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Abstract— Previous works on parallel robots have shown
that their visual servoing using the observation of their leg
directions was possible. There were however found two main
results for which no answer was given. These results were
that (i) the observed robot which is composed ofn legs can
be controlled using the observation of onlym leg directions
(m < n) arbitrarily chosen among its n legs, and that (ii)
in some cases, the robot does not converge to the desired
end-effector pose, even if the observed leg directions did.

Recently, it has been shown that the visual servoing of
the leg directions of the Gough-Stewart platform and the
Adept Quattro with 3 translational degrees of freedom was
equivalent to controlling other virtual hidden robots that
have assembly modes and singular configurations different
from those of the real ones.

In this paper, the concept of hidden robot model is
generalized for any type of parallel robots controlled using
visual servos based on the observation of the leg directions.
It is shown that the concept of hidden robot model is a
powerful tool that gives useful insights about the visual
servoing of robots using leg direction observation. With the
concept of hidden robot model, the singularity problem of
the mapping between the space of the observed robot links
and the Cartesian space (including the analysis of the local
minima and of the diffeomorphism between the observation
space and the robot space) can be addressed. And above all,
it is possible to give and certify the information about the
controllability of the observed robots using the proposed
controller.

All these results are validated through experiments on a
Quattro robot.

I. I NTRODUCTION

Parallel robots are mechanical architectures whose end-
effector is linked to the fixed base by means of at least
two kinematic chains [1]. Compared to serial robots, such
robots are stiffer and can reach higher speeds and acceler-
ations [2]. However, their control is troublesome because
of the complex mechanical structure, highly coupled joint
motions and many other factors (e.g. clearances, assembly
errors, etc.) which degrade stability and accuracy.

Many research papers focus on the control of paral-
lel mechanisms (see [3] for a long list of references).
Cartesian control is naturally achieved through the use of
the inverse differential kinematic model which transforms
Cartesian velocities into joint velocities. It is noticeable

that, in a general manner, the inverse differential kine-
matic model of parallel mechanisms does not only depend
on the joint configuration (as for serial mechanisms) but
also on the end-effector pose. Consequently, one needs
to be able to estimate or measure the latter.

Past research works have proven that the robot end-
effector pose can be effectively estimated by vision. The
most common approach consists of the direct observation
of the end-effector pose [4], [5], [6]. However, some
applications prevent the observation of the end-effector
of a parallel mechanism by vision. For instance, it is not
wise to imagine observing the end-effector of a machine-
tool while it is generally not a problem to observe its
legs that are most often designed with slim and rectilinear
rods [3].

A first step in this direction was made in [7] where
vision was used to derive a visual servoing scheme based
on the observation of a Gough-Stewart (GS) parallel
robot [8]. In that method, the leg directions were chosen
as visual primitives and control was derived based on
their reconstruction from the image. By stacking the
observation matrices corresponding to the observation of
several legs, a control scheme was derived and it was
then shown that such an approach allowed the control
of the observed robot. After these preliminary works, the
approach was extended to the control of the robot directly
in the image space by the observation of the leg edges
(from which the leg direction can be extracted), which
has proven to exhibit better performances in terms of
accuracy than the previous approach [9]. The approach
was applied to several types of robots, such as the Adept
Quattro and other robots of the same family [10], [11].

The proposed control scheme was not usual in visual
servoing techniques, in the sense that in the controller,
both robot kinematics and observation models linking the
Cartesian space to the leg direction space are involved.
As a result, some surprising results were obtained:

• the observed robot which is composed ofn legs can
be controlled using the observation of onlym leg
directions (m < n) arbitrarily chosen among itsn
legs, and that



• in some cases, the robot does not converge to the
desired end-effector pose (even if the observed leg
directions did)

without finding some concrete explanations to these
points. Especially, the last point showed that it may be
possible that a full diffeomorphism between the Cartesian
space and the leg direction space does not exist, but no
formal proof was given.

In parallel, some important questions were never an-
swered, such as:

• How can we be sure that the stacking of the ober-
vation matrices cannot lead to local minima (for
which the error in the observation space is non zero
while the robot platform cannot move [12]) in the
Cartesian space?

• Are we sure that there is no singularity in the
mapping between the leg direction space and the
Cartesian space?

All these points were never answered because of the
lack of existing toolsable to analyze the intrinsic proper-
ties of the controller.

Recently, two of the authors of the present paper have
demonstrated in [13] that these points could be explained
by considering that the visual servoing of the leg direction
of the GS platform was equivalent to controlling another
robot “hidden” within the controller, the 3–UPS1 that
has assembly modes and singular configurations different
from those of the GS platform. A similar property has
been shown for the control of the Adept Quattrowith only
3 translational degrees of freedom(dof – a redundant
version of the Quattro with a rigid platform) for which
another hidden robot model, completely different from
the one of the GS platform, has been found [15].

In both cases, considering this hidden robot model
allowed the finding of a minimal representation for the
leg-observation-based control of the studied robots that
is linked to a virtual hidden robot which is a tangible
visualization of the mapping between the observation
space and the real robot Cartesian space. The hidden
robot model:

1) can be used to explain why the observed robot
which is composed ofn legs can be controlled
using the observation of onlym leg directions
(m < n) arbitrarily chosen among itsn legs, and
can also help to choose the best set of legs to
observe with respect to some given performance
indices,

2) can be used to prove that there does not always
exist a full diffeomorphism between the Cartesian
space and the leg direction space, but can also bring
solutions for avoiding to converge to a non desired
pose,

3) simplifies the singularity analysis of the mapping
between the leg direction space and the Cartesian

1In the following of the paper,R, P, U, S, Π will stand for
passive revolute, prismatic, universal, spherical and planar parallelogram
joint [14], respectively. If the letter is underlined, the joint is considered
active.

space by reducing the problem to the singularity
analysis of a new robot,

4) can be used to certify that the robot will not
converge to local minima, through the application
of tools developed for the singularity analysis of
robots.

Thus, the concept of hidden robot model, associated
with mathematical tools developped by the mechanical
design community, is a powerful tool able to analyze the
intrinsic properties of some controllers developped by the
visual servoing community. Moreover, this concept shows
that in some visual servoing approaches, stacking several
interaction matrices to derive a control scheme without
doing a deep analysis of the intrinsic properties of the
controller is clearly not enough. Further investigations
are required.

Therefore, in this paper, the generalization of the
concept of hidden robot model is presented and a general
way to find the hidden robots corresponding to any kind
of robot architecture is explained. It will be shown that
the concept of hidden robot model is a powerful tool
that gives useful insights about the visual servoing of
robots using leg direction observation. With the concept
of hidden robot model, the singularity problem of the
mapping between the space of the observed robot links
and the Cartesian space can be adressed, and above all,
it is possible to give and certify information about the
controllability of the observed robots using the proposed
controller.

At this step, it is necessary to warn the readers
that, even if this paper concerns the visual servoing
community, it contains theoretical developments based
on the use of tools provided by the mechanical design
community. Therefore, if the readers are not used to
basics in kinematics of parallel robots, they may be lost.

The paper is decomposed as follows. Section II makes
some brief recalls on the visual servoing of parallel robots
using leg observations. Then, Section III presents the con-
cept of hidden robot model and generalizes the approach
for any type of parallel robots. Experimental validations
on the Adept Quattro are presented in Section IV. Finally,
our conclusions are written in Section V.

II. RECALLS ON VISUAL SERVOING OF PARALLEL

ROBOTS USING LEG OBSERVATIONS

A line L in space, expressed in the camera frame, is
defined by its Binormalized Plücker coordinates [16]:

L ≡ (cu, cn, cn) (1)

wherecu is the unit vector giving the spatial orientation
of the line2, cn is the unit vector defining the so-called
interpretation plane of lineL and cn is a nonnegative
scalar. The latter are defined bycncn = cP× cu where
cP is the position of any pointP on the line, expressed
in the camera frame.

2In the following of the paper, the superscript before the vector
denotes the frame in which the vector is expressed (“b” for the base
frame, “c” for the camera frame and “p” for the pixel frame). If there
is no superscript, the vector can be written in any frame.



For the sake of compactness, the representation of
the cylinders, which compose the robot legs, using their
edges represented by lines using the aforementioned
Binormalized Plücker coordinates will not be presented
in this paper. For more information on this, the reader is
referred to [15].

The proposed control approach was to servo the leg
directions cui [7]. Some brief recalls on this type of
controller are done below.

1) Interaction matrix:Visual servoing is based on the
so-called interaction matrixLT [18] which relates the
instantaneous relative motionTc =

cτc−
cτs between the

camera and the scene, to the time derivative of the vector
s of all the visual primitives that are used through:

ṡ = LT
(s)Tc (2)

where cτc and cτs are respectively the kinematic screw
of the camera and the scene, both expressed inRc, i.e.
the camera frame.

In the case where we want to directly control the leg
directionscui, and if the camera is fixed, (2) becomes:

cu̇i = MT
i
cτc (3)

whereMT
i is the interaction matrix for the legi.

2) Control: For the visual servoing of a robot, one
achieves exponential decay of an errore(s, sd) between
the current primitive vectors and the desired onesd using
a proportional linearizing and decoupling control scheme
of the form:

Tc = λL̂T+
(s) e(s, sd) (4)

whereTc is used as a pseudo-control variable and the
upperscript “+” corresponds to the matrix pseudo-inverse.

The visual primitives being unit vectors, it is theoret-
ically more elegant to use the geodesic error rather than
the standard vector difference. Consequently, the error
grounding the proposed control law will be:

ei =
cui ×

cudi (5)

wherecudi is the desired value ofcui.
It can be proven that, for spatial parallel robots,

matricesMi are in general of rank 2 [7] (for planar
parallel robots, they are of rank 1). As a result, for spatial
robots with more than 2dof, the observation of several
independent legs is necessary to control the end-effector
pose. An interaction matrixMT can then obtained by
stackingk matricesMT

i of k legs.
Finally, a control is chosen such thate, the vector

stacking the errorsei associated to ofk legs (k = 3...6),
decreases exponentially, i.e. such that

ė = −λe (6)

Then, introducingLT
i = − [cudi]× MT

i , where[cudi]× is
the cross product matrix associated with the vectorcudi,
the combination of (5), (3) and (6) gives

cτc = −λLT+e (7)

whereLT can be obtained by stacking the matricesLT
i

of k legs. The conditions for the rank deficiency of

matrix LT , as well as the conditions that lead to local
minima [12] of the Eq. (7) are discussed in Section III.

This expression can be transformed into the control
joint velocities:

q̇ = −λcJinvLT+e (8)

wherecJinv is the inverse Jacobian matrix of the robot
relating the end-effector twist to the actuator velocities,
i.e. cJinvcτc = q̇.

In the next Section, it is shown that such type of
controller involve the use of hidden robot models that
can be studied for analyzing the controllability of parallel
robots using the proposed visual servoing approach.

III. T HE CONCEPT OF HIDDEN ROBOT MODEL

The concept of hidden robot model has been first
introduced in [13] for the visual servoing of the GS
platform. In this paper, it has been demonstrated that
the leg direction based visual servoing of such robots
intrinsically involves the appearance of a hidden robot
model, which has assembly modes and singularities
different from the real robot. It was shown that the
concept of hidden robot model fully explains the possible
nonconvergence of the observed robot to the desired final
pose and that it considerably simplifies the singularity
analysis of the mapping involved in the controller.

The concept of hidden robot model comes from the
following observation: in the classical control approach,
the encoders measure the motion of the actuator; in
the previously described control approach (Section II),
the leg directions or leg edges are observed. So, in a
reciprocal manner, one could wonder to what kind of
virtual actuators such observations correspond. The main
objective of this Section is to give a general answer to
this question.

A. How to define the legs of the hidden robots

Let us consider a general leg for a parallel robot in
which the directionui of a segment is observed (Fig. 1(a)
– in this figure, the last segment is considered observed,
but the following explanations can be generalized to any
segment located in the leg chain). In what follows, we
only consider that we observe the leg directionui, and
not the leg edges in the image space, as the leg edges are
only used as a measure ofui. Sothe problem is the same,
except in the fact that we must consider the singularity of
the mapping between the edges andui, but this problem
is well handled: these singularities appear whenn1

i and
n2
i are colinear, i.e. the cylinders are at infinity [9].
In the general case, the unit vectorui can obviously

be parameterized by two independent coordinates, that
can be two angles, for example the anglesα and β of
Fig. III-A defined such thatcosα = x ·v = y ·w (where
v andw are defined such thatz · v = z · w = 0) and
cosβ = u · x. Thusα is the angle of the first rotation of
the link directionui aroundz andβ is the angle of the
second rotation aroundv.

It is well known that aU joint is able to orientate
a link aroud two orthogonal axes of rotation, such asz
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and v. Thus U joints can be the virtual actuators with
generalized coordinatesα andβ we are looking for. Of
course, other solutions can exist, butU joints are the
simplest ones.

If a U joint is the virtual actuator that makes the vector
ui move, it is obvious that:

• if the value ofui is fixed, theU joint coordinates
α andβ must be constant, i.e.the actuator must be
blocked,

• if the value ofui is changing, theU joint coordinates
α andβ must also vary.

As a result, to ensure the aforementioned properties for
α andβ if ui is expressed in the base or camera frame
(but the problem is identical as the camera is considered
fixed on the ground), vectorsx, y and z of Fig. III-A
must be the vectors defining the base or camera frame.
Thus, in terms of properties for the virtual actuator, this
implies that the firstU joint axis must be constant w.r.t.
the base frame, i.e. theU joint must be attached to a link
performing a translation w.r.t. the base frame3.

However, in most of the cases, the real leg architecture
is not composed ofU joints attached on links performing
a translation w.r.t. the base frame. Thus, the architecture
of the hidden robot leg must be modified w.r.t. the real
leg such as depicted in Fig. 1(b). TheU joint must be
mounted on a passive kinematic chain composed of at
most 3 orthogonal passiveP joints that ensures that the
link on which is it attached performs a translation w.r.t.
the base frame. This passive chain is also linked to the
segments before the observed links so that they do not
change their kinematic properties in terms of motion.
Note that:

3In the case where the camera is not mounted on the frame but on a
moving link, the virtualU joint must be attached on a link performing
a translation w.r.t. the considered moving link.
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• it is necessary to fix thePPPchain on the preceeding
leg links because the information given by the vec-
torsui is not enough for rebuilding the full platform
position and orientation: it is also necessary to get
information on the location of the anchor pointAn−1

of the observed segment [9]. This information is kept
through the use of thePPP chain fixed on the first
segments;

• 3 P joints are only necessary if and only if the point
An−1 describes a motion in the 3D space; if not, the
number ofP joints can be decreased: for example,
in the case of the GS platform presented in [13],
the U joint of the leg to control was located on the
base, i.e. there was no need to add passiveP joints
to keep the orientation of its first axis constant;

• when the vectorui is constrained to move in a
plane such as for planar legs, the virtual actuator
becomes anR joint which must be mounted on
the passivePPP chain (for the same reasons as
mentioned previously).

For example, let us have a look at theRU leg with
one actuatedR joint followed by aU joint of Fig. 3(a).
Using the previous approach, its virtual equivalent leg
should be an{R–PP}–U leg (Fig. 3(b)), i.e. theU joint
able to orientate the vectorui is mounted on the top of
a R–PPchain that can garantee that:

1) the link on which theU joint is attached performs
a translation w.r.t. the base frame,

2) the pointC (i.e. the centre of theU joint) evolves
on a circle of radiuslAB, like the real leg.

It should be noticed that, in several cases for robots
with a lower mobility (i.e. spatial robots with a number
of dof less than 6, or planar robots with a number ofdof
less than 3), the last joint that links the leg to the platform
should be changed so that, if the number of observed legs
is inferior to the number of real legs, the hidden robot



keeps the same number of controlleddof.
It should also be mentioned that we have presented

above the most general methodology that is possible to
propose, but it is not the most elegant way to proceed.
In many cases, a hidden robot leg architecture can be
obtained such that less modifications w.r.t the real leg
are achieved. For example, theR–PPchain of the hidden
robot leg {R–PP}–U (Fig. 3(b)) could be equivalently
replaced by a planar parallelogram (Π) joint without
changing the aforementioned properties of theU virtual
actuator (Fig. 3(c)), i.e. only one additional joint is added
for obtaining the hidden robot leg (note that we consider
that aΠ joint, even if composed of several pairs, can be
seen as one single joint, as in [14]).

B. How to use the hidden robot models for analyzing the
controllability of the servoed robots

The aim of this Section is to show how to use the
hidden robots for answering points 1 to 4 enumerated in
the introduction of the paper.

Point 1: the hidden robot model can be used to explain
why the observed robot which is composed ofn legs
can be controlled using the observation of onlym leg
directions (m < n) arbitrarily chosen among itsn legs,
and can also help to choose the best set of legs to observe
with respect to some given performance indices.

For answering this point, let us consider a general
parallel robot composed of 6 legs (one actuator per leg)
and having sixdof. Using the approach proposed in
Section III-A, each observed leg will lead to a modified
virtual leg with at least one actuatedU joint that has
two degrees of actuation. For controlling 6dof, only 6
degrees of actuations are necessary, i.e. three actuatedU
are enough. Thus, in a general case, only three legs have
to be observed to fully control the platformdof.
Point 2: the hidden robot model can be used to prove that
there does not always exist a full diffeomorphism between
the Cartesian space and the leg direction space, but can
also bring solutions for avoiding to converge to a non
desired pose.

Here, the answer comes directly from the fact that the
real controlled robot may have a hidden robot model
with different geometric and kinematics properties. This
means that the hidden robot may have assembly modes
and singular configurations different from those of the
real robot. If the initial and final robot configurations are
not included in the same aspect (i.e. a workspace area
that is singularity-free and bounded by singularities [2]),
the robot won’t be able to converge to the desired pose,
but to a pose that corresponds to another assembly mode
that has the same leg directions as the desired final pose
(see Fig. III-B).
Point 3: the hidden robot model simplifies the singularity
analysis of the mapping between the leg direction space
and the Cartesian space by reducing the problem to the
singularity analysis of a new robot.

The interaction matrixMT involved in the controller
gives the value ofcu̇ as a function ofcτc. Thus,MT
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Fig. 4. Two configurations of a five bar mechanism for which the
directionsu

i
are identical (fori = 1, 2)

is the inverse Jacobian matrix of the hidden robot (and,
consequently,MT+ is the hidden robot Jacobian matrix).
Except in the case of decoupled robots [19], [20], [21],
the Jacobian matrices of parallel robots are not free of
singularities.

Considering the input/output relations of a robot, three
different kinds of singularity can be observed [22]4:

• the Type 1 singularitiesthat appear when the robot
Jacobian matrix is rank-deficient; in such configura-
tions, any motion of the actuator that belongs to the
kernel of the Jacobian matrix is not able to produce
a motion of the platform,

• the Type 2 singularitiesthat occur when the robot
inverse Jacobian matrix is rank-deficient; in such
configurations, any motion of the platform that be-
longs to the kernel of the inverse Jacobian matrix is
not able to produce a motion of the actuator. And, re-
ciprocally, near these configurations, a small motion
of the actuators lead to large platform displacements,
i.e. the accuracy of the robot becomes very poor,

• the Type 3 singularitiesthat appear when both the
robot Jacobian and inverse Jacobian matrices are
rank-deficient.

Thus,

• finding the condition for the rank-deficiency ofMT

is equivalent to find the Type 2 singularities of the
hidden robot,

• finding the condition for the rank-deficiency of
MT+ is equivalent to find the Type 1 singularities
of the hidden robot.

Point 4: the hidden robot model can be used to certify
that the robot will not converge to local minima.

The robot could converge to local minima if the matrix
LT+ of (7) is rank deficient. A necessary and sufficient
condition for the rank deficiency of this matrix is that
the MT+ is rank deficient, i.e. the hidden robot model
encounters a Type 1 singularity. As mentioned above,
many tools have been developed by the mechanical
design community for finding the singular configurations
of robots and solutions can be provided to ensure that the
hidden robot model does not meet any Type 1 singularity.

4There exist other types of singularities, such as the constraint
singularities [23], but they are due to passive constraint degeneracy
only, and are not involved in the mapping between the leg directions
space and the robot controlled Cartesian coordinate space.
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For illustating this Section, let us present thefkp and
singularity analysis of the hidden robot model of the
Quattro with 4 dof (that can perform Schoenflies mo-
tions), when controlled using leg direction observation. It
must be mentionned that, in [15], the Quattro with rigid
platform, i.e. with 3 translationdof was studied. However,
the kinematics of the hidden robot for the version with
4 dof is completely different and is the object of this
Section.

The Quattro is made of 4R–{2–US} legs, thus its
equivalent hidden robot will be made ofΠ–{2–US}
or Π–{2–UU} legs. As such hidden robot legs have
2 degrees of actuation (theU joint is fully actuated),
only two legs have to be observed for fully controlling
the Quattro using leg direction observation. However
in this case, if the hidden robot has a 2–Π–{2–US}
architecture, the platform will have two uncontrolleddof.
This phenomenon disappears ifΠ–{2–UU} legs are used

in the hidden robot model (Fig. 6 – in this picture, the
articulated platform is simplified for a clearer drawing,
but has indeed the kinematic architecture presented in
Fig. 5(c)).

Forward kinematics and assembly modes.Without loss
of generality, let us consider that we analyze the 2–Π–
{2–UU} robot depicted at Fig. 6(a). Looking at the vertex
space of each leg when the activeU joints are fixed, the
pointsCi andDi are carrying out a circleCi of radius
lAiBi

centred inSi (Fig. 6(c)).
The Quattro with 4dof, and consequently its hidden

robot model, has a particularity: its platform is passively
articulated (Fig. 5(c)) so that its orientation with respect
to the horizontal planxOy stays constant, while it can
have one degree of rotation around thez axis, i.e. point
D2 can describe a circleCl located in the horizontal plane,
centred inD1 and with a radiuslD1D2

. For solving the
forward kinematics, it is thus necessary to virtually cut
the platform at pointD2 and to compute the coupler
surface of pointD2 when it belongs to leg 1. This coupler
surface is the surface generated byCl when it performs a
circular translation alongC1. Such a surface is depicted
in Fig. 7(a) and is called a Bohemian Dome [35].

A Bohemian Dome is a quartic surface, i.e. an alge-
braic surface of degree 4. When it intersects the vertical
planePl containing the circleC2 (i.e. vertex space of the
second leg), the obtained curve is a quartic curve (denoted
at S1 – Fig.7(a)). And using the Bézout theorem [36], it
can be proven that, when the circle corresponding to the
vertex space of leg 2 intersects this quartic curve, there
can exist at most 8 intersection points, i.e. 8 assembly
modes. Some examples of assembly modes for the 2–Π–
{2–UU} robot are depicted in Figs. 7(b) and 7(c).

It should be noted that, when circlesC1 and C2 are
located in parallel planes,S1 degenerates into 1 or 2
circles. In this case, the maximal number of assembly
modes decreases to 4. It must be mentioned here that, in
usual controllers when only the encoder data is used, the
number of assembly modes of the Quattro is equal to 8.

Singular configurations. For the 2–Π–{2–UU} robot,
Type 2 singularities appear when the planesPi andPj

(whose normal vectors are equal tov⊥
i and v⊥

j , resp.)
are parallel. In such cases, the circleC2 is tangent to
the Bohemian Dome at their intersection point and the
robot gains one uncontrollabledof along this tangent
(Fig. 6(d)).

C. Selection of the Controlled Legs

This Section has shown the importance of studying
the intrinsic properties of the controller that are directly
related to the choice of the stacked interaction matrices
required for computing the control law. Depending on
the chosen interaction matrices, i.e. on the choice of
the observed legs, the geometry of the hidden robot
models will vary, as well as its singularities and assembly
modes. As singularities divide the workspace into distinct
aspects [2], it is necessary to study the motion feasibility



circle C2 :
vertex space of
the 2nd leg

coupler surface
(Bohemian Dome)

actuated
U joints
(on Π joints)

u
1

passive motions of
the Π joints

platform

Pl

S1

S1

D
2

A
1

B
1

C
1

(a) Coupler surface when leg 2 is discon-
nected

vertex space of
the 2nd leg

coupler surface

actuated
U joints
(on Π joints)

u
1

u
2

passive motions of
the Π joints

platform

(b) First set of possible assembly
modes

vertex space of
the 2nd leg

coupler surface

actuated
U joints
(on Π joints)

u
1

u
2

passive motions of
the Π joints

platform

(c) Second set of possible assem-
bly modes

Fig. 7. Solutions of thefkp for a 2–Π–{2–UU} robot (in this example,
only 4 assembly modes exist)

by selecting a set of legs that can allow the robot
displacement. Moreover, even if the motion is feasible,
if the robot goes close to a singularity, the positioning
error can considerably grow.

Therefore, it is necessary to find the best set of legs
to observe in order to get the best performances of the
robot w.r.t. a desired task. For the sake of compactness,
the methodology for this will not be presented here, but
the reader is referred to [15] for more information on this.

In the next Section, all the presented theoretical results
are validated through experiments on the Adept Quat-
tro [32].

IV. CASE STUDY

In this Section, simulations and experiments are per-
formed on the Adept Quattro presented in the previous
Section. For the sake of compactness, the simulations
are not included in this paper, only their experimental
validations.
Testing the convergence of the robot to the desired
pose
We replay now experimentally the convergence tests pre-
sented in Section??. The starting and desired final points
are the same as previously. The results are presented in
the Tables I to III and illustrated by the Figs. 8 to 10. It
should be mentioned that, for cross-validating the results
on those pictures, the plotted values of the error norms
are computed using the values of the leg directions given
by the Quattro controller.

Due to the presence of high measurement noise, the
robot can of course not converge to the final desired pose.

Therefore, in these Tables, information on the tolerable
maximal error on the pose attained attained in simulations
is given. Please note that, due to the large value of
the error on the measured angle, the model defined in
Section?? is no longer valuable and we have preferred to
use a more refined non linearized model proposed in [38].
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Fig. 8. Convergence of the robot when legs 1 and 4 are observed
(desired pose:{x = −0.2, y = 0, z = −0.56, φ = 0}).

TABLE I

RESULTS ON THE EXPERIMENTS CARRIED OUT FOR TESTING THE

CONVERGENCE OF THE ROBOT WHEN LEGS1 AND 4 ARE OBSERVED

(THE POSITIONS ARE IN METER, THE ANGLES IN RADIANS).

Desired final pose {x = −0.2, y = 0, z =

−0.56, φ = 0}

Final pose in simulation {x = −0.2, y = 0, z =

−0.91, φ = 0}
Tolerable position error 0.11 m
Tolerable orientation error 2.00 rad

Final pose in experiments {x = −0.11, y = 0.01, z =

−0.86, φ = −2.15}
Distance to the final pose in
simulation

0.10 m

Orient. err. w.r.t. the final pose
in simulation

2.15 rad

TABLE II

RESULTS ON THE EXPERIMENTS CARRIED OUT FOR TESTING THE

CONVERGENCE OF THE ROBOT WHEN LEGS2 AND 3 ARE OBSERVED

(THE POSITIONS ARE IN METER, THE ANGLES IN RADIANS).

Desired final pose {x = −0.2, y = 0, z =

−0.56, φ = 0}

Final pose in simulation {x = −0.2, y = 0, z =

−0.56, φ = 0}
Tolerable position error 0.23 m
Tolerable orientation error 1.23 rad

Final pose in experiments {x = −0.12, y = 0.05, z =

−0.55, φ = −0.90}
Distance to the final pose in
simulation 0.10 m

Orient. err. w.r.t. the final pose
in simulation

0.90 rad

All these experimental results match with the
simulation results presented above and confirm the
presence of the virtual robot hidden within the controller
that must be studied in order to avoid the convergence
problems due to inadequate stacking of interaction
matrices.

Testing the presence of local minima
Unfortunately, we were not able to do such experiments
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Fig. 9. Convergence of the robot when legs 2 and 3 are observed
(desired pose:{x = −0.2, y = 0, z = −0.56, φ = 0}).
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Fig. 10. Convergence of the robot when all legs are observed (desired
pose:{x = 0.03, y = 0.03, z = −0.59, φ = 0}).

TABLE III

RESULTS ON THE EXPERIMENTS CARRIED OUT FOR TESTING THE

CONVERGENCE OF THE ROBOT ALL LEGS ARE OBSERVED(THE

POSITIONS ARE IN METER, THE ANGLES IN RADIANS).

Desired final pose {x = 0.03, y = 0.03, z =

−0.59, φ = 0}

Final pose in simulation {x = 0.03, y = 0.03, z =

−0.65, φ = 0}
Tolerable position error 0.08 m
Tolerable orientation error 1.54 rad

Final pose in experiments {x = 0.05, y = 0.03, z =

−0.72, φ = 0.05}
Distance to the final pose in
simulation

0.07 m

Orient. err. w.r.t. the final pose
in simulation 0.05 rad

as the robot controller is designed with safeties
that cannot be suppressed and that prevent going
into singularities. However, as the presence of local
minima that are located in the Type 1 singularities
was demonstrated in simulations, we think that
this numerical proof brings enough strength to our
demonstration concerning this point.

Testing the importance of the selection of the observed
legs on the robot accuracy
We replay now experimentally the accuracy tests pre-
sented in Section??. The starting and desired final points
are the same as previously, as well as the observed legs.
Each experiment is run five times and we present here the
maximal values obtained on the position and orientation
error. The results are shown in the Tables IV to V.

Once again, all these experimental results match with
the simulation results presented above and confirm the
necessity to carefully select the set of legs to observe
in order to obtain the best accuracy possible. However,

TABLE IV

RESULTS ON THE EXPERIMENTS CARRIED OUT FOR TESTING THE

ACCURACY OF THE ROBOT WHEN LEGS{2, 3} OR {2, 4} ARE

OBSERVED.

Desired final pose {x = −0.2m, y = 0.01m, z = −0.7m,

Legs {2, 3} {2, 4}
Position error 0.11 m 0.23 m
Orientation error 0.06 rad 0.68 rad

TABLE V

RESULTS ON THE EXPERIMENTS CARRIED OUT FOR TESTING THE

ACCURACY OF THE ROBOT WHEN LEGS{1, 4}, {1, 3, 4} OR

{1, 2, 3, 4} ARE OBSERVED.

Desired final pose {x = 0.03m, y = 0.03m, z = −
Legs {1, 4} {1, 3, 4}
Position error 0.11 m 0.09 m
Orientation error 0.39 rad 0.31 rad

it must be recalled that, even if observing all the legs
lead to a better accuracy, this result must not hide the
fact that some convergence problems can still appear, as
shown previously.

All these experiments validate the theory presented in
Section III. The results show the validity of the approach
and also its importance: stacking several interaction ma-
trices to derive a control scheme without doing a deep
analysis of the intrinsic properties of the controller is
clearly not enough. For avoiding the singularity problem
due to the mapping between the robot space and leg
space, whatever the number of observed legs (as, even
if all legs are observed, there may be singularities of the
mapping), the hidden robot kinematics must be analyzed
to avoid the convergence and inaccuracy problems.

V. CONCLUSIONS

This paper has presented a tool named the “Hidden
robot concept” that is well addressed for analyzing
the controllability of parallel robots in leg-observation-
based visual servoing techniques. It has been shown
that the mentioned visual servoing techniques involves
the existence of a virtual robot model, hidden into the
controller, that is different from the real controlled robot.
Considering this hidden robot model allowed the finding
of a minimal representation for the leg-observation-based
control of the studied robots that is linked to a virtual
hidden robot which is a tangible visualization of the
mapping between the observation space and the real robot
Cartesian space. It has been shown that the hidden robot
model can be used to:

1) explain why the observed robot which is composed
of n legs can be controlled using the observation of
only m leg directions (m < n) arbitrarily chosen
among itsn legs,

2) prove that there does not always exist a full diffeo-
morphism between the Cartesian space and the leg
direction space,



3) simplify the singularity analysis of the mapping
between the leg direction space and the Cartesian
space by reducing the problem to the singularity
analysis of a new robot,

4) certify that the robot will not converge to local
minima, through the application of tools developed
for the singularity analysis of robots.

A general way to find the hidden robot models corre-
sponding to the real robot controlled via leg-observation-
based visual servoing techniques has been shown and the
hidden robot models of some well known classes of paral-
lel robots have been studied. It has been proven that, using
this concept, it is possible to demonstrate, using tools
developed by the mechanical design community, that the
robot can be controlled or not with the aforementioned
visual servoing techniques.

Finally, experimental validations made on an Adept
Quattro robot have demonstrated the validity of the
theoretical developments.

Thus, the concept of hidden robot model, associated
with mathematical tools developed by the mechanical
design community, is a powerful tool able to analyze
the intrinsic properties of some controllers developed by
the visual servoing community. Moreover, this concept
showed that in some visual servoing approaches, stacking
several interaction matrices to derive a control scheme
without doing a deep analysis of the intrinsic properties of
the controller is clearly not enough. Further investigations
are required.
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versity of Rennes, France) for his smart advices about
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