnasri et al. 2007), and
several Mediterranean legume shrubs and trees in Central
Spain with an exceedingly narrow basis of only nine strains
(Ruiz-Díez et al. 2009).

An approach more similar to that of the plant breeding
can be seen on a 1997 paper describing selection of strains
for a forage legume under evaluation in Australia, which
evaluated 1,200 rhizobial isolates for Stylosanthes sp. Aff.
Stylosanthes scabra (Stylosanthes seabrana). Of those
strains, 18 were selected for field experimentation in four
different areas, resulting in a 10% to 20% yield increase in
areas without established compatible populations in the first
year, followed by a 400% gain in the second year compared
to the un-inoculated control (Date 1997).

Evaluated strain numbers may be underestimated in the
scientific literature in comparison to works of a more
technical nature, such as research reports or pamphlets such
as those from EMBRAPA describing strain selection for
Brazilian legume tree species (Faria et al. 1984; Faria 1997;
2000; 2002). Unfortunately, this kind of information is
usually not available to research papers, basically for space
limitations and the inability to include the entire bacteria
collection with all of the relevant details.

While inoculant production, as well as crop breeding,
centers on economically important legumes, biodiversity
research efforts have focused on several legume species
with limited economical importance today, but which show
potentially important uses for reforestation, improved
fallows, or AFS (Chikowo et al. 2006; Makatiani and Odee
2007; Manassila et al. 2007; Ceccon 2008; Chesney 2008;
Daudin and Sierra 2008; Bashan et al. 2009; Jalonen et al.
2009; Nygren and Leblanc 2009; Freitas et al. 2010). For

example, work has been conducted for several Mimosa
species in Brazil (Bontemps et al. 2009), for Prosopis
species in Morocco (Benata et al. 2008), and for several
genera in Africa (Doignon-Bourcier et al. 1999; Bala et al.
2002; Odee et al. 2002; Bala et al. 2003a; Bala et al. 2003b;
Wolde-meskel et al. 2004; Diabate et al. 2005; Diouf et al.
2007; Law et al. 2007).

4 Conclusion

AFS promote the permanent input of litter to increase the
organic matter content of the soil and positively influence
the soil microbial community by providing a large source of
carbon and energy. The improvements in the soil microor-
ganism status are important because microorganisms
provide many functions in a soil ecosystem, including
organic matter decomposition, nitrogen fixation, uptake of
phosphorus by mycorrhiza, and the promotion of plant
growth. The soil microbial populations are immersed in a
framework of interactions known to affect plant fitness and
soil quality. They are involved in fundamental activities that
ensure the stability and productivity of both agricultural
systems and natural ecosystems. Strategic and applied
research has demonstrated that certain co-operative micro-
bial activities can be exploited, as a low-input biotechnol-
ogy, to help sustainable agriculture and agroforestry.
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