N

N

The Elastic Dielectric
Richard A. Toupin

» To cite this version:

Richard A. Toupin. The Elastic Dielectric. Journal of Rational Mechanics and Analysis, 1956, 5 (6),
pp-849-915. hal-00930219

HAL Id: hal-00930219
https://hal.science/hal-00930219

Submitted on 16 Jan 2014

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00930219
https://hal.archives-ouvertes.fr

D =

O W

o0

10.
11.
12.

13.
14.

15.

16.

17.

1he Elastic Dielectric

RICHARD A. TOUPIN

Communicated by C. TRUESDELL

CONTENTS

. Introduction . . . . . . . . . . ... ...
. Static Equilibrium States of a Continuous Medium
. Coordinate Systems and Two-Point Tensor Fields in Euch-

deanSpace . . . . . . . . . . . . . .. ...

. Measures of Deformation and Rotation . . . . .
. Static Mechanical Equilibrium of Continuous Medla
. The Maxwell-Faraday Theory of the Electric Field in

Dielectries . . . . . . . . . . ... ..o L.

. The Lorentz Theory of the Electric Field in Dielectrics
. The Equations of Intramolecular Force Balance
. The Form of the Stress Tensor, Extrinsic Body Force and

Extrinsic Body Moment in an Elastic Dielectric . . . . .
A Principle of Virtual Work for the Elastic Dielectric

The Homogeneous Isotropic Elastic Dielectric . . . . .
Some Simple Solutions for an Arbitrary Form of the Stored
Energy Function of Isotropic Dielectries . . . . . . . . .
Anisotropic Dielectries . . . . . . . . . . . ... ...
A Special Form for the Stored Energy Function—Polynomial
Approximations . . . . . . . . . . . ... ...
Linearizations of the Constitutive Relations of an Elastic
Dielectric . . . . . . . . .. ...
The Linear Constitutive Relations of an Isotropic Elastic
Dielectric . . . . . . . .. ... -
Photoelasticity . . . . . . . . . . . . . . . ... ..

Acknowledgments . . . . . . . . . . . ... ... .
References . . . . . . . . . . . ... ...

Page
850
853

854
859
864

868
872
876

877
879
887

894
901

905



1. INnTRODUCTION

Elastic dielectrics are an important and interesting class of solid materials.
The photoelastic and piezoelectric effects are but two of the physical phenomena
associated with elastic dielectrics which have found applications in engineering
and in the laboratory. F. E. NEUMANN was the first to treat systematically the
photoelastic effect in isotropic materials [1, 2]. PockELs [3] extended NEUMANN’s
theory of the photoelastic effect to the case of crystalline media. What might
be called the classical linear theory of piezoelectricity is generally attributed
to Vorer [4].2

The theories of NEUMANN, PockeLs, and VoiaT are restricted to the case of
infinitesimal motions (strains and rotations). Also, certain limitations must be
placed on the magnitude of the electric field to insure a consistent scheme of
approximation. In the case of NEUMANN’s photoelastic theory, some attempt
has been made to treat large deformations [2, pp. 192-194]. The results which
we obtain here are not inconsistent with the basic hypotheses of this extended
Neumann theory of the photoelastic effect in isofropic materials. Although we
have not made a detailed and specific study of the photoelastic effect in this
paper, some of our results may be useful in the analysis of the photoelasticity
of crystals. There have been attempts also to generalize Voigr’s linear piezo-
electric relations to account for finite strain and higher order electrical effects [6].
Our results differ strikingly from the results of others, particularly for the class
of elastic dielectrics whose degree of symmetry does not prohibit the piezoelectric
effect. For example, if the general theory of elastic dielectrics developed here is
specialized to a “polynomial approximation,” we find that a “first order’’ theory
results which is consistent with Voiar’s classical linear theory of the piezoelectric
effect. However, if higher order “photoelastic’”’ terms involving products of a
displacement gradient and the electric field or polarization are retained in a
consistent manner, the stress tensor does nof reduce to a polynomial in the sym-
metric part of the displacement gradients only. The symmetric part of the
displacement gradients is the customary measure of infinitesimal strain. It has
been a common element of endeavors to generalize Voigr’s linear theory to
assume that the stress tensor is a polynomial in the electric field (or polarization)
and the elements of the infinitesimal strain measure. It can be demonstrated
that this assumption violates the invariance of the stored energy to rigid rota-
tions even fo the neglect of terms of first degree in the displacement gradients.

The theory of stress and the mechanical equilibrium of dielectric media

1 The historical development of theory and experiment on the photoelastic effect is traced
in [2].

2Vorar’s work on the piezoelectric effect was originally reported in a series of papers
dating from 1890. An excellent bibliography of this subject is given by Capy [5].
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THE ELASTIC DIELECTRIC 851

presents new problems not encountered in elasticity theory. The material
contained in MAXwELL’s original treatise cannot be considered definitive.
This is according to his own admission [7, Vol. I, §111, p. 166]. Laruor [§]
considered some of the questions pertinent to the mechanics of continuous
media which were raised by MaxweLL’s theory of electricity and magnetism.
New insight was gained with the advent of LorenTz’s particle model of con-
tinuous dielectric media [9], but the problem is yet unsettled. Bor~'s theory
of polarizable lattices of particles [10] has done much to clarify the conceptual
arrangement and the nature of the forces which determine the electromechanical
behavior of crystalline dielectrics. The greatest progress has been made in the
study of these particle models. However, the role played by the local field and
a theory of stress in dielectrics based on the methods of continuum mechanics
and MAXWELL’s continuum theory of electricity and magnetism has received
too little attention. To illustrate some of the novel questions which arise, we
may cite the following: If the electric field and polarization are not parallel to
each other, the Maxwell stress tensor in a dielectric medium is not symmetric.
Hence, if the medium is to be in static equilibrium there must be an additional
stress system whose antisymmetric part is equal and opposite to the antisym-
metric part of the Maxwell stress tensor. For our immediate purposes, we may
loosely refer to this additional stress system as the “elastic”’ or ‘“local” stress
tensor. Now the Maxwell tensor has the same form in all dielectric materials,
whether they be elastic solids, fluids, or other forms of continuous media. The
local stress is to be compared with the stress tensor of elasticity theory. There
it is assumed that the stress is determined by the deformation and local thermo-
dynamic state of the elastic medium through constitutive relations (stress-
strain-temperature relations) whose form varies from one material to another.
Is this the part of the stress then to which Voiar refers in his theory of the
piezoelectric effect? Of course, the Maxwell tensor is always quadratic in the
electric field and polarization (the antisymmetric part is just E‘P? — PE’)
and so is a quantity neglected within the context of the linear theory of piezo-
electricity. But we must reckon with such problems in a general theory of the
stress in dielectrics. That is, we must entertain the need for constitutive relations
which yield an asymmetric stress tensor. It has been claimed elsewhere [11]
that such constitutive relations can never be obtained from an energy principle.®
In §10 of this paper we present an energy principle from which we obtain con-
stitutive relations for an asymmetric local stress tensor. Furthermore, its anti-
symmetric part has just the required value.

As we have indicated above, there are many new problems not encountered
in elasticity theory which must be considered when the combined effects of
electrical and elastic properties of dielectrics are considered. For this reason,

3 The proof is based on a formula relating the stress to derivatives of an energy function
which is valid only in an approximation which neglects the antisymmetric part of the stress
tensor.
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we have reviewed in some detail the essential preliminary topics of kinematics
of continuous media, the theory of stress, and the Maxwell-Faraday electro-
statics. The material in these sections is conventional for the most part. Some
relatively new and interesting material is introduced in the section on Euclidean
tensors. The notion of two-point tensor fields and the application of these
tensors in the kinematics of continuous media may be of interest even to those
not interested in dielectrics. To illustrate the general theory, we have dealt at
some length with the isotropic dielectric. Solutions for the homogeneous deforma-
tion of an isotropic dielectric ellipsoid and of an infinite slab placed in a uniform
external electric field are given as illustrations of the qualitative features of the
behavior of elastic dielectrics predicted by the theory. Finally, the theory has
been specialized by assuming a special form for the stored energy function.
We have done this so that a comparison with the existing approximate theories
of the stress and field relations in dielectrics could be made. As far as possible
we shall adhere to the notation and shall make free use of the formalism and
results of continuum mechanics as presented in the comprehensive review
article by C. TRuESDELL [12].



2. Static EqQuiLiBriuMm StaTES oF A ConTiNUOUs MEDIUM

Each point of a continuous medium may be assigned certain physical properties
such as position, temperature, density, crystallographic directions, chemical
constitution, polarization, stress, efc. What constitutes an independent set of
such variables will depend on the nature of the substance and on the range of
physical phenomena encompassed by the particular theory under consideration.
The local state of a point in the medium is known if, at the point, the values of
an independent set of state variables are specified. A function of the independent
variables will be called a state function. If the local state of every point in the
medium is known, we shall say that the global state of the medium is known. The
distinction which has been made between the concepts of local state and global
state will be found useful. For example, consider the gravitational self field of
a continuous medium. Let the density of mass p be chosen as one of the inde-
pendent state variables. Then the gravitational potential ¢ satisfies the Poisson
equation vV’ = —Gp. Hence, the potential is not a state function; however,
its value at any point may be determined if the global state of the medium is
specified.* It is, in a broad sense, a functional on the global state of the medium.
The environment of a continuous medium consists of the alterable external
influences to which we may subject the medium. We shall assume that the medium
responds to changes in its environment and that when these changes have
ceased the local state of each point in the medium assumes essentially unique
equilibrium values commensurate with the static environment.

For the purpose of this work we shall define an elastic dielectric as a continuous
medium whose local state is determined by the local deformation of the medium
relative to some natural state and by the electric polarization density. It is
clear that we are ignoring many interesting physical phenomena by this limited
choice of independent state variables. For example, temperature effects will
not be considered. Variables which provide a quantitative measure of the de-
formation and polarization will be defined and their properties will be discussed
at the appropriate time. The environment of the elastic dielectric will be a
prescribed set of mechanical surface tractions and an externally applied electric
field. Hence, we set ourselves the problem: Can a determinate theory based on
the principles of mechanics and electrostatics be established which will fix the
global state of an elastic dielectric as defined here if the mechanical surface
tractions and external electric field are prescribed data?

4 Certain continuity and boundary conditions must also be supplied in order that the
Poisson equation admit a unique solution.
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3. CoorDINATE SysTEMS AND Two-PoinT TENSOR
FieLps in EucLIDEAN SPaAcCE

The motion of a continuous medium is conveniently described in terms of
two coordinate systems which simultaneously span Euclidean space [12, 13].
The two coordinate systems are introduced in a description of the motion in
the following way. A reference configuration of the material particles P of the
medium is prescribed by giving the coordinate values X“(P) of the positions
of the particles in one freely chosen coordinate system. If the medium is de-
formed or displaced rigidly, the material particles move to new positions which
may be specified by giving their coordinate values x‘(P) in a second freely
chosen coordinate system. For example, the reference configuration of a rec-
tangular block of material may be conveniently described in a rectangular
Cartesian coordinate system. If the block is deformed into a spherical cap, it
may prove convenient to describe this deformed configuration in a spherical
polar coordinate system. Some workers in elasticity theory prefer the use of the
so-called convected coordinate systems. Here, the choice of the second coordinate
system is made in such a way that the coordinate values of the position of a
given particle are the same in the reference and deformed configurations. Thus,
each motion or deformed configuration implies a new choice of the second coor-
dinate system. We mention this only as an example since we do not restrict
ourselves to this convention. New problems arise in the mathematical formalism
of continuum mechanics because of this use of two simultaneous coordinate
systems. For this reason we shall review and extend some of the fundamental
notions of the tensor analysis.

Since the space is Euclidean, it can be spanned by a rectangular Cartesian
net Z*. The metric tensor in this coordinate system is just the Kronecker delta,
0.5 . Let V' be the rectangular Cartesian components of a vector at the point
Z1 . The vector V, can be translated by parallel displacement to a second point
Z%5 . The law of parallel displacement is particularly simple in Euclidean space
if the coordinate system is rectangular Cartesian. For in this case, the com-
ponents V5 of the displaced vector are numerically equal to the given compo-
nents V5 . Let V*"" be the components of a tensor of arbitrary rank defined
at the point Z$ . The components V5* " of the parallel displaced tensor at an
arbitrary point Z$ are then given by

S =g VIV (3.1)

The simplicity of this formula, indeed, its triviality, we owe to the choice of
coordinate systems in which we have expressed the components of V; and V, .
We wish to obtain the formula analogous to (3.1) for the case when the coordi-
nate system is not rectangular Cartesian. In fact, we wish to allow that the
components of V; and V, might be referred to two different curvilinear coordinate
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systems. This is done easily and the results are quite useful. Let two coordinate
transformations be defined on the Z°%,

X* = X42%), Z°=2X"; o =22, Z°=2Z3). B2
The metric tensor in these two coordinate systems has components given by

EYARE VA7 025 075

T L AR i 3.3)
Now define the parallel displacement two-point tensor field g%(X, x) by
aX* 875
‘X x) = 65— —- 3.4
94X, x) ?8z7% oz’ (34

Note that g% is not an ordinary tensor field. In order to fix the values of its
components two points must be specified. That is, the g% are functions of siz
independent variables. Ordinary single-point tensor fields are ordered sets of
functions of only three independent variables—namely, the coordinates of a
single point in the region of space where the tensor field is defined.® Simple
examples of the displacement tensor are obtained when both coordinate trans-
formations (3.2) reduce to the identity transformation or when both transforma-
tions (3.2) yield new coordinate systems which are again rectangular Cartesian.
In the first instance, the displacement tensor is just 63 , while in the second
instance, the displacement tensor is an orthogonal matrix which would carry
the two sets of transformed coordinate axes into parallel sets. In a more general
situation when either or both of the coordinate systems are curvilinear, the
components of the displacement tensor will be non-constant functions of the
six variables, X* and z‘. If we are given the components of the displacement
tensor in one set of coordinate systems (X*, %), the values of the components
in a second set (X**, z**), where X** = X*4(X), 2** = 2*'(z) are independent
coordinate transformations on the two argument points, the new values of the
components of the displacement tensor are given by
%4 B 0X *4 axi

i = 0 ;" 3.5
g 97 X7 apr (3.5

The formula which generalizes (3.1) and is invariant to the choice of coordinate
systems in which we wish to express the tensor V%" or its translated counter-
part V' is

2= gags - VAT (3.6)

That is, for fixed z°, the V;'""" are the components in the coordinate system z*
of the tensor obtained from Vi® ' by parallel displacement of this tensor from

5 We restrict our attention to three-dimensional Euclidean space. Many of our statements
are trivially generalized to flat spaces of arbitrary dimension.
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the point X to the point 2°. A useful application of the displacement tensor is
illustrated by the following example. Let f*(x) be the components of the force
per unit of volume on a continuous medium. The resultant or fotal force on the
medium is an important quantity in Newtonian mechanics. If the components
J* of the force density are given in a curvilinear coordinate system, the integrals
[ f* AV taken over the body are nof the components of the resultant force. In
fact, the three integrals so obtained do not transform as the components of a
vector under general coordinate transformations. Only if the components f°
refer to the rectangular Cartesian components® of the force density will these
integrals yield the components of the resultant force. In order to calculate the
resultant force in a manner which is invariant to the choice of coordinate system,
we must translate the force on each infinitesimal region of the body to a fixed
common point by parallel displacement. The resultant force can then be obtained
by summing or integrating af that fixed point. That is,

F® = [ 0%, 05 av (3.7

are the components of the resultant force as they appear at the point X. The
point X may be chosen freely. Note that the components F* are the components
of the resultant force F, not in the coordinate system in which the f* were given,
but in the coordinate system X*. The form of integral expressions of non-scalar
tensor quantities such as resultant force, resultant moment, resultant angular
momentum, efc., which is invariant to choice of coordinate system will have the
structure indicated by this example. Unless the factor g% is included in the inte-
grand, such integrals of non-scalar quantities in curvilinear coordinate systems
have no particular transformation properties or physical significance.

Let Te5.1i(X, x) be the components of a two-point tensor field of arbitrary
rank. Corresponding to (3.5) we have the general transformation law,

eeoif w WmEF-«+ mn aX*A aX*B aXG ax*i oz’
T*ggu-kl = (x/m*) (X/X*) TGH"'pq aXE aXF (")X*C e ax" ax*l y

(3.8)

for a two-point relative tensor of weight w with respect to x transformations
and weight W with respect to X transformations. (xz/z*) and (X/X*) denote the
Jacobians of the coordinate transformations. An absolute two-point tensor
field is a relative two-point tensor field with both weights zero.’

6 More precisely, the components f* may be any set obtained from a rectangular Cartesian
set by an affine transformation.

7 M1cHAL [14] emphasized the use of two-point tensor fields in the kinematics of continuous
media. ErickseN & DoyLe [15] further developed the formalism and applications. TRUESDELL
suggested the apt notation g4 for the displacement tensor and suggests calling it the “shifter.”
The tensor formalism which we use here is a natural extension of TrUEsDELL’s [12]. Many
of the formule of the kinematics and mechanics of continuous media which have previously
defied efforts to place them in coordinate invariant form can now be so written with the help
of two-point tensor fields, in particular, with the aid of the displacement tensor or shifter.



THE ELASTIC DIELECTRIC 857

We shall denote partial covariant derivatives with respect to either type of
index by a comma followed by the appropriate index. The partial covariant
derivative of a two-point tensor field is defined as follows:

o erA
T‘%...'c = —GF' + TI:...I‘;‘)C + A
(3.9)
A-.-
A = a:g;’.‘.. — AT 4 -

That is, the partial covariant derivative is defined as for single-point tensor
fields if we regard the upper case (lower case) indices as mere labels when differ-
entiating covariantly with respect to a lower case (upper case) index. A further
word of caution—the two-point tensor field is a function of six independent
variables; therefore, the partial derivative indicated in the formule (3.9) means
a partial derivative holding the remaining five independent variables fixed.
The Christoffel symbols I'sz and I'j, are given by

c 3Z% ax° X 7% ozt

= ’ 1 By : 3.10
P aX4 8X” 0z° 0z’ 9z’ 9z° (8-10
As a special case of (3.9) we have
4 _ a;!‘: ANk
G = 5 g:Ti; . (38.11)

From the definitions of the parallel displacement tensor and the Christoffel
symbols we have

i _ T2 T 42 gkI"‘i . (3.12)

Substituting (3.12) into (3.11) it follows that the partial covariant derivative
of the displacement tensor vanishes,

gii = 0. (3.13)
By similar argument we can show that g7 = 0 and as usual that
gas,c =0, giie = 0. (3.14)
One may readily verify that
Jan = Giiign - (3.15)

The identification of the particles P of a continuous medium with their coordi-
nates X“(P) in a reference configuration and a second identification of the par-
ticles with their coordinates z°(P) in a deformed configuration leads to the
existence of a one-to-one mapping of the points X* ¢ V, onto the points z° ¢ V,

' = '(X*), X* = X*@), (3.16)
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where V, is the region of space occupied by the body in the reference configura-
tion and V is the region of space occupied by the body in the deformed configura-
tion. We shall assume for our purposes here that the mapping (3.16) is differ-
entiable as many times as may be desired. In the mechanics of continuous media
we are concerned with two-point tensor fields T%.::(X, x) which are defined
for values of the arguments X* and 2* which range over the regions V, and V
respectively. However, we wish to consider the case when the argument points
X* and 2’ are not independent but are functionally related by the mapping
(3.16). Under these circumstances, we shall define the fofal covariant derivative
of a two-point tensor field which we denote by the semicolon followed by the
appropriate index,

Avee A Aves .
T.'...;B = T,~..._3+T,-..._,~:v',3

Aees _ Ases Avee B
T,‘...;,' = Ti'“.i + T;...'BX i

3.17)

where we have set z°,, = ox'/0X*, X 4 = 0X*/dz’. It follows from (3.17)
and the relations z*, , X*,; = &'; , 2*,,X%,; = 85, that

A mA i
i;B — Ts‘;ix ;B

(3.18)
T;'i;i = Tf;BXB;i .

It should be noted that if the argument points of a two-point tensor field are
not functionally independent but are related by a mapping, then either of the
ordinary covariant derivatives (3.9) is ambiguous; but the total covariant
derivative is not.



4. MEASURES OF DEFORMATION AND RoTAaTION

Let C, denote the reference configuration of the material particles of a con-
tinuous medium and let C' denote any other configuration. Let (3.16) be the
mapping which relates the coordinates of the particles in the configurations
C, and C.

Consider now the two points X* and X* 4+ dX* of the medium in the con-
figuration C, . The same two particles in the configuration C will have coor-
dinates z* and z* + dz’, and since we refer to the same two particles, their
respective coordinates will be related by the mapping (3.16). In particular, we
have

de' = dX* 2'., . (4.1)
The square of the distance between the two particles in the configuration C,
is given by
dlg2 = (aB dXA dXB = C;j d:z:i dxi, (4.2)
where
Cij = gABXA:iXB:i . (4.3)
The square of the distance between the particles in the configuration C is given by
d82 = @i; dx" dxi = CAB dXA dXB (4:.4)
with
Cus = g.'fx";aw";x . (4.5)
Now consider the sphere at X* swept out by the vectors dX* which satisfy
the condition k* = G4 dX* dX”. The set of points on this sphere is carried
by the mapping (3.16) into the quadric surface ¥* = c;; dz* dz’ at the point z°.
From the non-singular character of the mapping and the positive definiteness
of gas , it follows that c,; is a positive definite matrix; hence, the quadric at
«* is an ellipsoid. Similarly, the points which satisfy the condition I* = ¢;; dz* da’
and which constitute a sphere at z* are carried by the inverse mapping into the
ellipsoid # = C, 5 dX* dX?® at the point X*. The two ellipsoids that we have
introduced above are called the spafial and material strain ellipsoids. Let.
nr (' = 1, 2, 3) be an orthogonal triplet of unit vectors at the point z*,
gimini = dra ,
and N1 a similar triplet at the point X*,
gABN?Nf = Ora .
859
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We can always orient these orthonormal triplets so that they satisfy the equations
cinr = Crhir; CasNt = CrNrs ’ (4.6)

where the ¢r and C are the eigenvalues of the matrices ¢; and Cg and satisfy
the cubic characteristic equations

det HCii - CFB'}H = 0, det ”CAB - CI-&AB” = 0. (4.-7)

If ¢r , nt is a solution of (4.6), , (4.7), , it can be shown that C'r and N4 given by
_ -1

Cr=cr 4.8)

P = X"t/ Ver

constitute a solution of (4.6), , (4.7), . If the eigenvalues ¢ (Cr) are distinct,
then the orthonormal triplets ==n¢(4=Nt) which satisfy (4.6) are uniquely
determined. In this case the eigenvalues ¢r and Cr may be ordered ¢; > ¢, > ¢;,
C, < C; < C; and (4.8) constitutes a unique pairing of the eigenvalues and
eigenvectors of ¢ and C. The sign of a normalized eigenvector always remains
arbitrary; however, in (4.8) we have made a choice of sign for the square root
of ¢ which fixes the signs of the Nt in terms of the signs of the nf . We shall
adhere to this convention in what follows. Now consider the vector L4 = L N+
of length Ly > 0 and parallel to an eigenvector of C 45 . It is carried by the
mapping into the vector L = (L + ALp)z* 4,N* of length (L + ALp) > 0.
The vector L* is carried by the mapping in the sense that a curve of points
X“(f), passing through the point X* and whose tangent X*(f) at that point is
parallel to N*, is carried by the mapping into a curve z*(f), passing through
the point z* and whose tangent °(¢) at z° is locally parallel to nr . The ratio of
lengths, Ly/(Lr + ALy) coincides with the ratio of lengths of tangents,
VG X X5/ V g5 From (4.8), it follows easily that (Lr + ALr)/Ly =
A/Cy . Similarly, the vector It = (Ir + Alr)ni is carried by the inverse mapping
into the vector I§ = I N7 where (Iy + Alp)/lp = 1/ VCr. Hence, by (4.8), , the
ratios ALy/Ly and Alr/lr have a common value, say 6r . These are the principal
extensions. The quantities (1 + dr) are called principal extension ratios. The
tensors ¢;; and C 45 are called the Cauchy-Green deformation fensors and their
eigenvectors nt and Nt determine the principal spatial and malerial axes of
strain.

Let X* and z* be the coordinates of the same material particle in the configura-
tions C, and C and let the principal extensions for this particle be distinct.
Translate the orthonormal triplet ni by parallel displacement from the point
z* to the point X*. We can then write

t=R*'mi, nf=¢"ni, (4.9)

whereby a unique rotation matrix R*; , gasR*cR*cR®» = gcp, is determined.
The matrix R*; has a single real vector invariant which we denote by k*, R* k" =
k*, k*k, = 1, and a single independent scalar invariant, say R4 . The rotation
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of the orthogonal triplet nt into the orthogonal triplet N7 is the result of a
rotation through an angle 6 about an axis parallel to k*. The cosine of 6 is fixed
by the relation R4 = 1 + 2 cos 6. We may take the scalar function,
W = 1(3 — R4),0 < W =< 1, and the vector invariant k* as a measure of the
local rotation of the configuration C with respect to the configuration C, . If
W <« 1, the local rotation is said to be small. It should be noted that at a point
where W = 0, k* is undefined.

If
W;A = 0, kA;B = 0, CAB;C = 0, (410)
the deformation is homogeneous. If
W =0, C arbitrary (4.11)

we have a pure deformation, which is a special case of
W = constant, k“.; =0,  C arbitrary (4.12)

which differs from a pure deformation by a gross rigid motion of the configura-
tion C with respect to the configuration C, . .
The components of the orthonormal triplets Nt and n; satisfy the relations,

Z;N?N? = ¢g*?, ;nﬁn;’- = g, (4.13)

And the following relations hold between the components of the tensors C*7, ¢/,
their eigenvalues Cr , cr , and the N$ , nf :

¢ = Zr:cpn{nli , C*® = > C;NiNZ. (4.19)
r
We also have the more general relations
@ = ;c{fnr"né' , (P = ; CiNtN7T , (4.15)

where 7 may be a fractional exponent. Using (4.8-9) and (4.13-15), one can
readily verify the important relations,

(CH*? = R*cRpg°.g":(c™", (4.16)
()i = R*R’pg°:g"(C a5 , (4.17)

T4 = (C_%)iigiBRAB = (C%)BAgicRBC, (4.18)
X4, = (C_%)AchiRcB = (C%)iigBiRAB . (4.19)

Consider the vector dX* at the point X*. It is carried by the mapping into
the vector da’ = z°,, dX*. Using (4.18), the vector dz‘ can be written in the
form da* = (¢ ¥)%;,9'sR 4% dX*. This latter form of dz* can be read as follows:
The vector dX* is first rotated rigidly into the vector dX*® = R,® dX*, then
translated by parallel displacement to the point z° which gives us the components
dz*’ = g'5 dX*® of the vector at that point. Finally, the vector da*' is stretched
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into the vector do* = (c™*)*, dv*'. Hence, (4.18) constitutes a local decomposition
of the motion of a continuous medium into a rotation followed by a displacement
and a final “stretching.”®

The tensors ¢’; , C*5 and R*; measure the finite relative deformation and
rotation of two configurations of a continuous medium in the way we have
described. In order to summarize the description of the motion in terms of these
tensors we may state: The mapping z° = 2°(X*) carries a sphere of points in
the neighborhood of a given point X* in the configuration C, into an ellipsoid
of points in the neighborhood of z* in the configuration C. Conversely, a sphere
of points in the neighborhood of 2* in the configuration C is carried into an
ellipsoid of points in the neighborhood of X* by the inverse mapping. The
principal axes of the ellipsoids are eigenvectors of the symmetric tensors ¢’/
and C, 5 . If the eigenvalues of ¢’ and C,, are distinct, there is a unique set
of three mutually orthogonal directions at X* which are carried by the mapping
into three corresponding mutually orthogonal directions at z°. These directions
are the three uniquely determined eigenvectors of C,p and of ¢;; , respectively.
The principal extension ratios (1 + dr) are related to the eigenvalues of c;;
and C,p by (1 + 6r) = VCr = 1/\/6—1-. The rotation tensor R*; rotates the
translated orthogonal triplet of eigenvectors of ¢;; into coincidence with the
orthogonal triplet of eigenvectors of C45p .

In order to reduce the general theory of the elastic dielectric to a linear approxi-
mation which can be compared with the classical linear theory of Voiar and
others, we shall have to show how the tensor measures, ¢, C, and R, of finile
strain and rotation are related to the corresponding measures of infinitesimal
strain and rotation. Let R* and 7* be the position vectors of the material particle
P in the configurations C, and C. The components of the position vectors in
the arbitrary coordinate systems X“ and z° are related to the rectangular
Cartesian coordinates Z7 of P in C, and Z5 of P in C by the formule,

M . 0X* ; « Oz

R® = Z3 37 =275 37 (4.20)

where X*(Z) and 2°(Z) are the coordinate transformations (3.2). The total
covariant derivatives of the position vectors reduce to

Ry = 8%, r,=208. (4.21)
The displacement vector of the particle X* is defined by
U* = g"s* — R*. (4.22)
From (3.13), (3.18), and (4.21), it follows that
v =gsU%4 + 6% (4.23)

8 Note that if and only if dX4 is an eigenvector of C4p will this final stretching not involve
a further rotation of the vector dz*/.
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XA:»‘ = gAi(aii - ui:i) (4~24)
where U“ 5 and u';; = U”,g'4s are called displacement gradients. Note that
these are distinct tensors and, in general, we do not have u*,; = g¢°.g%;U" 5 .
Eliminating z*,, and X*,; from (4.23-24) we get

UB;A = gBigiC(Uc;A + BCA)ui;i . (425)

It follows from (4.25) that if the physical components [21] of either set of dis-
placement gradients are small, then the physical components of the other set
are correspondingly small. To first order terms in the displacement gradients,
(4.25) reduces to

Uspia = ¢'8¢ i - (4.26)

Substituting (4.23) and (4.24) into the defining relations, (4.3) and (4.5), of
the Cauchy-Green deformation tensors, we obtain expressions for these tensors
in terms of the displacement gradients,

Cus = gaz + (Uais + Usia) + genU°uU” 5, (4.27)
i = Gii — (Wiyi + 45 + guuta’y; (4.28)

Eliminating z*,, from (4.18) and (4.23), we get
Ra® = g% (Ucis + gca)- (4.29)

Retaining only first and zero order terms in the displacement gradients, we
obtain the following approximate relations from (4.27-29):

Cas = gan = (Usis + Usi) = 2Ess (4.30)
Gii — Cii =2 (Ui + u;) = 285, (4.31)
gii — (N e, (4.32)

Rip — Gap = 3(Usis — Uain) = Qpa (4.33)
Qs = 39749 (i — Uiis) = g'a0’s041 (4.34)

where we have introduced the notation £, and Q4 5(&;; and w;;) for the sym-
metric and antisymmetric parts of the displacement gradients U, s(u;.;).
The symmetric and antisymmetric parts of the displacement gradients are the
tensors used to measure infinitesimal strain and rotation in the classical linear
theory of elasticity and in Voriar’s theory of the elastic dielectric. The approxi-
mate relations (4.30-34) exhibit clearly the relations between these tensor
measures of infinitesimal strain and rotation and the tensor measures of finite
strain and rotation. In addition, it is seen that no distinction need be made
between the displacement gradients Ua,z and u;,; in any description of the
deformation of a continuous medium which discards all nonlinear terms in either
set of displacement gradients.



5. Static MecuANIicaL EquiLiBrium oF ConTINUOUS MEDIA

Let the dielectric medium occupy a regular region V' with boundary B. We
assume that the medium is in static equilibrium with a set of mechanical surface
tractions T° and an external electric field E; . If a particle in the medium is
polarized there will be an interaction of the particle with the external field.
This interaction gives rise to an extrinsic body force density f* and an extrinsic
body moment density m*’ which act on the particle. The magnitude and direction
of this force and moment will depend on the degree of polarization as well as the
strength and direction of the external electric field. We defer giving explicit
forms for the force and moment until later.

The surface tractions and external field exert a resultant force FZ, on the
dielectric. The components of this resultant force are given by the integrals

FA, = fv g AV + fB gt T ds. (5.1)

The particles of the medium also exert forces on each other. For example, the
cohesive forces which bind the medium into an elastic solid are of this inter-
particle type. Also, if the medium is polarized, the electric self field of this
polarized matter interacts with a given polarized particle of the medium. These
interparticle forces are sometimes classified according to their “range’ of inter-
action. Thus we hear of ‘short-range’”’ and of ‘“long-range’” interactions. As
we shall see later, there is some advantage to introducing these concepts in a
continuum theory as well as in the theory of particle interactions where they
usually occur. Whatever way the forces of mutual interactions of the particles
of the dielectric may be classified, we shall make the stress hypothesis. Thus we
assume the following: Let v be an arbitrary regular region of space. This region
may be either entirely or partially contained in V, or its intersection with V
may be zero. The forces of interparticle interaction between particles contained
in v and the particles in V' — v are equipollent to a system of stress vectors dis-
tributed over the surface of the region ». Let b denote the surface of v. The
stress vector field is a function only of position on the surface b and on the
direction of the normal to b.° Let #* denote the field of stress vectors. We have
then ¢ = #'(z*, n) where n; are the components of the unst outward normal to
the surface b at the point 2°. Thus, the stress vector field is not an ordinary
vector field whose components are functions only of position. The resultant
force exerted by the particles in the region V' — v on the particles in the region
v is given by

® Thus we exclude phenomenon such as surface tension. To include such effects, we would
have to assume that the stress vector might also depend on local properties of the surface
other than the direction of its normal, e.g., its curvature.

864
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4 f,, g*t'(x, m) dS. (5.2)

The total force on the particles contained in the region » is the sum of the resultant
extrinsic force and the resultant interparticle or intrinsic force (5.2). This total
force on the arbitrary region v has the form,

Pt = fbg“,-ti ds + fm g T dS + fm g ft dv, (5.3)

where v N\ B denotes the set of points common to the region » and the boundary
of the dielectric. If the medium is in static mechanical equilibrium, this total
force vanishes for an arbitrarily chosen region v. Applying this condition of equi-
librium to a tetrahedron with a vertex which is not a point of B and passing
to the limit of vanishing dimensions of the tetrahedron, we can demonstrate
the existence of a stress fensor field /() such that

t'x,n) = t"(®n, . (5.4)

Thus, the stress vector is the contracted product of an ordinary tensor field
of second rank and the unit normal n. The proof of this standard result depends
on the assumption that the stress vector is bounded and continuous throughout
space (except at the surface B) and that the extrinsic body force is everywhere
bounded. We may also apply the condition of vanishing total force to a pill-box
region which contains points of the surface B. On taking the appropriate order
of limits as the dimensions of the pill-box approach zero, we obtain the important
boundary condition,

[l + TF = 0. (5.5)

In (5.5), [t''] = ¢**' — ¢ %', where ¢**" and £/ are the limiting values of the
stress tensor as the surface B is approached from the exterior and interior of
the dielectric respectively.'®

10 There are alternative methods of formulating the stress hypothesis and its consequences.
For example, in elasticity theory, many authors prefer to identify what we have called ‘“‘surface
tractions” with ¢*¥n;. The boundary condition corresponding to (5.5) then reads [¢/]n; = 0,
and t*¥/n; is regarded as prescribed data. With the arrangement of definitions we have used,
the stress tensor in ordinary elastic media vanishes outside the medium; hence, ¢*/n; would
be zero in (5.5). If the medium is polarized, however, this is no longer true. What we have done
here is to make the stress hypothesis only for the forces of interaction of a limited part of the
overall mechanical system—that is, for the forces of interaction between the particles of the
dielectric itself. Thus we have treated the extrinsic and intrinsic force systems quite differently.
The action of outside agencies (the environment) is to be described by a body force and surface
traction—the interaction of the particles of the dielectric itself by a system of stress vectors.
The two methods of description of force systems are not entirely equivalent. The use of ex-
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The resultant moment exerted on the dielectric by the surface tractions and
external electric field is given by

o= f g*ig®m’ AV + f g4, T — T dS
v B (5.6)
+ [ o' — r'sY av,
Vv

where the r* are the components of the position vectors to the points of applica-

tion of the forces.
The interparticle interaction gives rise to a resultant moment on the region

v which is given by

MiE = f g*.g%0't — r't) ds. (5.7)

b
The total moment on the region v is given by
MAB = f gAigBi(r‘Ti . riTi) das _|_ j gA‘gBi(rifi . ,rifi) av
»N\B NV
5.8
+ f g*:g®m AV + f gh:g”0't — 17t dS.
NV b

If the medium is in static mechanical equilibrium this total moment on an
arbitrary region v must vanish. From these integral forms of the conditions of
equilibrium it follows that if the stress tensor is continuously differentiable except
perhaps at points of the boundary of the dielectric then at equilibrium we have

trinsic body forces and surface tractions in continuum mechanics arises from a desire to focus
attention on a limited part of the physical universe. For example, the effect of the earth’s
gravitational field on the mechanical behavior of continuous media on or near the earth’s
surface is usually accounted for by a body force type of description. The self gravitational
field of the material and the counter effect of the body upon the earth is neglected in many
applications. However, for bodies of large size such as the earth itself, this cannot be done
and a classification of the forces of interparticle interaction into a “body force” and a “‘stress
tensor” is not particularly appealing or profitable. It may still be desirable in a theory of the
mechanics of the planet Earth, to introduce the gravitational force of the sun and other
planets as an extrinsic body force. In a universal or cosmological theory, a unified treatment
of the entire system of forces by means of a stress hypothesis would probably be a more funda-
mental formulation of the basic equations of continuum mechanics. However, unless we set
ourselves the problem of the mechanics of a completely self contained mechanical system, the
device of describing the environment of a limited system which is in interaction with outside
agencies by means of a body force and surface traction seems particularly useful. It allows us
to simplify the problem by not having to give a detailed account of the mechanics of the external
agencies and of the counter effect of the system under consideration upon its environment.
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tii','+fi=0 st——B

(5.9)
;=0 z2eE—V —B

i—ti+mi=0 zeV-—B

(5.10)
" —t"=0 z¢eE—-V -—B
where E denotes all of Euclidean space. If we formally define f* and m'’ to have
the value zero outside the dielectric we avoid the need for writing (5.9), and
(5.10); .

CaucHY’s equations of force balance (5.9) and the CossErRATS’ moment
equations (5.10) constitute the local conditions of static mechanical equilibrium
of a continuous medium. If the extrinsic body moment vanishes, as it usually
does in pure elasticity theory, (5.10) reduces to the usual rule that the stress tensor
be symmetric. In a theory of the elastic dielectric, greater care and attention
must be given to the moment equations (5.10) than is necessary in elasticity
theory.



6. THE MaxweLL-FArRADAY THEORY OF THE
Evectric FieLp 18 DiIELECTRICS

According to the Maxwell-Faraday electrostatic theory of dielectrics, the
electric field is determined by the two conditions,

f Bide; = 0, (6.1)
(4]

fs Din, dS = Q, (6.2)

and a constitutive relation between the components of the displacement vector
D' and the Maxwell-Faraday electric field E, . The form of this constitutive
relation between D and Ey may depend on any of the variables which describe
the local state of the medium. In a vacuum, the constitutive relation reduces
to D* = e,Ey where ¢, is a dimensional constant. The surface S in (6.2) is the
boundary of an arbitrary regular region R, and  is the total free charge con-
tained in R. By (6.1), the line integral of the electric field around an arbitrary
space curve C vanishes. For our purposes here, a sufficiently general form for
the total charge @ will be

Q=fRadV+Z  dS 6.3)

BiN\R

where ¢ is the volume density of free charge and w is the surface density of free
charge defined over a set of closed surfaces B, . These surfaces are normally
the surfaces of electrical conductors. The electric field and displacement vanish
inside a conductor. Let the constitutive relation between D and Ey be written
in the form

D' — ¢,Ey = P'(Ep). (6.4)

We shall call P* the polarization density. The polarization density vanishes in
vacuum and in electrical conductors. The local state of a dielectric medium may
be characterized in part by the value of the polarization density. That is, we
may choose the polarization density as one of the independent variables of
state for an elastic dielectric. Let V again denote the region of space occupied
by the dielectric and let B denote the boundary of V. Let P* be zero everywhere
except in V. Let V, denote the regions enclosed by the charge bearing surfaces
B, and let V, denote the remainder of space. We assume that the electric field
and displacement are continuously differentiable functions of position in each

868
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of the regions, V, V., and V, . It then follows from the law (6.1) that in each of
these regions we may represent the electric field as the gradient of a scalar field,

Ep = —o'. (6.5)

We also assume that the electric field suffers at most a finite discontinuity at
the surfaces B and B, . We can then use (6.1) to prove that the jump [¢] in the
scalar field ¢ is at most a constant over each of these surfaces. Since Ey, deter-
mines only the gradient of ¢, we may thus assume without loss in generality
that ¢ is continuous throughout space. The scalar field so defined is called the
electrostatic potential. From (6.2) it follows that in each of the regions V, V.,
and V, we have

eo‘P,ii = —0o + Pi.i . (6-6)

It also follows from (6.2) that at the boundary of the dielectric where the polari-
zation is discontinuous the discontinuity in the normal derivative of the electro-
static potential is given by

eoni[‘l’,i] = ni[Pi]; (6.7)

where n’ is the unit normal to the surface of the dielectric. At the surface of a
conductor we have

en'le.d = . (6.8)

If one now adds the boundary condition that ¢ vanish at infinity the Poisson
equation (6.6) and the boundary conditions (6.7) and (6.8) determine the
electrostatic potential uniquely throughout space. The solution can be put in
the form

cso(X) = f o1/ dV + 3 f w(1/r) dS oo
koo 6.9

_ fV P/ dV + f Pini(1/r) dS

where r = V/ (r* — g ,R4)(r;, — g5,Rp) and (+ — g°,R*) are the components of
the position vector of the point of integration z° relative to the point X* at
which the potential is evaluated. Let us put ¢ = ¢, + ¢us Where ey pys is the
sum of the last two integrals on the right-hand side of (6.9) and ey, is the sum
of the two remaining integrals. The exirinsic field E, will be given by the negative
gradient of ¢, . The negative gradient of ¢ys will be called the Maxwell self
electric field of the dielectric and will be denoted by Eys . The potential of the
self field is seen to be equivalent to the potential of a volume distribution of
free charge (—P°,;) plus a surface distribution of free charge (P‘n;) over the
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boundary of the dielectric. These are called the Poisson-Kelvin equivalent charge
distributions of a polarized dielectric. If the electrostatic potential is calculated
from (6.9) for a point where the free charge or equivalent charge distributions
do not vanish, the integrand of one or more of the integrals will be infinite at
the point owing to the factor (1/7). In such a case, the value of the integral is
defined by a limit process. A detailed discussion of the convergence of improper
integrals of this general type can be found in [16]. Omitting details, we outline
here the definition of such improper integrals. If F(x) is singular at the single
point x4 e V, then the integral of F over the region V is defined by

f FdV=1lim [ Fdv (6.10)
1’4

d—0 JV=-yp

where v is a regular region containing the point x, and whose maximum chord
is d. If the limit exists and is independent of the shape of the region v, the integral
is said to converge or to exist and its value is defined as the limit of the sequence
on the right-hand side of (6.10).

Accordingly, each of the integrals in (6.9) can be shown to converge for
every point X“. If the point X* lies outside the dielectric we may differentiate
the integral expressions for ¢ys under the integral sign to obtain

eoBls = f P/ A4V — fB Piny(1/n) * dS. 6.11)

We now make the observation that (1/r),“ = —(1/r) ‘g*.—a result which
may be readily verified by direct calculation of the two different derivatives
of the expression which defines the function 7(X*, z*). If this substitution be
made for the factor (1/7),* in (6.11), and if Green’s theorem be used to transform
the resulting surface integral into a volume integral, certain terms will cancel
and the final result can be put in the form,

eoBlls = [V AP AV = — fV P A V. (6.12)

Thus, the self field at a point outside the dielectric is given by a generalized
“Coulomb’s law.” It is for this reason that P is called a polarization density.
We cannot use (6.12) to calculate the electric self field at a point inside the
dielectric. This is so because the integral expressions for the potential of the
self field inside the dielectric have singular integrands and the order of integra-
tion and the subsequent differentiation of the potential cannot be interchanged.
That is, if we made the formal attempt to evaluate the self field inside the
dielectric using (6.12), the integrals would not converge. This does not constitute
a flaw in the Maxwell theory. The potential (6.9) which converges everywhere
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must first be obtained, then its gradient may be computed without ambiguity.
Within the context of Maxwell-Faraday electrostatic theory, the issue of con-
vergence of (6.12) for points inside a dielectric medium is not relevant. It does
give rise to the so-called Kelvin cavity definitions of the electrostatic field within
a polarized dielectric. A region of definite shape may be excluded from the region
of integration in (6.12). Taking the limit as the maximum chord of these differ-
ently shaped excluded regions tends to zero, one obtains values of the electric
self field which can be varied continuously between certain finite limits. Without
further hypotheses of a physical nature, no one of these cavity fields suggests
itself as having superior physical significance in the electrostatic theory of
dielectrics. As we have seen, the two Maxwell-Faraday laws of electrostatics
(6.1) and (6.2) are sufficient to determine a unique self field inside and outside
a dielectric which is polarized a given amount. For example, if a sphere of
dielectric material is homogeneously polarized to an amount P°*, the Maxwell
self field is a constant field inside the dielectric and has a value given by
Eys = —(4n/3¢,)P¢. In the next section we take up certain modifications and
extensions of the continuum theory of the electrostatics of dielectrics which
were discovered by LorENTz. The self field of a polarized dielectric will be our
major concern.



7. THE LorenTz THEORY OF THE ELECTRIC
FieLp 1vn DiELECTRICS

LoreNTz has calculated the electrostatic field of an array of point dipoles
arranged on a uniform space lattice [9, pp. 305-308]. If the distance between
neighboring particles is small compared to the overall dimensions of the lattice,
a correspondence may be set up between the electric field of the set of particles
and the electric field of a polarized continuum. Of course, since the electric
field of an array of point dipoles varies rapidly in the neighborhood of each
particle and contains a singularity at the position of each particle, a correspond-
ence between the field of a set of particles and the smooth, differentiable Maxwell
field must involve some degree of approximation or some averaging process.
We shall review the Lorentz theory here and use his result to motivate an
independent hypothesis concerning the electric self field of a continuous elastic
dielectric medium. The Lorentz theory of the self field will be presented in a
manner which illustrates the physical point of view which we wish to carry
over into the continuum theory and which places our hypothesis concerning
the electric self field in elastic dielectrics in the most favorable light of known
results on particle models of dielectric media.

Let z" denote the components of the position vector to the «** lattice site of

a uniform lattice. Let h¢ (I' = 1, 2, 3) be three vectors whose directions coincide
with the crystal axes and whose lengths are proportional to the lattice spacing.
We can choose the constant of proportionality so that the parallelepiped formed
by the At will have unit volume, 7.e., Vg det hi = 1. The lattice vectors can
be expressed in terms of the kr as follows:

r= bt + nohi + i) = €32 nehi 7.1

where the np are integers which pick out the lattice vector 7*. Let v, = ¢ denote

the volume of the unit cell of the lattice. We shall consider here the case of a
uniformly polarized lattice with a single particle in each cell. Each lattice site
is occupied by a point dipole p* and by uniform polarization we mean that p*

is independent of the index . Let p* denote the common value of the p*. Let

r = V{(¢*+r' — R*(¢g'4r; — R,) denote the distance between the lattice
site r* and the point whose position vector is R. If R does not coincide with a

lattice site, the electrostatic field of the array of dipoles has a value at X* which
is given by the sum,
872
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eoEg(x) = ZP‘(I/Q).BAQB.'

) 3(£igiA - RA)(z"ng - Ra)g®: g% 72
= P r° I

If the point X* coincides with a lattice site, the field is given by the sum (7.2)
with the infinite term omitted. If such be the case, we will indicate the modified
summation by placing a prime on the summation sign. Now let » be an arbi-
trarily small but finite regular region which contains the lattice point g" and

let V — v be a regular region which contains the lattice points not in ». Divide
the sum (7.2) into two partial sums, E¢|, and EQIV_,., where the former
is the sum over all r* ev» and the latter over all ' ¢ V — v . Let r =

v (¢*+* — R*(¢"sr« — R,) be the distance from the lattice site z*" to an arbitrary

point 7* in the region V — ». The function (1/7) is analytic throughout V — v,
and the function (1/7) ;’g*; is Riemann integrable over this same region. From
the definition of the Riemann integral we have

- P(1/n) 4 dV = — lim > P'(1/n) * AV, (7.3)

V-v =0 n
r=rn

where r, is any point which lies in the three-dimensional interval AV, . P; is
a constant vector whose value we will assign in a moment. The limit is inde-
pendent of the manner in which the region V — v is subdivided into intervals
AV, and independent of the manner in which one chooses the points r, within
the intervals. Hence, we may choose the intervals AV, so that they are the cells
of a regular lattice whose corner points are given by (7.1). At the boundary
of the region, the intervals may consist of partial lattice cells. We may choose
the points r, so that they coincide with the lattice points (7.1). Let us now
identify P’ as the ratio, p’/v, = p°/€’. Let the limit AV, — 0 be identified as
the limit ¢ — 0. In this way we see that the integral (7.3) is the limiting value
of the sum E¢|,_, as the dimensions of the lattice cell approach zero and the
dipole moment of each particle approaches zero in a manner which maintains
the ratio p°/¢ finite and equal to P’. Now if the lattice has cubic or higher
symmetry, the primed sum Eg“l, , representing the field at r* of the dipoles
0

within any sphere with center at 7°, vanishes for every finite value of e. Hence,
0

the limit of this sum as ¢ — 0 exists and has the value zero. Thus, if the dimen-
sions of the unit cell and the dipole moment on each lattice site are allowed to
approach zero, maintaining the ratio p’/v, = P’, then the self field of a lattice
having cubic symmetry when evaluated at a lattice site is given by
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Bt = — f Pl A dv (7.4)
V—-v

where the region v is a sphere whose center is at the lattice site and P’ is the
constant density of dipole moment.

The volume integral (7.4) may be transformed into the sum of two surface
integrals, one over the boundary of the sphere » and one over the boundary
of the dielectric. Since P’ ; = 0, we have

Bt = — fb Pin,(1/n) * dS + fB Pin,(1/1).4dS = (4n/3)P* + eBls,  (7.5)

where we have evaluated the first surface integral explicitly and have identified
the last integral as the Maxwell self electric field at an nferior point of a uni-
formly polarized continuous medium with polarization density P*. If the lattice
has symmetry lower than cubic, then in general a different value of the excess
of E§ over the corresponding Maxwell-Faraday field Ejs is obtained. Whatever
the lattice symmetry may be, we shall write E¢ in the form

E{ = E{ + Eps (7.6)

where E, is called the Lorentz local field. If a cubic lattice is deformed homo-
geneously and the deformed lattice has lower symmetry than cubic, then the
local field will have a value which differs from (4w/3e,)P*. Hence, the local field
is a function of the lattice deformation. The deformation of a lattice may be
described quantitatively in the following way. The three linearly independent
vectors hr which we now let represent the crystal axes of the deformed lattice
are the result of rotating and elongating the vectors Ht which define the crystal
axes of the undeformed lattice. If one puts Ar = S°,H7 , then S°, is determined
uniquely in terms of the ¢ and H# . It is assumed, of course, that neither det A7
nor det H? is zero. If we introduce the set of three vectors B} which are reciprocal
to the Ht , t.e.,

Bi = 3Vg " encHiHS,  BiHi =i, D BiHD = &,

then (7.7)
SiA = Z h;BE .
T

The nine parameters S°, afford a quantitative measure of the deformation of
the lattice cell. If more than one particle occupies each cell of the lattice, further
parameters may be introduced to describe changes in the internal configuration
of the particles in a given cell. If the lattice deformation is not homogeneous,
then S°, will vary from cell to cell and we must label the parameters S°, by
the cell index o. If there are N cells in the specimen, a general inhomogeneous



THE ELASTIC DIELECTRIC 875

deformation of the specimen is described by the 9N parameters S°, . Recall

that in the section on kinematics of confinuous media, it was shown that the
vector dX“ at X* is carried by the mapping z*(X*), which describes the relative
configurations of the particles of a continuous medium, into the vector dz’ =
z*,4 dX* at the point z°. If this be compared with hf = S*,H?f , we see that
the continuum analogues of the ;g" 4 are the displacement gradients z°, ,(X*).

The displacement gradients are continuous functions of the material coordinates
X* which replace the discrete index o of the S°, . In the lattice theory, the local

field at a lattice point r* depends on the S*, and p’ for the cells in the immediate

neighborhood of the point 7*. In the continuum theory, we shall set down as a

primitive assumption that
Es = Ens + Ez(xi:A ’P‘)' (7.8)

That is, the electrostatic self field of a polarized and deformed continuous elastic
dielectric is the sum of the Mazwell elecirostatic self field and a local field which
18 a state function of the displacement gradients and polarization density. We
assume that the relation (7.8) holds not only in dielectrics having a crystal
structure but also in elastic dielectries such as rubber or plastic.



8. Tue EquaTtions oF INTRAMOLECULAR Force BALANCE

It may be said that in adding the polarization vector to the list of independent
state variables of an elastic medium we have ascribed an internal structure to
the continuum “particle.” That is, independent of the values of the displacement
gradients which provide a quantitative description of the relative configuration
of the particles in the neighborhood of a given one, the magnitude and direction
of the polarization vector at a point describes the internal structure of the
continuum particle. The forces which maintain this internal configuration must
be a static equilibrium system of forces as well as the system of forces which
maintain the relative positions of neighboring particles at stationary values.
For our purposes here, it proves convenient to refer to a dumbbell model of
a single “particle’” in an elastic dielectric. According to this model, a polarized
particle consists of two equal electric charges of opposite sign separated along a
line parallel to the polarization vector. If this particle is in static mechanical
equilibrium, the forces which act on either charge must have a zero resultant.
The electrical force which acts on a charge ¢ placed in an electrostatic field E
is just ¢E. The electrostatic field which acts on the charge in an elastic dielectric
has three distinct components—they are (1) the Maxwell electric self field Eys ,
(2) the Lorentz local field E, , (3) the external or extrinsic field E, . In addition
to the resultant electrostatic force due to these three components of the electro-
static field, other forces act on either charge of the polarized particle. These
are the molecular forces which are made up of the Coulomb attraction between
the charges of the particle, dynamical forces and other non-classical or quantum
forces. Let ¢F denote the resultant of all these molecular forces. Then at static
equilibrium we must have

qF* + E{ + Eys + Eg) = 0 (8.1)

which is just the Newtonian law of force balance applied to either charge of
the polarized particle. We shall set F* + E, = E; and call the sum of these
two terms the effective local field. We shall assume that the effective local field in
an elastic dielectric is a state function of the displacement gradients and polarization
density. Thus we have

Ei(@'.4 ,P) + Ei + Eys = 0. (8.2)

We call (8.2) the equation of intramolecular force balance. The total Maxwell
field is just Ey = Eys + E, ; so that we can write (8.2) in the form™'

E{a'a ,P) 4+ Ei = 0. (8.3)

1 Equation (8.3) could be written in the form D¢ = ¢Ejy + P¢ = Di(z}, , Ey) which is
formally identical to a constitutive relation between the displacement vector, the Maxwell
electric field, and the displacement gradients. A constitutive relation of this type is always
assumed to exist in Maxwell-Faraday electrostatic theory. We have arrived at a relation of
this type using notions of mechanical equilibrium. The two points of view are quite different,
however. Equation (8.3) is a condition of static equilibrium, not a constitutive relation. Its
form would change if we passed to the dynamical case. As we shall see in §10, the equilibrium
condition (8.2) results quite naturally from a principle of virtual work.
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9. Tue Form or THE STrESS TENsor, ExTrinsic Boby Force
AND ExTrINSsic Bopy MoMENT IN AN ErLastic DiELECTRIC

In elasticity theory it is assumed that the stress tensor is a state function of
the displacement gradients. That is, the displacement gradients are the only
state variables and a constitutive relation between the components of the stress
tensor and the displacement gradients which is characteristic of the particular
elastic material is assumed to exist. To assume a constitutive relation between
the stress and displacement gradients implies the physical notion that the stress
tensor at a point in the material is determined solely in terms of the local state
of the medium. The state of the medium at distant points may be altered without
changing the values of the stress tensor components at a given point. The
existence of a constitutive relation between stress and local deformation also
implies the physical notion of ‘‘short-range’ forces. Thus, in pure elasticity
theory it may be said that the elastic response of the medium is due solely to
“short-range” forces. This assumption is in need of modification for the elastic
dielectric. Here, in addition to the “short-range” elastic forces which are deter-
mined by the local state of the medium, the polarized dielectric interacts with
the self field. We have made the stress hypothesis and have assumed that this
interaction together with the ‘‘short-range’ interaction will be described by a
system of stress. Now it is known from MaXwEgLL’s work that the resultant
electrostatic force on a region containing polarized matter is given by [, gitue n; dS
where #y¢ is the Maxwell stress tensor given by

tne = eoBnsEns + EnsP’ — YeEnsg’ . 9.1)

It is clear that the Maxwell stress tensor is not a state function if the displacement
gradients and polarization density are the independent state variables. It has
the same form in all materials. For a given global state of polarization, we can
determine the value of the Maxwell stress using the laws of Maxwell-Faraday
electrostatics.

We shall assume that the stress tensor in a polarized elastic dielectric has the form

£ =t 4, P + tid (9.2)

where t' is a state function called the local stress. Note that the Maxwell stress
tensor does not vanish at points outside the dielectric. The resultant electrostatic
force on any region which lies entirely outside the dielectric is zero. The local
stress will be assigned the value zero outside the dielectric.

The interaction of the polarized dielectric with the extrinsic field Ej is given
by the following expressions for the extrinsic body force and extrinsic body
moment: '

=B P, (9.3)
m' = P'Ej — P'E; . 9.4)
Since e,Eys.: = —P* ; , it follows that tys,; = Ejs.;P’ at every point of con-
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tinuity of Eys and P. However, at the boundary of the dielectric where P is
discontinuous so also is the self field. From the boundary -condition
[eoEhs + P'In: = 0, we deduce that the discontinuity in the stress vector of
the Maxwell tensor at the boundary of the dielectric is given by

[l = GedP'ny)n’. (9.5)
Summarizing these results and substituting the special forms for the stress

tensor, body force, and body moment into the force and moment equations
(5.9) and (5.10) we get the following system of equations:

ti; + tis.; + Eo PP =0 (9.6)
t' — 0’ + tis — t + EP* — E;P' =0 9.7)
E{+Ei+Ews=0 (9.8)
which may also be written in the form

6 + By P =0, | 9.9)
i — ti' + E\P' — EWP' =0 (9.10)
E{ + Ei=0. (9.11)

Substituting (9.5) into the boundary condition (5.5), we obtain
—ti'n; + (Geo)P'n)’n’ + T° = 0. (9.12)

Recall that #*' denotes the limiting values of the local stress as the boundary
of the dielectric is approached from the interior.

In order to complete the summary of equations and boundary conditions
which will determine the behavior of elastic dielectrics we list the following
results from Maxwell-Faraday electrostatic theory:

eooms, s = P'Lo (9.13)
en’[ows. ] = n'[P]. (9.14)

Finally, in addition to the above equations and equations (9.9-12), two sets
of constitutive relations characteristic of the material must be given. These are

i = ti'z' 4, PY) (9.15)
and

E{ = Ei(z" .. , PY). (9.16)

The form of these constitutive relations for the local stress and the effective
local field is restricted by certain symmetry properties of the material. Further
restrictions are also imposed by the manner in which the dependent variables
must transform as the deformed and polarized body is rotated rigidly in space.
We take up these questions regarding the form of the constitutive relations in
greater detail later.



10. A PrincipLE oF VirTUAL WORK
FOR THE ELrasTtic DIELECTRIC

In elasticity theory there are two methods which have been used to arrive at
stress-strain relations [12, p. 173]. The method used by CaucHY was to assume
that the components of the stress tensor were functions of strain. GREEN’s
method assumes the existence of a stored energy function which is a function
of strain. An energy or work principle is then used to establish formule for the
components of the stress tensor in terms of certain combinations of the partial
derivatives of the stored energy with respect to the variables used to measure
the strain. The stress-strain relations obtained by these two different procedures
are not always identical. By CaucHY’s method, we obtain stress-strain relations
which contain those obtained by GREEN’s method as a special case. To this
point, we have not used the mechanical concept of work nor have we made any
use of the concept of stored energy in formulating the equations of an elastic
dielectric summarized at the end of the preceding section. By assuming that
the local stress and effective local field were functions of displacement gradients
and polarization we have followed a procedure analogous to CaucrY’s method
in elasticity theory. In this section, we wish to present a natural generalization
of GREEN’s method which yields equations and boundary conditions equivalent
to those already proposed. As a generalization of the result in elasticity theory,
we shall show that the constitutive relations for the local stress and effective
local field will follow from a single stored energy function which is characteristic
of the material.

The natural state of an elastic dielectric is the equilibrium state which the
material assumes in the absence of applied surface tractions and an external
electric field. Let the material particles of the elastic dielectric be identified by
their coordinates X* in this natural state configuration. As before, let «* denote
the coordinates of the particles in the deformed and polarized equilibrium con-
figuration when surface tractions T° and an electric field E; are applied. If
X* and z* are the coordinates of the same material particle in the natural and
deformed configurations, then

z = z'(XY). (10.1)
As X“ ranges over the region V, occupied by the body in its natural state,
the correspondence (10.1) constitutes a continuous mapping of the region V,
onto the region V occupied by the body in its deformed and polarized state.

Let B, and B denote the boundary of the dielectric in the natural and deformed
states respectively. The fofal mass of the dielectric body is given by

M=f pdV (10.2)
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where p is the mass density in the deformed state. Let J denote the absolute
scalar given by

det i

dot g.s |det z°.4| = det g*;2° .4 . (10.3)

J=+

The law of conservation of mass may be stated in the form
po(X*) = Jp(x'(X"), (10.4)

where p, is the density of mass in the natural state. If the body is homogeneous
in the natural state, p, is a constant independent of X 4. We have found it con-
venient to introduce the polarization per unit of mass as an independent variable
of state instead of the polarization per unit of volume. Let 7* denote the polariza-
tion per unit of mass. We have then

P = pr'. (10.5)

If the polarization per unit of mass is defined for each point in the deformed and
polarized body, we have a vector field =°(x) defined on the region V. There is a
corresponding vector field defined on the region V, by the following process:
Let the vector #°(x) at the point x be translated by parallel displacement to
the point X which is the position in the natural state of the material particle
now at x. Thus we have ’

X)) = ¢*:(X, O7'(x); (10.6)

whereby a vector field =*(X) is defined over the region V, occupied by the
body in its natural state. Conversely, if we are given the field 7* we may generate
the field #* by the inverse process,

= glurt. (10.7)

Since the mapping (10.1) has been defined only over the limited regions of
space that are occupied by the natural and deformed states of the dielectric
medium, the correspondence between tensor fields defined by the process just
described can only be extended over these same two limited portions of space.
We could regard all of space as being filled with a continuous material medium.
A correspondence between material particles would then give us a mapping
like (10.1) between every pair of positions in space. Suppose, however, that a
portion of space is devoid of material matter. What physical significance could
then be attached to a mapping of such a region upon another? A question of
this nature arises in our work here in connection with the electrostatic potential
of the self electric field of the polarized dielectric. We have met the problem in
the following way which appears to be logically sound and physically correct.
Let us formally extend the mapping (10.1) throughout all space in an arbitrary
fashion. We require only that it join smoothly with the mapping of V onto
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Vo to which we have ascribed physical significance and that it have as many
derivatives as we shall need for convenience. A correspondence between tensor
fields can now be set up throughout space with formule analogous to (10.6)
and (10.7). In particular, if o(x) is the electrostatic potential of the self electric
field of the polarized and deformed dielectric, it has a value at every point x
and we can define the function ¢(X) for every point X by setting

e(X) = o(x(X)). (10.8)

Let 2 denote the stored energy function of deformation and polarization.
That is, the stored energy Z is a state function and we have

3 = 3, , 7). (10.9)

The principle of virtual work for the elastic dielectric is as follows:

a[— [ 2 a 7 a + 3o, [ etesav+ [ 0P, dv]
v E v (10.10)

+f T.8'%" dS +f o6zt AV +f pEo;d''n dV = 0.
B Vv 14

The last three integrals in this variational expression represent, respectively,
the work done by the applied surface tractions if the boundary of the dielectric
is displaced from equilibrium by a small amount &’z°, the work done by the
body force if any point in the dielectric is displaced from its equilibrium position,
and the work done by the external field in changing the polarization a small
amount from its equilibrium value. The sum of these three virtual work terms
is set equal to the variation in potential energy of the elastic dielectric. This
potential energy is written as the sum of three parts which are enclosed in the
large brackets in (10.10). The first of these terms represents the variation in
the stored energy of deformation and polarization. This term is quite analogous
to the stored elastic energy of elasticity theory. The second term is the variation
in the potential energy of the self electric field. The third term in the bracket
represents an interaction energy between the self field and a polarized particle
of the dielectric.
The independent variations of the field variables are now listed:

2'X) - z'X) + §'2'(X) (10.11)
(X) - X)) + 'm(X) (10.12)
P(X) = oX) + 8""¢(X). (10.13)

The total variation 6 of the terms in large brackets in (10.10) means the resultant
first order change in the value of these integrals under the replacements
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(10.11-13). Note that the total covariant derivative of the electrostatic potential
is used in (10.10). Thus we have ,; = ¢,,X*.; . Some useful preliminary results
are now listed:

8x'.0) = (8'2%) 4 (10.14)
6(XA;;) = —XA;,-XB;;(B':I:");B (10.15)
oJ = JX*..(8'2)a (10.16)

— e A ’ A
5(‘!’::’) = (6 ‘P);AX i T @40 (X :1’) (10.17)

= (") — @i(8'2") ;.
We shall also use the Euler-C. Neumann identities [12, p. 140],
(XA:iJ):A =0, (J_lxi;A);i = 0. (10.18)

Since the boundary of the region V is subject to variation, it is convenient to
transform all the integrals in (10.10) into integrals over the undeformed body
V, or over the region E — V, outside the undeformed body. These transformed
integrals will then have fixed limits and we may commute the operations of
integration and variation. If this be done we find that (10.10) can be put in
the form

_ 0z £ i 4= i A A(ﬁ):lli
Lo {[ Po ax"m + J(tMSi Imsi )X g+ T:N dSo o'w

+ [eo(E;\si - Erj\si - eg‘Pi)XA;i]J‘s’”?’}NA dsS,

az ;
+ {Pol:_alj + Ensi + Eoi:lg’AB"rA
Ve (10.19)

+ [(Po b(‘)_?_) + JtMSii:i + Jf.']a’xi
T a4l 4
+ J[—e Vo + V-Pl6"0 dVo}

+ {eaV%8""0 + tusi’ ;8’2" }J AV, = 0.
E-Vo
In writing the above result we have grouped certain of the terms using the
definition of the Maxwell stress tensor #js . We have also set Eys = — Vo. The
quantities N* are the components of the outward unit normal to the surface

of the undeformed dielectric. The ratio of the magnitudes of the surface elements
(dS/dS,) is given by

dS/dS, = J'\/(C—I)A_BN-ANB = J/w/_(c-—l g - (10.20)
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We thus obtain the following field equations which must be satisfied at every
point inside the dielectric:

T (00 222) st 4+ o' = 0 (1021
or 1A A
~32 4 Busi +Eu =0 (10.22)
™
—eVe + VP = 0. (10.23)

At every point outside the dielectric we must have

Vo =0 (10.24)
ths.; = 0. (10.25)

Equation (10.24) follows from the principle of virtual work by the requirement
that the variation of the electrostatic potential of the self field at a point outside
the dielectric will give no first order change in the left-hand side of (10.1).
Equation (10.25) follows from the same principle applied to a variation of the
mapping z‘(X) as extended to points outside the dielectric. But this extended
mapping was assigned no physical significance; therefore, it is a happy circum-
stance that the field equation (10.25) is satisfied identically if the field equation
(10.24) is satisfied.

In addition to the above set of field equations we obtain the boundary con-
ditions which we now list.

9z o _
P, Ny — (tusi’ — tws)X*iNa + T \/(C_’)ABNANB =0, (10.26)

leo(Ens’ — Ens’) — P'1X*, ;N4 = 0. (10.27)

In addition we have the continuity of the electrostatic potential which was
assumed in the variational principle. The field equations (10.21-24) and the
boundary conditions (10.26-27) are the material form of the equilibrium conditions
for an elastic dielectric. Using the identities (10.18) and the relation n; = JN ,X*,;
between the components of the unit normals to the deformed and undeformed
dielectric, the corresponding spatial form of the equilibrium conditions can be
obtained from the material form. It is as follows:

( 0z xi;A) . + tMSii:i + Eoi:iPi =0 (1028)

14 ax";,,

g—f—_ + Bis + Ei =0 (10.29)
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—eVe +V-P=0 (10.30)
z ;
—p 5 @ an; + lvsIng + T = 0 (10.31)
T ;a
(el Bis] — P)n: = 0. (10.32)

‘We need only to identify the local stress and effective local field as the expressions,

i 9z ;
' = pg it (10.33)
Ei = —g—f (10.34)

in order to make the above set of equilibrium equations identical in form to
the set of field equations and boundary conditions summarized at the end of
the previous section. We do not obtain the moment equation (9.7) as a direct
consequence of the principle of virtual work. We can, however, show that
the moment equation vs satisfied identically if the stored energy function is invariant
under a rigid rotation of the deformed and polarized dielectric. The proof of this
statement is based on the following well known result on invariant functions of
several vectors.

Let F(Vi, Vi, -+, Vi) bea function of the components V¢ (I' = 1,2, -+, n)
which is invariant under the substitutions

VI:. - SiiVIi

where 8°; is an arbitrary rotation; that is, g:;8°.8%; = g, and det §°; = 1. An
infinitesimal rotation has the form S°; = §°; 4 ¢; where ¢; is an arbitrary
antisymmetric tensor. Since

F(Vi, - Vo) = F(8,Vi, - 8V) = F(Vi, - V)
we have as necessary conditions

oF aV*

oo,

dSk; = O.
Hence, for differentials S*; about the values S*, = 6", (the identity transforma-
tion) the above condition reads

OF —.i: _
'6_I77 Ve i = 0

where e;; is an arbitrary antisymmetric tensor. This condition implies that
the coefficients of ¢;; in thjs expression are the components of a symmeiric tensor.
We use the notation 7'""™*' to denote the antisymmetric part of a tensor.
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For example, TV = L(T% — T¥). A necessary and sufficient condition that
a tensor of second rank be symmetric is that T"?' = 0. Thus we have the neces-
sary conditions

- Ve T T (1033

if F is a function of n vectors V¢ which is invariant to a rigid rotation of the
vectors. It can also be shown that the conditions (10.35) are sufficient to insure
the invariance of F under finite rotations."

If the deformed and polarized state of the elastic dielectric is rotated rigidly
in space, the displacement gradients and polarization vector change to new
values given by

24— 84
73" 4 Si,"ll'j.

Hence, if we assume that the stored energy function of deformation and polariza-
tion is invariant under a rigid rotation of the deformed and polarized state it
follows from the above theorem that

9z az
T 1 ZLina + G T = 0.
ax A ™

Multiplying this equation by p and using (10.33-34), it may be put in the form
' — E'P" = 0. (10.36)

This equation implies the physical notion that the moment exerted on a particle
of the dielectric by the system of local stresses is just the moment exerted
by the effective local field E, acting on the polarized particle. We should
comment that (10.36) is identically statisfied whether we are in an equilibrium
state or not. It depends only on the assumption that the stored energy function
is invariant to rigid rotations. If the result (10.36) is combined with the equili-
brium condition (10.29) we find that the moment equation (9.7) is satisfied
identically. That is, the equilibrium condition which we have called ¢nfra-
molecular force balance, together with the invariance of the stored energy function
to rigid rotations, insures that the moment equation will be satisfied. This is
to be compared with the corresponding result in elasticity theory where in-
variance of the stored elastic energy to rigid rotations is sufficient to insure
the symmetry of the stress tensor in that theory. As is sometimes done in elasticity
theory, we could impose the moment equation (symmetry of the stress tensor

2 The results stated in this theorem are well known consequences of the Lie theory of
compact groups.
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in the case of elasticity theory) as a side condition. The invariance of the stored
energy function to rigid rotations would then follow as a necessary consequence
of this side condition instead of by mere assumption. In a theory based on the
laws of mechanics, this latter arrangement is probably the preferred order of
stating the hypotheses.

We have demonstrated that the variational principle (10.10) yields field
equations and boundary conditions in complete agreement with the equilibrium
conditions of an elastic dielectric. The main additional result obtained by assum-
ing the existence of a stored energy function of deformation and polarization
and the validity of the principle of virtual work lies in the restrictions which are
imposed on the constitutive relations for the local stress and effective local field.
If the energy principle is used, we see that a single scalar function of the variables
of state is sufficient to characterize the mechanical and electrostatic properties
of an elastic dielectric completely. Without the energy principle, the same
formal set of equations and boundary conditions can be arrived at but the
constitutive relations for the local stress and effective local field must be given
separately in order to characterize the properties of the material. It is clear that
the energy principle leads to constitutive equations for the stress and effective
local field which are much less general than they are in the absence of a stored
energy function. As in elasticity theory, it is probable that for many elastic
dielectrics the restrictions imposed on the constitutive relations by using (10.33)
and (10.34) instead of the “Cauchy” forms (9.15) and (9.16) are desirable and
are actually borne out by experiment.



11. Tue HomoceENnEOUS IsoTropPic ELasTic DIELECTRIC

There are many important examples of elastic dielectrics which are homo-
geneous and isotropic. For a study of the effects of large deformations, rubber
is the first material which comes to mind. Early experiments on the photoelastic
effect were concerned with isotropic media such as glass. Today, the numerous
varieties of transparent plastics, which may be regarded as isotropic in their
natural state, are widely used in the study of the photoelastic effect. The piezo-
electric effect cannot occur, however, in isotropic media.

As we have seen, the properties of a particular elastic dielectric are determined
by specifying the form of a single scalar function of the state variables if we
adopt the energy principle set forth in §10. Hence, if an elastic dielectric is
isotropic or has any other type of material symmetry, this fact must make itself
known through the form of the stored energy function of deformation and polari-
zation. It is now our purpose to determine the most general functional form of
the energy function which is consistent with the assumption that a particular
elastic dielectric is homogeneous and isotropie.

The natural state of a homogeneous isotropic elastic dielectric is a state of
zero polarization. The surface tractions and extrinsic electric field vanish.
There are no intrinsic directions defined in the material. Without loss in gen-
erality we may assume that the stored energy has the value zero in the natural
state. We assume that the stored energy in the deformed and polarized state is a
single valued function of the following quantities and following quantities only:

2 = E(xi:A ) 7("’, gii » g‘A)‘ (11'1)

For emphasis, this may be compared with the case when an intrinsic direction
exists in the undeformed and unpolarized dielectric. The intrinsic direction
may be characterized by a vector H*. In this case, the stored energy function
could also depend on the components of the vector H. By excluding material
descriptors or tensors of this type from the list (11.1), we have given substance
to the physical notion of material isotropy. The homogeneity of the material
is given quantitative expression by the device of omitting the position vector
components B* from the list (11.1).

Two distinct types of invariance requirements will be made on the stored
energy function. These are, coordinate invariance and invariance to rigid rotations.
In many treatments of this and similar problems which arise in the formulation
of constitutive relations for continuous media, little or no attempt is made to
distinguish clearly between these separate demands. Here, in this work, all of
the kinematical and mechanical theory has been developed and presented in a
form which is invariant to an arbitrary simultaneous choice of two coordinate
systems—one for the description of the natural state configuration, one for the
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description of the deformed and polarized state. The transformation law of
each of the tensor variables listed in (11.1) is properly indicated by the type and
placement of the indices. Coordinate invariance requires only that = be an absolute
scalar function of the list of tensor variables. For example, a term proportional
to g*:z*., could occur in the stored energy function if coordinate invariance
were all that was demanded. That a term of this form cannot occur in the expres-
sion for the stored energy function which is also invariant to rigid rotations of
the deformed and polarized material will soon be made apparent. In §10, it was
shown that the moment equation will not be satisfied unless = is invariant to
rigid rotations. The transformation law of the variables listed in (11.1) under
a rigid rotation of the deformed and polarized body is given by

xi:A g xi:AS;E
i 7 Qi
it (11.2)
Gii > Gsi
g"A g giA

where S°; is a rotation tensor and satisfies the equations, g,;8.8°, = g ,
det S°; = +1. Note that the choice of the two coordinate systems is fixed so
that the components of the metric and shifter are not altered by this operation.
If the natural state of the medium is rotated holding the deformed and polarized
state fixed, the transformation law for the variables is

. . B
x‘:A - x‘;BS A

(11.3)

where S*; is a rotation tensor satisfying the equations g,58*¢S%, — gep = 0,
det S*5 = +1. Physically, the two transformations (11.2) and (11.3) represent
equivalent operations—namely, a relative rotation of the deformed and polarized
state and the natural state of the dielectric. If the stored energy function is
made insensitive to either type of transformation, it will automatically be
insensitive to the other.

We now make use of a theorem on invariant functions of several vectors
first given by Cauvcny [17]. If F(Vi, Vi, ---, V) is a single valued function
of the components of n vectors which is invariant to a rigid rotation of the
system of vectors, F must reduce to a function of their lengths and scalar products,
Ita = ¢:;ViVi , and the determinants of their components taken three at a
time, DI‘AT = 6,,;,V11‘VA7V';: .



THE ELASTIC DIELECTRIC 889

Let us now impose the condition that T be invariant under the substitutions
(11.2). By CaucrY’s theorem, = must reduce to a function of the following
variables:

Cus = 9:i%° 47" ;5 ,
O, = gix' am’,
2

L)
= ggmw,

(11.4)
J = %(det gA;)E;;kGAchi;Axi;Bxk;c ,

B { ] k
DA = ‘%(det gAi)E;,-)‘EA cx';Bx’;cw )
i
94,9 4 -

That is, if the stored energy function is to be invariant to rigid rotations, the
original list of variables in (11.1) can occur only in the combinations listed in
(11.4). We can now show, however, that the list (11.4) is somewhat redundant.
Since det C*z = J* and for real motions J is always positive, we can eliminate
J from the list (11.4) since it is determined by the variables C,z and g,5 .
Also, if we use the fact that D* = JX* .« it is not difficult to show that
Cup D® = JII, , or D* = J(C")*;II°. Since we have already shown that J
is expressible in terms of the C“; , we can now eliminate the variables D* from
the list (11.4). In this manner we reduce Z to a function of the variables now
indicated:

2 =32(Cup , Iy, 7, gii , g'a)- (11.5)

The next step is to require coordinate invariance under independent trans-
formations of either set of coordinate systems. With the exception of g*, and
gs; all of the quantities in (11.5) are absolute scalars under coordinate trans-
formations of the z*. The only absolute scalars which can be formed from the
metric and the shifter are the components g, » of the metric in the X“ coordinate
system. A well known result which we now use is that a coordinate transformation
of the X* can be made which simultaneously reduces the symmetric tensor
C 45 and the metric tensor g45 to diagonal form. Let C, , C, , and C; be the diag-
onal entries of the matrix C,5 in this special coordinate system and let II, , II, ,
and II, be the corresponding components of the vector I1.”* The metric has unit
entries along the diagonal. Thus, in this special coordinate system, the stored
energy function is expressible as a function of the Cr and II, and we have

z = 2(01 ) C. ) Cs y I, I, , 10, 7"2)° (11-6)

13 If the eigenvalues of C are unique, they can be ordered in such a way that C; > C; > Cs.
The coordinate transformation which diagonalizes C and produces this ordering is unique
up to a reversal in the direction of any one of the coordinate axes.
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Now under the coordinate transformation from this special coordinate system
to one which is obtained by a simple reversal of one of the coordinate directions,
the C; are unaltered, #* is invariant, but one of the components of the vector
I suffers a change in sign. Since X is a single valued function of its arguments
and invariant to arbitrary coordinate transformations, it must involve the
components of the vector IT only by even powers. By this line of reasoning we
see that = must reduce to a function of the arguments indicated below:

z = 2(C,C,;, Cy, ()% (IL)", (IL)*, ). (11.7)

It can then be shown that each of the arguments in (11.7) is a single valued
function of the six independent scalar invariants given by

I, = §%,C%, = trace C

I, = (31)655C°4C°5 = sum of the principal minors of C
I, = (1/3)02:C°4C"5C" ¢ = det C“5

I, =10, =1

(11.8)

I, = ¢41°, = n-C-I
Is = 7|'2.

The scalar invariants I, , --- , I, can all be written as functions of the strain
measure (¢”)%; :

I, =trc™
I, = sum of the principal minors of ¢™'

_ -1
I, =detc (11.9)

I, ==ctx
Iy ==m=-c" =
IQ = 7|'2.

This set is entirely equivalent to the set (11.8). Still other choices of the inde-
pendent variables can be made. For example, in making approximations it is
sometimes convenient to take the set obtained from (11.9) by replacing the
strain measure ¢! by the strain measure (¢™* — 1).

We have proven that a single valued stored energy function for an elastic
dielectric is reducible to a single valued function of the scalar invariants (11.8)
or (11.9). The classical theory of invariant functions of vectors and tensors [18]
is concerned primarily with the reduction of tensor invariant polynomial func-
tions of the components of a set of tensors to polynomial functions in a minimal
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set of basic tensor invariants which are the elements of the so-called ¢nfegrity
basis. We may state the general problem treated there as follows: Let F*®"""
be the components of a tensor F of given rank. It is supposed that the components
of F are polynomial functions of the components of a set of dependent variables
which we shall denote by H1? ™", H3® ", etc. This leads to a set of relations
having the form

AR FAB'--(H;&B"',H{;B"‘, - (11.10)

where the right-hand side denotes a polynomial in the variables listed. Let
T*, denote the elements of a “transformation matrix,” T. Under the trans-
formation T, the dependent variables F*®""" and each of the independent
variables are transformed according to a definite law of transformation. For our
purposes here, we may assume that this law of transformation is

FAB A mB . pCDees
=TT - F (11.11)
H?B.“ — TACTBD . HIC"D...

That is, the law of transformation is the linear homogeneous law of
transformation for tensors. The notation of (11.10) and (11.11) may be con-
veniently shortened by the use of the more abstract symbolic notation F =
FH, ,H,, ---),F = TF, Hr — TH . If F is an ¢nvariant tensor function of
the Hr under the transformation T, then

TF = F(TH, ,TH, , ---). (11.12)

More generally, a set of elements Tr which form a group G under the multipli-
cation law T33Tac = Tirc , are defined and the functional relation (11.12)
is required to be satisfied for each element of the group. The group may be
finite or continuous. For example, Tr may be defined as an arbitrary element
of the orthogonal group or Tr may be an arbitrary element of a finite subgroup
of the orthogonal group. The tensor F is then said to be an invariant tensor
function of the tensors Hr under the group of transformations G. A funda-
mental theorem of the classical invariant theory states that an arbitrary tensor
invariant polynomzal function of a set of tensors Hr under any finite or compact
group G, is reducible to a polynomial in a finite set of basic tensor invariants
I,,L,, -+, 1. If the set {I} is minimal, the set constitutes an infegrity basis
[18, p. 274]. The elements of an integrity basis may not be functionally independ-
ent. Polynomial relations called syzygies more often exist than not between the
elements of an integrity basis. Many important special cases of the above stated
problem of finding the integrity basis which is relevant to a given dependent
tensor F, a given set of variable tensors Hr and a given group G have been con-
sidered by the workers in this field of mathematics. It is sometimes difficult
to translate these known results, particularly those results found in the older
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literature on invariant theory, into the language we have chosen to state the
problem here. However, a little patience is well rewarded and answers to many
difficult problems can be found. For example, suppose that the F*?** are con-
stant functions and @G is the orthogonal group, then (11.12) reduces to

TACTBD e FCD — FAB,

where T, is an arbitrary solution of the equations gasT*cT?p — gep = 0.
Then it is known [18, p. 144] that the elements g*® of the metric tensor constitute
an integrity basis. That is, an arbitrary constant, invariant tensor of the orthog—
onal group is expressible as a linear combination of outer products of g*
with coefficients which transform as scalars under the group §. An immediate
corollary of this theorem is that there exists no constant invariant tensor of
the orthogonal group which is of odd rank. If F is an invariant constant tensor,
its rank is even and F has the general form

FAr4stdan Cw'“ngfiv“a ces gA'A" (11.13)

where (p, q, -+ , 7, §) is a permutation of the numbers (1, 2, --- , 2n) and the
C,q..-r. are scalars. We shall use the result (11.13) in §13 of this paper where
we consider polynomial approximations to the stored energy function. We
conclude this digression on classical invariant theory by pointing out that the
integrity basis for scalar invariant functions of a single symmetric tensor, a
single vector under the orthogonal group, the metric tensor g;; , and its inverse
¢*" under the full linear group (arbitrary coordinate transformations) is a known
result of classical invariant theory [19, p. 61]. But this is just the problem which
confronts us in the reduction of the stored energy function of an elastic dielectric
after reaching the point (11.5) if we demand that = be a polynomial in the
variables listed in (11.5) and we wish to preserve the polynomial character of =.
The scalar invariants (11.7) and-(11.9) also constitute an infegrity basis for the
same variables under the full linear group. That is, f we assume that the stored
energy function is a polynomial function of the components (¢™V):; , =, gii , °°,
it 1s expressible as a polynomial in the basic invariants I, , I, , --- , I . Since
the set of basic invariants I, , I, , --- , I are functionally independent, there
are no syzygies.

Let us assume that, for some range of values of the invariants Ir , = is a
differentiable function of the Iy . Then, from (10.33) and (10.34) we have

. o2 oIy
t = p}: oT. oo, & (11.14)
i a I
El = 92 9%, (11.15)

T aIr (91!’1
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Working out the various expressions (8Ir/dz°;4)2’.4 and 8I:/dw; , and sub-

stituting in (11.14) and (11.15) we obtain the following expressions for the
local stress and effective local field in an isotropic elastic dielectric:

j
s

i =17 0z —2\7
2P{13815 +(8[ +I13[)( ! _6_12'(02)-'

0% , s 3% . os 0% , vs o
ol (™) r'ms oL, () ' + 3T, ™) ule ‘);'mwk}

(11.16)

E}

(“) + (‘2) +—a'}' (11.17)

The above set of constitutive relations between the local stress, effective local
field, strain, and polarization are the general form which they take in isotropic
homogeneous materials if we assume the validity of the energy principle. In
the next section, we shall determine some simple solutions of the equilibrium
equations using the stress-strain-field-polarization relations for isotropic materials.
These special solutions reveal many interesting physical phenomena predicted
by the general non-linear theory.



12. SomE SIMPLE SOLUTIONS FOR AN ARBITRARY FORM OF THE
StorED ENERGY FuncTioN oF Isorroric DiELECTRICS

We shall consider, first, the simple shearing of an infinite slab of homogeneous
isotropic elastic dielectric whose deformed and undeformed boundaries are the
planes X' = 0, a. We here choose the X* and z* coordinate systems to be one
and the same rectangular Cartesian system. By simple shearing of the slab, we
mean the deformation indicated by the mapping,

=X, £L=X"+8X, 22=X° (12.1)

where the constant 8 is a measure of the amount of shear. In addition, let the
dielectric be polarized in the amount,

n=(m,m,0) (12.2)

where 7, and m, are constants throughout the slab. For the deformation (11.1),
the z°. , has the matrix of values

1 00
[lz*all = I8 1 O (12.3)
0 0 1

from which it follows that J = det |z*,,| = 1, whence p = p, . The deformation
tensor (¢™')*; has the form

1 B8 0
el =18 146 0. (12.4)
o o 1

The Maxwell self field of the polarized slab is equivalent to that of a uniform
surface charge density of strength P-n/e, = =pomi/e, on the faces of the slab,
the positive sign holding on the face ' = a, the negative sign holding on the
face ' = 0. The self field is of the form

Eps = [—pom/e , 0, 0] 0<z<a
Evs = [0, 0, 0] <0 (12.5)
: T >a.

Since the deformation, the polarization, and the Maxwell self field are homo-
geneous, the divergence of the local stress and the Maxwell stress vanish sep-
arately, #{’,; = Ius;; = 0. Hence, the slab will be in equilibrium in the absence

894
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of an extrinsic body force. The extrinsic body force will vanish provided the
external field E, is uniform throughout the slab. The external field E, plus the
Maxwell field Eys must be equal and opposite to —dZ/dx’ at each interior
point of the slab, so that

¢ ¢ 92
Ey, = —Eyps + . (12.6)

is a condition of equilibrium. Working out the consequences of this requirement,
we find

_ z
E(‘) = eolpoﬂ'l + 2{(771 + ) gI—

+ [+ 85m + B2 + B’)m] + ™ } (12.7)

Eg 2{[6771 +@0+8 )7"2] + B2+ 8 )7"1
(12.8)

+ [+ 36" + Bml 57+ ma 57

E;=0. (12.9)

Consider for a moment the expression (12.8) for Ej . It is a rather general
function of the parameters =, , 7, , and 8,

Eg = Eg(‘”l y M2y :8)) (12'10)

whose form is not known explicitly until one specifies the stored energy function
> explicitly. Let us regard the parameters 8 and , as having specified values
and attempt to satisfy the condition E; = 0, by suitable choice of =, . For
given B3, there is always the solution obtained by setting =, = w, = 0. Then,
if the derivative 9E;/dm, is non-zero and continuous, we are assured of non-zero
solutions m, = m,(m, , B) in some neighborhood of the zero solution. This follows
from the theory of implicit functions [20]. Hence, we may contemplate an equili-
brium state of a sheared elastic dielectric slab in the presence of an applied field
E, which is normal to the faces of the slab. In general, the polarization of the
slab will have a component 7, perpendicular to the applied field for non-zero
values of the shear measure 8. This will, of course, give rise to an extrinsic body
moment of the form

0 -Poﬂ'zEé 0
m'’ = ||pn’E, 0 0 (12.11)
0 0 0

tending to rotate the slab about the z° axis.
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Consider, next, the boundary condition (10.31), which implies that to maintain
the state of deformation and polarization, mechanical surface tractions T*
must be applied to the faces of the slab. They are given by

T = ti'n; — [teiln; . (12.12)
We find that
[t,f\é]n, i(zeo (Pl)2) 0) 0)) (1213)

the positive sign holding at the surface ' = a, and the negative sign at the
surface ' = 0. Hence, the Maxwell self field gives rise to a stress system which
exerts an apparent normal surface traction on the faces of the slab which tends
to elongate the slab. A normal surface traction over and above that required
to balance the local stress ¢{'n; must be applied to maintain the prescribed state
of deformation and polarization. Using the stress-deformation-polarization
relations (11.15) for the local stress, we find that the total surface traction
which must be applied to the face of the slab, ' = a, in order to maintain
equilibrium has components given by

9 z 5
T1=2po{( Vo +a1, Mf)—g’ﬂ(wﬁ)
+ (314 + 2 - -}e;lpo)(m)2 (12.149)

F) ) 2 92 2 2
+ﬁ<a_L+4675 ra k8 S e+ )+ 8 3 e

52) 2

9z 6

9z 2
+ <614 + 2 BI )‘"’1""2 + 6( 3 a'_Is)(ﬂ'x)

+ B oI, (7|'2)2 + ﬁ( +5 61—5>7|'17l'2

(12.15)

g2z T ) + @)Y+ 6 5T 92 m}

T, = 0. (12.16)

At the face z' = 0, tractions equal in magnitude and opposite in direction to
those listed above must be applied.

A number of qualitative features of the theory are apparent upon examination
of the above expressions for the surface tractions. Since the theory is equivalent
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to the theory of finite deformations of homogeneous isotropic perfectly elastic
solids if one neglects the dependence of the stored energy function on the in-
variants I, , Is , and I, , all of the qualitative features of that theory will occur
here as possibilities even in the limit of vanishing polarization. If the various
scalar coefficients in the expressions for surface traction are thought of as power
series expansions about the undeformed and unpolarized state, =, = m, = 8 = 0,
there occurs a term in the normal component of the surface traction of order
zero in the polarization components and of second order in the shear measure 3.
This is the well known Poynting effect, whereby to maintain a state of finite
simple shear, tangential surface tractions are insufficient. This is a non-linear
effect and does not occur in the classical linear theory of elasticity. There also
occur terms in the normal component of the surface traction which are of zero
order in the shear parameter 8 and which involve the components of the polariza-
tion to at least the second power. We identify the existence of such terms with
the well known electrostrictive effect. It is sometimes argued that the electro-
strictive effect is due solely to the tendency of the Maxwell field to elongate the
slab, but it is apparent here that what might be called the local field electro-
strictive effect may either support this tendency to elongate or have an overriding
influence in the opposite direction tending to shorten the slab. The ambiguity
that remains is similar to that which remains at this stage of development of
the theory of non-linear elasticity in any discussion of the sign of the Poynting
effect. It is possible that arguments based on stability or thermodynamic in-
equalities may dictate the positive or negative character of the electrostrictive
phenomenon, but we do not enter upon these questions here. It is also clear on
examination of the terms in 7', that there is a modification of the electrostrictive
effect due to shearing of the slab. If we assume, as is reasonable, that =, ~ 8,
then this deformation-polarization cross effect is of at least second order in the
shear parameter, and hence would not occur in a linear theory of the deformation.

As a second example, we consider the homogeneously deformed and polarized
ellipsoid.

KEeLLoGa [16] exhibits the solution of the following problem in potential theory:

VU = —«k/e, 2xeV, « = constant, (12.17)

VU* =0 zeE — V. (12.18)

The region V is the interior of an ellipsoid with semi-axes a, , a, , and a; . The

solution is rendered unique by the conditions, (1) U = U* at the boundary B

of the ellipsoid, (2) U,; = U*; at B, (3) U* regular at infinity. We now demon-
strate that ¢, as determined by

o= —=U_ P/« zeV, P’ = constant, (12.19)

*

@ —U* P/« zeE -V, (12.20)
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is the potential of a homogeneously polarized ellipsoid. That is, ¢ is a solution
of the potential problem,

Vie=0 zV (12.21)
Ve*=0 2zeE—-7V (12.22)
[€0¢_i - eocp*'; - Pi]ni =0 r e B. (12.23)

It follows from (12.17-18) that ¢ and ¢* satisfy (12.21-22). From the continuity
of the gradient, U ; , it follows [16] that the jump [U ;;]=U.;; — U*..; = Kn;.
The symmetry of [U ;] in the indices 7 and j allows one to set [U,;;] = Knn; .
We can evaluate K by taking the trace of this latter form and employing the
field equations (12.17-18) satisfied by U and U*. In this manner we deduce that

leil=0;—o¢*; = —[U..1P/x = es'nn;P'. (12.24)

Substituting this result for the jump in ¢,; into the boundary condition (12.23),
we readily verify that it is satisfied by this solution; furthermore, the solution is
unique.

The solution for the potential U at interior points of the ellipsoid [16, p. 194] is

U = —A1$2 - A2y2 - A322 + D (12.25)

where the A; and D are positive constants given by

Ar = iala2a3’(e|§ ‘/;m ds/(al% + 8V ()

D = la,a.0;ke;" j; i ds/ VvV ¥(s) (12.26)

¥(®) = (ai + 9)(a; + )(az + 9).

In the solution (12.25), the center of the ellipsoid is at the origin. The principal
axes of the ellipsoid coincide with the coordinate axes of the rectangular Car-
tesian frame, (z, ¥, 2). In a general coordinate system, U has the form,

U = —A‘ii 1"' bt r;)(ri - T:)) (12.27)

where the proper values of the symmetric tensor A4,; are the Ar of (12.26),
and the principal directions of A;; are the principal directions of the ellipsoid.
The r* are the components of the position vector of an interior point of an ellip-
soid centered at the point 7§ . Thus, the Mazwell self field, Eys = —¢.°, in the
intertor of a homogeneously polarized ellipsoid, is a homogeneous field whose value
1s given by

Ejs = —A*P'. . (12.28)
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This is a known result of electrostatic theory, and is of major importance for
obtaining non-trivial inverse solutions for a deformed and polarized elastic
dielectric. It is conjectured that the ellipsoid and its various degenerate forms,
such as the sphere and the infinite slab, are the only bodies for which a homo-
geneous polarization field leads to a homogeneous self field at interior points.

Consider the homogeneously deformed and polarized ellipsoid whose interior
points satisfy the condition S;;(r* — 75)(r’ — r§) < 1. A general homogeneous
deformation may be characterized by the condition,

x‘:A;B = xi;A:i = 0. (12.29)

The equilibrium condition (10.29) requires the applied field E; to be uniform
throughout the body. Since the applied field is uniform, the extrinsic body
force, which is proportional to the gradient of E, , vanishes. The equilibrium
condition (10.22) reduces to £,”;; = 0. Since all of the quantities upon which
t," depends are constant tensor fields in a homogeneously deformed and polarized
ellipsoid, the equilibrium condition (10.22) will be satisfied for homogeneous
deformations of an elastic dielectric ellipsoid subjected to a uniform applied
electric field.

Using the boundary condition (10.32), it can be shown that the non-local
part of the stress, fys;’, 7.e., the Maxwell stress, always yields an apparent surface
traction [fws:In; = %es'Pin; , where P, is the component of polarization normal
to the surface. The surface tractions required to maintain the homogeneously
deformed and polarized ellipsoidal dielectric body in equilibrium will be

T; = t..'n; — 3e;'Pln, . (12.30)

The local part of the stress, £;", will be given by the expression (11.15) with
(¢, and =° restricted to the class of constant tensors. The uniform external
field required to maintain equilibrium will be

= AP + (;972 (12.31)

In principle, the solutions (12.30) and (12.31) for homogeneous deformation
and polarization of an ellipsoid would be sufficient to determine the stored
energy function Z(Ip) if sufficient data relating measured values of the (T, , Es)
to the corresponding values of ((¢™");; , =) were available.

As an illustration of the solutions (12.30-31), consider the case when the
principal directions nr of the deformation tensor ¢™*, and the principal axes
of the ellipsoid coincide. Let =° be in one of these directions, say =i , and let
7 be its magnitude. For this case, the applied field given by (12.31), is parallel
to the polarization and has magnitude E, given by

_ 8%y, 932 ya 502
EO - [pAl + 2 014 (cl) + 2 615 (cl) + 2 616]”. (12‘32)
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At the vertices of the ellipsoid, the surface tractions are normal to the surface
and have magnitudes T" given by

-1 62 -2 _

-1 az -2
2P{I3 BI + (6[1 + I, ol, )(cl) B_Ig (c) (12.33)

T(F)

T(l)

+ (59—124( D7+ 2 (c,)‘2 — i p)(vr )}

The solution (12.32-33) for this subclass of homogeneous deformations and
polarization of an ellipsoid is not sufficient to determine the stored energy
function completely. The essential lack of generality in this solution results
from the requirement that the polarization be in the direction of a principal
axis of the deformation tensor. However, in principle, sufficient information
about the form of T can be obtained from data relating measured values of the
(T‘", E,) to the corresponding values of (cr , ) in this class of solutions to
enable one to make quantitative predictions in the general problem of plane
strain of an elastic dielectric polarized in a direction normal to the plane of strain.



13. Anisorropric DIELECTRICS

In many applications of elastic dielectrics, the deformations are extremely
small. Voiar’s theory of the piezoelectric effect is based on constitutive relations
for the stress and electric field which are linear in the displacement gradients
and polarization. We wish to show that the linear constitutive relations of this
classical theory are contained as a special case of (10.33) and (10.34). However,
since the piezoelectric effect can occur only in anisotropic media with exceptional
symmetry properties, we shall have to consider first the conditions imposed
on the form of the stored energy function by the symmetry of an anisotropic
medium.

A fundamental assumption of our energy principle is that the stored energy
is a single valued function of the 9 + 3 = 12 variables 2°, , and «°. In the course
of our discussion of isotropic dielectrics, we made the functional character of
2 more explicit by assuming that

z = z(wi:A ’ 7"ia Jii giA)' (13.1)

That is, the metric tensor and shifter were explicitly listed as variables. This
was done so as not to exclude the dependence of = on variables such as =; = g;;x’
or 4 = g°,m; , which represent (measure) the same physical quantity. It was
stated that, for isotropic materials, the energy function depends only on the
variables listed in (13.1). This was motivated by the notion of material isotropy
of the natural state.

Now in anisotropic dielectrics we shall again single out the natural state as
the state of zero polarization.'* It is the equilibrium state of the dielectric in
the absence of applied surface tractions and external field. The local stress and
effective local field vanish in the natural state.

The point symmetry of a crystalline medium may be fully characterized by a
finite subgroup of the orthogonal group. We shall also be interested in aniso-
tropic media which are not crystalline. For example, materials which possess
transverse isotropy are of some interest in elasticity theory [15, 21, p. 160]. We
shall make our discussion of anisotropic media general enough to include the
case of curvilinear anisotropy [21, p. 164]. An example of a curvilinear anisotropic
state of a continuous medium is the case of an elastic medium which is isotropic
in some natural state and which has been deformed inhomogeneously. At each
point in the deformed medium, the symmetry may be characterized by the group
of orthogonal transformations which generate the eight equivalent points of
the Cauchy deformation ellipsoid (the quadric of ¢;;) corresponding to a given
point on the ellipsoid. Stated otherwise, it is the subgroup of the orthogonal
group which leaves the Cauchy deformation quadric invariant.

W hatever may be the material point symmetry of a particular state of a continuous

1 There are examples of materials possessing a permanent polarization or electric moment.
We do not consider these materials here.
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medium, we shall assume that the symmetry is fully characterized by some subgroup
G of the orthogonal group 0.

This subgroup may be finite as in the case of crystalline media, or may be
continuous as in the case of transversely isotropic media. In a given coordinate
system X“ with metric g4 5 , each element of the orthogonal group has a matrix
representation 7% which satisfies the equations

gABTAcTBD — gep = 0. (13.2)

Under coordinate transformations, the elements of the matrix 7“5 transform
as the elements of a mixed tensor of rank two. Hence (13.2) is a coordinate
invariant definition of an “orthogonal matrix.”
An snvariant fensor of the group G is any tensor which satisfies each of the
equations,
T4 T4, -+« T3 HP:B20 ' Br = g dn (13.3)

for every element T of the group. If H*?'*" is an invariant tensor of the group
which characterizes the point symmetry of the natural state of a continuous
elastic medium, we shall call H*®""* a maferial descriptor or simply a material
tensor. Note that an arbitrary scalar satisfies (13.3).

If the natural state is homogeneous, all the material descriptors are spatially
constant. A spatially constant tensor is one whose covariant derivative vanishes.

The characteristic group for materials whose natural state is isotropic is the
complete orthogonal group. According to a previously mentioned result (11.12),
the material descriptors of isotropic materials are tensors of even rank which
can be constructed by taking linear combinations of products of the metric
tensor. The coefficients in these linear combinations are arbitrary scalar material
descriptors. If an isotropic material is also homogeneous, it follows that each
of these scalar coefficients must be spatially constant.

If the characteristic group of the material symmetry of the natural state of
an elastic dielectric is a proper subgroup of the orthogonal group we shall call
the dielectric anisotropic. If the material descriptors are not all spatially constant,
we shall say that the material is inhomogeneous. If the material symmetry of
the natural state is described by one of the thirty-two finite crystal groups, we
shall call the material a crystalline dielectric.

An assumption which generalizes (13.1) to the case of anisotropic media and
which includes (13.1) as a special case is that the stored energy function depends
only on the following list of variables:

2z = E(xi:A y"ri) HgB.“r Gii » giA) (134)

where the set of tensors Hf®"" (I' = 1, 2, ---) denotes the set of material
descriptors. Let us adopt the convention that given the dependence of £ on
the contravariant components f* of any tensor that the possible dependence of
= on the covariant or shifted components, f; = g:;f*, f* = g*:f* is to be under-
stood. Using this standard convention, (13.4) may be shortened to

D=3, , 7w, HEE). (13.5)
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We have introduced, so far, three distinct types of transformations on the
variables which occur in (13.5). These are: (I) independent coordinate trans-
formations of the two coordinate systems which simultaneously span the Euclidean
space; (II) the two groups of rotations—the first of which corresponds to rigid
rotations of the deformed and polarized dielectric, the second of which cor-
responds to a rigid rotation of the natural state of the dielectric; (IIT) the sub-
group G of the orthogonal group which describes the material point symmetry
of the dielectric. The law of transformation of each of the variables under these
three groups of transformations is as follows:

(I) Under coordinate transformations, each of the variables transforms
according to the general transformation law for two-point tensor fields given
in §3. The index notation and the convention regarding the type and position
of the indices are sufficient to identify at a glance the law of transformation of
any particular set of variables in (13.5).

(IT) A. Under the group of rigid rotations of the deformed and polarized
dielectrie, the variables transform according to

x4 — 8t
7 — 8’ (13.6)
H#B“. ——)H#B.“

(II) B. Under the group of rigid rotations of the natural state of the dielectric,
the variables transform according to

xi;A N SBAxi;B
= —mw; (13.7)
H?’B.”_)SA(,'SBD e ng....

Note that material descriptors are invariant under a rigid rotation of the de-
formed and polarized state and that the polarization is not. The converse is
true for rigid rotations of the natural state.

(III) Under the group G, characteristic of the material symmetry, the variables
transform according to

xi:A - xi:A
- (13.8)
H?B”. — TACTBD .. ng...

where T is an arbitrary element of the group G. Note that under this group of
transformations, the displacement gradients and the polarization are invariants.®

15 In physical theories, yet another type of transformation of the variables is important.
These are the dimensional transformations. TRUESDELL [12] has considered the restrictions
placed on the form of some types of constitutive relations by the requirement of dimensional
invariance.
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A fundamental assumption in this theory of anisotropic elastic dielectrics is
that the stored energy function of deformation and polarization is absolutely tnvariant
under each of the three types of transformations (I), (II), and (III).

We shall consider the restrictions placed on the form of the energy function
by each type of transformation in the order (IIT), (II), (I). Since we have already
assumed that the H7”... are material descriptors, no further conditions on the
form of I follow from (III). That is, each and every variable listed in (13.5) is
invariant under (III), hence an arbitrary function of the variables is invariant
under (III). Next, consider the transformations (II). Precisely the same argu-
ment which carried us from (11.1) to (11.5) in the case of isotropic materials
allows us to conclude that if 2 is invariant to rigid rotations of the deformed
and polarized state, it is reducible to a function of the variables indicated now:*®

2 = 2(Cas ,a , H™), (13.9)

where the C,p are the components of the Cauchy measure of strain C,z =
g’ az’,5 , and the II, are given by II, = z*,,m; . Note that the I, are not
the shifted components of =; . We shall refrain from giving the vector II, any
physical interpretation.

In the case of isotropic materials, we were able at this point to use the in-
variance of ® under the coordinate transformations (I) to demonstrate that a
single valued stored energy function of an isotropic dielectric must reduce to a
function of only six independent variables—namely, the six scalar invariants
(11.7-8). A further result which we were able to establish was that the same six
scalar invariants constituted an integrity basis. Unfortunately, we are unable
to proceed with such generality here in the case of anisotropic media. This is so
for a number of reasons. First of all, the number and rank of the material de-
scriptors is not known until the material symmetry is specified. Each type of
material symmetry must therefore be considered separately. Depending on
the type of material symmetry, the invariant theoretic problem which must be
solved may involve considerable labor. For these reasons and others, we have
assumed a special form for the energy function which allows us to proceed with
the theoretical development without a specification of the material symmetry.
The classical linear theory of the piezoelectric effect will be shown to follow
from this special form for the energy function if the special constitutive relations
for the local stress and effective local field are linearized.

16 We have omitted writing #2 in the list (13.9) since it is a single valued function of the
C4p and II4 . In discussing the isotropic case, we retained #2 in the list of variables since we
were also interested in the case where = was a polynomial in the variables listed. Since #?
is not a polynomial in the C4p and TI4 , a polynomial in the set C4p , Iy , #* is not reducible
in general to a polynomial in the functionally independent set C4p and I . Of course, 7% can
be written as a power series in the remaining variables so that polynomials in the C4p and
I, can approximate a given analytic function of 72 as closely as desired. Since we shall later
assume that = is a polynomial in C4p and I , the effect of eliminating #2 from the list (13.9)
should be understood at this time.



14. A SpeciaL Form ror THE SToreED ENERGY FUNcCTION—
PoLynoMIAL APPROXIMATIONS

We have shown that the energy function of an anisotropic (includes isotropic
as a special case) dielectric is reducible to the variables listed in (13.9). For
purposes of approximation, it is convenient to introduce the tensor measure
of strain B, = (Cap — g4p) which vanishes in the natural state. No loss in
generality is incurred by writing (13.9) in the form

Z = 2(B4p , 1, H:® ). (14.1)

Any single valued absolute scalar function of these variables is a possible energy
function for some elastic dielectric. Since each of the variables E, 5 and II,
vanishes in the natural state, we have been led to consider the following special
form of the function

P2 = HOAHA + HIABHAHB + HzABEAB + HaABCDEABECD + H4ABCEABHC
+ HSABCDEABHCHD + HGABCDEEABECDHE
+ H,A2PEFE s B opllpIl, (14.2)

where the H#®"" (I' = 1,2, --- , 7) are independent of the E,z and IT, . It
follows that the H#? " are material descriptors of the rank and type as indicated
by the number and position of their indices. The invariance of £ under each
type of transformation (I), (II), and (III) is insured. Since this special form of
the stored energy function satisfies all of the invariance requirements withous
approximation, we can regard it in either of two ways: (1) the exact form of
the energy function of an elastic dielectric which may or may not be found in
nature, or (2) the first few terms in a power series expansion about the natural
state of an arbitrary elastic dielectric. As a polynomial in the E, and I, we
have included all possible terms of order zero, one, and two in the E,, and all
possible terms of order zero, one, and two in the polarization. In the sense of (2),
it can only be expected that quantitative predictions based on this form of the
energy function will be accurate for sufficiently small values of the strains and
for weak fields. '’

Many of the terms in (14.2) may vanish identically owing to the material
symmetry. For example, if the natural state is isotropic, there are no material
descriptors of odd rank; hence, no terms of odd degree in the polarization can
oceur in (14.2) if the dielectric is isotropic. This constitutes a formal reason why

7 From dimensional considerations which we do not give here, it is possible to establish
dimensionless criteria for “small strain and weak fields.”
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isotropic dielectrics do not exhibit the piezoelectric effect. The tensor coefficients
in (14.2) will be assumed to have the same symmetry as the tensor of variables.
For example, in the term H,*?II,II; , only the symmetric part of the tensor
H,*® contributes to the value of the indicated sum over A and B; therefore, it
is assumed that H,*% = H,%“.

We have established the general formule for the local stress and effective
local field when the energy principle is adopted. These are

i_ 02 ;
' = p 61:’.;4 T a4 (14-3)
S 62.
E' = o, (14.4)

It is a matter of straightforward calculation now to determine the form of the
stress-strain-field-polarization relations of an anisotropic media whose stored
energy function is given by (14.2) or whose stored energy function is approxi-
mated by this form for sufficiently small strain and polarization. To carry out
this calculation, it is convenient to introduce the following preliminary formuls:

xj;c‘ AB — xi;Bx';A + x‘;Ax’;B = M:;B ,
axi:C
x5 =g ' =Ny
;B dx;;B A A
9L, ;
—4 = .
a1r,~ A

We find that the local stress and effective local field have the form
%tii = H/NJ + 2H,*’Nill; + H,*’ M} + 2H,**°°M ;3B ¢p
+ HQABC jﬂiBHC + HQABGEABN'.(? + H5ABCDM:'{BHCHD

+ 2HA B SN + 2, B s Mol + Ho** B 5B ooN's
+ 2H7ABCDEFEABHEHFM?D + 2H7ABCDEFEABECDHEN{I§ )

(14.5)

POE{ = _[HOA:C‘;A + 2H1A8xi;.4nu + H4ABCEABxi;c
+ 2H5ABCDEABHCxi;D + HeABcDEEABEcnxi;E (14.6)
+ 2H7ABCDEFEABECDHE:”‘;F]-

It follows from (14.5) that, if the local stress is to vanish in the natural state,
we must set H,*? = 0. Similarly, it follows from (14.6) that, if the effective
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local field is to vanish in the natural state, we must set H,* = 0. Since M is
symmetric in ¢ and j, it is a simple matter to write down the antisymmetric
part of the local stress. We have

% tll.m = [2H1ABHB + H4BCAEBC + 2H5DBCAEDBHC
+ HeEBCDAEEBECD + 2H7FBCDEAEFBECDHE]A E:“-

(14.7)

Multiplying (14.6) by =’ and taking the antisymmetric part of the tensor
{po/0)E'P’ obtained in this manner, we verify that

By = BEP. (14.8)

This result serves to check the general theorem proven in §10, (10.36). That is,
since the special form for the energy function (14.2) is invariant to rigid rotations
of the deformed and polarized dielectric, we are thereby insured that the moment
equation will be satisfied as an algebraic identity if the constitutive relations
(14.5) and (14.6) for the local stress and effective local field are adopted.

We next take up the questions of approximate constitutive relations, lineari-
zations, small rotations, approximate invariance of the stored energy function,
etc. We shall show that by linearizing the forms (14.5) and (14.6) we obtain
Voiar’s piezoelectric constitutive relations.



15. Linear1zaTIiONS OF THE CONSTITUTIVE RELATIONS
oF AN Erastic DIELECTRIC

To effect a comparison of the constitutive relations (14.5-6) corresponding
to the special form of the stored energy function (14.2) with the stress and field
relations of VoigT’s linear theory we must first write (14.5-6) in terms of the
displacement gradients u,,; or Uy, which were defined in §4. As pointed out
in §4, the symmetric part of either of these tensors is the customary measure_of
infinitesimal strain. To first order terms in the components of either set of these
displacement gradients we have u;,; &~ ¢g*:9°;U4,5 . That is, according to the
convention by which we regard the shifted components of a tensor merely as
a different representation of the same tensor, no distinction need be made between
the two sets of displacement gradients u,,; and U, ; however, if the displace-
ment gradients are not regarded as infinitesimals they are not equivalent ten-
sors.'’® In order to show that Voigr’s linear piezoelectric constitutive relations
are contained in (14.5-6) as a special case, it is sufficient to linearize these
expressions with respect to both the displacement gradients «,,; and the polari-
zation m; . In order to show that various non-linear generalization of Voigt’s
linear relations which have been proposed are not contained as a special case of
(14.5-6), it is sufficient to linearize with respect to the displacement gradients
only and to retain all the terms in the polarization. Therefore, for either purpose,
we may first examine the approximate form of (14.5-6) obtained by regarding
the displacement gradients u;,; (or Ug,s) as infinitesimals. This linearization
process is facilitated by the use of the approximate relations:

i R (g‘AgiB + g"agi,;) + (giAng + gingA)“i:k + (giAng + gisg"A)ui;k
S gi,41r‘ + gkAui;kﬂ'i
A git gl

Substituting these approximate expressions for M4 , N'; , and z°,, into (14.5-6)
we have obtained the following approximate relations for the stress and field:

8 One often finds non-linear generalizations of VorIer’s linear piezoelectric constitutive
relations which involve non-linear expressions in the displacement gradients. It would seem
desirable in such circumstances to have a more explicit definition of what is meant by the
displacement gradients. The components of these tensors have different transformation laws
under rigid rotations of the deformed and natural states. A little thought will reveal that the
transformation laws of the u¢,; and Uy ,p are extremely complicated if any non-linear terms
in these quantities are retained in a consistent fashion. It is for this reason that we have pre-
ferred to use the 2%, as independent variables since their transformation law is considerably
simpler than the transformation law of the u:;; or Uy .5 under rotations of the deformed or
undeformed material.
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'E)Q t]l_’ ~ 2H1ik1ri1rk "I' 2H1ikul;k1|"‘ll'1 + 2H1klui;k7ri1r; + 4H3”kl‘ékl

+ 2H,n, + 2H4;ikuz:m + 2H4iklu1';k7rl + 2H4iklui:k7rl + H4kti§,,z1r.- (15.1)

1kl imkl 7 imkl 1+ i7k
+ 2H " 'mw, + 2HS ™ e, + 2H ™ mn, + 4H ST

kimi~ i klijm~ kliimn.
+ 2H; " "g,r.m + 2H, eur, + 2H, CLiTmTn

POE;: ~— [2H1“‘7Tk + 2H1ikul:k7l'z + 2H1“u1.;k7|'z + H4k“ékt + 2H5klmé'kt7"m]~ (15-2)

For infinitesimal displacement gradients we also have (p,/p) = 1 + &*, ; hence,
this factor may be cleared from the expression for the stress by multiplying
each term on the right which does not already contain a displacement gradient
by the factor (1 — &*,). Note that, even for infinitesimal displacement gradients,
the components of the local stress and effective local field do nof in general
reduce to polynomials in the symmetric part of the displacement gradients only,
as is sometimes assumed.

If we now completely linearize these constitutive relations by dropping all
terms involving squares of the polarization or a product of a polarization com-
ponent and a displacement gradient, we obtain the linear relations:

t:i ~ 4H3“klékl + 2H4Hk7l'k (15.3)
E;_ ~ _[2H1ikﬂ‘k + H4k”ékl]~ (15.4)

Now, at static equilibrium we have E, + Ey = 0, (§8, (8.3)), where E, is
the total Maxwell field at a point inside the dielectric. This is the field which
occurs in Voiar’s relations. Also, the total stress ¢’ which is always symmetric
if we neglect the Maxwell stress tensor (a legitimate approximation in this
linearized theory since it always involves the field or polarization squared)
must be assumed to be the stress tensor referred to in Voiat’s theory, since the
concept of a local stress is not introduced. For the linearized theory, this is not
an issue since £’ — #{’ is negligible; hence, we may set ¢’ & #" in (15.3). Thus
we have from (15.3) and (15.4) that at static equilibrium

tii %C”kleu + qiikPk (15.5)
eoE}z ~ (X_l)ikPk + pk”eu (15.6)
With ciikl = 4:H3iikl, qiik = (2/po)H4”k, (X—l)ii — (260/p02)H1”, and pkli =

(eo/po)H .
The linear relations (15.5) and (15.6) are identical in form to the piezoelectric
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relations proposed by Voier. The values of the components of the tensors
¢™, ¢, p*’*, and x*’ in certain special coordinate systems are called by some
authors, elastic constants, piezoelectric constants, and susceptibility constants.
Note that within the context of the theory of elastic dielectrics given here,
(15.5-6) cannot be strictly regarded as constitutive relations. In order to obtain
these particular formule we had to assume that the dielectric was in static
equilibrium. That is, to eliminate the effective local field from (15.4) and obtain
the relations (15.6) involving the Maxwell field, we used the static equilibrium
condition E, 4+ Ey = 0. It is to be expected that in the dynamic case, the right-
hand side of this last equation will not be zero. In elasticity theory when accelera-
tion forces are taken into account, the constitutive relations for the stress in
terms of the strain are the same as they are in the static case. Thus, by analogy,
we can expect that the constitutive relations (15.3—4) would be unaltered if
we were to treat dynamic equilibrium of an elastic dielectric. However, it is
not expected that Voiar’s linear relations will follow as a necessary consequence
of the linear constitutive relations of this theory except in the special case of
static equilibrium which has been considered throughout this paper.



16. Tue Linear ConsTiTUTIVE RELATIONS FOR
Isotroric Erastic DieLECTRICS

We have already considered the isotropic elastic dielectric and have obtained
the form of the constitutive relations for the stress and effective local field cor-
responding to an arbitrary isotropic stored energy function (§11, (11.16-17)).
It is instructive, however, to follow the formalism developed for anisotropic
materials in §13, regarding the isotropic dielectric as a special case. The stress
and field relations (15.1) and (15.2) which have been linearized with respect to
displacement gradients will be specialized to the isotropic case. The work in this
section will serve to illustrative the methods we use to treat materials of arbi-
trary symmetry. Also, the isotropic form of (15.1-2) can be compared with the
work of HELMHOLTZ [22, pp. 140-146].

According to the formalism of §13, if the natural state of an elastic dielectric
is isotropic, the material descriptors H3#” are invariant tensors of the orthog-
onal group. Invariant tensors of the orthogonal group are also called ¢sotropic
tensors. As pointed out before, it is known that the most general form of an
isotropic tensor is a linear combination of outer products of the metric tensor.*®
Given this result, we can now reduce the approximate constitutive relations
(15.1) and (15.2) to their most general form in isotropic dielectrics. First, the
material descriptors H,*” and H,'**'™ must vanish identically since there are no
isotropic tensors of odd rank. The remaining material descriptors can now be
written down in their most general form allowed by isotropic symmetry. These
are

2H," = alg‘i
4 =g ¢+ uge + 60"
2H™ = a,97¢" + a (g”‘ "+ gt
2H ™ = a6 g g™ + a5<g"‘ gt (16.1)
+ asl(g™g™ + g""g'")g"’ + (d™"¢" + ¢'"g"™g"]
+ a:lg™ (g™ + ¢79'™) + g9 + 970"
+ ¢ (g™ + ¢7g"™) + ¢ (@™ + g

1 There exists an elegant and simple theorem in the theory of group representations (the
theorem on characters) which enables one to calculate the number of linearly independent
invariant tensors of given rank for finite or compact groups. This application of the theory of
group representations was first made by Racasn [23] to calculate the number of linearly inde-
pendent invariant tensors of given rank for the rotation subgroup of the orthogonal group in
three dimensions. Invariant tensors of the rotation group are called hemitropic tensors.
BraGAavANTAM and his coworkers [24] have made many applications of this same theorem on
characters in the study of invariant tensors of the crystal groups.
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Each of the above material tensors has been symmetrized to have the same
symmetry as the tensor of variables in (14.2). For example, since H," '™ is
the tensor of coefficients of the variable tensor E,;E,,II,,II, , in writing (16.1)
we have made H,*™*'™ symmetric in each of the pairs (ij), (kl), and (mn) and
also symmetric under an interchange of the pairs (4j) and (kl). This is important
since it will in general reduce the number of scalar material descriptors necessary
to define the material tensor descriptor completely. For example, there are three
linearly independent isotropic tensors of rank four but only two with the sym-
metry of either H,*™" or H,***'. We can determine from (16.1) that nine scalar
material descriptors are necessary to determine the special form of the stored
energy function (14.2) in the isotropic case. If the dielectric is also homogeneous,
these nine descriptors will be spatially constant. It is appropriate to call these
scalars material constants. Substituting (16.1) into (15.1-2), we obtain

tfi ~ [)\ékk + agﬂ'2 + 2(a2 + as)‘ﬁ‘e'ﬂ + (0/4 - ag)Ek,Jrz]g”
+ [2# + 2(02 + 05)7"2]5” + [(ax + 203) + (‘12 + 205 — a, — 2a,)¢ k]”"iﬂ'i (16-2)
+ 2(01 -+ 3a; + 207)éik7rf7l'k + 4(03 + a7)éikTiWk,

— 0Bl & (a1 + a:Z)r’ + 2(ar + ag)et (16.3)
From (16.2-3), it follows that the antisymmetric part of the local stress is given by
1 ~ EUPY = 2(ay + ag)eVri'nt. (16.4)

We may call the stress-strain-field-polarization relations (15.1-2) the quasilinear
constitutive relations of an elastic dielectric since, in obtaining these forms, we
have linearized with respect to displacement gradients but have retained non-
linear terms in the polarization and terms which are a product of a displacement
gradient and a polarization component. Note that the zsofropic quasilinear local
stress ¢s a polynomial in the components of the infinitesimal strain measure
&;; ; whereas, the quasilinear local stress of an anisotropic dielectric does not in
general reduce to a polynomial in the symmetric part of the displacement
gradients only.

The quasilinear constitutive relations for isotropic materials may be further
specialized by dropping all the terms which contain a product of a displacement
gradient and a component of polarization. This process yields

ti' Nty + 208" + 'yt + (a0 + 2097’

poEi = — a17r‘ .

(16.5)

Then using the equilibrium condition Ey + E‘L = 0, we can write the local
stress in this approximation in the form

ti ~ 249" + 2ue" + ABig" + AEnEis (16.6)

where the A’s are material constants. This last formula is identical to the stress-
strain-field-relation derived by StrAaTTON [22, pp. 140-146] from an energy
principle attributed to HELmuOLTZ and KORTEWEG.



17. PHOTOELASTICITY

The photoelastic effect cannot be properly treated within the context of
statics. By its very nature, optics is a dynamical phenomenon. We can, however,
give a qualitative sketch of the relations between static electro-elastic theory
and the classical theories of the photoelastic effect.

Historically, the theories of the piezoelectric and photoelastic effects were
developed using quite different physical principles. An account of the develop-
ment of the theory of photoelasticity is given by Coxer & Frron [2]. It appears
that NEUMANN was the first to formulate a definite theory of the photoelastic
effect. If we adopt MaxwELL’s electromagnetic equations and assume that the
photoelastic medium is magnetically isotropic in an arbitrary state of deforma-
tion, the propagation of electromagnetic waves through such a medium can then
be discussed in terms of the inductive capacity tensor ¢'; . This tensor is defined by
writing the Maxwellian constitutive relation between the electric displacement
and Maxwell electric field in the form

D' = é.Ey . (17.1)

We have shown that such a relation between D and Ey exists at static equilibrium
of an elastic dielectric as defined here. The tensor ¢'; is a function of the state
of deformation and polarization. In a magnetically isotropic medium B = yH
where B is called the magnetic induction, H is the magnetic field and u is the
magnetic inductive capacity. The quadric surface defined by the reciprocal of the
tensor ue’’ is called the Fresnel ellipsoid. Let F,; denote the tensor which describes
the Fresnel ellipsoid at a point in the deformed dielectric. NEuMANN’s theory of
the photoelastic effect in isotropic dielectrics was based on the assumption that
the Fresnel tensor F*’ was a linear isotropic function of the infinitesimal strain
measure &;; . That is, he assumed

Fii = HOH + Hliiklé-kl (17.2)

where the Hy are isotropic material descriptors. The most general form of
(17.2) is

F' = a,0" + a,9"" + az2"’ (17.3)

where the ar are scalar material descriptors. If the dielectric is homogeneous,
the ar are spatially constant.

According to Cokkr & Firon, PockeLs was the first to recognize that
NEuUMANN’s photoelastic relations (17.3) should not be applied in the analysis
of the photoelastic effect in crystalline media. In effect, PockeLs’ theory is
based on (17.2) also, where the Hr are material descriptors of the crystalline
medium and not necessarily isotropic tensors.
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Both NEumaNN’s and PockEeLs’ theories are restricted to the case of infini-
tesimal displacement gradients. The quasilinear constitutive relation for the
effective local field in isotropic elastic dielectrics (16.3) leads to a Maxwellian
constitutive relation (17.1) where ¢’; is a linear isotropic function of the infini-
tesimal strain measure é;; . Hence, if we assume that the medium is magnetically
isotropic in any state of deformation, we are led, in this case, to a Fresnel tensor
in agreement with NeumANN’s form (17.3). For anisotropic media, we are unable
to reproduce PockELS’ generalization of (17.2) since, in general, the effective
local field in crystals does not reduce to a polynomial in the infinitesimal strain
measure. We are reluctant to consider the topic of photoelasticity beyond these
few observations. It is our opinion that the dynamics of elastic dielectrics and
the theory of electromagnetic wave propagation through general non-linear
media must first be formulated from a unified point of view before the founda-
tions of these approximate theories of NEuMANN and PockeLs will be properly
understood.
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