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We prove that that the 1-Riesz capacity satisfies a Brunn-Minkowski inequality, and that the capacitary function of the 1/2-Laplacian is level set convex.

Introduction

In this paper we consider the following problem    (-∆) s u = 0 on R N \ K u = 1 on K lim |x|→+∞ u(x) = 0 [START_REF] Borell | Capacitary inequalities of the Brunn-Minkowski type[END_REF] where N ≥ 2, s ∈ (0, N/2), and (-∆) s stands for the s-fractional Laplacian, defined as the unique pseudo-differential operator (-∆) s : S → L 2 (R N ), being S the Schwartz space of functions with fast decay to 0 at infinity, such that

F(-∆) s f = |ξ| 2s F(f )(ξ),
where F denotes the Fourier transform. We refer to the guide [START_REF] Di Nezza | Valdinoci Hitchhikers guide to the fractional Sobolev spaces[END_REF]Section 3] for more details on the subject. A quantity strictly related to Problem [START_REF] Borell | Capacitary inequalities of the Brunn-Minkowski type[END_REF] is the so-called Riesz potential energy of a set E, defined as

I α (E) = inf µ(E)=1 R N ×R N dµ(x) dµ(y) |x -y| N -α α ∈ (0, N ). ( 2 
)
It is possible to prove (see [START_REF] Landkof | Foundations of Modern Potential Theory[END_REF]) that if E is a compact set, then the infimum in the definition of I α (E) is achieved by a Radon measure µ supported on the boundary of E if α ≤ N -2, and with support equal to the whole E if α ∈ (N -2, N ). If µ is the optimal measure for the set E, we define the Riesz potential of E as

v(x) = R N dµ(y) |x -y| N -α , (3) 
so that

I α (E) = R N v(x)dµ(x).
It is not difficult to check (see [START_REF] Landkof | Foundations of Modern Potential Theory[END_REF][START_REF] Goldman | Existence and stability for a nonlocal isoperimetric model of charged liquid drops[END_REF]) that the potential v satisfies (-∆)

α 2 v = c(α, N ) µ,
where c(α, N ) is a positive constant, and that v = I α (E) on E. In particular, if s = α/2, then v K = v/I 2s (K) is the unique solution of Problem [START_REF] Borell | Capacitary inequalities of the Brunn-Minkowski type[END_REF]. Following [START_REF] Landkof | Foundations of Modern Potential Theory[END_REF], we define the α-Riesz capacity of a set E as

Cap α (E) := 1 I α (E) . (4) 
We point out that this is not the only concept of capacity present in literature. Indeed, another one is given by the 2-capacity of a set E, defined by

C 2 (E) = min R N |∇ϕ| 2 : ϕ ∈ C 1 (R N , [0, 1]), ϕ ≥ χ E (5) 
where χ A is the characteristic function of the set A. It is possible to prove that, if E is a compact set, then the minimum in ( 5) is achieved by a function u satisfying

   ∆u = 0 on R N \ E u = 1 on E lim |x|→+∞ u(x) = 0. (6)
It is worth stressing that the 2-capacity and the α-Riesz capacity share several properties, and coincide if α = 2. We refer the reader to [START_REF] Lieb | Loss: Analysis[END_REF]Chapter 8] for a discussion of this topic.

In a series of works (see for instance [START_REF] Caffarelli | Convexity of Solutions to Some Classical Variational Problems[END_REF][START_REF] Colesanti | Salani Quasi-concave Envelope of a Function and Convexity of Level Sets of Solutions to Elliptic Equations[END_REF][START_REF] Korevaar | Convexity of Level Sets for Solutions to Elliptic Ring Problems[END_REF] and the monography [START_REF] Kawohl | Rearrangements and Convexity of Level Sets in[END_REF]) it has been proved that the solutions of (6) are level set convex provided E is a convex body, that is, a compact convex set with non-empty interior. Moreover, in [START_REF] Borell | Capacitary inequalities of the Brunn-Minkowski type[END_REF] (and later in [START_REF] Colesanti | The Brunn-Minkowski inequality for p-capacity of convex bodies[END_REF] in a more general setting and in [START_REF] Colesanti | The BrunnMinkowski Inequality for the n-dimensional Logarithmic Capacity of Convex Bodies[END_REF] for the logarithmic capacity in 2 dimensions) it has been proved that the 2-capacity satisfies a suitable version of the Brunn-Minkowski inequality: given two convex bodies K 0 and K 1 in R N , for any λ ∈ [0, 1] it holds

C 2 (λK 1 + (1 -λ)K 0 ) 1 N-2 ≥ λ C 2 (K 1 ) 1 N-2 + (1 -λ) C 2 (K 0 ) 1 N-2 .
We refer to [START_REF] Schneider | Convex bodies: the Brunn-Minkowski theory[END_REF][START_REF] Gardner | The Brunn-Minkowski inequality[END_REF] for a comprehensive survey on the Brunn-Minkowski inequality.

The main purpose of this paper is to show the analogous of these results in the fractional setting α = 1, that is, s = 1/2 in Problem [START_REF] Borell | Capacitary inequalities of the Brunn-Minkowski type[END_REF]. More precisely, we shall prove the following result.

Theorem 1.1. Let K ⊂ R N be a convex body and let u be the solution of Problem (1) with s = 1/2. Then (i) u is level set convex, that is, for every c ∈ R the set {u > c} is convex;

(ii) the 1-Riesz capacity Cap 1 (K) satisfies the following Brunn-Minkowski inequality:

for any couple of convex bodies K 0 and K 1 and for any λ ∈ [0, 1] we have

Cap 1 (λK 1 + (1 -λ)K 0 ) 1 N-1 ≥ λCap 1 (K 1 ) 1 N-1 + (1 -λ)Cap 1 (K 0 ) 1 N-1 . ( 7 
)
The proof of the Theorem 1.1 will be given in Section 2, and relies on the results in [START_REF] Cuoghi | Convexity of level sets for solutions to nonlinear elliptic problems in convex rings[END_REF][START_REF] Colesanti | The Brunn-Minkowski inequality for p-capacity of convex bodies[END_REF] and on the following observation due to L. Caffarelli and L. Silvestre.

Proposition 1.2 ([7]

). Let f : R N → R be a measurable function and let U : R N × [0, +∞) be the solution of

∆ (x,t) U (x, t) = 0, on R N × (0, +∞) U (x, 0) = f (x).
Then, for any x ∈ R N there holds

lim t→0 + ∂ t U (x, t) = (-∆) 1 2 f (x).
Eventually, in Section 3 we provide an application of Theorem 1.1 and we state some open problems.

Proof of the main result

This section is devoted to the proof of Theorem 1.1.

Lemma 2.1. Let K be a compact convex set with positive 2-capacity and let (K ε ) ε>0 be a family of compact convex sets with positive 2-capacity such that K ε → K in the Hausdorff distance, as ε → 0. Letting u ε and u be the capacitary functions of K ε and K respectively, we have that u ε converges uniformly on R N to u as ε → 0. As a consequence, we have that the sequence C 2 (K ε ) converges to C 2 (K), and that the sets {u ε > s} converge to {u > s} for any s > 0, with respect to the Hausdorff distance.

Proof. We only prove that u ε → u uniformly as ε → 0 since this immediately implies the other claims. Let Ω

ε = K ∪ K ε . Since u ε -u is a harmonic function on R N \ Ω ε , we have that sup R N \Ωε |u ε -u| ≤ sup ∂Ωε |u ε -u| ≤ max 1 -min ∂Ωε u, 1 -min ∂Ωε u ε . (8) 
Moreover, by Hausdorff convergence, we know that there exists a sequence (r ε ) ε infinitesimal as ε → 0 such that u, min

K ε ⊂ K + B rε ,
Kε+B(2rε) u ε . (9) 
Since the right-hand side of ( 9) converges to 1 as ε → 0, from ( 8) we obtain

lim ε→0 sup R N \Ωε |u ε -u| = 0,
which brings to the conclusion.

Remark 2.2. Notice that a compact convex set has positive 2-capacity if and only if its H N -1 -measure is non-zero (see [START_REF] Evans | Measure theory and fine properties of functions[END_REF]).

Proof of Theorem 1.1. We start by proving claim (i). Let us consider the problem

       -∆ (x,t) U (x, t) = 0 in R N × (0, ∞) U (x, 0) = 1 x ∈ K U t (x, 0) = 0 in x ∈ R N \ K lim |(x,t)|→∞ U (x, t) = 0. ( 10 
)
By Proposition 1.2 we have that U (x, 0) = u(x) for every x ∈ R N . Notice also that, for any c ∈ R, we have

{u ≥ c} = {(x, t) : U (x, t) ≥ c} ∩ {t = 0}
which entails that u is level set convex, provided that U is level set convex. In order to prove this, we introduce the problem

   ∆ (x,t) V (x, t) = 0 in R N +1 \ K V = 1 x ∈ K lim |(x,t)|→∞ V (x, t) = 0 (11)
whose solution is given by the capacitary function of the set K in R N +1 , that is, the function which achieves the minimum in Problem (5).

Since K is symmetric with respect to the hyperplane {t = 0} (where it is contained), it follows, for instance by applying a suitable version of the Pólya-Szegö inequality for the Steiner symmetrization (see for instance [START_REF] Brock | Weighted Dirichlet-type inequalities for Steiner Symmetrization[END_REF][START_REF] Burchard | Steiner symmetrization is continuous in W 1,p[END_REF]), that V is symmetric as well with respect to the same hyperplane. In particular we have that ∂ t V (x, 0) = 0 for all x ∈ R N \ K. This implies that V (x, t) = U (x, t) for every t ≥ 0. To conclude the proof, we are left to check that V is level set convex. To prove this we recall that the capacitary function of a convex body is level set convex, as proved in [START_REF] Colesanti | The Brunn-Minkowski inequality for p-capacity of convex bodies[END_REF]. Moreover, by Lemma 2.1 applied to the sequence of convex bodies K ε = K + B(ε) we get that V is level set convex as well. This concludes the proof of (i).

To prove (ii) we start by noticing that the 1-Riesz capacity is a (1-N )-homogeneous functional, hence inequality ( 7) can be equivalently stated (see for instance [START_REF] Borell | Capacitary inequalities of the Brunn-Minkowski type[END_REF]) by requiring that, for any couple of convex sets K 0 and K 1 and for any λ ∈ [0, 1], the inequality Cap

1 (λK 1 + (1 -λ)K 0 ) ≥ min{Cap 1 (K 0 ), Cap 1 (K 1 )} ( 12 
)
holds true.

We divide the proof of ( 12) into two steps.

Step 1.

We characterize the 1-Riesz capacity of a convex set K as the behaviour at infinity of the solution of the following PDE   

(-∆) 1/2 v K = 0 in R N \ K v K = 1 in K lim |x|→∞ |x| N -1 v K (x) = Cap 1 (K)
We recall that, if µ K is the optimal measure for the minimum problem in (2), then the function

v(x) = R N dµ K (y) |x -y| N -1
is harmonic on R N \ K and is constantly equal to I 1 (K) on K (see for instance [START_REF] Goldman | Existence and stability for a nonlocal isoperimetric model of charged liquid drops[END_REF]). Moreover the optimal measure µ K is supported on K, so that |x| N -1 v(x) → µ K (K) = 1 as |x| → ∞. The claim follows by letting v K = v/I 1 (K).

Step 2.

Let K λ = λK 1 + (1 -λ)K 0 and v λ = v K λ . We want to prove that v λ (x) ≥ min{v 0 (x), v 1 (x)}
for any x ∈ R N . To this aim we introduce the auxiliary function

v λ (x) = sup min{v 0 (x 0 ), v 1 (x 1 )} : x = λx 1 + (1 -λ)x 0 ,
and we notice that Step 2 follows if we show that v λ ≥ v λ . An equivalent formulation of this statement is to require that for any s > 0 we have

{ v λ > s} ⊆ {v λ > s}. (13) 
A direct consequence of the definition of v λ is that

{ v λ > s} = λ{v 1 > s} + (1 -λ){v 0 > s}.
For all λ ∈ [0, 1], we let V λ be the harmonic extension of

v λ on R N × [0, ∞), which solves    -∆ (x,t) V λ (x, t) = 0 in R N × (0, ∞) V λ (x, 0) = v λ (x) in R N × {0} lim |(x,t)|→∞ V λ (x, t) = 0. (14) Notice that V λ is the capacitary function of K λ in R N +1 , restricted to R N × [0, +∞). Letting H = {(x, t) ∈ R N × R : t = 0}, for any λ ∈ [0, 1] and s ∈ R we have {V λ > s} ∩ H = {v λ > s}.
Letting also [START_REF] Goldman | Existence and stability for a nonlocal isoperimetric model of charged liquid drops[END_REF] as above we have that

V λ (x, t) = sup{min{V 0 (x 0 , t 0 ), V 1 (x 1 , t 1 )} : (x, t) = λ(x 1 , t 1 ) + (1 -λ)(x 0 , t 0 )},
{ V λ > s} = λ{V 1 > s} + (1 -λ){V 0 > s}.
By applying again Lemma 2.1 to the sequences K ε 0 = K 0 + B(ε) and K ε 1 = K 1 + B(ε), we get that the corresponding capacitary functions, denoted respectively as V ε 0 and V ε 1 , converge uniformly to V 0 and V 1 in R N , and that V ε λ , defined as in [START_REF] Goldman | Existence and stability for a nonlocal isoperimetric model of charged liquid drops[END_REF], converges uniformly to V λ on R N × [0, +∞).

Since V ε λ (x, t) ≤ V ε λ (x, t) for any (x, t) ∈ R N × [0, +∞), as shown in [9, pages 474 -476], we have that V λ (x, t) ≤ V λ (x, t). As a consequence, we get

{v λ > s} = {V λ > s} ∩ H ⊇ { V λ > s} ∩ H = λ{V 1 > s} + (1 -λ){V 0 > s} ∩ H ⊇ λ{V 1 > s} ∩ H + (1 -λ){V 0 > s} ∩ H = λ{v 1 > s} + (1 -λ){v 0 > s}
for any s > 0, which is the claim of Step 2.

We conclude by observing that inequality [START_REF] Di Nezza | Valdinoci Hitchhikers guide to the fractional Sobolev spaces[END_REF] follows immediately, by putting together Step 1 and Step 2. This concludes the proof of (ii), and of the theorem.

Remark 2.3. The equality case in the Brunn-Minkowski inequality [START_REF] Caffarelli | An extension problem related to the fractional Laplacian[END_REF] is not easy to address by means of our techniques. The problem is not immediate even in the case of the 2-capacity, for which it has been studied in [START_REF] Caffarelli | On the Case of Equality in the Brunn-Minkowski Inequality for Capacity[END_REF][START_REF] Colesanti | The Brunn-Minkowski inequality for p-capacity of convex bodies[END_REF].

Applications and open problems

In this section we state a corollary of Theorem 1.1. To do this we introduce some tools which arise in the study of convex bodies. The support function of a convex body K ⊂ R N is defined on the unit sphere centred at the origin ∂B(1) as

h K (ν) = sup x∈∂K x, ν .
The mean width of a convex body K is

M (K) = 2 H N -1 (∂B(1)) ∂B(1) h K (ν) dH N -1 (ν).
We refer to [START_REF] Schneider | Convex bodies: the Brunn-Minkowski theory[END_REF] for a complete reference on the subject. We observe that, if N = 2, then M (K) coincides up to a constant with the perimeter P (K) of K (see [START_REF] Bucur | Optimal convex shapes for concave functionals[END_REF]). We denote by K N the set of convex bodies of R N and we set

K N,c = {K ∈ K N , M (K) = c}.
The following result has been proved in [START_REF] Bucur | Optimal convex shapes for concave functionals[END_REF].

Theorem 3.1. Let F : K N → [0, ∞) be a q-homogeneous functional which satisfies the Brunn-Minkowski inequality, that is, such that F (K + L) 1/q ≥ F (K) 1/q + F (L) 1/q for any K, L ∈ K N . Then the ball is the unique solution of the problem

min K∈K N M (K) F 1/q (K) . (16) 
An immediate consequence of Theorem 3.1, Theorem 1.1 and Definition 4 is the following result.

Corollary 3.2. The minimum of I 1 on the set K N,c is achieved by the ball of measure c. In particular, if N = 2, the ball of radius r solves the isoperimetric type problem min K∈K 2 ,P (K)=2πr

I 1 (K). ( 17 
)
Motivated by Theorem 1.1 and Corollary 3.2 we conclude the paper with the following conjectures: Conjecture 3.3. For any N ≥ 2 and α ∈ (0, N ), the α-Riesz capacity Cap α (K) satisfies the following Brunn-Minkowski inequality: for any couple of convex bodies K 0 and K 1 and for any λ ∈ [0, 1] we have

Cap α (λK 1 + (1 -λ)K 0 ) 1 N-α ≥ λCap α (K 1 ) 1 N-α + (1 -λ)Cap α (K 0 ) 1 N-α . ( 18 
)
Conjecture 3.4. For any N ≥ 2 and α ∈ (0, N ), the ball of radius r is the unique solution of the problem min K∈K N ,P (K)=N ω N r N-1

I α (K). (19) 

  where B(r) indicates the ball of radius r centred at the origin.
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