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THE AFFINE LIE ALGEBRA ŝl 2 (C) AND A CONDITIONED SPACE-TIME BROWNIAN MOTION

We construct a sequence of Markov processes on the set of dominant weights of the Affine Lie algebra ŝ l 2 (C) which involves tensor product of irreducible highest weight modules of ŝ l 2 (C) and show that it converges towards a Doob's space-time harmonic transformation of a space-time Brownian motion.

Introduction

In [START_REF] Ph | Littelmann paths and Brownian paths[END_REF], Ph. Biane, Ph. Bougerol and N. O'Connell establish a wide extension of Pitman's theorem on Brownian motion and three dimensional Bessel process, in the framework of representation theory of semi-simple complex Lie algebras. In this framework the representation of the Bessel process by a functional of a standard Brownian motion (B t ) t≥0 on R,

(B t -2 inf 0≤s≤t B s , t ≥ 0),
appears to be the continuous counterpart of a similar result which holds for a random walk on the set of integral weights of sl 2 (C) and a path transformation connected with the Littelmann paths model for semi-simple complex Lie algebras (see for instance [START_REF] Littelmann | Paths and root operators in representation theory[END_REF] for a description of this model).

In [START_REF] Lecouvey | Conditioned random walks from Kac-Moody root systems[END_REF], C. Lecouvey, E. Lesigne and M. Peigné consider the case when g is a Kac-Moody algebra and develop some aspects of [START_REF] Ph | Littelmann paths and Brownian paths[END_REF] in that framework. In particular, they focus on some Markov chains on the Weyl chamber of a Kac-Moody algebra, which are obtained in a similar way as in [START_REF] Ph | Littelmann paths and Brownian paths[END_REF], except that the reference measure can't be the uniform measure when the dimension of the Kac-Moody algebra is infinite. Let us say briefly how the Markov chains are obtained for a Kac-Moody algebra g. As in the finite dimensional case, for a dominant integral weight λ of g one defines the character of the irreducible highest-weight representation V (λ) of g with highest weight λ, as a formal series

ch λ = µ dim(V (λ) µ )e µ ,
where V (λ) µ is the weight space of V (λ) corresponding to the weight µ. Actually for every h in a subset of the Cartan subalgebra which doesn't depend on λ the series µ dim(V (λ) µ )e µ,h is absolutely convergente. For two dominant weights ω and λ, the following decomposition

ch ω ch λ = β∈P+ m λ (β)ch β ,
where m λ (β) is the multiplicity of the module with highest weight β in the decomposition of V (ω) ⊗ V (λ), allows to define a transition probability q ω on the set of 1 dominant weights, letting for β and λ two dominant weights of g,

q ω (λ, β) = ch β (h) ch λ (h)ch ω (h) m λ (β),
where h is chosen in the region of convergence of the characters. It is a natural question to ask if there exists a sequence (h n ) n≥0 of elements of h such that the corresponding sequence of Markov chains converges towards a continuous process and what the limit is.

In this paper, we consider the case when g is the Kac-Moody algebra of type A

(1) 1

and ω is its fundamental weight Λ 0 . There is no reason to think that the results are not true in a more general context but this case presents the advantage that explicit computations can easily be done. We show that the sequence of Markov chains, with a proper normalization, converges, for a particular sequence of (h n ) n≥0 , towards a Doob's space-time harmonic transformation of a space-time Brownian motion killed on the boundary of a time-dependent domain. This process is related to the heat equation

1 2 ∆ + ∂ ∂t = 0,
in a time-dependent domain, with Dirichlet boundary conditions and the theta functions play a crucial role in the construction. One can find an extensive literature devoted to the relationship between Brownian motion and the heat equation. One can see for instance [START_REF] Doob | Classical Potential Theory and Its Probabilistic Counterpart[END_REF] for an introduction and [START_REF] Crank | Free and Moving Boundary Problems[END_REF] for a review of various problems specifically related to time-dependent boundaries.

The paper is organized as follows. Basic definitions and notations related to representation theory of the affine Lie algebra ŝl 2 (C) are given in section 2. We define in section 3 random walks on the set of integral weights of ŝl 2 (C) and Markov chains on the set of its dominant integral weights, considering tensor products of irreducible highest weight representations of ŝl 2 (C). In section 4, for any positive real numbers x and u such that x < u, we define a space-time Brownian motion (t + u, B t ) t≥0 starting from (u, x), conditioned to remain in the domain

D = {(r, z) ∈ R × R : 0 ≤ z ≤ r}.
For this we introduce a space-time harmonic function remaining positive on D which appears naturally considering the limit of a sequence of characters of ŝl 2 (C). We prove in section 5 that this conditioned space-time Brownian motion is the limit of a sequence of Markov processes constructed in section 3. We show in section 6 how it is related to a Brownian motion conditoned -in Doob's sense -to remain in an interval.

The affine Lie algebra ŝ l 2 (C)

We consider the affine Lie algebra ŝl 2 (C) associated to the generalized Cartan matrix

A = 2 -2 -2 2 .
The reader is invited to refer to [START_REF] Kac | Infinite dimensional Lie algebras[END_REF] for a detailed description of this object. Let h be a Cartan subalgebra of ŝl 2 (C). We denote by S = {α 0 , α 1 } the set of simple roots and by {α ∨ 0 , α ∨ 1 } the set of simple coroots. Let Λ 0 be a fundamental weight such that Λ 0 , α ∨ i = δ i0 , i ∈ {0, 1}, and {α 0 , α 1 , Λ 0 } is a basis of h * . We denote by h R the subset of h defined by h R = {x ∈ h : Λ 0 , x ∈ R, and α i , x ∈ R, i ∈ {0, 1}}.

Let δ = α 0 + α 1 be the so-called null root. We denote by P (resp. P + ) the set of integral (resp. dominant) weights defined by

P = {λ ∈ h * : λ, α ∨ i ∈ Z, i = 0, 1}, (resp. P + = {λ ∈ P : λ, α ∨ i ≥ 0, i = 0, 1}
). The Cartan subalgebra h is equipped with a non degenerate symmetric bilinear form (., .) defined below, which identifies h and h * , through the linear isomorphism

ν : h → h * , h → (h, .).
We still denote by (., .) the induced non degenerate symmetric bilinear form on h * . It is defined on h * by

           (Λ 0 , α 1 ) = 0 (Λ 0 , Λ 0 ) = 0 (δ, α 1 ) = 0 (Λ 0 , δ) = 1 (α 1 , α 1 ) = 2.
The level of an integral weight λ ∈ P , is defined as the integer (δ, λ). For k ∈ N, we denote by P k the set integral weights of level k. It is defined by

P k = {λ ∈ P : (δ, λ) = k}.
That is, an integral weight of level k can be written

kΛ 0 + x 2 α 1 + yδ,
where x ∈ Z, y ∈ C, and a dominant weight of level k can be written

kΛ 0 + x 2 α 1 + yδ,
where x ∈ {0, . . . , k}, y ∈ C. Recall the following important property : all weights of an highest weight irreducible representation of ŝl 2 (C) have the same level.

Notation. For λ ∈ h * , the projection of λ on vect{Λ 0 , α 1 }, denoted λ, is defined by λ = xΛ 0 + yα 1 , when λ = xΛ 0 + yα 1 + zδ, x, y, z ∈ C.

Characters. For λ ∈ P + , we denote by ch λ the character of the irreducible highest-

weight module V (λ) of ŝl 2 (C) with highest weight λ. That is ch λ (h) = µ∈P dim(V (λ) µ )e µ,h , h ∈ h,
where V (λ) µ is the weight space of V (λ) corresponding to the weight µ. The above series converges absolutely for every h ∈ h such that Re δ, h > 0 (see chapter 11 of [START_REF] Kac | Infinite dimensional Lie algebras[END_REF]). For β ∈ h * , we write ch λ (β) for ch λ (ν -1 (β)). We have

ch λ (β) = µ∈P dim(V (λ) µ )e (µ,β) , β ∈ h * .
The Weyl character's formula states that ch λ (.) = w∈W det(w)e (w(λ+ρ),.) w∈W det(w)e (w(ρ),.) , where ρ = 2Λ 0 + 1 2 α 1 and W is the group of linear transformations of h * generated by the reflections s α0 and s α1 defined by

s αi (x) = x -2 (α i , x) (α i , α i ) α i , x ∈ h * , i ∈ {0, 1}.
As proved for instance in chapter 6 of [START_REF] Kac | Infinite dimensional Lie algebras[END_REF], the affine Weyl group W is the semi-direct product T ⋉ W 0 where W 0 is the Weyl group generated by s α1 and T is the group of transformations t k , k ∈ Z, defined by

t k (λ) = λ + k(λ, δ)α 1 -(k(λ, α 1 ) + k 2 (λ, δ))δ, λ ∈ h * .
Thus for a ∈ R * , y ∈ R * + , and a dominant weight λ of level n ∈ N * , such that λ = nΛ 0 + 1 2 xα 1 , the Weyl character formula becomes

ch λ (iaα 1 + yΛ 0 ) = k∈Z sin(a(x + 1) + 2ak(n + 2))e -y(k(x+1)+k 2 (n+2)) k∈Z sin(a + 8ak)e -y(k+4k 2 ) . ( 1 
)
Letting a goes to zero in the previous identity, one also obtains that

ch λ (yΛ 0 ) = k∈Z (x + 1 + 2k(n + 2))e -y(k(x+1)+k 2 (n+2)) k∈Z (1 + 8k)e -y(k+4k 2 ) , (2) 
for every y ∈ R * + .

Markov chains on the sets of integral or dominant weights

Let us choose for this section a dominant weight ω ∈ P + and h ∈ h * R such that (δ, h) > 0. Random walks on P . We define a probability measure µ ω on P letting

µ ω (β) = dim(V (ω) β ) ch ω (h) e β,h , β ∈ P. (3)
If (X(n), n ≥ 0) is a random walk on P whose increments are distributed according to µ ω , it is important for our purpose to keep in mind that the function

x ∈ R → [ ch ω (i x 2 α 1 + h) ch ω (h) ] n ,
is the Fourier transform of the projection of X(n) on Rα 1 .

Markov chains on P + . Let us consider for λ ∈ P + the following decomposition

ch ω ch λ = β∈P+ m λ (β)ch β ,
where m λ (β) is the multiplicity of the module with highest weight β in the decomposition of V (ω) ⊗ V (λ), leads to the definition a transition probability q ω on P + given by

q ω (λ, β) = ch β (h) ch λ (h)ch ω (h) m λ (β), β ∈ P + . (4) 
Let us notice that if (Λ(n), n ≥ 0) is a Markov process starting from λ 0 ∈ P + , with transition probabilities q ω then

E( ch Λ(n) (ix + h) ch Λ(n) (h) ) = ch λ0 (ix + h) ch λ0 (h) [ ch ω (ixα 1 + h) ch ω (h) ] n ,
for every x ∈ R. If λ 1 and λ 2 are two dominant weights such that λ 1 = λ 2 (mod δ) then the irreducible modules V (λ 1 ) and V (λ 2 ) are isomorphic. Thus if we consider the random process ( Λ(n), n ≥ 0), where Λ(n) is the projection of Λ(n) on vect{Λ 0 , α 1 }, then ( Λ(n), n ≥ 1) is a Markov process satisfying

E( chΛ (n) (ixα 1 + h) chΛ (n) (h) ) = chλ 0 (ixα 1 + h) chλ 0 (h) [ ch ω (ixα 1 + h) ch ω (h) ] n , (5) 
for every x ∈ R, where λ0 is the projection of λ 0 on vect{Λ 0 , α 1 }. More generally, for n, m ∈ N, one gets

E( chΛ (n+m) (ixα 1 + h) chΛ (n+m) (h) | Λ(k), 0 ≤ k ≤ m) = chΛ (m) (ixα 1 + h) chΛ (m) (h) [ ch ω (ixα 1 + h) ch ω (h) ] n , (6) 
for every x ∈ R. Let us notice that if ω is a dominant weight of level k, and λ 0 a dominant weight of level k 0 , then Λ(n) and Λ(n) are dominant weights of level nk + k 0 , for every n ∈ N.

A conditioned space-time Brownian motion

A class of space-time harmonic functions. Considering the asymptotic of the previous characters, one obtains an interesting class of space-time harmonic functions involving the Jacobi's theta function θ defined by θ(z, τ ) = n∈Z e πin 2 τ +2πinz , for z and τ two complex numbers, τ being in the upper half-plane. This is not surprising as the characters of affine Lie algebras are themself a linear combination of theta functions (see [START_REF] Kac | Infinite dimensional Lie algebras[END_REF]). For a ∈ R * , x ∈ [0, t], if (λ n ) n is a sequence of dominant weights such that

λ n = [nt]Λ 0 + 1 2 (λ n , α 1 )α 1 ∼ n→∞ ntΛ 0 + nx 1 2 α 1 , then the sum k∈Z sin( a n ((λ n , α 1 ) + 1) + 2 a n k([nt] + 2))e -2 n (k((λn,α1)+1)+k 2 ([nt]+2)) ,
which is the numerator of ch λn (i a n α 1 + 2 n Λ 0 ) in the right-hand side of identity (1), converges, when n goes to infinity, towards k∈Z sin(ax + 2kat)e -2(kx+k 2 t) . Definition 4.1. For a ∈ R * , we define a function φ a on R × R * + letting

φ a (x, t) = π sh(aπ) k∈Z sin(ax + 2kat)e -2(kx+k 2 t) , (x, t) ∈ R × R * + .
Similarly, considering the asymptotic of the numerator of ch λn ( 2 n Λ 0 ) in (2) leads naturally to the following definition. Definition 4.2. We define a function φ 0 on R × R * + letting

φ 0 (x, t) = k∈Z (x + 2kt)e -2(kx+k 2 t) , (x, t) ∈ R × R * + .
Let us notice that lim a→0 φ a = φ 0 and

φ nπ t (x, t) = π sh( nπ 2 t ) sin(nπ x t ) k∈Z e -2(kx+k 2 t) , for every n ∈ N * , (x, t) ∈ R × R * .
Proposition 4.3. For a ∈ R, the function

(x, t) ∈ R × R * + → e a 2 2 t φ a (x, t),
is a space-time harmonic function, i.e. φ a satisfies

( 1 2 
∂ 2 ∂x 2 + ∂ ∂t )φ a = - a 2 2 φ a .
Moreover φ a satisfies the following boundary conditions

∀t ∈ R * + , φ a (0, t) = 0 φ a (t, t) = 0.
Proof. Actually, each summand of the sum in the definition of e a 2 2 t φ a is a spacetime harmonic function because for any k ∈ Z, one has e i(ax+2kat)-2(kx+k 2 t)+ a 2 2 t = e (ia-2k)x-1 2 (ia-2k) 2 t . The first boundary condition follows from the change of variable k → -k, whereas the last one follows from the change of variable k → -1k. Some properties of the functions φ a , a ∈ R. Lemma 4.4.

k∈Z sin(ax + 2kta)e -2(kx+k 2 t) = e x 2 2t -a 2 t 2 k∈Z π 2t e -1 2t k 2 π 2 sh(kπa) sin(k π t x) k∈Z (x + 2kt)e -2(kx+k 2 t) = e x 2 2t k∈Z π 2t e -1 2t k 2 π 2 kπ sin(k π t x)
Proof. As sin(ax + 2kta)e -2(kx+k 2 t) = e

x 2 2t sin(a(x + 2kt))e -1 2t (x+2kt) 2 , the first identity follows from a Poisson summation formula, which is obtained computing the Fourier coefficients of the 2t-periodic function x → e -x 2 2t φ a (x, t). The second identity follows similarly from the identity (x + 2kt)e -2(kx+k 2 t) = e

x 2 2t (x + 2kt)e -1 2t (x+2kt) 2 .
Let us notice that the second identity can also be derived from the well known Jacobi's theta function identity

1 √ πt n∈Z e -1 t (n+x) 2 = n∈Z cos(2nπx)e -n 2 π 2 t , (7) 
which is valid for x ∈ R, t ∈ R * + , and which is also a particular case of the Poisson summation formula (see [START_REF] Bellman | A brief introduction to theta functions[END_REF]). Considering the partial derivative with respect to x of the left and the right hand sides in identity [START_REF] Littelmann | Paths and root operators in representation theory[END_REF] leads to the identity

1 √ πt n∈Z 1 t (n + x)e -1 t (n+x) 2 = n∈Z nπ sin(2nπx)e -n 2 π 2 t , (8) for x ∈ R, t ∈ R * + . As φ 0 (x, t) = n∈Z 2t( x 2t + n)e -2t(n+ x 2t ) 2 + x 2 2t ,
one obtains the second replacing respectively t and x by 1 2t and x 2t in (8). Lemma 4.5. Let t ∈ R * + , and

x ∈]0, t[. If (λ n ) n is a sequence of dominant weights such that λ n ∼ ntΛ 0 + nx 1 2 α, then lim n→∞ ch λn ( ia n α 1 + 2 n Λ 0 ) ch λn ( 2 n Λ 0 ) = φ a (x, t) φ 0 (x, t) . Proof. Lemma 4.4 implies that lim n→∞ k∈Z sin( a n (1 + 8k))e -2 n (k+4k 2 ) 1 n k∈Z (1 + 8k)e -2 n (k+4k 2 ) = sh(aπ) π .
Thus the lemma follows from identities ( 1) and ( 2).

Proposition 4.6. Let a ∈ R * , and t ∈ R * + . Then (1) The function φ 0 (., t) is C ∞ on [0, t],

(2) the function φa(.,t) φ0(.,t) is bounded on [0, t], (3) ∀x ∈]0, t[, φ 0 (x, t) = 0, (4) the function φ 0 (., t) doesn't change of sign on [0, t].

Proof. The first property follows immediately from a dominated convergence theorem. As for any r ∈ R and y ∈ R * + , ch λ (irα1+yΛ0) ch λ (yΛ0) is a Fourier transform of a probability measure, it is bounded by 1. Previous lemma implies that

∀x ∈]0, t[, | φ a (x, t) φ 0 (x, t) | ≤ 1.
As the function φa(.,t) φ0(.,t) is easily shown to be continuous on [0, t], the second property follows. For the third property, we notice that the function φ π t is defined by

φ π t (x, t) = 2t sin( x t π) k∈Z e -2(kx+k 2 t) , (x, t) ∈ R × R * + . Thus for x ∈ [0, t], φ π t (x, t) = 0 ⇔ x ∈ {0, t}. The function φ π t (.,t)
φ0(.,t) being bounded on [0, t], the third property follows. The fourth one is an immediate consequence of the first and the third ones.

Let us enounce a very classical result on Fourier series that will be used to prove proposition 4.8 Lemma 4.7. Let t be a positive real number and f : [0, t] → R be a function such that f (0) = f (t) = 0, which is C 3 on [0, t]. Then letting c n = 1 t t 0 sin( z t nπ)f (z) dz, n ∈ N, the series n nc n converges absolutely and

f (x) = +∞ n=1 c n sin( x t nπ), for every x ∈ [0, t].
Proposition 4.8. Let t be a positive real number and µ be a probability measure on [0, t]. Then µ is characterized by the quantities

t 0 φ nπ/t (x, t) φ 0 (x, t) µ(dx), n ∈ N. Proof. For t ∈ R * + , x ∈ R, we let e(x, t) = k∈Z e -2(kx+k 2 t) .
Let u be a C 3 function on [0, t]. We first notice that the function u(.)φ0(.,

satisfies the condition of lemma 4.7. We let for n ∈ N * ,

c n = 1 t t 0 u(x)φ 0 (x, t) e(x, t) sin( x t nπ) dx. 
One has

t 0 u(x) µ(dx) = t 0 u(x) φ 0 (x, t) e(x, t) e(x, t) φ 0 (x, t) µ(dx) = t 0 +∞ n=1 c n sin( x t nπ) e(x, t) φ 0 (x, t) µ(dx)
Using the two identities of lemma 4.4 one obtains

t 0 u(x) µ(dx) = t 0 +∞ n=1 c n k∈Z e -π 2 2t k 2 sin((n + k)π x t ) k∈Z e -π 2 2t k 2 kππ sin(kπ x t ) µ(dx) = +∞ n=1 c n t 0 k∈Z e -π 2 2t k 2 sin((n + k)π x t ) k∈Z e -π 2 2t k 2 kππ sin(kπ x t ) µ(dx)
where the last identity follows from the fact that the series nc n is absolutely convergent. Thus

t 0 u(x) µ(dx) = +∞ n=1 c n 2 sh(n π 2 t ) π t 0 φ nπ/t (x, t) φ 0 (x, t) µ(dx).
A conditioned space-time Brownian motion. Let us denote by C the fundamental Weyl chamber defined by

C = {x ∈ h * : (x, α i ) ≥ 0, i ∈ {0, 1}}.
That is, an element of C can be written

tΛ 0 + x 2 α 1 + yδ,
where t ∈ R + , x ∈ [0, t], y ∈ C. For x ∈ R, we denote by W x the Wiener measure on the set C(R + ) of real valued continuous functions on R + , under which the coordinate process (X t , t ≥ 0) is a Brownian motion starting from x, and denote the natural filtration of (X t ) t≥0 by (F t ) t≥0 . One considers the stopping times T u , u ∈ R + , defined by

T u = inf{t ≥ 0 : X t = 0 or X t = t + u}.
Proposition 4.6 ensures that φ 0 (X s , s + u) doesn't change of sign whenever s ∈ [0, T u ]. Let x be a positive real number such that u > x. One has W x (T u > 0) = 1.

The function φ 0 being space-time harmonic, the process φ 0 (X t , t + u) is a local martingale. Actually, each summand of the sum is a local martingale, for which the quadratic variation is easily shown to be integrable, so that, each summand is a true Martingale. As their sum converges absolutely in L 2 norm, one obtains that φ 0 (X t , t + u), t ≥ 0, is a true martingale. As φ(X Tu , T u + u) = 0, one defines a measure Q x,u on C(R + ) letting

Q x,u (A) = E x ( φ 0 (X t , t + u) φ 0 (x, u) 1 {Tu>t}∩A ), A ∈ F t .
Let r and s be two positive real numbers such that r < t. Using that

T u = T u+r • θ r + r on {T u ≥ r},
where θ r the shift operator defined by

∀t ∈ R * + , X t • θ r = X t+r , one easily proves that (X t , t ≥ 0) is an inhomogeneous Markov process under Q x,u satisfying E Qx,u (f (X t+r )|F r ) = E Xr ( φ 0 (X t , t + r + u) φ 0 (X r , r + u) f (X t )1 Tu+r >t ) = E QX r ,r+u (f (X t )), (9) 
for any real valued measurable bounded function f . Proposition 4.9. For r, t, u ∈ R * + , x ∈]0, u[, and a ∈ R, one has

Q x,u ( φ a (X t , t + u) φ 0 (X t , t + u) ) = φ a (x, u) φ 0 (x, u) e -a 2 2 t . (10) and E Qx,u ( φ a (X t+r , t + r + u) φ 0 (X t+r , t + r + u) |F r ) = φ a (X r , r + u) φ 0 (X r , r + u) e -a 2 2 t . (11) lim n→∞ φ0( 1 n , 4 n ) φa( 1 n , 4 n ) = 1, and ch Λ0 ( a n α 1 + 2 n Λ 0 ) ch Λ0 ( 2 n Λ 0 ) [nt] = E(e ia 2 n X(n) [nt] ), identity (5) implies that µ t satisfies t+u 0 φ a (z, t + u) φ 0 (z, t + u) µ t (dz) = φ a (x, u) φ 0 (x, u) e -a 2 2 t .
Proposition 4.8 implies that (µ n t ) n converges towards µ t and proposition 4.9 implies that µ t is the distribution of X t under Q x,u . Convergence of the sequence of random processes ( 1n (Λ n [nt] , α 1 ), t ≥ 0) -in the sense of finite dimensional distributions convergence -follows similarly from identity ( 6) and (11).

Brownian motion conditioned to remain in an interval

In this section we discuss the connection between the conditioned Brownian motion constructed in this paper and the Brownian motion conditioned -in the sense of Doob -to remain in an interval. The connection is not surprising when we keep in mind that the dominant term in a character of a highest weight irreducible module of an affine algebra involves the so-called asymptotic dimensions, which are related to eigenfunctions for the Laplacian on an interval (see chapter 13 of [START_REF] Kac | Infinite dimensional Lie algebras[END_REF]). Let u ∈ R * + . The function h defined on [0, u] by

h(x) = sin(π x u ), x ∈ [0, u],
is the Dirichlet eigenfunction on the interval [0, u] corresponding to the eigenvalue π 2 u 2 at the bottom of the spectrum. Brownian motion conditioned -in the sense of Doob -to remain in the interval [0, u], has the Doob-transformed semi-group (q t ) t≥0 defined for t ∈ R * + by q t (x, y) = h(y) h(x) e = inf{s ≥ 0 : X s = 0 or X s = cs + u}. Thus, under the probability measure Q (c)

x,u , (t + u c , X t ) t≥0 is a space-time Brownian motion starting from ( u c , x), conditioned to remain in the domain {(r, z) ∈ R × R : 0 ≤ z ≤ cr}. for every y ∈ [0, u], t > 0, which implies the theorem, as the quotient inside the limit is uniformly bounded for y ∈ [0, ct + u] and c ∈]0, 1[.

π 2 u 2 t 2

 22 p 0 t (x, y), x, y ∈]0, u[, where p 0 t is the semi-group of the standard Brownian motion on R, killed on the boundary of [0, u].For c ∈]0, 1[, one defines a space-time harmonic function φ(c) 0 on R × R * + letting φ (c) 0 (x, t) = φ 0 (cx, c 2 t), for x, t ∈ R × R *+ . This function satisfies the following boundary conditions ∀t ∈ R * , t) = 0. As in section 4, one defines for a real number x satisfying 0 < x < u, a probability Q(c)x,u on C(R + ) lettingQ (c)x,u (A) = E x (

Theorem 6 . 1 .

 61 The probability measure Q (c)x,u converges, when c goes to 0, towards the law of a standard Brownian starting from x, conditioned -in the sense of Doob -to remain in [0, u].

Proof. One proves as previously that (e a 2 2 t φ a (X t , t + u), t ≥ 0) is a true martingale, which implies that W x (φ a (X t , t + u)e a 2 2 t 1 Tu<t ) = 0, and identity (10). The second identity follows, using (9).

The conditioned Brownian motion and the Markov chains on the set of dominant weights

Let us focus on the Markov chains defined in section 3 when ω = Λ 0 . We recall that the weights occurring in V (Λ 0 ) are

with respective multiplicities p(s), the number of partitions of s (see for instance chapter 9 in [START_REF] Hong | Introduction to Quantum groups and Crystal Bases[END_REF]). If we consider, for h = 1 2 (h 1 α 1 + h 2 Λ 0 ), with h 1 ∈ R, h 2 ∈ R * + , the associated probability measure µ Λ0 defined by ( 3) and the associated random walk (X(n), n ≥ 0), then its projection on Zα 1 is a random walk with increments distributed according to a probability measure μΛ0 defined by

where C h is a normalizing constant depending on h.

The main theorem. For n ∈ N * , we consider a random walk (X n k , k ≥ 0) starting from 0, whose increments are distributed according to probability measure µ Λ0 associated to h = 2 n Λ 0 . If we denote by ( Xn k , k ≥ 0) its projection on Zα 1 , standard method shows that the sequence of processes ( 2 n

Xn

[nt] , t ≥ 0) converges towards a standard Brownian motion on R when n goes to infinity. Let x and u be two positive numbers such that x < u. For n ∈ N * , we consider a Markov process (Λ n k , k ≥ 0) starting from [nu]Λ 0 + [xn] 1 2 α 1 , with the transition probability q ω defined by (4), with ω = Λ 0 and h = 2 n Λ 0 . It is important to notice that (Λ n k , δ) = [nu]+k for every k ∈ N. If Λn k is the projection of Λ n k on vect{Λ 0 , α 1 } for every k ∈ N and n ∈ N * , then the following convergence holds. 

Λn

[nt] , t ≥ 0) converges when n goes to infinity towards the process

We denote by µ n t the law of 1 n (Λ n [nt] , α 1 ), for n ∈ N. The probability measure µ n t is carried by [0, t + u]. The intervale [0, t + u] being a compact set, the space of probability measures on [0, t + u] endowed with the weak topology is also compact. Suppose that a subsequence of (µ n t ) n converges towards

for any a ∈ R, and n ∈ N * . The function (x, t) → φa(x,t+u) φ0(x,t) can be shown to be uniformly continuous on {(x, t) ∈ R × [0, T ] : 0 ≤ x ≤ u + t} for every T ∈ R + . As