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Design of a Controller for Enlarging Parallel Robots Workspace
through Type 2 Singularity Crossing

Georges Pagis1,2,3, Nicolas Bouton2, Sébastien Briot1 and Philippe Martinet1,3

Abstract— In order to increase the workspace size of parallel
robots (largely reduced by the presence of singularities) several
solutions have been proposed. One promising solution consists
in the definition of optimal trajectories that ensure the non
degeneracy of the dynamic model in the singularity and
therefore are able to cross the Type 2 singularities. Those works
are based on the computation of the optimal trajectories and
assume that the robot can perfectly track the desired trajectory.
Nevertheless, this assumption cannot be verified in realitydue
to modelling errors which largely impact the control law used to
follow the desired trajectory. Therefore, if the optimal tr ajectory
is not perfectly tracked, the dynamic model can degenerate near
the Type 2 singularities and the robot might stay blocked.

In order to solve that problem, this paper proposes a multi-
model approach that allows parallel robots to cross the Type
2 singularities without any torque discontinuity. The main
idea is to shift near singularities from the full robot dynamic
model to another simplified one that can never degenerate. The
proposed control law is then coupled with an optimal trajectory
planning methodology that makes the singularity crossing more
robust to modelling errors. The proposed approach is validated
experimentally on a prototype of Five-bar planar parallel
mechanism.

I. I NTRODUCTION

Parallel manipulators have many advantages in terms of
acceleration capacities and payload-to-weight ratio, butone
of their main drawbacks concerns the presence of singular-
ities [1], [2], [3] which divide the workspace into different
aspects, each aspect corresponding to one (or more) assembly
mode [4]. For a global overview of the singularity problem,
the reader is referred to [2].

Type 2 (or parallel) singularities [3] are probably the
most constraining singularities of parallel manipulators. In
those singularities, one (or more) manipulator’s degree of
freedom becomes uncontrollable. Moreover, Type 2 singular-
ities divide the manipulator’s workspace in different aspects,
resulting in the decrease of the reachable workspace size.
Therefore, several approaches have been envisaged in the
literature in order to increase the workspace size such as:

• The design of parallel robots without singularities [5],
[6].

• The use of redundancy [9], [8] or of mechanisms with
variable actuation modes [1], [10].

• Planning assembly mode changing trajectories by either
by-passing a cusp point [11] or directly going through
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a Type 2 singularity [12], [13].
In [12], a physical criterion, obtained through the analysis

of the dynamic model, is presented. Based on the mentioned
criterion, it is possible to plane a singularity crossing trajec-
tory which (i) avoids the degeneracy of the dynamic model
(i.e. obtaining infinite joint reactions during the motion)and
(ii) allows the robot to cross the singularity.

This last solution is promising since it can considerably
increase the workspace size of any parallel mechanism.
However, in previous works, it has been considered that
the controller allowed the mechanism to perfectly track
the desired trajectory. This is obviously impossible due to
modelling uncertainties. In order to fill this gap, the aim of
this paper is to propose an advanced control law dedicated
to the Type 2 singularity crossing.

To correctly track trajectories, several control approaches
can be used [14], but the most effective is probably the
Computed Torque Control (CTC) law [14], [15], [16]. More
precisely, this control law permits to compute the actuators
torque of the robot based on its dynamic model and the
desired trajectory to follow. Obviously,CTC is sensitive to
the robot dynamic model that (i) must be well identified [21],
[22] and (ii) must not degenerate near singularities, even if
the trajectory does not perfectly respect the physical criterion
mentioned above.

Therefore, in order to avoid the dynamic model degeneracy
near the singularity, a multi-modelCTC (e.g. see [15],
[16]) is proposed in the present paper. This controller is
combined with the definition of new singularity-crossing
criteria developed for increasing the robustness of the control
law along the desired trajectory.

II. T RAJECTORY GENERATION FOR CROSSING ATYPE 2
SINGULARITY

A. Dynamic modelling of parallel mechanisms

This section will briefly recall the dynamic equations of
a parallel manipulator composed ofm links, n degrees of
freedom (dof ) and driven byn actuators. The position and
the speed of the manipulator can be fully described using:
• q= [q1,q2, ...,qn]

T andq̇= [q̇1, q̇2, ..., q̇n]
T that represent

respectively the vector of active joints variables and
active joints velocities,

• x = [x,y,z,φ ,ψ ,θ ]T and v =
[

ẋ, ẏ, ż, φ̇ , ψ̇ , θ̇
]T

that are
the end-effector pose parameters and their derivatives
with respect to time, respectively.x, y and z represent
the position of the platform controlled point andφ , ψ
andθ the orientation parameters of the platform about
three axesaφ ,aψ andaθ .



Using the Lagrangian formalism, the mechanism’s dy-
namic model can be written as:

τ = wb +BT λ , (1)

wp = AT λ (2)

where

• τ is the vector of the input efforts,
• λ is the vector of the Lagrange multipliers,
• A andB are two matrices deduced from the mechanism

loop-closure equations, such thatAv = Bq̇ [4],
• wb andwp are related to the LagrangianL of the system

by:

wb =
d
dt

(

∂L
∂ q̇

)

−
∂L
∂q

, wp =
d
dt

(

∂L
∂v

)

−
∂L
∂x

(3)

In this expression,wp is the wrench applied to the platform
by the legs and external forces [12].

Then, assuming that the matrixA can be inverted, by
substituting (2) into (1) the general dynamic model of parallel
manipulators is obtained [14]:

τ = wb + JT 0wp, (4)

where

•
0wp is the expression of the wrenchwp in the base
frame, i.e.0wp = Dwp with D the matrix relating the
platform twist t (expressed in the base frame) to the
vectorv by t = Dv [4],

• J = 0A−1B is the Jacobian matrix between the platform
twist t and q̇, with 0A is the expression of the matrix
A in the base frame, i.e.0A = AD−1.

B. Type 2 singularity crossing

Based on the analysis of the kinematic model, the authors
of [3] proposed a classification of the singularities in three
different types:
Type 1 singularities or serial singularitiesoccur when the
mechanism is in a position such as the kinematic matrixB
becomes rank deficient. In such configurations, the mecha-
nism loses the ability to move in one given direction.
Type 2 singularities or parallel singularities occur when
the kinematic matrix0A becomes rank deficient. In Type 2
singularities, one (or more) robot degree of freedom becomes
uncontrollable. Such singularities divide the workspace in
different aspects, resulting in a reduction of the manipulator’s
workspace. Moreover, in the presence of such singularities,
the robot may also not be able to resist to an external wrench
applied on the platform and the reactions in joints grow to
infinity.
Type 3 singularities are configurations where both Type 1
and Type 2 singular configurations appear at the same time.
They are discarded in the following of the paper as they
appear if both Types 1 and 2 singularity exist.

Finally parallel mechanism with less than 6dof can have
another type of singularity such as the constraint singulari-
ties [17], [2].

If a parallel mechanism is in a singular position of Type
2, the matrixAT cannot be inverted in Equation (2). The
dynamic model degenerates and therefore cannot be solved.
However, as explained in the introduction, it has been proven
in [12] that a mechanism can cross a Type 2 singularity
without torque discontinuity. Indeed, on a Type 2 singularity,
the columns of0A are linearly dependent, i.e. there exist a
vector ts such that:

0At s = 0⇔ ts
T 0AT = 0 (5)

The vectorts represents the twist of the uncontrollable
motion of the platform in the singularity locus [4]. Thus,
multiplying (2) by tT

s leads to:

tT
s

0AT λ = 0 (6)

In that case, the following condition must also be satisfied:

tT
s

0wp = 0 (7)

which is the condition for the non-degeneracy of the dynamic
model [12].

As a result, if the desired manipulator motion doesn’t
guarantee the achievement of a wrenchwp that respects
the condition (7), the dynamic model is degenerated and
the manipulator desired input efforts must grow to infinity
to produce the desired platform motion. Physically, this
condition means that the parallel manipulator can cross the
Type 2 singularity if and only if the wrench0wp exerted by
the legs and external efforts on the platform is reciprocal
to the twist ts of the uncontrollable motion in the Type 2
singularity.

C. Generation of a robust trajectory for crossing Type 2
singularity

In order to cross a singularity without torque discontinuity,
the mechanism has to follow a trajectory that respects the
criterion (7) on the singularity locus. Theoretically, the
dynamic model degenerates only on the singularity locus,
howevernumerically the matrix A is singular on a space
around the singularity locus. Therefore the criterion (7) has
to be respected in this space around the singularity locus in
order to prevent the dynamic model from degenerating.

The trajectory generation is achieved using polynomials,
which degree can vary. Indeed, in order to guarantee that the
criterion (7) is respected around the singularity locus, itis
proposedin this work to vanish the criterion (7) andn of its
derivatives:

tT
s

diwp

dt i = 0 i = 1, ...,n, (8)

To the best of our knowledge, this is the first time that
such criteria are proposed. Generating a trajectory based on
these criteria (8) allows to increase the robustness to model
uncertainties and control error around the singularity. Exper-
imental results shows that nullifying the 2 first derivatives of
the criterion might be enough.

Next section will present the control law used to allow
the singularity crossing.
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Fig. 1. Computed torque control law

III. C ONTROL LAW DEDICATED TO TYPE 2 SINGULARITY

CROSSING

A. Computed Torque Control

The Computed Torque Control (CTC) [16] is a control law
that computes the input torques that the actuators must apply
on the mechanism in order to follow a given trajectory. It is
based on the dynamic model presented in Part II. As for any
type of control law in robotics, the aim of the controllerCTC
is to minimize the error in either joint or task space. Since at
proximity of a Type 2 singularity the kinematic matrixA is
singular, it is not possible to compute the Cartesian velocities
from the joint velocities using theDKM (Direct kinematic
Model). Sensors being usually measuring joint space values,
only the joint space control law should be used to cross Type
2 singularities,.

The control errore to minimize can be expressed as:

e= qd −q ⇒ ė= q̇d − q̇ ⇒ ë= q̈d − q̈ (9)

where

• qd (respectivelyq̇d andq̈d) is the desired joint position
(respectively velocity and acceleration),

• q (respectivelyq̇ and q̈) is the current measured joint
position (respectively velocity and acceleration).

In order to force the error to tend to zero, a second order
differential equation one is imposed by:

ë+K dė+K pe= 0 (10)

By substituting Eq. (9) into Eq. (10) one can obtain:

q̈ = q̈d +K dė+K pe (11)

Let us rewrite the dynamic model of the mechanism as
[16], [18]:

τ = wb + JT wp = Mq̈+H(q, q̇) (12)

Consequently,CTC (Fig. (1)) computes the input torques
by substituting Eq. (11) into the dynamic model presented
in Eq. (12):

τ = M (q̈d +K dė+K pe)+H(q, q̇) (13)

It should be noted that the vector of positions in the task
spacex is necessary to compute matricesM andH. However,
most mechanisms have sensors measuring the vector of
positions in the joint spaceq. Therefore theDKM is needed.

Unfortunately, when planning a Type 2 singularity crossing
trajectory, the mechanism changes its assembly mode, and
so the solution of theDKM has to change. To do so, the
controller need the information that the mechanism changed
its assembly mode which cannot be deduced from the joint
positions. Experimentally, the most reliable solution is to
choose theDKM solution based on the desired trajectory.

It should be mentioned that, when using the proposedCTC
for crossing Type 2 singularities, the trajectory planned for
respecting the crossing criteria (cf. Part II) will be different
from the real one due to errors in the dynamic model. As
a result, speaking numerically, thecrossing criteria (7)
will never be respectedand the computed torque control
could send infinite torques to the robot that will prevent the
singularity crossing due to the inversion of the matrixA.

Next section presents a multi-model control law allowing
the controller to avoid this issue.

B. Multi-model control law

To avoid these numeric issues, the proposed solution is to
plan a trajectory respecting around the singularity locus the
criterion:

wp = 0 (14)

This new criterion still guarantees that the dynamic crite-
rion ts

T wp = 0 is respected. Moreover, the firstn derivatives
of this new criterion are also nullified. The directionts
being time independent, this guarantees that the firstn
derivatives of the dynamic criterion are also null as presented
in Section II-C. Of course during the real robot displacement,
numerically wp will not be null, but such a new criterion
allows the implementation of a multi-model control law. The
multi-model CTC law presented in this paper consists in
using two models :

• Model 1 – The complete dynamic model as long asA
is invertible:

τ = wb + JT wp (15)

• Model 2 – A reduced dynamic model that cannot
degenerate when the mechanism is close to a singular
position:

τ = wb (16)

The second dynamic model is used to compute input
torques only when the trajectory has been planned in order
to havewp = 0. Considering that the control law is correctly
adjusted, the effective trajectory is close enough to the de-
sired one and therefore the hypothesiswp = 0 is acceptable.

Once the mechanism is far enough from the singularity
locus, i.e. the matrixA is numerically invertible, the control
switches back to the complete dynamic model and the
mechanism can finish its trajectory.

Moreover, in order to cross the singularity locus, the con-
troller need a metric that defines the moment when theModel
2 has to be used. The discussion about the best indicator of
singularity proximity is a well known problematic [4], [19],
[20]. Here, as the controller may become unstable due to
numerical problems linked to the inversion of the matrixA,
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Fig. 2. Five-bar mechanism designed and manufactured at IFMA

TABLE I

FIVE-BAR MECHANISM’ S GEOMETRIC PARAMETERS

Parameter a L1 L2 L3 L4
Value (m) 0.2822 0.2130 0.1888 0.1878 0.2130
Precision (m) 1.10−5 1.10−5 1.10−5 1.10−5 1.10−5

it has been decided to use the numerical condition number
of that matrix to define the space where the dynamic model
might degenerates and therefore where the control law has
to switch between the two models.

Next sections present experimental results of Type 2
singularity crossing using this multi-model control law on
a planar Five-bar mechanism.

IV. CASE STUDY

A. Presentation of the Five-bar mechanism

A Five-bar mechanism is a planar parallel mechanism
composed of two actuators located at the revolute joints
positioned in pointsA and E and 3 passive revolute joints
in points B, C and D (Fig. 2). The mechanism used in this
work has been designed so that it can reach all the workspace
positions without collision between the proximal and the
distal legs.

The mechanism and its parameters are presented in Fig. 2.
The links dimensions have been calibrated using a Laser
Tracker (Table I).

B. Gain tunning

The proportional and derivative gains have been tuned
based on the mechanism’s natural frequency [14]. This
frequency was retrieved using a ring-out procedure. The
mechanism was excited using an impedance hammer, and
its response was recorded using 5 accelerometers. The first
natural frequency of the Five-bar mechanism in its isotropic
configuration (when linksBC andCD are perpendicular) is
at 34.2 Hz.

For a given control bandwidth fixed by a frequencyω both
gains are adjusted as :

Kp = ω2, Kd = 2ξ ω (17)

whereξ is a a damping coefficient usually fixed to 1 to have
a critically damped system. To guarantee that the gains do

not bring the system in the neighbourhood of the instability
domain, the chosen frequency must be smaller than the
natural resonance frequency [14]. Therefore a frequency of
ω = ωr/3 has been chosen, resulting in gains values :

Kp = 1150, Kd = 70 (18)

C. Dynamic model

A full dynamic model of the robot has been computed
using the methodology presented in [22] and its identifica-
tion was made using a weight least square method based
on the use of exciting trajectories followed with a classic
geometrical control law [21]. The identification results in
the following model that fully describes the robot dynamics
of the studied mechanism:

τ = m3JT
(

ẍ
ÿ

)

+

(

zz1 q̈1

zz2 q̈2

)

+

(

fv1q̇1

fv2q̇2

)

+

(

fs1sign(q̇1)
fs2sign(q̇2)

) (19)

where :

• m3 is a mass equivalent located on the end effector;
m3 = 0.40±0.02kg

• zz1 and zz2 are rotational equivalent inertial terms
respectively on the first and second actuator;zz1 =
1.83·10−2

±6.97·10−4kg.m2; zz2 = 1.96·10−2
±6.60·

10−4kg.m2;
• fs1 is a Coulomb friction term on the first actuator

(respectivelyfs2 on the second actuator);fs1 = 2.94±
0.10N.m; fs2 = 2.95±0.09N.m;

• fv1 is a viscous friction term on the first actuator
(respectivelyfv2 on the second actuator);fv1 = 6.76±
0.018N.m.sfv2 = 6.75±0.17N.m.s.

This identified dynamic model is related to the Eq. (2) by:

wp = m3

(

ẍ
ÿ

)

,

wb =

(

zz1 q̈1

zz2 q̈2

)

+

(

fv1q̇1

fv2q̇2

)

+

(

fs1sign(q̇1)
fs2sign(q̇2)

) (20)

It should be noted that the friction terms in both passive
joints are insignificant and therefore the identification routine
returned null values.

D. Control law implementation

The Five-bar mechanism is controlled by an industrial
control architecture developed by ADEPT with an open
architecture. This control architecture allows the user to
control the mechanism either in position, speed or torques,
using a C/C++ software developed by ADEPT France: CIDE.
This software was designed mostly for position control,
therefore every securities preventing mostly physical damage
had to be developed for the computed torque control law.

The dynamic model identified contain both accelerations
in the joint space and in the task space. Therefore, in order
to express the dynamic model as in Eq. (12), the task space
acceleration has to be expressed as a function of the joint



space acceleration. This can be done by differentiating the
kinematic model:

v = Jq̇ ⇒ v̇ = J̇q̇+ Jq̈ (21)

By substituting (21) into (19) one can obtain the dynamic
model used for the computed torque control law as presented
in Equation (12):

τ = M
(

q̈1

q̈2

)

+H,where (22)

M = m3JT J+
(

zz1 0
0 zz4

)

(23)

H = m3JT J̇
(

q̇1

q̇2

)

+

(

fv1q̇1+ fs1sign(q̇1)
fv2q̇2+ fs2sign(q̇2)

)

(24)

Finally, in order to compute on-line the dynamic model of
the robot and theCTC control law, the actuator’s positions
and speeds have been filtered by using the oversampling
method at 1Khz (the control law turning at 250 Hz).

V. EXPERIMENTAL RESULTS

A. Generation of a crossing trajectory

The crossing trajectories are generated using two polyno-
mials Px andPy such as :

x = Px(x f − x0)+ x0,

y = Py(y f − y0)+ y0
(25)

where

• Px(t0) = Py(t0) = 0,
• Px(t f ) = Py(t f ) = 1,

Each of them are 8th order polynomial, corresponding to
8 conditions on each axes: two conditions for the initial
position and speed, two for the final position and speed,
one for the singular position and three to guarantee that
the singularity crossing criteria (14) is respected aroundthe
singularity locus [12].

Figure 3 represents a crossing trajectory in the task space
as well as the evolution of the task space coordinates along
this trajectory and the evolution of the dynamic criteria (14)
for:

x0 = 0.1, y0 = 0.34,

xs = 0.05475, ys = 0.2,

x f = 0, y f = 0.1,

(26)

B. Type 2 singularity crossing results and process repeata-
bility

This section presents the results of Type 2 singularity
crossing for different trajectories computed according to
the method presented in Section II-C and in the previous
paragraph. Figure 4 represents the input torques computed
by the computed torque control law along different crossing
trajectories from one assembly mode to another, the desired
trajectory and the control error. For each trajectory, the mech-
anism crosses the singularity without torque discontinuity,
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singularity locus

with a conditioning number limit set to 30 for switching
between the two models.

The multi-model control law engenders an increase of
the error around the singularity locus. Therefore, when the
control law switches back to the complete dynamic model,
the input torques can significantly increase in order to nullify
this error. This can be seen on the first trajectory at 0.7s.

All three trajectories represented in Figure 4 were planned
to cross the singularity at 0.5s and end at 1s. For each
trajectory, the first figure represents the desired trajectory in
the task space and the Type 2 singularity of the mechanism.

For testing the robustness of the proposed controller, each
trajectory is run five times. Moreover, the starting point
and the ending point were chosen randomly and neither
those points nor the crossing direction have any effect on
the singularity crossing. During all our experiments using
this controller, the robot has always successfully crossedthe
singularity loci without any difficulty. Thus, our controller is
totally robust to the desired trajectory.

VI. CONCLUSION

One of the most important drawbacks of parallel robots
is the small size of their workspace, which is moreover
reduced by the presence of singularities. In order to increase
the workspace size, several solutions have been proposed.
One promising approach is the definition of optimal tra-
jectories able to cross the Type 2 singularities. However,
this solution assumes that the controller is not subject to
modelling errors and that the robot is able to perfectly track
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Fig. 4. Different crossing trajectories and correspondinginput torque
applied

the desired trajectory. Nevertheless, due to modelling errors,
this assumption cannot be verified. As a consequence, if
the optimal trajectory is not perfectly tracked, the dynamic
model can degenerate near the Type 2 singularities, this can
cause the computation of infinite torques and the robot might
stay blocked into the singularity.

In order to avoid this problem, this paper has proposed a
controller dedicated to the Type 2 singularity crossing. This
controller was based on a multi-model approach that allowed
the parallel robots to cross the Type 2 singularities without
any torque discontinuity. The main idea was to shift near
singularities from the full robot dynamic model to another
simplified one that can never degenerate. This controller was

coupled with an optimal trajectory planning methodology
that makes the singularity crossing more robust to modelling
errors.

Such a controller has been validated experimentally on
a prototype of a Five-bar planar parallel mechanism. The
results have shown the robustness and the relevancy of
the controller dedicated to parallel robot Type 2 singularity
crossing.
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