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Abstract Microalgae are autotrophic microorganisms
having extremely high photosynthetic efficiency and are
valued as rich source of lipids, hydrocarbons, and other
complex oils for biodiesel besides being an invaluable
source of bioethanol, biomethane, and biohydrogen.
Biodiesel produced from oilseed crops such as jatropha
and soy have lower yields per unit land area and threaten
food security. Indeed, microalgae have higher oil yields
amounting to about 40 times more oil per unit area of land
in comparison to terrestrial oilseed crops such as soy and
canola. Further, microalgae production does not require
arable land for cultivation. Biofuel is regarded as a proven
clean energy source and several entrepreneurs are attempt-
ing to commercialize this renewable source. Technology
for producing and using biofuel has been known for
several years and is frequently modified and upgraded. In
view of this, a review is presented on microalgae as
second generation biofuel. Microalgal farming for biomass
production is the biggest challenge and opportunity for the
biofuel industry. These are considered to be more efficient
in converting solar energy into chemical energy and are
amongst the most efficient photosynthetic plants on earth.
Microalgae have simple cellular structure, a lipid-rich

composition, and a rapid rate of reproduction. Many
microalgal strains can be grown in saltwater and other
harsh conditions. Some autotrophic microalgae can also be
converted to heterotrophic ones to accumulate high quality
oils using organic carbon. However, there are several
technical challenges that need to be addressed to make
microalgal biofuel profitable. The efficiency of microalgal
biomass production is highly influenced by environmental
conditions, e.g., light of proper intensity and wavelength,
temperature, CO2 concentration, nutrient composition,
salinities and mixing conditions, and by the choice of
cultivation systems: open versus closed pond systems,
photobioreactors. Currently, microalgae for commercial
purpose are grown mostly in open circular/elongated
“raceway” ponds which generally have low yields and
high production costs. However, a hybrid system combin-
ing closed photobioreactor and open pond is a better
option. The biggest hurdle in commercialization of micro-
algal biofuel is the high cost and energy requirement for
the microalgal biomass production, particularly agitation,
harvesting, and drying of biomass. In order to conserve
energy and reduce costs, algae are often harvested in a
two-step process involving flocculation followed by
centrifugation, filtration, or micro-straining to get a solid
concentration. However, the major bottlenecks in algal
biodiesel production within the cell can be identified and
handled by adopting a system approach involving tran-
scriptomics, proteomics, and metabolomics. Research and
developments in the field of new materials and advanced
designs for cultivation in closed bioreactors, use of waste
water for biomass production, screening of efficient
strains, high-value coproduct strategy, and cutting-edge
metabolic engineering are thought to provide the biggest
opportunities to substantially improve the cost effective-
ness of such production systems.
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1 Introduction

Microalgae are photosynthetic cell factories, microscopic in
nature, have high surface area–to–volume ratio, and are
primary synthesizers of organic matter in aquatic habitats. It
comprises a vast group of simple single-celled organisms
that occur as discrete individuals alone, in pairs, in clusters,
or in sheets of individuals all looking alike; but cannot form
roots, stems, or leaves. The most abundant microalgae are
single-cell drifters in plankton, generally called phytoplank-
ton. They are capable of rapid uptake of nutrients and CO2,
possess faster cell growth and have much higher photosyn-
thetic efficiency than most of the land–based plants. Since
ancient time, microalgae have been used in human health
food products (Kim 1990; Khan et al. 2005), feeds for fish
and livestock (Duerr et al. 1998; Becker 2007), and have
been cultured for their high–value oils (Belarbi et al. 2000;
Molina Grima et al. 2003; Wen and Chen 2003; Spolaore et
al. 2006), chemicals, pharmaceutical products (Guerin et al.
2003; Pulz and Gross 2004; Spolaore et al. 2006), and
pigments (Pulz and Gross 2004; Spolaore et al. 2006).
Microalgae can provide diverse forms of renewable
biofuels including biomethane (by anaerobic digestion of
the algal biomass), biodiesel (from microalgal oil), bio-
ethanol (by fermentation of the microalgal carbohydrates),
and photobiologically produced biohydrogen (Akkerman et
al. 2002; Banerjee et al. 2002; Gavrilescu and Chisti 2005;
Kapdan and Kargi 2006; Ragauskas et al. 2006; Spolaore et
al. 2006; Huntley and Redalje 2007; Dismukes et al. 2008).

The term “renewable” in this article refers to bioenergy,
i.e., the energy coming from biomass, the supply of which
is limited and their availability depends on the primary
natural resources (e.g., lands, water, ecosystems, etc.). The
word “biofuel” refers to the origin of the energy converted
through the metabolism of living organisms with, at the
basis of the food chain, autotrophic organisms converting
solar energy into chemical energy contained in the
molecules they produce via photosynthesis. Biofuels are a
wide range of fuels which are in some way derived from
biomass. However, biomass, in the energy sector, refers to
biological material which can be used as fuel for transport,
or an energy source to produce industrial or domestic heat
and electricity (feedstock) (Bessou et al. 2010). The
concept of using microalgal biomass as a potential source
of biofuel is not new, but it is now being taken seriously
because of the escalating petroleum prices and more
significantly, the emerging concern about global warming
and climate change which is more significantly associated
with burning fossil fuels (Nagle and Lemke 1990;
Sawayama et al. 1995; Gavrilescu and Chisti 2005). A
conceptual model for integrated microalgal biomass and
biofuel (biomethane, biodiesel, biohydrogen, and biogas)
production is shown in Fig. 1.
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Currently, biodiesel is produced commercially from soy-
beans, canola oil, palm oil, corn oil, waste cooking oil, and
jatropha oil, but not from microalgae (Barnwal and Sharma
2005; Felizardo et al. 2006; Kulkarni and Dalai 2006). The
matter of concern is that these sources of biofuel are not
sustainable in long term (Patzek and Pimentel 2005) as the
sources currently used are either food/feed crops or tree
crops. The food crops are not suitable for biofuel because of
rising feeding requirements of the booming world popula-
tion. The crop plants have a comparatively low potential and
are usually harvested once or twice a year. The tree crops
like Jatropha and Pongamia, presently used in several parts
of the world, require 4–5 years to come to fruiting.
Moreover, these require much more area for production of
the same amount of biofuel as compared to microalgae.

This tendency is likely to change because biodiesel is a
proven fuel and several entrepreneurs are attempting to
commercialize microalgal biodiesel. Technology for pro-
ducing and using biodiesel has been known for many years
and it is noteworthy to mention that the high quality oil
produced by these microalgae can be converted to biofuel
using the existing technology (Barnwal and Sharma 2005;
Demirbas 2005; Van Gerpen 2005; Felizardo et al. 2006;
Kulkarni and Dalai 2006; Meher et al. 2006; Chisti 2007).
Biofuels produced from microalgae have the potential to
replace a portion of fossil fuel consumption with a
renewable alternative. Previous research in the early
1990s by the National Renewable Energy Laboratory
showed that under controlled conditions algae are capable
of producing 40 times the amount of oil for biodiesel per
unit area of land, compared to terrestrial oilseed crops such
as soy and canola (Sheehan et al. 1998).

2 Microalgal second generation biofuel systems

A model second-generation biofuel system should have much
higher net energy balance, should be more water efficient and
should require much less arable land. A range of second-
generation microalgae-based biofuel production systems are

now under development (Kruse et al. 2005; Hankamer et al.
2007). Microalgae are reported to produce 15–300 times more
oil for biodiesel production than traditional crops on area
basis (Chisti 2007). Microalgae have a very short harvesting
cycle (≈1–10 days depending on the process) allowing
multiple or continuous harvests with significantly increased
yields (Table 1; Schenk et al. 2008). Higher photosynthetic
efficiency ultimately leads to reduced fertilizer and nutrient
inputs, thereby, resulting in less waste and pollution.

Microalgal cultivation for biofuel production can poten-
tially be carried out on marginal land and thus, can reduce
the competition for land and may open up new economic
opportunities for these arid, drought or salinity-affected
regions (Schenk et al. 2008). Moreover, good amount of
fresh water can be saved if closed bioreactor systems are
used for algal cultivation especially using marine and
halophilic strains of microalgae. The microalgal biomass
generated in bioreactors can also be gasified or pyrolysed to
produce a range of biofuels and can act as a complement in
CO2 sequestration strategy (Weissman and Tillett 1992;
Zeiler et al. 1995). In this way, transgenic organism’s
wastes can also be effectively disposed off in an environ-
mentally sensitive way. The carbon-rich biomass pellets can
also be stored as part of a carbon sequestration strategy
which could utilize CO2 from power plants as an input for
biomass production (Bridgwater and Maniatis 2004).

Other significant aspects of second generation micro-
algal systems are that they are amenable to highly
innovative biotechnology approaches that have the potential
for rapid improvements of algal strains and promise
increase in yield by metabolic engineering (Sheehan et al.
1998; Ratledge 2004; Mussgnug et al. 2007). Although salt
stress has been shown to play a role in oil production,
freshwater species can undergo a stress response at
osmolarities well below those of seawater, which can be
strongly inhibitory or lethal (Vazquez-Duhalt and
Arredondo-Vega 1991a, b; Takagi and Karseno 2006;
Ranga et al. 2007). Several interesting findings have been
obtained regarding osmo-adaptation in microalgae and the
genes that exhibit anti-salt activity in microalgae (Kirst
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1990; Galinski 1995; Tanaka et al. 2007). Often, these
genes are generic anti-stress genes that likely act through
alleviation of oxidative stress. Moreover, these microalgae
exhibit increased photosynthetic efficiency and tolerance to
grow in saline or wastewater streams (Aslan and Kapdan
2006; Singh and Dhar 2006, 2007; Shi et al. 2007).

3 Microalgal biofuel history

Renewable energy production from microalgae is not a new
concept and has been carried out since last century. Early
work on the anaerobic digestion of microalgae for
producing methane fuel was carried out by Golueke et al.
(1957). Microalgae are known to make far more efficient
use of solar energy than conventional agriculture and
therefore, there has a larger potential for biomass produc-
tion with comparatively less land requirement (Benemann
2007). Oswald (1962) and Oswald et al. (1957) conducted
experiments and concluded that the average algal biomass
productivity was also much higher as compared to wheat.
The most extensive research into the development of
biofuels from algae was performed by the National
Renewable Energy Laboratory (NREL) from 1978 to 1996
(Sheehan et al. 1998). It concluded that a more practical
approach for near-term production of algal biodiesel is to
utilize wastewater treatment for algae propagation, an
already well-developed technology (Sheehan et al. 1998;
Oswald 2003). Other analyses of full-scale algae to biodiesel
production have been conducted by several workers
(Benemann et al. 1982; Weissman and Goebel 1987; Chisti
2007). It is assumed that the economics of algae biodiesel
will be achievable with improvements to algal biology
through genetic and metabolic engineering, and the use of
photobioreactors which can provide a controlled environ-
ment (Chisti 2007). On the other hand, some workers

conclude that algae to biodiesel will have a large impact
with combination of wastewater treatment in agreement with
the NREL study (Benemann et al. 1982).

4 Microalgal biodiesel potential

Microalgae appear to be the only source of biodiesel that
has the potential to completely displace fossil diesel, grow
extremely rapidly and many are exceedingly rich in oil
(Table 1). These commonly double their biomass within
24 h and during exponential growth, biomass doubling time
may be as short as 3.5 h. Microalgae with high oil
productivities are desired for producing biodiesel and oil
levels of 20–50% are quite common (Table 2). Oil content
in microalgae can exceed 80% by weight of dry biomass
(Metting 1996; Spolaore et al. 2006). However, oil
productivity (the mass of oil produced per unit volume of
the microalgal broth per day) depends to a large extent on
the algal growth rate and the oil content of the biomass.

Depending on species, microalgae produce many differ-
ent kinds of lipids, hydrocarbons, and other complex oils
(Banerjee et al. 2002; Metzger and Largeau 2005; Guschina
and Harwood 2006). Not all algal oils are satisfactory for
making biodiesel, but suitable oils do occur commonly.
Moreover, production of algal oils requires an ability to
inexpensively produce large quantities of oil-rich micro-
algal biomass. Potentially, instead of microalgae, oil
producing heterotrophic microorganisms grown on a
natural organic carbon source such as sugar, can be used
to make biodiesel; however, heterotrophic production is not
as efficient as using photosynthetic microalgae (Ratledge
1993; Ratledge and Wynn 2002). This is because the
renewable organic carbon sources required for growing
heterotrophic microorganisms are produced ultimately by
photosynthesis, usually in crop plants.

Table 1 Biodiesel production efficiency of plant oils and microalgae

Plant source Biodiesel (L/
ha/year)

Area to produce global oil demand
(hectares×106)

Area required as percent
global land mass

Area as percent global
arable land

Cotton 325 15,002 100.7 756.9

Soybean 446 10,932 73.4 551.6

Mustard seed 572 8,524 57.2 430.1

Sunflower 952 5,121 34.4 258.4

Rapeseed/canola 1,190 4,097 27.5 206.7

Jatropha 1,892 2,577 17.3 130

Oil palm 5,950 819 5.5 41.3

Algae (10 gm−2 day−1 at 30%
triacylglyceride)

12,000 406 2.7 20.5

Algae (50 gm−2 day−1 at 50%
triacylglyceride)

98,500 49 0.3 2.5
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4.1 Autotrophic microalgae

Autotrophic microalgae can utilize carbon dioxide as the
carbon sources and sunlight as the energy source for oil
accumulation under special conditions. It has been found
that many autotrophic microalgae, such as Chlorella
vulgaris, Botryococcus braunii, Navicula pelliculosa, Sce-
nedesmus acutus, Crypthecodinium cohnii, Dunaliella
primolecta, Monallanthus salina, Neochloris oleoabun-
dans, Phaeodactylum tricornutum, and Tetraselmis sueica
can accumulate oils (Liang et al. 2006; Chisti 2007). The
microalgal biomass production and oil accumulation is
influenced by a large number of factors and therefore,
different species of microalgae vary widely in their ability
of oil production. Apart from inherent potential of algal
species, cultivation parameters, such as temperature, light
intensity, pH, salinity, mineral, and nitrogen sources, also
influence oil production.

4.2 Heterotrophic microalgae

Some autotrophic microalgae can be converted to hetero-
trophic ones through changing cultivating conditions or
using genetic engineering. Such microalgae also can
accumulate high quality oils using organic carbon as the

carbon source instead of using CO2 and sunlight (autotro-
phic mode of nutrition). For example, Chlorella proto-
thecoides normally growing as autotrophic microalgae
could use organic carbon sources for oil production and
oil content in biomass was about four times than that in
the corresponding autotrophic cells (Miao and Wu 2004).
Some heterotrophic microalgae like Prototheca morifor-
mis could even use cheap organic carbon sources for oil
accumulation (Han et al. 2006). Generally, heterotrophic
microalgae can easily be cultivated and controlled in
normal fermenters. But, these require organic carbon
sources for oil accumulation, which may limit the
application of such microalgae for oil/biodiesel production
to some extent.

5 Environmental conditions for microalgae biomass
production

Successful microalgae cultivation requires specific environ-
mental conditions, which vary from species to species. The
major parameters influencing biomass production include
light of proper intensity and wavelength, temperature, CO2

concentration, nutrient composition, salinities, and mixing
conditions.

Microalga Oil content (% dry wt) Reference

B. braunii 25–75 Chisti 2007

Chlorella emersonii 63 Illman et al. 2000

Chlorella minutissima 57 Illman et al. 2000

C. vulgaris 56.6 Liu et al. 2007

C. vulgaris 40 Illman et al. 2000

C. protothecoides 23 Illman et al. 2000

Chlorella sorokiniana 22 Illman et al. 2000

C. cohnii 20 Chisti 2007

Cylindrotheca sp. 16–37 Chisti 2007

D. primolecta 23 Chisti 2007

Isochrysis sp. 25–33 Chisti 2007

M. salina >20 Chisti 2007

Monodus subterraneus 39.3 Khozin-Goldberg et al. 2006

Nannochloris sp. 20–35 Chisti 2007

Nannochloropsis sp. 31–68 Chisti 2007

N. oleoabundans 54 Metting 1996

N. oleoabundans 35–54 Chisti 2007

Nitzschia laevis 69.1 Chen et al. 2008b

Nitzschia sp. 45–47 Chisti 2007

Parietochloris incisa 62 Solovchenko et al. 2009

P. tricornutum 20–30 Chisti 2007

Schizochytrium sp. 50–77 Chisti 2007

T. sueica 15–23 Chisti 2007

Chlorella sp. 28–32 Chisti 2007

Table 2 Oil content of certain
microalgae suitable for biodiesel
production
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5.1 Light

Being the basic energy source for phototrophic algae, the
availability and intensity of light is one of the key
parameters affecting the success or failure of algae cultures.
The net growth of the algae culture at very low light
intensities is zero (compensation point) (Lee 1997). With
increase in light intensities, photosynthesis increases until a
point is reached where the growth rate is the maximum
attainable (saturation point) (Goldman 1979; Lee 1999;
Richmond 2000). Increasing the light intensity beyond this
point does not increase the growth rate and can lead to
photo-oxidation, damaging the light receptors and thereby,
decreasing the photosynthetic rate and productivity (photo
inhibition).

The light-harvesting antennae of algal cells are extreme-
ly efficient and absorb all the light striking them even
though it cannot all be used for photosynthesis. Thus, at
high algal cell concentrations, almost all the available light
is absorbed by a thin top layer of cells, leaving the rest in
the dark (mutual shading). However, most algae get light
saturated at about 20% of solar light intensities (Goldman
1979; Toreillo et al. 2003), hence, while the cells below the
surface of the culture may be light limited, the cells in the
top layer may face the opposite problems of light
saturation and inhibition. The problem can be overcome
by reducing the light path length of algae culture system to
increase light penetration and increasing cell density to a
point at which mutual shading minimizes the photo-
inhibition of algal cells. This is also facilitated by proper
mixing which ensures that individual cells are not stationed
exclusively in the dark or light zones of the culture as well
as increasing mass transfer (Weissman and Goebel 1985;
Grobbelaar 1994).

5.2 Temperature

Generally, rise in temperature leads to exponential increase
in algal growth until an optimum level is reached, after
which growth declines. For outdoor cultures and open
systems, the ability to control temperatures is often limited
and is determined by atmospheric temperature, solar
irradiance, and humidity. Ambient temperature fluctuations
can result in diurnal temperatures differences of as much as
20°C which can affect the productivity (Olaizola 2000;
Borowitzka 2005).

Large water bodies have long response times to air
temperatures and may suffer lack of synchronization
between air temperature and optimal culture temperatures
(Richmond 1987; Borowitzka 2005). Thus, this affects
photosynthesis and creates a situation under which photo
inhibition may occur during low levels of light intensity
and sub–optimal temperatures (Lu and Vonshak 1999;

Vonshak et al. 2001). Generally sustained temperatures
above the optimal range may kill algal cells and temper-
atures below the optimal range may not, except for
freezing conditions. Furthermore, biomass loss has been
reported to increase at higher temperatures during dark
periods (Weissman and Goebel 1985). Therefore, it is
necessary to achieve optimal temperatures quickly in the
morning and rapidly decreased temperatures after dark-
ness, thereby, maintaining high productivity during the day
and minimizing biomass loss at night.

5.3 Gas exchange

The low percentage of CO2 in the air (0.033%) will quickly
limit the growth if, supplementary carbon is not supplied as
roughly 45–50% of algal biomass is made of carbon
(Doucha et al. 2005; Chae et al. 2006). This CO2 is
generally blended with air in aerated cultures or injected
into the algal cultures via gas exchange vessels in photo-
bioreactors or sumps in open raceways. Various methods
adopted to reduce the losses of expensive CO2 in open
algae cultures include bubbling through air stones, plastic
dome exchangers with perforated pipes, injection into deep
sumps, trapping the CO2 under floating gas exchangers,
and maintaining high alkalinities in the culture water
(Berzin 2005).

If oxygen concentrations exceed saturation level in algae
cultures, photo–oxidative damage occurs to the chlorophyll
reaction centers inhibiting photosynthesis and reducing
productivity (Molina et al. 2001; Pulz 2001; Ugwu et al.
2007). Presence of an interface between the culture and the
atmosphere in agitated cultures is not usually a problem as
the O2 concentrations will remain similar to that of ambient
air. However, in closed photobioreactors, additional facili-
ties such as gas exchange chambers are required.

5.4 Nutrients

Nutrients supplied to algal cultures must include the
inorganic elements that make up the algal cell besides
macronutrients, vitamins, and trace elements. While there is
limited reports on optimal levels of nutrients required for
mass algal cultures, normally the macronutrients required
are nitrogen and phosphorus (ratio 16 N:1P) and silicon
(Brzezinski 1985; Harrison and Berges 2005). However, to
avoid nutrient limitation, nutrients are usually added in
excess and widely different ratios are used even when the
same alga is cultured (Richmond 1999; Sanchez et al. 1999;
Acien Fernandez et al. 2001).

Trace elements such as cobalt, copper, molybdenum,
zinc, and nickel are considered effective in hydrogen
production (Ramchandran and Mitsui 1984). Many of these
metals have shown pronounced enhancement of hydrogen
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production which is thought to be due to their involvement
in the nitrogenase enzyme activity. For example, Anabaena
variabilis SPU003 is highly sensitive to copper, cobalt,
manganese, zinc, nickel, and iron ions and shows no
hydrogen production at concentrations below 10 mM for
these ions (Moezelaar et al. 1996). A culture of Anabaena
cylindrica grown with 5.0 mg of ferric ions/liter produce
hydrogen at a rate about twice that of culture with 0.5 mg
of ferric ions/liter (Jeffries et al. 1978).

5.5 Contamination

The open pond system has a serious disadvantage of being
susceptible to contamination by unwanted species if utmost
care is not taken. A new open pond is typically inoculated
with the desired strain of microalgae with the aim of
initiating growth and dominating the pond flora. However,
over time it is likely that some undesired species may
inevitably be introduced and can severely reduce yields and
even outcompete the inoculated species. If a significant
competitor has taken residence in a pond, it is extremely
difficult to eradicate (Schenk et al. 2008). However,
cultures of microalgae are kept relatively pure by using
culture medium that is specific to the organisms (Spolaore
et al. 2006). Sustained and reliable cultivation of the desired
species in open pond systems can be encouraged by
cultivating extremophiles that tolerate and outcompete other
species in a particular environment (e.g., high/low pH or
salinity). A high bicarbonate concentration allows Spirulina
to be grown in open ponds with few invasive algae and a
high saline environment allows Dunaliella salina to be
grown in “relative pure cultures” (Anderson 2005). Pro-
ducers keep Chlorella cultures in pure conditions by use of
large inoculum doses and by operating in short batches with
harvesting done before major contamination can take place
(Benemann 2008).

5.6 Mixing

At high algae concentrations, almost all the available light
is absorbed only by a thin top layer of cells which can be
avoided by proper mixing. Mixing must be sufficient
enough to keep the algae cells in suspension and to provide
uniform exposure of light to all the cells. Mixing also
decreases the boundary layer around cells facilitating the
increased uptake and exudation of metabolic products. In
photobioreactors, mixing prevents sedimentation of the
cells and supports distribution of CO2 and O2 (Molina
Grima et al. 1999). For CO2, a partial pressure of at least
0.15 kPa has to be maintained to prevent kinetic CO2

uptake limitation and a stoichiometric demand of 1.7 g CO2

g−1 biomass has to be provided. This makes supply of CO2

purified from external flue gas (e.g., from a power plant)

useful (Doucha et al. 2005). The rate of CO2 fixation in the
crude extract of 50 g of thalli of a marine alga (Codium
vermilara) was estimated to be 39 μmoles/mg chlorophyll−1 h
and was constant for at least 15 min (Schonfeld et al. 1973).
The light intensity required for saturation of photosynthesis in
intact thalli of Codium when measured in the presence of
10 mm NaHCO3 was found to be 5×104 erg cm−2 s−1, a
value also markedly lower than that required for saturating
photosynthesis in intact higher plants (Rabinowitch 1951).
While light attenuation inside the reactor is not influenced by
mixing, there is a complex interplay between culture mixing
and light attenuation as each single algal cell passes through
dark and light zones of the reactor in a more or less statistical
manner (Barbosa et al. 2003).

6 Culture techniques

The choice of cultivation systems is an important aspect
that significantly affects the efficiency and cost effective-
ness of a microalgal biofuel production process (Lee 2001;
Pulz 2001; Carvalho et al. 2006). A wide variation exists
among the microalgal cultivation systems for the produc-
tion of biomass. The three most widely used culture
systems of raceways, photobioreactors, and fermenters
have been discussed briefly.

6.1 Open pond culture

Large-scale cultivation of algae and cyanobacteria in
outdoor open pond systems is well established (Benemann
and Oswald 1996; Borowitzka 2005). Ponds can be
excavated and used unlined or lined with impermeable
materials or they can be built up with walls. Open ponds are
suitable for a small number of algal species that can tolerate
extreme environmental conditions to the exclusion of most
other species. Such algal species include fast growers such
as Chlorella, Spirulina, and Dunaliella which thrive in
highly alkaline or saline environments (Chisti 2007).

Current technology envisages four main types of open
ponds: (a) unmixed open ponds, (b) raceway ponds, (c)
circular ponds, and (d) thin layer, inclined ponds. Unmixed
open ponds are generally used for the mass culture of D.
salina, have low productivities (less than 1 gm−2 d−1) and are
comparatively unsuitable for the culture of most algal species
(Benemann and Oswald 1996; Borowitzka 2005). Whereas,
raceway ponds are the most widely used open pond culture
systems (Fig. 2; Chisti 2007) and are used frequently for the
commercial cultivation of Spirulina, Haematococcus, and
Dunaliella (Benemann and Oswald 1996). Circular ponds
are mainly used in Asia for the production of Chlorella. It
usually has provision of a centrally located rotating arm
(similar to those used in wastewater treatment) for mixing
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and may have productivities ranging between 8.5 gm−2 d−1

and 21 gm−2 d−1 (Benemann and Oswald 1996). However,
thin layer, inclined ponds consist of slightly inclined shallow
trays and may achieve productivities up to 31 gm−2 d−1

(Doucha and Livansky 2006).

6.2 Photobioreactors

The problems associated with open systems including
contamination, uncontrolled environments, evaporation,
limited species suitability, low volumetric productivities,
and the need for large land area have encouraged the
development of closed (or mostly closed) photobioreactors
in order to overcome inefficiency of the earlier systems.
Several reports exist regarding the design, efficiency and
cost-effectiveness of a microalgal biofuel production
process (Lee 2001; Chisti 2007). Many closed systems in
detail have also been explained by several workers
(Carvalho et al. 2006; Schenk et al. 2008). Few open
systems have been systematically compared with closed
systems over different geographical regions (Lee 2001).

Even though the open pond systems seem to be favored for
commercial cultivation of microalgae at present due to their
low capital costs, closed systems offer better control over
contamination, mass transfer, and other cultivation conditions.
The combination of the closed photobioreactor and open pond
combines the benefits of the two and has been demonstrated to
be effective at a 2-ha scale (Huntley and Redalje 2007).
Photobioreactors can be located indoors or outdoors depend-
ing upon the light collection and distribution systems and
their commercial feasibility. Photobioreactors of diverse
designs have been developed and patents have been awarded,
e.g., tubular photobioreactors, vertical bubble columns and
airlift reactors, combined bubble column and inclined tubular
reactors, helical photobioreactors, and flat plate photobior-

eactors (Tredici and Zittelli 1998; Sanchez et al. 1999; Berzin
2005; Ugwu et al. 2005).

6.3 Fermenters

While most algae grow phototrophically, some are capable
of heterotrophic growth using organic substrates as the sole
carbon and energy sources. This mode of algal cultivation is
well established and has several advantages over photo-
trophic modes of growth (Barclay et al. 1994; Behrens and
Kyle 1996). These include, the large existing fermentation
technology knowledge base, high degree of process control
for consistent reproducible production, elimination of light
requirements, independence from weather and climatic
conditions, and lower harvesting costs (Barclay et al.
1994; Ceron Garcia et al. 2000; Chen and Chen 2006).
However, the heterotrophic cultivation of algae requires
sufficient oxygen supply for catabolism of organic sub-
strates (Moo-Young and Blanch 1987; Clark et al. 1995).

Generally, heterotrophic cultivation has been found to
increase the total lipid content in algae compared to
phototrophically grown cells (Miao and Wu 2006; Li et
al. 2007). The heterotrophically grown Chlorella cells
accumulated lipids to about 55.2% of the cellular dry weight
as opposed to 14.6% in phototrophically grown cells (Miao
and Wu 2006). Furthermore, heterotrophic cultivation of
algae usually (but not always) results in higher yields (Wen
and Chen 2000; Yu et al. 2009). For species that can utilize
both light energy and chemical substrates, mixotrophic mode
of cultivation offers a superior alternative to phototrophic and
heterotrophic growth as both biomass and productivity
increases have been reported (Fang et al. 2004; Yu et al.
2009). Productivities as high as 127 gm−2 d−1 (daytime) and
79 gm−2 d−1 (night time) have been reported for mixotrophic
cultures of Chlorella in comparison to 35.8 gm−1 d−1–41.4 g
m−1 d−1 obtained in photosynthetic cultures (Borowitzka
1992; Lee and Low 1992).

7 Harvesting of microalgal biomass

Biomass harvesting cost can be a significant proportion of the
total algal production cost and range between 3.3 and 30%
(Gudin and Therpenier 1986; Nakamura et al. 2005). This is
because obtaining the algae biomass from the relatively
dilute culture broths requires processing large volumes of
water. In order to conserve energy and reduce costs, algae are
often harvested in a two-step process. In the first step, the
algae are concentrated, often by flocculation, which concen-
trates the dilute cultures to about 1–5% solids. In the second
step, the cells are further concentrated by centrifugation,
filtration, or micro-straining to get a solid concentration up to
25% (Golueke and Oswald 1965; Shelef et al. 1984).Fig. 2 Arial view of a raceway pond
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7.1 Flocculation

Microalgae carry negative cell surface charges which when
neutralized lead to the agglomeration of the biomass into
large clumps or “flocs”. These flocs can then be more
readily separated from the culture medium (Tilton et al.
1972; Benemann and Oswald 1996). Flocculation can be
induced in various ways like, chemical flocculation
(inorganic chemicals), chemical flocculation (polyelectro-
lytes), bioflocculation, electroflocculation, and dissolved air
floatation. Inorganic flocculants like Al2(SO4)3 (alum),
Fe2(SO4)3 (ferric sulfate), FeCl3 (ferric chloride), or Ca
(OH)2 (lime) neutralize or reduce the negative surface charge
of the cells causing the formation of flocs (Golueke and
Oswald 1965; Sheehan et al. 1998; Heasman et al. 2000).
However, it was concluded that chemical flocculation was
too expensive for biofuels production and incorporation of
large amount of metal salts in the harvested biomass limits
its use and creates disposal problems (Sheehan et al. 1998;
Molina Grima et al. 2003). Polymeric organic flocculants
(polyelectrolytes) on the other hand are highly charged
organic aggregates, non-toxic, required in small amounts,
produce more stable flocs and thus, are more attractive
flocculation option (Barclay et al. 1985; Sheehan et al.
1998).

Some algal species are reported to naturally flocculate
after transfer to settling ponds when left quiescent for some
time (Nakamura et al. 2005). This occurrence has been
attributed to environmental stimuli, some of which have
been identified, including nitrogen limitation, pH, and
dissolved oxygen level (Lee et al. 1998; Blanchemain and
Grizeau 1999). Electroflocculation is a coagulation/floccu-
lation process which is based on the movement of
electrically charged particles in an electric field in which
active coagulant species are produced by oxidation of a
metal anode (Poelman et al. 1997). Dissolved air floatation
involves pressurizing some of the liquid to dissolve
additional air (Levin et al. 1961; Borodyanski and
Konstantinov 2003).

7.2 Centrifugation

This is a well–established industrial process that uses
gravitational force to achieve separation. The morphology
and sizes of the cells being harvested affect the recovery
(and costs) as filamentous cells and large colonial cells will
settle more readily than single smaller cells (Nakamura et al.
2005). Centrifugation is energy intensive and the estimates
of the energy consumption required for various types of
centrifuges are estimated to range from 0.3 to 8 kWh.m3

(Molina Grima et al. 2003). The high capital and running
costs associated with centrifuges limit their use to second–
stage filtration in the processing of microalgae for biofuels.

7.3 Filtration

Filtration involves introducing the particles onto a screen
of given aperture size. The particles either pass through
or are retained on the screen according to their size.
Filtration can be performed under pressure or vacuum
with energy requirement estimates ranging from 0.2 to
0.88 kWh m3 and 0.1–5.9 kWh m3, respectively (Shelef et
al. 1984; Molina Grima et al. 2003). Filtration can also be
carried out by microstrainers consisting of a rotating drum
covered by a straining fabric where a backwash spray
collects the particles into an axial trough and requiring
lower power consumption between 0.02 and 0.2 kWh m3

(Benemann et al. 1977; Shelef et al. 1984). Although, the
costs associated with filtration are low, screen clogging
and membrane fouling limits its suitability to larger
species of microalgae.

8 Microalgal biomass to biofuels

For conversion of microalgal biomass to biofuel, numer-
ous options exist. Approaches like open ponds, race-
ways, or photobioreactors have been adopted by a large
number of companies and research organizations for
large-scale production of microalgal biomass. Although
production of biodiesel and the use of flue gas is the
main approach chosen so far; bioethanol, biomethane,
and biohydrogen are also the important bioenergies
obtained from microalgae.

8.1 Biodiesel

All microalgal oils are not satisfactory for biodiesel
production but suitable oils occur commonly and are
known to produce many different kinds of lipids, hydro-
carbons, and other complex oils (Banerjee et al. 2002;
Guschina and Harwood 2006). On the basis of chemical
characteristics, lipids are subdivided in two main classes,
polar and nonpolar/neutral/simple lipids (Christie 2003).
Neutral lipids include the tri-, di-, and monoglycerides;
waxes; and isoprenoid-type lipids. However, polar lipids
include phospholipids (e.g., phosphatidylinositol, phos-
phatidylcholine, phosphatidylethanolamine) and glycoli-
pids (combinations of oligosaccharides and lipids; e.g.,
monogalactosyl diglyceride), esters of fatty acids, and
glycerol. This distinction in the main lipid classes is
important for the subsequent conversion of microalgal
oils to biofuels, as the composition of the lipid feedstock
affects the efficiency and yield of fuel conversion by
catalytic routes.

To obtain microalgal oil, the algae are first concentrated
and the oil is extracted, using an organic solvent (90% oil
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recovery) or a filter press (75% oil recovery) (Nagle and
Lemke 1989). The residue contains starch and proteins
and can be further processed to make ethanol, animal
feed, or used as a feedstock in an anaerobic fermenter.
Biodiesel production is a transesterification process
involving transformation of highly viscous oils into alkyl
esters with lower viscosity, similar to normal diesel fuel
and glycerine (Fig. 3). Transesterification requires 3 mol
of alcohol for each mole of triglyceride to produce 1 mol
of glycerol and 3 mol of methyl esters. This reaction is
reversible in nature and arrives at equilibrium at a certain
stage (Fukuda et al. 2001).

The relative proportion of polar lipids to neutral lipids
(triglycerides) and the high amount of long-chain polyun-
saturated fatty acids (greater than C18) are common in
microalgae but are not produced in significant quantities in
higher plants. Both of these aspects affect the efficiency of
biodiesel synthesis, as well as influence the fuel properties
(e.g., very low oxidative stability of highly unsaturated fatty
acids). In general, it appears that algal cells synthesize
triglycerides at times when the energy input, through
carbon assimilation, exceeds the immediate metabolic
needs of the cell. The relative composition of microalgal
lipids depends greatly on the species used and the nutrient,
environmental, and developmental conditions in which the
cells are cultured and harvested. It has been reported that
the composition of microalgal lipids varies considerably
with the growth cycle, under nutrient limitation and during
a diurnal light dark cycle (Sukenik and Carmeli 1990;
Ekman et al. 2007). For example, Nannochloropsis sp.
accumulate triglycerides during the day and subsequently
rapidly mobilize it in the dark to supply the energy needed
for cell division (Sukenik et al. 1989). Triglycerides may
serve as a sink for free fatty acids, to remove these from the
cytoplasm and thereby avoiding lipotoxicity; they may act
as energy and electron sinks during stress conditions
(Roessler 1990; Kurat et al. 2006; Hu et al. 2008).

The physico-chemical properties of biodiesel (alkyl
esters of fatty acid constituents of lipids) are largely
determined by the structure of the constituent acyl chains
(Knothe 2005). The most important fuel characteristics,
according to the American Society for Testing and
Materials (D6751-09 biodiesel standard), are ignition
quality, cold-flow properties, and oxidative stability. Poly-
unsaturated fatty acids are more prone to oxidation and
biodiesel made from these oils are not likely to meet the

international standards (Chisti 2007). Despite this, biodiesel
produced from these oils has a lower melting point and
thus, possess excellent cold flow properties compared to
biodiesel from saturated fats (which tends to gel at ambient
temperatures) (Hu et al. 2008; Schenk et al. 2008). To meet
the biodiesel fuel quality standards, the extent of unsatura-
tion in algal oils can be reduced by partial catalytic
hydrogenation (Dijkstra 2006; Chisti 2007).

8.2 Bioethanol

The starch content of algae is reported to reach much higher
values which are comparable to corn, wheat and other
conventional ethanol feed stocks (Feinberg 1984; S and T
2003). Microalgae have high potentiality for bioethanol
production; which may be because of their high rate of
productivity, high fermentable carbohydrates content of the
biomass and lack of lignin in comparison to the terrestrial
feedstocks (Table 3; Moore 2009). The potential of micro-
algae can be judged by the fact that 75% of algal complex
carbohydrates can be hydrolyzed into a fermentable hexose
monomer and fermentation yield of ethanol is 80% of the
theoretical value (Huntley and Redalje 2007). However,
lignin, a recalcitrant substance (not easily degraded) present
in the biomass, cannot be converted to bioethanol and its
processing is a major impediment for bioethanol production
(Ragauskas et al. 2006).

After oil extraction from the microalgal biomass, a
fermentation process utilizing enzymes alpha–amylase and
gluco–amylase and yeast for fermenting the sugars to
ethanol and carbon dioxide has been devised (Dismukes
et al. 2008). The fermented mash so resulting contains
about 11–15% ethanol by volume as well as the non–
fermentable solids from the algae and the yeast cells.
Ethanol is distilled off the mash at 96% strength, while the
residual stillage can be recovered from the base of the
column and dried to obtain dried distiller’s grain. Another
interesting method of microalgal bioethanol production is
demonstrated under dark and anaerobic conditions in which
the starch within the cells of microalgae was fermented
(Hirano et al. 1997). This essentially means that ethanol can
be made within the microalgal cells. The potential for
simple and low cost methods of bioethanol production are
apparent. The next phase of this research should try to
develop methods of improving the efficiency of this
intracellular ethanol production.

8.3 Biomethane

Biogas production from microalgal biomass is a focus of
interest as the efficiency of biomass production/ha is
estimated to reach five to 30 times than that of crop plants
and a major part of the methane demand can be satisfiedFig. 3 Transesterification of triglyceride (oil) to biodiesel (methyl esters)
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with biogas (Sheehan et al. 1998). One of the first
feasibility study using microalgae for biomethane produc-
tion was published almost 50 years ago which concluded
that the process could be feasible and could further be
optimized (Golueke and Oswald 1959). Successful cultiva-
tion of microalgae requires huge quantities of nitrogen and
phosphate for which environmental and economic impact
may not be sustainable. It is therefore desirable to recycle
the nitrogen and phosphorus contained in the microalgal
waste after lipid extraction in order to reduce the use of
fertilizers (Sialve et al. 2009). Such problem can effectively
be handled by anaerobic digestion involving biotechnolog-
ical approaches, which can mineralise algal waste contain-
ing organic nitrogen and phosphorus, resulting in a flux of
ammonium and phosphate that can then be used again as a
substrate for the microalgae (Olguin 2000; Phang et al.
2000). Chisti (2007) has also proposed that in order to
reach an economical balance, the biomass obtained after
lipid extraction needs to be transformed into methane.
Therefore, algal waste after being processed by anaerobic
digestion will not only recycle nitrogen and phosphorus but
also produce methane.

The energetic value of the methane thus produced can
potentially lead to an energetic balance of the microalgae to
biofuel process (Sialve et al. 2009). Anaerobic degradation
of phytoplanktonic cells is a process which takes place
naturally in aquatic environments after algal cells sink in
the anoxic and aphotic zones where they eventually die and
break up. Nutrient remineralisation in these anoxic layers of
aquatic environments is responsible for ammonium and
phosphate release and hence recycling such important

nutritive elements, which can eventually sustain growth of
phytoplanktonic communities (Vandenbroucke and Largeau
2007).

For biomethane production, either a multispecific bio-
mass is harvested from a wastewater treatment pond, or a
monospecific biomass is grown in the laboratory (Asinari
Di San Marzano et al. 1982; Chen 1987; Yen and Brune
2007). A significant enhancement of the methane produc-
tion has been reported with addition of waste paper to algal
sludge feedstock (Yen and Brune 2007). They reported a
maximum methane production rate of 1.61 LL−1 d−1 under
mesophilic condition when the loading rate was 5 g
VS L−1 d−1 when algal sludge was mixed with 60% of
waste paper. Indeed, it was an indication of the increased
cellulase activity stimulated by the specific nature of the
waste paper. It appeared that the addition of waste paper
had a positive effect on the digestion of algal cell walls and
therefore on the anaerobic digestion itself. Moreover,
codigestion led to the dilution of certain toxic compounds
maintaining them under their toxic threshold. Theoretically,
the higher the lipid content of the cell, the higher the
potential methane yield. The high energetic content of
lipids makes microalgae attractive substrates for anaerobic
digestion due to their higher gas production potential
compared with carbohydrates and proteins (Li et al. 2002;
Cirne et al. 2007).

The hydraulic and solid retention time are key parame-
ters in anaerobic processes. The hydraulic and solid
retention time should be high enough to allow the active
populations to remain in the reactor, especially methano-
gens, and not to limit hydrolysis which is generally

Table 3 Differences in productivity, fermentable carbohydrate and lignin content in some bioethanol feed stocks (Moore 2009)

Feedstock Productivity (dry Mg/
ha/year)

% Fermentable
carbohydrate

% Lignin Fermentable carbohydrate productivity
(dry Mg/ha/year)

Lignin productivity
(dry Mg/ha/year)

Woody
biomass

10–22a 70–85f 25–35f 7–18.7 4–7.7

Switch
grass

3.6–15b 76.4f 12f 2.8–11.5 0.4–1.8

Corn 6–14 80–92f,g 15f 5.6 1.05

Chlorella sp 127.8–262.8e 33.4c 0c 42.7–87.8 0

T. sueica 38–139.4d 11–47b 0b 4.2–65.5 0

Arthrospira
sp

27–70b 15–50b 02 4.1–35 0

a Ragauskas et al. 2006
b Dismukes et al. 2008
c Kristensen 1990
d Zittelli et al. 2006
e Chisti 2007
f Sanchez 2009
g Zhu et al. 2007

Microalgae as second generation biofuel 615



regarded as the rate-limiting step in the overall conversion
of complex substrates to methane. In the case of slowly
degradable complex organic pollutants, hydraulic retention
time is a deciding factor (Speece 1996). The methane yield
remains maximal and constant when loading rate is low and
hydraulic retention time is high. Moreover, optimal loading
rates and hydraulic retention times must be chosen carefully
for efficient conversion of organic matter, depending on the
type/composition of the algal substrate. It is because,
accessibility of the microalgal intracellular content to the
anaerobic microflora is limited by the resistance of the
microalgal cell wall to hydrolysis when the cells are
directly injected into the anaerobic process (Asinari Di
San Marzano et al. 1982; Chen 1987).

Regardless of the operating conditions and species, the
proportion of methane in the biogas produced for the
majority of the studies falls in the range 69–75%. The
quality of conversion of the microalgal organic matter into
methane is also satisfactory. However, pH has been
reported to be the most important factor impacting CH4

proportion in the biogas from algal biomass as it controls
the speciation of the carbonate system and the release of
CO2. At high pH, due to high alkalinity from NH3 release,
the gas content will shift more to CH4. The biogas quality is
also affected by the oxidation state of the biomass, which
drives the proportion of released methane (Sialve et al.
2009). However, due to less content of sulphurated amino
acids, the microalgal biomass digestion releases a lower
amount of hydrogen sulfide than other types of organic
substrates (Becker 1988).

Anaerobic digestion of wastewater is a well-known
technology and is widely used in agro-industrial processes
such as dairy lagoons. The traditional wastewater treatment
ponds can be modified by creating a controlled anaerobic
environment such as a covered pond or tank which allows
the methane to be captured and combusted for energy
production. In the biochemical process of anaerobic
digestion, the waste goes through three steps namely
hydrolysis, fermentation and methanogenesis as it is
converted to methane (Metcalf and Eddy 2003). Anaerobic
digestion is a very effective process for biological oxygen
demand removal but it is not an effective way to remove
nutrients. Thus, there is a need for further treatment of the
effluent from anaerobic digesters before it can be dis-
charged into the environment. The relatively high lipid,
starch, and protein contents and the absence of lignin make
microalgae an ideal candidate for efficient biomethane
production by fermentation in biogas plants. Similar to
biodiesel, lipids play an important role since their conver-
sion capacity into biomethane is higher (1,390 L
biogas kg−1 organic dry substance) than that of proteins
and carbohydrates (VDI 2004). Using highly efficient
closed algal bioreactors for biomass feedstock and bio-

methane production, microalgae can now be grown in large
amounts (150–300 t/ha/year; Pulz and Gross 2004; Chisti
2007). This quantity of biomass can theoretically yield 0.2–
0.4 million m3 of methane/ha/year.

High protein and sodium (marine species) content are
other significant factors that have the potentiality to affect
the methane yield and productivity. High nitrogen concen-
trations in the microalgal biomass lead to the release of a
significant amount of ammonia during anaerobic digestion,
which accumulates in the liquid phase. At high biomass
concentration in the influent; NH3 concentrations and the
resultant alkalinity will increase and, as a consequence,
inhibition of fermentation by free ammonia may occur (Mc
Carty 1964). Samson and LeDuy (1986) reported that
anaerobic digestion of Spirulina maxima (containing about
60% proteins on dry weight basis) releases an extremely
high concentration of ammonia (up to 7,000 mg/L). The
methanogenic bacteria are probably among the most
sensitive to high NH3 concentration (Angelidaki and
Ahring 1993). The unionized hydrophobic form of nitrogen
diffuses passively across the cell membranes where, it
shows its toxicity and therefore inhibits the anaerobic
microflora. This inhibition is affected by factors such as
acclimation period, nature of substrate and inoculum,
operating conditions, high ammonia concentration (1.7–
14 gL−1), and thermophilic condition. However, high
concentrations of Na+, Ca2+, and Mg2+ increase the
alkalinity and decrease the fraction of unionized NH3 and
thus can lower the inhibition effects. Methanogenic bacteria
also have the tendency to acclimatize to high ammonium
concentration and therefore may increase the level of
toxicity threshold (Chen et al. 2008a).

The anaerobic microorganisms require sodium only in
trace quantity (0.002–0.004 M) for their metabolism and
are strongly inhibited at sodium concentration above
0.14 M (Mc Carty 1964; Kugelman and McCarty 1965;
Rinzema et al. 1988). Marine microalgae have been
reported to require a culture medium with high sodium
chloride (0.5–1 M). However, it is also reported that NaCl
has no particular effect up to 0.3 M, at 0.4 M the methane
production becomes affected and it causes toxicity only
above 0.5 M (Chen 1987). Moreover, it is feasible to use
salt-adapted microorganisms capable of withstanding high
salinities through adaptation of the sludge to high salt
concentrations (Chen et al. 2008a). There are sufficient
evidences suggesting no inhibition of saline waste anaero-
bic digestion at concentrations close to marine water
(Asinari Di San Marzano et al. 1982; Omil et al. 1995).
Additionally, sodium turns out to be less inhibitory in
mesophilic as compared to the thermophilic conditions. The
potential toxicity of sodium is also affected by the presence
and concentration of various cations (Ca2+, Mg2+, and K+)
(Chen et al. 2008a). However, the knowledge of the
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biological processes taking place in a biogas production
facility is limited and therefore, more research in this field
is needed to improve the biomethane production process.

8.4 Biohydrogen

A large number of unicellular, filamentous, fresh water, and
marine cyanobacterial species and strains have been
reported to produce large quantity of hydrogen (Fig. 4;
Table 4). Gloeocapsa alpicola, A. variabilis, Anabaena
azollae, Arthrospira (Spirulina) platensis, A. cylindrica,
Cyanothece, Nostoc muscorum, etc. has been reported to
produce a high quantity of hydrogen gas (Jeffries et al.
1978; Aoyama et al. 1997; Antal and Lindblad 2005).
Anabaena sp. is reported to produce extraordinarily
significant amount of hydrogen. Among them nitrogen-
starved cells of A. cylindrica produces highest amount of
hydrogen (30 ml H2/lit/h; Margheri et al. 1990).

These cyanobacterial strains use two sets of enzymes to
generate hydrogen gas. The first one is nitrogenase and it is
found in the heterocysts of filamentous cyanobacteria when
they grow under nitrogen-limiting conditions. Hydrogen is
produced as a by-product of fixation of nitrogen into ammonia.
The reaction consumes 16ATP for fixation of 1 mol of N2 and
results into formation of 1 mol of hydrogen gas.

The other hydrogen-metabolizing/producing enzymes in
cyanobacteria are hydrogenases, which occur as two
distinct types in different cyanobacterial species. The first
one is uptake hydrogenase (encoded by hupSL) which has
the ability to oxidize hydrogen in a reaction known as
oxyhydrogenation or Knallgas reaction whereas, the other
type of hydrogenase is reversible or bidirectional hydrog-
enase (encoded by hoxFUYH) having capacity to either take
up or produce hydrogen (Schmitz et al. 1995; Tamagnini et
al. 2002). Hydrogen is an important fuel and is widely
applied in fuel cells, liquefaction of coal, upgrading of
heavy oils, and several other operation. Hydrogen can be
produced biologically by a variety of means, including the
steam reformation of bio oils, dark and photo fermentation
of organic materials, and photolysis of water catalyzed by
special microalgal species (Kapdan and Kargi 2006; Ran et
al. 2006; Wang et al. 2007).

9 Enhancing cost-effectiveness of microalgal biofuels

The biggest impediment in commercialization of microalgal
biofuel is the high cost and energy requirement for the mass
production of microalgae. Each and every part of the
technology used during agitation, harvesting, and drying of
biomass should be made more perfect so as to prevent
excessive power expenditure. Moreover, efficient strain
selection, metabolic engineering, utilization of waste water

for biomass production, and high value coproduct strategy
should be taken into consideration.

9.1 Efficient strain selection and microalgal response
to starvation

Out of several different renewable fuels produced from
microalgae, the desired end product is occasionally the
primary factor influencing the choice of species and selection
of strain. Other factors that should be considered during
species selection include growth rate, optimal temperature
range, lipid accumulation, and response to nutrient depriva-
tion; as these factors affect the performance and productivity
of the algae in the proposed culture system. Normally, lipid
production of most oleaginous algae from various taxa is
about 25% of the dry weight (Ben-Amote et al. 1985; Hu et al.
2008). However, under stress of nutrient deprivation, the cell
division stops while the cells continue to accumulate storage
products at about the same rate. This result in the
accumulation of neutral lipids (including hydrocarbons) and
increase in the percentage of lipids to around 35–45%
(Benemann and Oswald 1996; Sheehan et al. 1998).

The responses of different algae (in terms of their storage
product) to nutrient deprivation are variable; therefore, this
method can be adapted for the generation of desired storage
product (Opute 1974). For instance, while B. braunii
increased its lipid content from 46% to 54% under nitrogen
starvation, D. salina decreased its lipid content from 25% to
9% and instead increased carbohydrates from 16% to 56%
(Ben-Amote et al. 1985). It was also reported that the
limitation of nitrogen could increase the oil content in all
Chlorella strains (Illman et al. 2000). After extensive study,
Fe3

+ concentration and its addition time was concluded to
affect oil accumulation to some extent (Li et al. 2007; Liu et
al. 2007). However, high light intensity, nutrient stress, and
nitrogen deficiency are considered to be the key factors for
satisfactory oil accumulation by microalgae (Solovchenko
et al. 2009).

This of course, requires rigorous screening for identifi-
cation and selection of strains producing and accumulating
the desired end product. A phased approach was suggested,
whereby, the algae are grown under non–limiting condi-
tions in the first phase, followed by culture under nitrogen–
limiting (not starvation) conditions in the second phase
(Benemann and Oswald 1996). This imposes a growth rate
limit on the algae and enables the algae to accumulate
nutrients without the resultant decrease in biomass that
nitrogen–deficient cultures face.

9.2 Metabolic engineering

Metabolomics aims to determine metabolic profiles to
define the metabolome of a given lipid-rich algae. Metabo-
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nomics on the other hand helps in the statistical identifica-
tion of differences in metabolite levels due to genetic or
environmental changes and allows determination of accu-
mulated metabolic intermediates and end products (Fiehn
2002; Nicholson et al. 2002; Lindon et al. 2004). To resolve
the metabolic dynamics of microalgae, the metabolic flux
can be studied by various techniques such as the monitoring
of consumption and production of key compounds or the
isotopic labeling of key metabolite precursors or intermedi-
ates and the monitoring of these isotopes in a time-
dependent manner (Yang et al. 2000; Fernie et al. 2005;
Dong et al. 2006). Moreover, transcriptomics and proteo-
mics offer possibility of identifying differentially expressed
genes and proteins that are either directly involved in lipid
biosynthesis and degradation or that are co-ordinately
regulated (Anderson et al. 2004; McGrath et al. 2005;
Dombrecht et al. 2007). The interpretation of these results
alone is not straightforward as the accumulation can be
due to an upregulated enzyme downstream or a down-
regulated enzyme upstream in the metabolic pathway. The
identification of differentially expressed genes, proteins or
metabolites gives clues to rate-limiting processes in the
cell which can be backed up by the determination of
metabolic flux. The system biology approach will allow
fine-tuning of algal properties by genetic or metabolic
engineering (Mus et al. 2007).

9.2.1 Genetic engineering to improve algal productivity

After identification of the pathways and key enzymes
involved, genetic engineering has the potential to improve
algal productivity. Routine transformation is currently carried
out only for a few selected algal model species including
Chlamydomonas reinhardtii, however, the growing field of
transgenic microalgae has considerable potential (Leon-
Banares et al. 2004; Walker et al. 2005). Different
transformation methods are available for the delivery of
DNA into the algal genome with the “biolistic” technique
being the most common one (Walker et al. 2005). This
technique involves bombardment with DNA-coated micro-
projectiles and has been successfully used for a variety of
algae including green algae and diatoms and is also the
method of choice for chloroplast or mitochondrial genome
transformation (Apt et al. 1996; Remacle et al. 2006; Kroth
2007). Other methods to create transgenic algae are the
agitation of cells in the presence of glass beads and DNA,
agitation with silicon-carbide whiskers and electroporation
(Kindle 1990; Dunahay et al. 1997; Sun et al. 2005). More
recent developments for the improved overexpression of
transgenes involve the use of vectors containing nuclear
matrix attachment regions to increase the expression level of
foreign genes which has been carried out in the halotolerant
alga D. salina (Wang et al. 2007).

Fig. 4 Potential biohydrogen producing strains. a Anabaena, b Gloeocapsa, c Nostoc commune, d Microcystis, e Phormidium, f. Oscillatoria
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9.2.2 Biosynthesis of quality lipids

The algal lipids biosynthesis requires acetyl-CoA as the
starting point. Acetyl CoA carboxylase and other enzymes
of the lipid biosynthesis pathway have been used as targets
for improving oil production (Ratledge 2004; Richmond
2004). Lipid metabolism and the biosynthesis of fatty acids,
glycerolipids, sterols, hydrocarbons, and ether lipids in
eukaryotic algae have been studied in the context of
optimization for biodiesel production (Metzger and Largeau
2005; Guschina and Harwood 2006). While C. reinhardtii
serves as a model organism to study lipid biosynthesis in
green algae, some unusual hydrocarbons and ether lipids
(n-alkadienes, trienes, triterpenoid botryococcenes, methyl-
ated squalenes, and tetraterpenoids lycopadiene) from B.

braunii have also been described (Achitouv et al. 2004;
Metzger and Largeau 2005; Riekhof et al. 2005). Genetic
engineering of key enzymes in specific fatty acid produc-
tion pathways within lipid biosynthesis is a promising
target for the improvement of both quantity and quality
(chain length and saturation grade) of lipids.

9.2.3 Increasing the proportion of monounsaturated lipids

Microalgal lipids are predominantly polyunsaturated and
therefore, are more prone to oxidation which is a serious
issue with biodiesel while in storage. This drawback,
however, can be corrected through partial catalytic hydro-
genation of the oil (Chisti 2007). It is therefore, preferable
that the level of polyunsaturated fatty acids in biodiesel is

Table 4 Biohydrogen produced by selected cyanobacteria and their characteristics

Organism description Organisms name Maximum H2 production
(μmol/mg chl a/h)

References

Heterocystous filamentous cyanobacteria A. cylindrica 0.91–2.1 Masukawa et al. 2001

A. variabilis IAMM-58 4.2 Masukawa et al. 2001

A. variabilis 0.05–167.6 Fedorov et al. 2001; Happe et al.
2000; Markov et al.
1995; Moezelaar et al. 1996;
Sveshnikov et al. 1997;
Tsygankov et al. 1998

Anabaena flos-aquae UTEX 1444 1.7–3.2 Masukawa et al. 2001

A. azollae 38.5 Sveshnikov et al. 1997

A. cylindrica B-629 0.103a Lambert and Smith 1977

Anabaenopsis circularis IAM M-13 0.31 Masukawa et al. 2001

Anabaena sp. PCC 7120 2.6 Masukawa et al. 2001

Calothrix scopulorum 1410/5 0.128a Lambert and Smith 1977

Calothrix membrnacea B-379 0.108a Lambert and Smith 1977

N. muscorum IAM M-14 0.60 Masukawa et al. 2001

Nostoc linckia IAM M-30 0.17 Masukawa et al. 2001

Nostoc commune IAM M-13 0.25 Masukawa et al. 2001

Non-heterocystous filamentous cyanobacteria Oscillatoria sp. Miami BG7 0.250a Phlips and Mitsui 1983

Oscillatoria limosa 0.83 Heyer et al. 1989

Oscillatoria brevis B-1567 0.168a Lambert and Smith 1977

Non-heterocystous unicellular cyanobacteria Aphanocapsa montana 0.40 Howarth and Codd 1985

Chroococcidiopsis thermalis 0.7 Serebryakova et al. 2000

Gloebacter PCC 7421 1.38 Moezelaar et al. 1996

G. alpicola CALU 743 0.58c Antal and Lindblad 2005

Microcystis PCC 7820 0.16 Moezelaar et al. 1996

Mycrocystis PCC 7806 11.3b Moezelaar and Stal 1994

Synechococcus sp. 0.02–0.66 Howarth and Codd 1985

Synechocystis sp. 0.07–0.13 Howarth and Codd 1985

Cyanothece 7822 0.92 Van der Oost et al. 1989

a Values expressed in μmol/mg dry wt/h
b Values expressed in nmol/mg prot/h
c Value expressed in μmol/mg protein
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Table 5 Some high-value bio-products extracted from microalgae

Product group Applications Examples/producer References

Phycobiliproteins
carotenoids

Pigments, cosmetics, pro
vitamins, pigmentation

Phycocyanin (Spirulina platensis) Furuki et al. 2003; Spolaore et al. 2006

Phycocyanin, phycoerythrin
(Porphyridium cruentum)

Borowitzka 1997; Roman et al. 2002;
Servel et al. 1994

C-phycocyanin-hepatoprotective
effect (Spirulina platensis)

Bhat and Madyastha 2000;
Vadiraja et al. 1998

β-carotene (D. salina) Borowitzka 1991; Ben-Amotz and Avron
1990; Masjuk 1973; Olaizola 2003

Astaxanthin, leutin, zeaxantin
and canthaxantin
(Haematococcus pluvialis)

Borowitzka 1997; Hirata et al. 2000;
Lorenz and Cysewski 2000; Olaizola
2003; Piccardi et al. 1999

Polyunsaturated
fatty acids
(PUFAs)

Food additive,
nutraceutical

Eicosapentaenoic acid (EPA) (Chlorella
minutissima, Crypthecodinium)

Apt and Behrens 1999; Belarbi et al. 2000;
Cardozo et al. 2007; Cohen 1999;
Radmer 1996

Docosahexaenoic acid (DHA)
(Schizochytrium sp, Gymnodinium,
Crypthecodinium, Ulkenia)

Apt and Behrens 1999; Pulz and Gross
2004; Radmer 1996; Valencia et al. 2007

Arachidonic acid (Parietochlorisincise,
Porphyridium cruentum)

Borowitzka 1997; Bigogno et al. 2002

Vitamins Nutrition Biotin (Euglena gracilis) Baker et al. 1981

α-tocopherol (Vitamin E) (Euglena gracilis) Survase et al. 2006

Ascorbic acid (Vitamin C) (P. moriformis,
Chlorella spp)

Bremus et al. 2006; Running et al. 2002

Proteins/Amino
acids

Anti HIV-1 Cyanovirin-N (CV-N)
(Nostoc ellipsosporum)

Boyd 2001, 2002, 2004; Burja et al. 2001;
Yang et al. 1999

Reversing activity against
multi drug resistance

Hapalosin (Hapalosiphon welwitschii) Burja et al. 2001

Alkaloids Immuno-suppressive Microcolin (Lyngbya) Koehn et al. 1992

Hormothamnin Harmathamnion enteromorphoides Gerwick et al. 1992

Antillatoxin- ichthiotoxic Cyclodepsipeptides Orjala et al. 1995

Acetogenin-cytotoxicity towards
leukaemic cells

Curacin- inhibits tubulin polymerization Burja et al. 2002; Lai et al. 1996

Anti-tuberculosis Activity (+)-8-hydroxymanzamine derivative, e.g.,
Ircinol A, Manzamine A, Litosterol
(Litophyton viridis)

Donia and Hamann 2003

Protease
Inhibitors

Elastase inhibiting activity Cyclic desipeptides (Scytonema hofmanni
pcc 7110)

Matern et al. 2001

Inhibitor of platelet activating
factor- induced platelet aggre-
gation

Phosphoglyco-analog of acyl-acetylated
sphingosine, glyco-analog of phosphatidyl-
glycerol (Scytonema julianum)

Antonopoulou et al. 2005

Inhibitors of serine proteases,
including elastase

Micropeptins, aerugenosins, microginins,
anabaenopeptins and microverdins

Grach-Pogrebinsky et al. 2003; Matern et
al. 2001; Ploutno and Carmeli 2005

Microalgal
Metabolites

Hypocholesterolemic effect (Aphanizomenon flos-aquae) Vlad et al. 1995

Anticancer effect Diacylglycerols (Spirulina fusiformis,
Dunaliella and Phormidium tenue)

Mathew et al. 1995; Schwartz and
Shklar 1987; Schwartz et al. 1988;
Tokuda et al. 1996

Cytotoxicity against epidermoid
and adeno carcinoma cells

Borophycin (Nostoc linckia and Nostoc
spongiaeforme var. tenue)

Burja et al. 2001

Anti-inflammatory Activity Carotenoids (β-carotene, lycopene, lutein;
C-phycocyanin

Bhat and Madyastha 2000; Kerfeld 2004;
Vadiraja et al. 1998

Polysaccharides food coating, emulsifying and
gelling agents, flocculants and
hydrating agents; remove toxic
metals

Acidic sugars (glucuronic and/or galacturonic
acids) and other anionic organic (acetyl,
pyruvil) and inorganic (phosphate and
sulfate) substituent.

Otero and Vincenzini 2003

Chrysolaminarin (a soluble β-1,3-polyglucan
(Phaeocystis pouchetii)

Borowitzka 1997; Laing and Ayala 1990

Inhibit tumor invasion and
metastasis

Sulphated polysaccharide, calcium spirulans
(Aphanizomenon flos-aquae)

Mishima et al. 1998

620 N.K. Singh, D.W. Dhar



kept to a minimum. In contrast, higher levels of polyunsat-
urated fats lower the cold filter plugging point; the
temperature at which the fuel starts to form crystals/
solidifies and blocks the fuel filters of an engine. It can be
seen that the extent of unsaturation in oil lowers its melting
point. Therefore, colder climates require a higher unsaturat-
ed lipid content to enable the fuel to perform at low
temperatures (Knothe 2005). Microalgae have excellent
potential for the genetic modification of their lipid pathways
either by upregulation of fatty acid biosynthesis or by
downregulation of β-oxidation. By knocking out or modi-
fying enzymes responsible for the synthesis of polyunsatu-
rated lipids in the cell, it should be possible to dramatically
increase the proportion of monounsaturated lipids.

9.3 High-value coproduct strategy

Microalgae are regarded as biorefinery for their capacity to
produce a wide range of chemicals and biofuels from
biomass by the integration of bioprocessing and appropriate
low environmental impact chemical technologies in a cost
effective and environmentally sustainable manner (Chisti
2007). They have excellent capacity of producing a large
number of high-value bioactive compounds that can be
used as pharmaceutical compounds, health foods, and
natural pigments (Jiang 2000). Few well-studied examples
include acetylic acids, β-carotene, vitamin B, ketocarote-
noid astaxanthin, polyunsaturated fatty acids, and lutein
(Shi et al. 2002; Wen and Chen 2003; Jiang et al. 2004; He
et al. 2005; Ip and Chen 2005; Huang et al. 2006; Del
Campo et al. 2007; Table 5). The economical feasibility of
microalgal biofuel production can be significantly enhanced
by a high-value coproduct strategy, which would, concep-

tually, involve sequentially the cultivation of microalgae in
a microalgal farming facility (CO2 mitigation), extracting
bioreactive compounds from harvested algal biomass,
thermal processing (pyrolysis, liquefaction, or gasification),
extracting high-value chemicals from the resulting liquid,
vapor, and/or solid phases, and reforming/upgrading bio-
fuels for different applications (Chisti 2007).

9.4 Cost-effective technologies for biomass harvesting
and drying

Limited light penetration and small size of microalgal cells
(typically in the range of 2–20 μm in diameter) leads to
relatively low biomass concentration and thereby, enhances
the costs and energy consumption for biomass harvesting.
Diverse technologies including chemical flocculation, bio-
logical flocculation, filtration, centrifugation, and ultrasonic
aggregation have been investigated for microalgal biomass
harvesting (Divakaran and Pillai 2002; Bosma et al. 2003;
Molina Grima et al. 2003; Olaizola 2003; Knuckey et al.
2006). In general, chemical and biological flocculation
require low operating costs; however, they have the
disadvantage of requiring long processing period and have
the risk of bioreactive product decomposition. On the other
hand, filtration, centrifuge and ultrasonic flocculation are
more efficient but at the same time more costly. The
selection of appropriate harvesting technology, therefore,
depends on the value of the target products, biomass
concentration, and the size of microalgal cells.

Biomass drying before lipid/bioproduct extraction and/or
thermochemical processing is another step that needs to be
taken into consideration. Sun drying is probably the cheapest
drying method that has been employed for the processing of

Table 5 (continued)

Product group Applications Examples/producer References

Microbicides Bactericide Spirogyra Muller-Feuga et al. 2003

Anti-viral Anti-HIV Cyanoviridin-N
(Lyngbya
lagerheimeii and
Phormidium
tenue)

Gustafson et al. 1989;
Yang et al. 1997

Inhibits Herpes simplex, human
cytomegalovirus and measles virus

Calcium spirulan
(Ca-SP)
(Lyngbya
lagerheimeii and
Phormidium
tenue)

Ayehunie et al. 1998;
Hayashi and Hayashi
1996; Hayashi et al.
1996

Anti-helminthic Dihydroxy tetrahydrofuran, Jasplakinolide
(brown algae-Notheia anomala)

Donia and Hamann 2003

Fungicide- apoptosis
of tumor cells

Cryptophycin (Nostoc sp. ATCC 53789) Burja et al. 2001; Panda et al. 1998

Anti-protozoan: Leishmaniasis
treatment

Sodium stibogluconate and meglumine
antimonite

Berman 1998
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microalgal biomass (Millamena et al. 1990; Prakash et al.
1997). However, this method requires long drying period,
large drying surface, and risks the loss of some bioreactive
products. Low-pressure shelf drying is another low-cost
drying technology that has been investigated which, never-
theless, is considered to be a low efficiency method (Prakash
et al. 1997). More efficient but costly drying technologies
investigated for drying microalgae include drum drying,
spray drying, fluidized bed drying, freeze drying, and
refractance window dehydration technology (Millamena et
al. 1990; Prakash et al. 1997; Leach et al. 1998; Desmorieux
and Decaen 2006; Nindo and Tang 2007). It is therefore,
important to find a balance between harvesting and drying
efficiency with the cost effectiveness to maximize the net
energy output of the fuels from microalgae.

9.5 Microalgal production with wastewater treatment

Municipal and industrial wastewater treatments are the key
infrastructural facilities that keep our cities, communities, and
ecosystems sanitary. A great deal of money and effort is
being spent on the removal of pollutants such as biochemical
oxygen demand, turbidity, nitrogen, and phosphorus. Large
confined animal feeding operations such as dairies can also
be major sources of water pollution (Centner 2001). Nutrients
like nitrogen and phosphorus can be removed from waste-
waters in several ways. The most common method for
removing nitrogen is denitrification which leads to reduction
of nitrate to nitrogen gas (Metcalf and Eddy 2003).
Phosphorus, on the other hand, is often removed by chemical
precipitation using ferric chloride. However, both phospho-
rus and nitrogen can also be removed satisfactorily by
growing bacteria or algae in the wastewater and then the
biomass can be removed. The technique of promoting
microalgal growth for nutrient removal was first developed
by Oswald et al. (1957). Later, Singh and Dhar (2006, 2007)
also worked on nitrogen and phosphorous removal from
secondary treated sewage effluent with microalgae.

Using microalgae for wastewater treatment offers
some interesting advantages over conventional methods.
It has been shown to be a more cost-effective way to
remove biochemical oxygen demand, pathogens, phos-
phorus, and nitrogen than activated sludge (Green et al.
1996; Singh and Dhar 2006). Traditional wastewater
treatment processes involve the high energy costs of
mechanical aeration to provide oxygen to aerobic bacteria
to consume the organic compounds in the wastewater,
whereas, microalgae provide an efficient way to consume
nutrients and provide the aerobic bacteria with the needed
oxygen through photosynthesis (Oswald et al. 1953). It is
estimated that roughly 1 kg of biological oxygen demand
removed in an activated sludge process requires 1 kWh of
electricity for aeration, which produces 1 kg of fossil CO2

from power generation. By contrast, 1 kg of biological
oxygen demand removed by photosynthetic oxygenation
requires no energy inputs and produces enough microalgal
biomass to generate methane that can produce 1 kWh of
electric power (Oswald 2003).

10 Conclusions

Rapid industrial development, depletion of mineral oil
reserves, and rise in atmospheric CO2 require the develop-
ment of carbon-neutral renewable alternatives. Biofuel
production from microalgae is supposed to provide technical
and economic feasibility that has the potential for CO2

sequestration and is therefore, likely to get wide acceptance.
Algal biofuels appear to be the only current renewable
energy source that could meet the global demand for
transport fuels (Schenk et al. 2008). For many centuries,
various microalgal species have been exploited for the
valuable protein source for animals. Currently, over 5,000
dry tons of microalgal biomass is produced annually in the
world, mostly in “race way” or “high rate” type ponds for
high-value nutritional supplements (Spolaore et al. 2006).
The biggest challenge over the next few years in the
microalgal biofuel field will be to reduce costs of cultivation
and to further, improve the biology of biofuel production.

Economic feasibility of biofuels from microalgae can be
enhanced by using efficient methods of biomass harvesting
and drying, metabolic plus genetic engineering and system
biology approaches, selection of efficient strains, high-value
co-product strategy, and linking microalgal production with
wastewater treatment. There is a need of more research on
microalgal lipid structure and composition, quality of oil
derived from waste-grown algae, fuel quality, suitability of
algal oil for transportation, and its compatibility with newer
technologies such as thermal depolymerization. Decision
regarding location of biofuel production plant is crucial for
land availability for large open ponds, requirement of
appropriate climate (average temperature and solar insola-
tion), communities and agro-industrial sites, need for
wastewater treatment upgrades, proximities of algae produc-
tion to biodiesel production sites and oil extraction plants,
and ancillary industries for further processing of microalgal
oil. Lastly, the bottlenecks in the complete cycle of micro-
algal biofuel production should be identified and overcome
on pilot plants after optimization of growth conditions before
the large-scale implementation potentials are realized.
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