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Design of a Controller for Enlarging Parallel Robots Workspace
through Type 2 Singularity Crossing

Georges Pagig-3, Nicolas BoutoR, Sébastien Bridtand Philippe Martinét®

Abstract— In order to increase the workspace size of parallel a Type 2 singularity [12], [13].
robots (largely reduced by the presence of singularities)everal In [12], a physical criterion, obtained through the analysi

solutions have been proposed. One promising solution cosss ; : :
in the definition of optimal trajectories that ensure the non of the dynamic model, is presented. Based on the mentioned

degeneracy of the dynamic model in the singularity and Criterion, itis posglble to plane a singularity crossingec-
therefore are able to cross the Type 2 singularities. Thosearks  tory which (i) avoids the degeneracy of the dynamic model
are based on the computation of the optimal trajectories and (i.e. obtaining infinite joint reactions during the moticamd
assume that the robot can perfectly track the desired trajetory. (ii) allows the robot to cross the singularity.

Nevertheless, this assumption cannot be verified in realitgue This last solution is promising since it can considerably
to modelling errors which largely impact the control law used to

follow the desired trajectory. Therefore, if the optimal tr ajectory increase the workspace size of any parallel mechanism.
is not perfectly tracked, the dynamic model can degenerateear ~ HoOwever, in previous works, it has been considered that
the Type 2 singularities and the robot might stay blocked. the controller allowed the mechanism to perfectly track
In order to solve that problem, this paper proposes a multi-  the desired trajectory. This is obviously impossible due to
model approach that allows parallel robots to cross the Type  qqelling uncertainties. In order to fill this gap, the aim of

2 singularities without any torque discontinuity. The main hi . d d N dedi d
idea is to shift near singularities from the full robot dynamic ~ tNIS Paper is to propose an advanced control law dedicate

model to another simplified one that can never degenerate. & to the Type 2 singularity crossing.
proposed control law is then coupled with an optimal trajecory To correctly track trajectories, several control appr@sch

planning methodology that makes the singularity crossing are  can be used [14], but the most effective is probably the
robus@ to modelling errors. The proposgd approach is validéed Computed Torque ControlTC) law [14], [15], [16]. More
experimentally on a prototype of Five-bar planar parallel iselv. thi trol | its t ’ t, th tumt
mechanism. precisely, this control law permits to compute the actusator
torque of the robot based on its dynamic model and the
. INTRODUCTION desired trajectory to follow. Obviousl;TC is sensitive to

Parallel manipulators have many advantages in terms € robot dynamic model that (i) must be well identified [21],
acceleration capacities and payload-to-weight ratio,dmet  [22] and (i) must not degenerate near singularities, even i
of their main drawbacks concerns the presence of singuldhe trajectory does not perfectly respect the physicasan
ities [1], [2], [3] which divide the workspace into differen Mentioned above. _ _
aspects, each aspect corresponding to one (or more) agsembi! herefore, in order to avoid the dynamic model degeneracy
mode [4]. For a global overview of the singularity problemN€ar the singularity, a multi-modeCTC (e.g. see [15],
the reader is referred to [2]. [16]) is prop_osed in thg present paper. This _controlle_r is

Type 2 (or parallel) singularities [3] are probably theco_mplned with the d_ef|n|t|0n of new singularity-crossing
most constraining singularities of parallel manipulatdrs criteria developed _for increasing the robustness of thérobn
those singularities, one (or more) manipulator's degree dW along the desired trajectory.
freedom becomes uncontrollable. Moreover, Type 2 singular||, TRAJECTORY GENERATION FOR CROSSING AYPE 2
ities divide the manipulator’s workspace in different aspe SINGULARITY
resulting in the decrease of the reachable Wor_kspace_sqﬁ. Dynamic modelling of parallel mechanisms
Therefore, several approaches have been envisaged in the . S : .
literature in order to increase the workspace size such as: his section will briefly recall the dynamic equations of

. . . - a parallel manipulator composed of links, n degrees of
« The design of parallel robots without singularities [5]’freedom (of) and driven byn actuators. The position and

[6]. the s i [ ing:
. ) peed of the manipulator can be fully described using:
« The use of redundancy [9], [8] or of mechanisms with .« 0= (01, qn]T andd = [dy, G, .. Qn]T that represent

variable actuation modes [1], [10]. . 2oL .
: . . . . respectively the vector of active joints variables and
« Planning assembly mode changing trajectories by either ST o
active joints velocities,

by-passing a cusp point [11] or directly going through . X= XYz (p,l,U,G]T and v — [x,y, ;) qb,tll,G]T that are

1 Institut de Recherche en Communications et Cybernétique the end-effector pose parameters and their derivatives
?e Nantes (IRCCyN), UMR ﬁgNRS 6597, 44321 Nantes, France  with respect to time, respectively, y and z represent
Sebastien.Briot,Philippe.Marting®irccyn.ec-nantes.fr P ;

2 |nstitut Pascal, IFMA, MMS department, UMR CNRS 6602, 63000 the position .Of th? platform controlled point amj y
Clermont-Ferrand, FrancgGeorges.Pagis, Nicolas.Boula@ifma.fr and 6 the orientation parameters of the platform about

3 LUNAM, Ecole Centrale de Nantes, 44321 Nantes, France three axesy,ay andag.



Using the Lagrangian formalism, the mechanism’s dy- If a parallel mechanism is in a singular position of Type
namic model can be written as: 2, the matrixAT cannot be inverted in Equation (2). The
T dynamic model degenerates and therefore cannot be solved.
T= Wy+B'A, (1) However, as explained in the introduction, it has been prove
wp=ATA (2) in [12] that a mechanism can cross a Type 2 singularity
without torque discontinuity. Indeed, on a Type 2 singtjari

where. ) the columns oA are linearly dependent, i.e. there exist a
e T is the vector of the input efforts, vectorts such that:

e A is the vector of the Lagrange multipliers,

0 T OpT
e A andB are two matrices deduced from the mechanism Ats=0=1ts" "A° =0 ®)
loop-closure equations, such that = Bq [4], The vectorts represents the twist of the uncontrollable
e W, andwp, are related to the Lagrangiarof the system motion of the platform in the singularity locus [4]. Thus,
by: multiplying (2) byt{ leads to:
d /oL oL d /aL\ oL t; ’ATA =0 (6)
dt \oq/ 2aq dt \dv/ Ox In that case, the following condition must also be satisfied:
In this expressionyy is the wrench applied to the platform tl pr =0 @

by the legs and external forces [12].

Then, assuming that the matrik can be inverted, by
substituting (2) into (1) the general dynamic model of pgatal
manipulators is obtained [14]:

which is the condition for the non-degeneracy of the dynamic
model [12].

As a result, if the desired manipulator motion doesn’t
guarantee the achievement of a wrengh that respects
the condition (7), the dynamic model is degenerated and
the manipulator desired input efforts must grow to infinity
where to produce the desired platform motion. Physically, this

o O, is the expression of the wrenakli, in the base condition_ means that the pargllel manipulator can cross the

frame, i.e.owp — Dw,, with D the matrix relating the Type 2 singularity if and only if the wrenc?wp exerted by

platform twist t (expressed in the base frame) to thdhe legs and external efforts on the platform is reciprocal
vectorv by t = Dv [4] to the twistts of the uncontrollable motion in the Type 2

e J=9A-1B is the Jacobian matrix between the platformsingularity.

twist t and g, with %A is the expression of the matrix C. Generation of a robust trajectory for crossing Type 2
A in the base frame, i.éA =AD" L. singularity

T=wp+J" Owp, (4)

In order to cross a singularity without torque discontipuit
_ ] ) the mechanism has to follow a trajectory that respects the

Based on the analysis of the kinematic model, the authogiterion (7) on the singularity locus. Theoretically, the
of [3] proposed a classification of the singularities in thre dynamic model degenerates only on the singularity locus,
different types: o - however numerically the matrix A is singular on a space
Type 1 singularities or serial singularitiesoccur when the  4r6und the singularity locus. Therefore the criterion (@ h
mechanism is in a position such as the kinematic mairix 4 pe respected in this space around the singularity locus in
becomes rank deficient. In such configurations, the mechgsyer to prevent the dynamic model from degenerating.
nism loses the ability to move in one given direction. The trajectory generation is achieved using polynomials,
Type 2 singularities or parallel singularities occur when \yhich degree can vary. Indeed, in order to guarantee that the
the kinematic matriX’A becomes rank deficient. In Type 2 criterion (7) is respected around the singularity locuss it

singularities, one (or more) robot degree of freedom besomgroposedn this work to vanish the criterion (7) and of its
uncontrollable. Such singularities divide the workspage igerivatives:

different aspects, resulting in a reduction of the manitoula _
workspace. Moreover, in the presence of such singularities tTM —0 i=1.n ®)
the robot may also not be able to resist to an external wrench Sodtt T
applied on the platform and the reactions in joints grow to To the best of our knowledge, this is the first time that
infinity. such criteria are proposed. Generating a trajectory based o
Type 3 singularities are configurations where both Type 1these criteria (8) allows to increase the robustness to mode
and Type 2 singular configurations appear at the same timgcertainties and control error around the singularitypex
They are discarded in the following of the paper as thejmental results shows that nullifying the 2 first derivativa
appear if both Types 1 and 2 singularity exist. the criterion might be enough.

Finally parallel mechanism with less thardéf can have Next section will present the control law used to allow
another type of singularity such as the constraint singularthe singularity crossing.
ties [17], [2].

B. Type 2 singularity crossing



Unfortunately, when planning a Type 2 singularity crossing
trajectory, the mechanism changes its assembly mode, and
so the solution of thddKM has to change. To do so, the
controller need the information that the mechanism changed
its assembly mode which cannot be deduced from the joint
positions. Experimentally, the most reliable solution d@s t
choose théDKM solution based on the desired trajectory.
Fig. 1. Computed torque control law It should be mentioned that, when using the propdSead
for crossing Type 2 singularities, the trajectory planned f
respecting the crossing criteria (cf. Part 1l) will be diffat
I1l. CONTROL LAW DEDICATED TO TYPE 2 SINGULARITY  from the real one due to errors in the dynamic model. As
CROSSING a result, speaking numerically, therossing criteria (7)
A. Computed Torque Control will never be respectedand the computed torque control
could send infinite torques to the robot that will prevent the
slingularity crossing due to the inversion of the matix
P! Next section presents a multi-model control law allowing
e controller to avoid this issue.

The Computed Torque ContrdC{C) [16] is a control law
that computes the input torques that the actuators musy ap
on the mechanism in order to follow a given trajectory. It is;[h
based on the dynamic model presented in Part Il. As for any
type of control law in robotics, the aim of the controll@fC  B. Multi-model control law

is to minimize the error in either joint or task space. Since a 14 aypid these numeric issues, the proposed solution is to
proximity of a Type 2 singularity the kinematic matiis 5131 3 trajectory respecting around the singularity lodes t
singular, it is not possible to compute the Cartesian VBEEI riterion:

from the joint velocities using th®KM (Direct kinematic Wp =0 (14)
Model). Sensors being usually measuring joint space values
only the joint space control law should be used to cross Type This new criterion still guarantees that the dynamic crite-
2 singularities,. rion ts' wp = 0 is respected. Moreover, the firsderivatives
The control errore to minimize can be expressed as:  of this new criterion are also nullified. The directidg
being time independent, this guarantees that the first
e=04—0q = €=Qqq—@q = é=04§g—¢ (9) derivatives of the dynamic criterion are also null as préseén
in Section II-C. Of course during the real robot displacetnen
where numericallyw, will not be null, but such a new criterion
e (g (respectivelyqq anddg) is the desired joint position allows the implementation of a multi-model control law. The

(respectively velocity and acceleration), multi-model CTC law presented in this paper consists in
e ( (respectivelyq and §) is the current measured joint ysing two models :

position (respectively velocity and acceleration). e Model 1 — The complete dynamic model as long/&s
In order to force the error to tend to zero, a second order s invertible:

differential equation ore is imposed by: T=wp+J"wp (15)
&+Kge+Kpe=0 (10) e Model 2 — A reduced dynamic model that cannot
degenerate when the mechanism is close to a singular
By substituting Eq. (9) into Eqg. (10) one can obtain: position:
. . T=Wy (16)
4 =0q+Kge+Kpe (11)

The second dynamic model is used to compute input
Let us rewrite the dynamic model of the mechanism agrques only when the trajectory has been planned in order
[16], [18]: to havewp, = 0. Considering that the control law is correctly
adjusted, the effective trajectory is close enough to the de
T =wp+JTwp = MG +H(q,q) (12)  sired one and therefore the hypothesis= 0 is acceptable.

ConsequentlyCTC (Fig. (1)) computes the input torques Once the mechanism is far enough from the singularity

by substituting Eq. (11) into the dynamic model presente@c_us’ i.e. the matriA is numerically inverFibIe, the control
in Eq. (12): switches back to the complete dynamic model and the

mechanism can finish its trajectory.
. - . Moreover, in order to cross the singularity locus, the con-
T =M{(Qu+Kqe+Kpe)+H(a,q) (13) troller need a metric that defines the n?ometr?/t wherMbdel
It should be noted that the vector of positions in the tasRk has to be used. The discussion about the best indicator of
spacex is necessary to compute matriddsandH. However, singularity proximity is a well known problematic [4], [19]
most mechanisms have sensors measuring the vector [@0]. Here, as the controller may become unstable due to
positions in the joint spacg. Therefore thddKM is needed. numerical problems linked to the inversion of the mathix



Fig. 2.

Five-bar mechanism designed and manufactured aAIFM

TABLE |
FIVE-BAR MECHANISM’S GEOMETRIC PARAMETERS

not bring the system in the neighbourhood of the instability

domain, the chosen frequency must be smaller than the
natural resonance frequency [14]. Therefore a frequency of
w = w /3 has been chosen, resulting in gains values :

Kp=115Q Kg=70 (18)

C. Dynamic model

A full dynamic model of the robot has been computed
using the methodology presented in [22] and its identifica-
tion was made using a weight least square method based
on the use of exciting trajectories followed with a classic
geometrical control law [21]. The identification results in
the following model that fully describes the robot dynamics
of the studied mechanism:

Parameter a Ly Lo L3 La
Value (m) 02822 02130 0.1888 0.1878 0.2130 ; .
Precision (m) 105 110°% 1105 1105 1.10° T — mSJT( X )+< 21 4 >+
y 2 Q2 (19)
( fuiGa >+< fasign(dy) )
f202 fosign(gz)

it has been decided to use the numerical condition numb

er

of that matrix to define the space where the dynamic model Where :
might degenerates and therefore where the control law has mg is a mass equivalent located on the end effector;

to switch between the two models.

Next sections present experimental results of Type
singularity crossing using this multi-model control law on
a planar Five-bar mechanism.

IV. CASE STUDY
A. Presentation of the Five-bar mechanism

A Five-bar mechanism is a planar parallel mechanism
composed of two actuators located at the revolute jointse

positioned in pointsA and E and 3 passive revolute joints
in pointsB, C andD (Fig. 2). The mechanism used in this

mg = 0.40+0.02kg

zzy and zz, are rotational equivalent inertial terms
respectively on the first and second actuatzm; =
1.83-10 2+6.97-10 %kg.n?; zzo = 1.96-10 2+ 6.60-

10 %kg.n?;

fg is a Coulomb friction term on the first actuator
(respectivelyfy on the second actuatorjy = 2.94+
0.10N.m; fo = 2.95+ 0.09N.m;

fy1 is a viscous friction term on the first actuator
(respectivelyf,, on the second actuatorj;; = 6.76+
0.018N.m.sfy, = 6.754+0.17N.m.s.

2e

work has been designed so that it can reach all the workspacerhjs identified dynamic model is related to the Eq. (2) by:

positions without collision between the proximal and the

distal legs.

The mechanism and its parameters are presented in Fig.

The links dimensions have been calibrated using a Las
Tracker (Table ).

B. Gain tunning

The proportional and derivative gains have been tun
based on the mechanism’s natural frequency [14]. Th

frequency was retrieved using a ring-out procedure. The
mechanism was excited using an impedance hammer, a

its response was recorded using 5 accelerometers. The f
natural frequency of the Five-bar mechanism in its isotropi
configuration (when link8C and CD are perpendicular) is
at 34.2 Hz.

For a given control bandwidth fixed by a frequeniayoth
gains are adjusted as :
Kg = ZE(L)

Kp = ?, (17)

%
y

().

2. 20
eer _ ( 721 G1 ) " ( fvlql ) 4 < fsls!gn(ql) > (20)
zz; o fv2Ge fosign(gz)

It should be noted that the friction terms in both passive
joints are insignificant and therefore the identificationtioe

era‘:turned null values.

5. Control law implementation

ndThe Five-bar mechanism is controlled by an industrial
ﬁgptrol architecture developed by ADEPT with an open
architecture. This control architecture allows the user to
control the mechanism either in position, speed or torques,
using a C/C++ software developed by ADEPT France: CIDE.
This software was designed mostly for position control,
therefore every securities preventing mostly physical aigen
had to be developed for the computed torque control law.
The dynamic model identified contain both accelerations

in the joint space and in the task space. Therefore, in order

whereé is a a damping coefficient usually fixed to 1 to haveo express the dynamic model as in Eq. (12), the task space
a critically damped system. To guarantee that the gains @aceleration has to be expressed as a function of the joint



space acceleration. This can be done by differentiating the 04 y(m)

kinematic model: 0351

v=1Jq=V=J9+J§ (21)

03

By substituting (21) into (19) one can obtain the dynamic
model used for the computed torque control law as presented

in Equation (12): 02
. 015
=M (gl) +H,where (22) ol /
2
. T zzz O 0.05 , \‘
M = mgJ ‘]+(Ozz4) (23) | |

7( ¢ fv101+ fasign(ds)
H=mJ"J 91) <V1.1 sL3gNIe 24
me (Q2 T et + fosion(@) ) @
Finally, in order to compute on-line the dynamic model of
the robot and theCTC control law, the actuator’s positions
and speeds have been filtered by using the oversampling
method at 1Khz (the control law turning at 250 Hz). :

Cartesian trajectory (m)
il
\
|
,

tw
s'p

V. EXPERIMENTAL RESULTS
A_ Generation Of a Croaﬁ ng tra_J ectory 0 01 02 03 04 © 05 o.‘s o.‘7 0.‘8 o.‘9 1
The crossing trajectories are generated using two polyno

. . Fi-g. 3. Example of 8 order polynomial trajectory crossing the Type 2
mials P, and R, such as : singularity locus

X = Px(Xt —Xo) + Xo,

(25)
y=R/(¥r —Yo) +Yo with a conditioning number limit set to 30 for switching
where between the two models.
e R(to) =PR(to) =0, The multi-model control law engenders an increase of
o R(tr) =R(tr) =1, the error around the singularity locus. Therefore, when the

Each of them are'8 order polynomial, corresponding to control law switches back to the complete dynamic model,
8 conditions on each axes: two conditions for the initiaf"€ input torques can significantly increase in order toifyull
position and speed, two for the final position and speeg,"s error. Th|§ can.be seen on the.flrst. trajectory at 0.7s.
one for the singular position and three to guarantee that All three traje_ctorles_ represented in Figure 4 were planned
the singularity crossing criteria (14) is respected arotied 0 cross the singularity at 0.5s and end at 1s. For each
singularity locus [12]. trajectory, the first figure represents the desired trajgdto

Figure 3 represents a crossing trajectory in the task spalét® task space and the Type 2 singularity of the mechanism.
as well as the evolution of the task space coordinates alongFor testing the robustness of the proposed controller, each

this trajectory and the evolution of the dynamic criterig)(1 frajectory is run five times. Moreover, the starting point
for: and the ending point were chosen randomly and neither

those points nor the crossing direction have any effect on
Xo = 0.1, Yo = 0.34, : . . ; . .
the singularity crossing. During all our experiments using
Xs=0.05473 ys=0.2, (26)  this controller, the robot has always successfully crosked
X =0, ys = 0.1, singularity loci without any difficulty. Thus, our contrell is
totally robust to the desired trajectory.

B. Type 2 singularity crossing results and process repeata-
bility VI. CONCLUSION

This section presents the results of Type 2 singularity One of the most important drawbacks of parallel robots
crossing for different trajectories computed according tés the small size of their workspace, which is moreover
the method presented in Section 1I-C and in the previougduced by the presence of singularities. In order to irserea
paragraph. Figure 4 represents the input torques computib@ workspace size, several solutions have been proposed.
by the computed torque control law along different crossin@ne promising approach is the definition of optimal tra-
trajectories from one assembly mode to another, the desirgttories able to cross the Type 2 singularities. However,
trajectory and the control error. For each trajectory, tleelm  this solution assumes that the controller is not subject to
anism crosses the singularity without torque discontinuit modelling errors and that the robot is able to perfectlykrac



First Trajectory

RN
03 / 10
= / \
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coupled with an optimal trajectory planning methodology
that makes the singularity crossing more robust to moagllin
errors.

Such a controller has been validated experimentally on
a prototype of a Five-bar planar parallel mechanism. The
results have shown the robustness and the relevancy of
the controller dedicated to parallel robot Type 2 singtyari

0 2 Model 1 | Model 2 | Model 1
02 <) 02 0 05 time(s) 1 s
g o2 \ ]
s N
= f I\ q,
9y s e | ~———
Qo =—== Saaaen =V S ———— —
o | 7 g | g [1]
E-o1r | ‘ | »/ |
2 [ T/
-0.2 L L
0 05 time (s) 1 15 [2]
Second Trajectory
[3]
[4]

° -02 -0.1 0 0.1 0.2 0 0.5 [5]

time (s)

1 [6]

Joint space error (rad)

1 M

time (s)

(8]

El

[10]

0
=02 -0.1 0 0.1 0.2 0 0.5 time (s)

[11]

[12]

Joint space error (rad
2
T

[13]

Fig. 4.
applied

Different crossing trajectories and correspondingut torque
[14]

[15]
the desired trajectory. Nevertheless, due to modellingresr H%
this assumption cannot be verified. As a consequence, if
the optimal trajectory is not perfectly tracked, the dynami[18]
model can degenerate near the Type 2 singularities, this can
cause the computation of infinite torques and the robot mighioj
stay blocked into the singularity.

In order to avoid this problem, this paper has proposed o]
controller dedicated to the Type 2 singularity crossingisTh
controller was based on a multi-model approach that allowed
the parallel robots to cross the Type 2 singularities witho 21
any torque discontinuity. The main idea was to shift negpz]
singularities from the full robot dynamic model to another
simplified one that can never degenerate. This controller wa

=] crossing.
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