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THE AFFINE LIE ALGEBRA ŝl2(C) AND A CONDITIONED

SPACE-TIME BROWNIAN MOTION

MANON DEFOSSEUX

Abstract. We construct a sequence of Markov processes on the set of dom-

inant weights of the Affine Lie algebra ŝl2(C) which involves tensor product

of irreducible highest weight modules of ŝl2(C) and show that it converges to-
wards a Doob’s space-time harmonic transformation of a space-time Brownian
motion.

1. Introduction

In [2], Ph. Biane, Ph. Bougerol and N. O’Connell establish a wide extension of
Pitman’s theorem on Brownian motion and three dimensional Bessel process, in the
framework of representation theory of semi-simple complex Lie algebras. In this
framework the representation of the Bessel process by a functional of a standard
Brownian motion (Bt)t≥0 on R,

(Bt − 2 inf
0≤s≤t

Bs, t ≥ 0),

appears to be the continuous counterpart of a similar result which holds for a
random walk on the set of integral weights of sl2(C) and a path transformation
connected with the Littelmann paths model for semi-simple complex Lie algebras
(see for instance [7] for a description of this model).

In [6], C. Lecouvey, E. Lesigne and M. Peigné consider the case when g is a Kac-
Moody algebra and develop some aspects of [2] in that framework. In particular,
they focus on some Markov chains on the Weyl chamber of a Kac-Moody algebra,
which are obtained in a similar way as in [2], except that the reference measure
can’t be the uniform measure when the dimension of the Kac-Moody algebra is
infinite. Let us say briefly how the Markov chains are obtained for a Kac-Moody
algebra g. As in the finite dimensional case, for a dominant integral weight λ of g
one defines the character of the irreducible highest-weight representation V (λ) of g
with highest weight λ, as a formal series

chλ =
∑

µ

dim(V (λ)µ)e
µ,

where V (λ)µ is the weight space of V (λ) corresponding to the weight µ. Actually
for every h in a subset of the Cartan subalgebra which doesn’t depend on λ the
series

∑

µ dim(V (λ)µ)e
〈µ,h〉 is absolutely convergente. For two dominant weights ω

and λ, the following decomposition

chωchλ =
∑

β∈P+

mλ(β)chβ,

where mλ(β) is the multiplicity of the module with highest weight β in the decom-
position of V (ω) ⊗ V (λ), allows to define a transition probability qω on the set of
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2 MANON DEFOSSEUX

dominant weights, letting for β and λ two dominant weights of g,

qω(λ, β) =
chβ(h)

chλ(h)chω(h)
mλ(β),

where h is chosen in the region of convergence of the characters. It is a natural
question to ask if there exists a sequence (hn)n≥0 of elements of h such that the
corresponding sequence of Markov chains converges towards a continuous process
and what the limit is.

In this paper, we consider the case when g is the Kac-Moody algebra of type A
(1)
1

and ω is its fundamental weight Λ0. There is no reason to think that the results are
not true in a more general context but this case presents the advantage that explicit
computations can easily be done. We show that the sequence of Markov chains, with
a proper normalization, converges, for a particular sequence of (hn)n≥0, towards a
Doob’s space-time harmonic transformation of a space-time Brownian motion killed
on the boundary of a time-dependent domain. This process is related to the heat
equation

1

2
∆ +

∂

∂t
= 0,

in a time-dependent domain, with Dirichlet boundary conditions and the theta
functions play a crucial role in the construction. One can find an extensive literature
devoted to the relationship between Brownian motion and the heat equation. One
can see for instance [4] for an introduction and [3] for a review of various problems
specifically related to time-dependent boundaries.

The paper is organized as follows. Basic definitions and notations related to

representation theory of the affine Lie algebra ŝl2(C) are given in section 2. We

define in section 3 random walks on the set of integral weights of ŝl2(C) and Markov
chains on the set of its dominant integral weights, considering tensor products of
irreducible highest weight representations of ŝl2(C). In section 4, for any positive
real numbers x and u such that x < u, we define a space-time Brownian motion
(t+ u,Bt)t≥0 starting from (u, x), conditioned to remain in the domain

D = {(r, z) ∈ R× R : 0 ≤ z ≤ r}.
For this we introduce a space-time harmonic function remaining positive on D

which appears naturally considering the limit of a sequence of characters of ŝl2(C).
We prove in section 5 that this conditioned space-time Brownian motion is the limit
of a sequence of Markov processes constructed in section 3. We show in section 6
how it is related to a Brownian motion conditoned - in Doob’s sense - to remain in
an interval.

2. The affine Lie algebra ŝl2(C)

We consider the affine Lie algebra ŝl2(C) associated to the generalized Cartan
matrix

A =

(

2 −2
−2 2

)

.

The reader is invited to refer to [5] for a detailed description of this object. Let

h be a Cartan subalgebra of ŝl2(C). We denote by S = {α0, α1} the set of simple
roots and by {α∨

0 , α
∨
1 } the set of simple coroots. Let Λ0 be a fundamental weight
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such that 〈Λ0, α
∨
i 〉 = δi0, i ∈ {0, 1}, and {α0, α1,Λ0} is a basis of h∗. We denote by

hR the subset of h defined by

hR = {x ∈ h : 〈Λ0, x〉 ∈ R, and 〈αi, x〉 ∈ R, i ∈ {0, 1}}.
Let δ = α0 + α1 be the so-called null root. We denote by P (resp. P+) the set of
integral (resp. dominant) weights defined by

P = {λ ∈ h∗ : 〈λ, α∨
i 〉 ∈ Z, i = 0, 1},

(resp. P+ = {λ ∈ P : 〈λ, α∨
i 〉 ≥ 0, i = 0, 1}).

The Cartan subalgebra h is equipped with a non degenerate symmetric bilinear
form (., .) defined below, which identifies h and h∗, through the linear isomorphism

ν : h → h∗,

h 7→ (h, .).

We still denote by (., .) the induced non degenerate symmetric bilinear form on h∗.
It is defined on h∗ by























(Λ0, α1) = 0
(Λ0,Λ0) = 0
(δ, α1) = 0
(Λ0, δ) = 1
(α1, α1) = 2.

The level of an integral weight λ ∈ P , is defined as the integer (δ, λ). For k ∈ N,
we denote by Pk the set integral weights of level k. It is defined by

Pk = {λ ∈ P : (δ, λ) = k}.
That is, an integral weight of level k can be written

kΛ0 +
x

2
α1 + yδ,

where x ∈ Z, y ∈ C, and a dominant weight of level k can be written

kΛ0 +
x

2
α1 + yδ,

where x ∈ {0, . . . , k}, y ∈ C. Recall the following important property : all weights

of an highest weight irreducible representation of ŝl2(C) have the same level.

Notation. For λ ∈ h∗, the projection of λ on vect{Λ0, α1}, denoted λ̄, is defined
by λ̄ = xΛ0 + yα1, when λ = xΛ0 + yα1 + zδ, x, y, z ∈ C.

Characters. For λ ∈ P+, we denote by chλ the character of the irreducible highest-

weight module V (λ) of ŝl2(C) with highest weight λ. That is

chλ(h) =
∑

µ∈P

dim(V (λ)µ)e
〈µ,h〉, h ∈ h,

where V (λ)µ is the weight space of V (λ) corresponding to the weight µ. The above
series converges absolutely for every h ∈ h such that Re〈δ, h〉 > 0 (see chapter 11
of [5]). For β ∈ h∗, we write chλ(β) for chλ(ν

−1(β)). We have

chλ(β) =
∑

µ∈P

dim(V (λ)µ)e
(µ,β), β ∈ h∗.
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The Weyl character’s formula states that

chλ(.) =

∑

w∈W det(w)e(w(λ+ρ),.)

∑

w∈W det(w)e(w(ρ),.)
,

where ρ = 2Λ0 +
1
2α1 and W is the group of linear transformations of h∗ generated

by the reflections sα0 and sα1 defined by

sαi
(x) = x− 2

(αi, x)

(αi, αi)
αi, x ∈ h∗, i ∈ {0, 1}.

As proved for instance in chapter 6 of [5], the affine Weyl group W is the semi-direct
product T ⋉W0 where W0 is the Weyl group generated by sα1 and T is the group
of transformations tk, k ∈ Z, defined by

tk(λ) = λ+ k(λ, δ)α1 − (k(λ, α1) + k2(λ, δ))δ, λ ∈ h∗.

Thus for a ∈ R∗, y ∈ R∗
+, and a dominant weight λ of level n ∈ N∗, such that

λ = nΛ0 +
1
2xα1, the Weyl character formula becomes

chλ(iaα1 + yΛ0) =

∑

k∈Z sin(a(x+ 1) + 2ak(n+ 2))e−y(k(x+1)+k2(n+2))

∑

k∈Z sin(a+ 8ak)e−y(k+4k2)
.(1)

Letting a goes to zero in the previous identity, one also obtains that

chλ(yΛ0) =

∑

k∈Z(x+ 1 + 2k(n+ 2))e−y(k(x+1)+k2(n+2))

∑

k∈Z(1 + 8k)e−y(k+4k2)
,(2)

for every y ∈ R∗
+.

3. Markov chains on the sets of integral or dominant weights

Let us choose for this section a dominant weight ω ∈ P+ and h ∈ h∗R such that
(δ, h) > 0.
Random walks on P . We define a probability measure µω on P letting

µω(β) =
dim(V (ω)β)

chω(h)
e〈β,h〉, β ∈ P.(3)

If (X(n), n ≥ 0) is a random walk on P whose increments are distributed according
to µω, it is important for our purpose to keep in mind that the function

x ∈ R 7→ [
chω(i

x
2α1 + h)

chω(h)
]n,

is the Fourier transform of the projection of X(n) on Rα1.

Markov chains on P+. Let us consider for λ ∈ P+ the following decomposition

chωchλ =
∑

β∈P+

mλ(β)chβ,

where mλ(β) is the multiplicity of the module with highest weight β in the decom-
position of V (ω) ⊗ V (λ), leads to the definition a transition probability qω on P+

given by

qω(λ, β) =
chβ(h)

chλ(h)chω(h)
mλ(β), β ∈ P+.(4)



ŝl2(C) AND A CONDITIONED SPACE-TIME BROWNIAN MOTION 5

Let us notice that if (Λ(n), n ≥ 0) is a Markov process starting from λ0 ∈ P+, with
transition probabilities qω then

E(
chΛ(n)(ix+ h)

chΛ(n)(h)
) =

chλ0(ix+ h)

chλ0(h)
[
chω(ixα1 + h)

chω(h)
]n,

for every x ∈ R. If λ1 and λ2 are two dominant weights such that λ1 = λ2 (mod δ)
then the irreducible modules V (λ1) and V (λ2) are isomorphic. Thus if we con-
sider the random process (Λ̄(n), n ≥ 0), where Λ̄(n) is the projection of Λ(n) on
vect{Λ0, α1}, then (Λ̄(n), n ≥ 1) is a Markov process satisfying

E(
chΛ̄(n)(ixα1 + h)

chΛ̄(n)(h)
) =

chλ̄0
(ixα1 + h)

chλ̄0
(h)

[
chω(ixα1 + h)

chω(h)
]n,(5)

for every x ∈ R, where λ̄0 is the projection of λ0 on vect{Λ0, α1}. More generally,
for n,m ∈ N, one gets

E(
chΛ̄(n+m)(ixα1 + h)

chΛ̄(n+m)(h)
|Λ̄(k), 0 ≤ k ≤ m) =

chΛ̄(m)(ixα1 + h)

chΛ̄(m)(h)
[
chω(ixα1 + h)

chω(h)
]n,

(6)

for every x ∈ R. Let us notice that if ω is a dominant weight of level k, and λ0

a dominant weight of level k0, then Λ̄(n) and Λ(n) are dominant weights of level
nk + k0, for every n ∈ N.

4. A conditioned space-time Brownian motion

A class of space-time harmonic functions. Considering the asymptotic of the
previous characters, one obtains an interesting class of space-time harmonic func-
tions involving the Jacobi’s theta function θ defined by

θ(z, τ) =
∑

n∈Z

eπin
2τ+2πinz,

for z and τ two complex numbers, τ being in the upper half-plane. This is not
surprising as the characters of affine Lie algebras are themself a linear combination
of theta functions (see [5]). For a ∈ R∗, x ∈ [0, t], if (λn)n is a sequence of dominant
weights such that

λn = [nt]Λ0 +
1

2
(λn, α1)α1

∼
n→∞

ntΛ0 + nx
1

2
α1,

then the sum
∑

k∈Z

sin(
a

n
((λn, α1) + 1) + 2

a

n
k([nt] + 2))e−

2
n
(k((λn,α1)+1)+k2([nt]+2)),

which is the numerator of chλn
(i anα1 +

2
nΛ0) in the right-hand side of identity (1),

converges, when n goes to infinity, towards
∑

k∈Z

sin(ax+ 2kat)e−2(kx+k2t).

Definition 4.1. For a ∈ R∗, we define a function φa on R× R∗
+ letting

φa(x, t) =
π

sh(aπ)

∑

k∈Z

sin(ax+ 2kat)e−2(kx+k2t), (x, t) ∈ R× R∗
+.
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Similarly, considering the asymptotic of the numerator of chλn
( 2nΛ0) in (2) leads

naturally to the following definition.

Definition 4.2. We define a function φ0 on R× R∗
+ letting

φ0(x, t) =
∑

k∈Z

(x+ 2kt)e−2(kx+k2t), (x, t) ∈ R× R∗
+.

Let us notice that lim
a→0

φa = φ0 and

φnπ
t
(x, t) =

π

sh(nπ
2

t )
sin(nπ

x

t
)
∑

k∈Z

e−2(kx+k2t),

for every n ∈ N∗, (x, t) ∈ R× R∗.

Proposition 4.3. For a ∈ R, the function

(x, t) ∈ R× R∗
+ 7→ e

a2

2 tφa(x, t),

is a space-time harmonic function, i.e. φa satisfies

(
1

2

∂2

∂x2
+

∂

∂t
)φa = −a2

2
φa.

Moreover φa satisfies the following boundary conditions

∀t ∈ R∗
+,

{

φa(0, t) = 0
φa(t, t) = 0.

Proof. Actually, each summand of the sum in the definition of e
a2

2 tφa is a space-
time harmonic function because for any k ∈ Z, one has

ei(ax+2kat)−2(kx+k2t)+ a2

2 t = e(ia−2k)x− 1
2 (ia−2k)2t.

The first boundary condition follows from the change of variable k 7→ −k, whereas
the last one follows from the change of variable k 7→ −1− k. �

Some properties of the functions φa, a ∈ R.

Lemma 4.4.

∑

k∈Z

sin(ax + 2kta)e−2(kx+k2t) = e
x2

2t −a2 t
2

∑

k∈Z

√

π

2t
e−

1
2t k

2π2

sh(kπa) sin(k
π

t
x)

∑

k∈Z

(x+ 2kt)e−2(kx+k2t) = e
x2

2t

∑

k∈Z

√

π

2t
e−

1
2tk

2π2

kπ sin(k
π

t
x)

Proof. As sin(ax + 2kta)e−2(kx+k2t) = e
x2

2t sin(a(x + 2kt))e−
1
2t (x+2kt)2 , the first

identity follows from a Poisson summation formula, which is obtained computing

the Fourier coefficients of the 2t-periodic function x 7→ e−
x2

2t φa(x, t). The sec-

ond identity follows similarly from the identity (x + 2kt)e−2(kx+k2t) = e
x2

2t (x +

2kt)e−
1
2t (x+2kt)2 . Let us notice that the second identity can also be derived from

the well known Jacobi’s theta function identity

1√
πt

∑

n∈Z

e−
1
t
(n+x)2 =

∑

n∈Z

cos(2nπx)e−n2π2t,(7)
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which is valid for x ∈ R, t ∈ R∗
+, and which is also a particular case of the Poisson

summation formula (see [1]). Considering the partial derivative with respect to x

of the left and the right hand sides in identity (7) leads to the identity

1√
πt

∑

n∈Z

1

t
(n+ x)e−

1
t
(n+x)2 =

∑

n∈Z

nπ sin(2nπx)e−n2π2t,(8)

for x ∈ R, t ∈ R∗
+. As

φ0(x, t) =
∑

n∈Z

2t(
x

2t
+ n)e−2t(n+ x

2t )
2+ x2

2t ,

one obtains the second replacing respectively t and x by 1
2t and x

2t in (8). �

Lemma 4.5. Let t ∈ R∗
+, and x ∈]0, t[. If (λn)n is a sequence of dominant weights

such that

λn ∼ ntΛ0 + nx
1

2
α,

then

lim
n→∞

chλn
( ian α1 +

2
nΛ0)

chλn
( 2nΛ0)

=
φa(x, t)

φ0(x, t)
.

Proof. Lemma 4.4 implies that

lim
n→∞

∑

k∈Z

sin( an (1 + 8k))e−
2
n
(k+4k2)

1
n

∑

k∈Z

(1 + 8k)e−
2
n
(k+4k2)

=
sh(aπ)

π
.

Thus the lemma follows from identities (1) and (2). �

Proposition 4.6. Let a ∈ R∗, and t ∈ R∗
+. Then

(1) The function φ0(., t) is C∞ on [0, t],

(2) the function φa(.,t)
φ0(.,t)

is bounded on [0, t],

(3) ∀x ∈]0, t[, φ0(x, t) 6= 0,
(4) the function φ0(., t) doesn’t change of sign on [0, t].

Proof. The first property follows immediately from a dominated convergence the-

orem. As for any r ∈ R and y ∈ R∗
+,

chλ(irα1+yΛ0)

chλ(yΛ0)
is a Fourier transform of a

probability measure, it is bounded by 1. Previous lemma implies that

∀x ∈]0, t[, |φa(x, t)

φ0(x, t)
| ≤ 1.

As the function φa(.,t)
φ0(.,t)

is easily shown to be continuous on [0, t], the second property

follows. For the third property, we notice that the function φπ
t
is defined by

φπ
t
(x, t) = 2t sin(

x

t
π)

∑

k∈Z

e−2(kx+k2t), (x, t) ∈ R× R∗
+.

Thus for x ∈ [0, t],

φπ
t
(x, t) = 0 ⇔ x ∈ {0, t}.

The function
φπ

t
(.,t)

φ0(.,t)
being bounded on [0, t], the third property follows. The fourth

one is an immediate consequence of the first and the third ones. �
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Let us enounce a very classical result on Fourier series that will be used to prove
proposition 4.8

Lemma 4.7. Let t be a positive real number and f : [0, t] → R be a function such

that f(0) = f(t) = 0, which is C3 on [0, t]. Then letting cn = 1
t

∫ t

0 sin( ztnπ)f(z) dz,
n ∈ N, the series

∑

n ncn converges absolutely and

f(x) =

+∞
∑

n=1

cn sin(
x

t
nπ),

for every x ∈ [0, t].

Proposition 4.8. Let t be a positive real number and µ be a probability measure
on [0, t]. Then µ is characterized by the quantities

∫ t

0

φnπ/t(x, t)

φ0(x, t)
µ(dx), n ∈ N.

Proof. For t ∈ R∗
+, x ∈ R, we let

e(x, t) =
∑

k∈Z

e−2(kx+k2t).

Let u be a C3 function on [0, t]. We first notice that the function u(.)φ0(.,t)
e(.,t) satisfies

the condition of lemma 4.7. We let for n ∈ N∗,

cn =
1

t

∫ t

0

u(x)φ0(x, t)

e(x, t)
sin(

x

t
nπ) dx.

One has
∫ t

0

u(x)µ(dx) =

∫ t

0

u(x)
φ0(x, t)

e(x, t)

e(x, t)

φ0(x, t)
µ(dx)

=

∫ t

0

+∞
∑

n=1

cn sin(
x

t
nπ)

e(x, t)

φ0(x, t)
µ(dx)

Using the two identities of lemma 4.4 one obtains

∫ t

0

u(x)µ(dx) =

∫ t

0

+∞
∑

n=1

cn

∑

k∈Z e
−π2

2t k2

sin((n+ k)π x
t )

∑

k∈Z e
−π2

2t k2
kππ sin(kπ x

t )
µ(dx)

=

+∞
∑

n=1

cn

∫ t

0

∑

k∈Z e
−π2

2t k2

sin((n+ k)π x
t )

∑

k∈Z e
−π2

2t k2
kππ sin(kπ x

t )
µ(dx)

where the last identity follows from the fact that the series
∑

ncn is absolutely
convergent. Thus

∫ t

0

u(x)µ(dx) =
+∞
∑

n=1

cn

2

sh(nπ2

t )

π

∫ t

0

φnπ/t(x, t)

φ0(x, t)
µ(dx).

�
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A conditioned space-time Brownian motion. Let us denote by C the funda-
mental Weyl chamber defined by

C = {x ∈ h∗ : (x, αi) ≥ 0, i ∈ {0, 1}}.

That is, an element of C can be written

tΛ0 +
x

2
α1 + yδ,

where t ∈ R+, x ∈ [0, t], y ∈ C. For x ∈ R, we denote by Wx the Wiener measure
on the set C(R+) of real valued continuous functions on R+, under which the
coordinate process (Xt, t ≥ 0) is a Brownian motion starting from x, and denote
the natural filtration of (Xt)t≥0 by (Ft)t≥0. One considers the stopping times Tu,
u ∈ R+, defined by

Tu = inf{t ≥ 0 : Xt = 0 or Xt = t+ u}.

Proposition 4.6 ensures that φ0(Xs, s + u) doesn’t change of sign whenever s ∈
[0, Tu]. Let x be a positive real number such that u > x. One has Wx(Tu > 0) = 1.
The function φ0 being space-time harmonic, the process φ0(Xt, t + u) is a local
martingale. Actually, each summand of the sum is a local martingale, for which
the quadratic variation is easily shown to be integrable, so that, each summand is
a true Martingale. As their sum converges absolutely in L2 norm, one obtains that
φ0(Xt, t + u), t ≥ 0, is a true martingale. As φ(XTu

, Tu + u) = 0, one defines a
measure Qx,u on C(R+) letting

Qx,u(A) = Ex(
φ0(Xt, t+ u)

φ0(x, u)
1{Tu>t}∩A), A ∈ Ft.

Let r and s be two positive real numbers such that r < t. Using that

Tu = Tu+r ◦ θr + r on {Tu ≥ r},

where θr the shift operator defined by

∀t ∈ R∗
+, Xt ◦ θr = Xt+r,

one easily proves that (Xt, t ≥ 0) is an inhomogeneous Markov process under Qx,u

satisfying

EQx,u
(f(Xt+r)|Fr) = EXr

(
φ0(Xt, t+ r + u)

φ0(Xr, r + u)
f(Xt)1Tu+r>t)

= EQXr,r+u
(f(Xt)),(9)

for any real valued measurable bounded function f .

Proposition 4.9. For r, t, u ∈ R∗
+, x ∈]0, u[, and a ∈ R, one has

Qx,u(
φa(Xt, t+ u)

φ0(Xt, t+ u)
) =

φa(x, u)

φ0(x, u)
e−

a2

2 t.(10)

and

EQx,u
(
φa(Xt+r, t+ r + u)

φ0(Xt+r, t+ r + u)
|Fr) =

φa(Xr, r + u)

φ0(Xr, r + u)
e−

a2

2 t.(11)
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Proof. One proves as previously that

(e
a2

2 tφa(Xt, t+ u), t ≥ 0)

is a true martingale, which implies that

Wx(φa(Xt, t+ u)e
a2

2 t1Tu<t) = 0,

and identity (10). The second identity follows, using (9). �

5. The conditioned Brownian motion and the Markov chains on the

set of dominant weights

Let us focus on the Markov chains defined in section 3 when ω = Λ0. We recall
that the weights occurring in V (Λ0) are

Λ0 + kα1 − (k2 + s)δ, k ∈ Z, s ∈ N,

with respective multiplicities p(s), the number of partitions of s (see for instance
chapter 9 in [8]). If we consider, for h = 1

2 (h1α1 + h2Λ0), with h1 ∈ R, h2 ∈ R∗
+,

the associated probability measure µΛ0 defined by (3) and the associated random
walk (X(n), n ≥ 0), then its projection on Zα1 is a random walk with increments
distributed according to a probability measure ¯̄µΛ0 defined by

¯̄µΛ0(k) = Che
kh1−

h2
2 k2

, k ∈ Z,

where Ch is a normalizing constant depending on h.

The main theorem. For n ∈ N∗, we consider a random walk (Xn
k , k ≥ 0) starting

from 0, whose increments are distributed according to probability measure µΛ0

associated to h = 2
nΛ0. If we denote by ( ¯̄Xn

k , k ≥ 0) its projection on Zα1, standard

method shows that the sequence of processes ( 2n
¯̄Xn
[nt], t ≥ 0) converges towards a

standard Brownian motion on R when n goes to infinity.
Let x and u be two positive numbers such that x < u. For n ∈ N∗, we consider
a Markov process (Λn

k , k ≥ 0) starting from [nu]Λ0 + [xn] 12α1, with the transition

probability qω defined by (4), with ω = Λ0 and h = 2
nΛ0. It is important to notice

that (Λn
k , δ) = [nu]+k for every k ∈ N. If Λ̄n

k is the projection of Λn
k on vect{Λ0, α1}

for every k ∈ N and n ∈ N∗, then the following convergence holds.

Theorem 5.1. The sequence of processes ( 1n Λ̄
n
[nt], t ≥ 0) converges when n goes to

infinity towards the process ((t+ u)Λ0 +
Xt

2 α1, t ≥ 0) under Qx,u

Proof. Let t ∈ R∗
+. We denote by µn

t the law of 1
n (Λ

n
[nt], α1), for n ∈ N. The

probability measure µn
t is carried by [0, t + u]. The intervale [0, t + u] being a

compact set, the space of probability measures on [0, t+ u] endowed with the weak
topology is also compact. Suppose that a subsequence of (µn

t )n converges towards
µt. For λ ∈ P+

m , one has

chλ(
a
nα1 +

2
nΛ0)

chλ(
2
nΛ0)

=
φa(

1
n ((λ, α1) + 1), 1

n (m+ 2))

φ0(
1
n ((λ, α1) + 1), 1

n (m+ 2))

φ0(
1
n ,

4
n )

φa(
1
n ,

4
n )

,

for any a ∈ R, and n ∈ N∗. The function (x, t) 7→ φa(x,t+u)
φ0(x,t)

can be shown to be

uniformly continuous on {(x, t) ∈ R× [0, T ] : 0 ≤ x ≤ u+ t} for every T ∈ R+. As
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lim
n→∞

φ0(
1
n
, 4
n
)

φa(
1
n
, 4
n
)
= 1, and

[chΛ0(
a
nα1 +

2
nΛ0)

chΛ0(
2
nΛ0)

][nt]

= E(e
ia 2

n
¯̄X
(n)

[nt]),

identity (5) implies that µt satisfies
∫ t+u

0

φa(z, t+ u)

φ0(z, t+ u)
µt(dz) =

φa(x, u)

φ0(x, u)
e−

a2

2 t.

Proposition 4.8 implies that (µn
t )n converges towards µt and proposition 4.9 implies

that µt is the distribution ofXt under Qx,u. Convergence of the sequence of random
processes ( 1

n (Λ
n
[nt], α1), t ≥ 0) - in the sense of finite dimensional distributions

convergence - follows similarly from identity (6) and (11).
�

6. Brownian motion conditioned to remain in an interval

In this section we discuss the connection between the conditioned Brownian
motion constructed in this paper and the Brownian motion conditioned - in the
sense of Doob - to remain in an interval. The connection is not surprising when we
keep in mind that the dominant term in a character of a highest weight irreducible
module of an affine algebra involves the so-called asymptotic dimensions, which are
related to eigenfunctions for the Laplacian on an interval (see chapter 13 of [5]).
Let u ∈ R∗

+. The function h defined on [0, u] by

h(x) = sin(π
x

u
), x ∈ [0, u],

is the Dirichlet eigenfunction on the interval [0, u] corresponding to the eigenvalue

−π2

u2 at the bottom of the spectrum. Brownian motion conditioned - in the sense
of Doob - to remain in the interval [0, u], has the Doob-transformed semi-group
(qt)t≥0 defined for t ∈ R∗

+ by

qt(x, y) =
h(y)

h(x)
e

π2

u2
t
2 p0t (x, y), x, y ∈]0, u[,

where p0t is the semi-group of the standard Brownian motion on R, killed on the
boundary of [0, u].

For c ∈]0, 1[, one defines a space-time harmonic function φ
(c)
0 on R× R∗

+ letting

φ
(c)
0 (x, t) = φ0(cx, c

2t),

for x, t ∈ R× R∗
+. This function satisfies the following boundary conditions

∀t ∈ R∗
+,

{

φ
(c)
0 (0, t) = 0

φ
(c)
0 (ct, t) = 0.

As in section 4, one defines for a real number x satisfying 0 < x < u, a probability

Q
(c)
x,u on C(R+) letting

Q(c)
x,u(A) = Ex(

φ
(c)
0 (Xt, t+

u
c )

φ
(c)
0 (x, u

c )
1
{T

(c)
u >t}∩A

), A ∈ Ft,
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where T
(c)
u = inf{s ≥ 0 : Xs = 0 or Xs = cs + u}. Thus, under the probability

measure Q
(c)
x,u, (t+

u
c , Xt)t≥0 is a space-time Brownian motion starting from (uc , x),

conditioned to remain in the domain

{(r, z) ∈ R× R : 0 ≤ z ≤ cr}.

Theorem 6.1. The probability measure Q
(c)
x,u converges, when c goes to 0, towards

the law of a standard Brownian starting from x, conditioned - in the sense of Doob
- to remain in [0, u].

Proof. Lemma 4.4 easily implies that

lim
c→0

φ
(c)
0 (y, t+ u

c )

φ
(c)
0 (x, u

c )
=

sin(y π
u )

sin(xπ
u )

e
π2

u2
t
2 ,

for every y ∈ [0, u], t > 0, which implies the theorem, as the quotient inside the
limit is uniformly bounded for y ∈ [0, ct+ u] and c ∈]0, 1[. �

References

[1] R. Bellman, A brief introduction to theta functions, Holt, Rinehart and Winston, 1961.
[2] Ph. Biane, Ph. Bougerol and N. O’Connell, Littelmann paths and Brownian paths, Duke

Math. J., 130, no. 1, 127-167, 2005.
[3] Crank J., Free and Moving Boundary Problems, Clarendon Press, Oxford, 1984.
[4] Doob, J. L., Classical Potential Theory and Its Probabilistic Counterpart, Springer, New

York.1984.
[5] V. G. Kac, Infinite dimensional Lie algebras, third edition, Cambridge university press,

1990.
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