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Abstract

In this paper, we introduce a new coarse space algorithm, the “Discontinuous

Coarse Space Robin Jump Minimizer” (DCS-RJMin), to be used in conjunction

with one-level domain decomposition methods (DDM). This new algorithm makes

use of Discontinuous Coarse Spaces(DCS), and is designed for DDM that naturally

produce discontinuous iterates such as Optimized Schwarz Methods(OSM). This

algorithm is suitable both at the continuous level and for cell-centered finite volume

discretizations. At the continuous level, we prove, under some conditions on the

parameters of the algorithm, that the difference between two consecutive iterates

goes to 0. We also provide numerical results illustrating the convergence behavior

of the DCS-RJMin algorithm.

Key words: discontinuous coarse space, optimized Schwarz method.

1 Introduction

Due to the ever increasing parallelism in modern computers, and the ever increasing

affordability of massively parallel calculators, it is of utmost importance to develop

algorithms that are not only parallel but scalable. In this paper, we are interested in Do-

main Decomposition Methods(DDM) which are one way to parallelize the numerical

resolution of Partial Differential Equations(PDE).

In Domain Decomposition Methods, the whole domain is subdivided in several

subdomains and a computation unit is assigned to each subdomain. In this paper, we

only consider non-overlapping domain decompositions. The numerical solution is then

computed in parallel inside each subdomain with artificial boundary conditions. Then,

subdomains exchange information between each other. This process is reapplied until

convergence. In practice, such a scheme, called iterative DDM, should be accelerated
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using Krylov methods. However, for the purpose of analyzing an algorithm, it can be

interesting to work directly with the iterative algorithm itself as Krylov acceleration is

so efficient it can hide away small design problems in the algorithm.

In one-level DDM, only neighboring subdomains exchange information. Most clas-

sical DDM are one-level. While one-level DDM can be very efficient and converge in

a few iterations, they are not scalable: convergence can never occur before informa-

tion has propagated between the two furthest apart subdomains. I.E., a one level DDM

must iterate at least as many times as the diameter of the connectivity graph of the

domain decomposition. Typically, if N is the number of subdomains, this means at

least O(N) iterations for one-dimensional problems, O(
√

N) for two-dimensional ones

and O( 3
√

N) for three-dimensional ones. For DDM to be scalable, some kind of global

information exchange is needed. The traditional approach to achieve such global infor-

mation exchange is adding a coarse space to a pre-existing one-level DDM.

To the author knowledge, the first use of coarse spaces in Domain Decomposi-

tion Methods can be found in [16]. Because coarse spaces enable global information

exchange, scalability becomes possible. Well known methods with coarse spaces are

the two-level Additive Schwarz method [3], the FETI method [13], and the balanc-

ing Neumann-Neumann methods [12, 4, 14]. Coarse spaces are also an active area of

research, see [2, 15] for high contrast problems. It is not trivial to add an effective

coarse space to one-level DDM that produce discontinuous iterates such as Optimized

Schwarz Methods, see [6, 7], and [5, chap.5].

In [9], the authors introduced the idea of using discontinuous coarse spaces. Since

many DDM algorithms produce discontinuous iterates, the use of discontinuous coarse

corrections is needed to correct the discontinuities between subdomains. In that pro-

ceeding, one possible algorithm, the DCS-DMNV (Discontinuous Coarse Space Dirich-

let Minimizer Neumann Variational), was described at the continuous level and at the

discrete level for Finite Element Methods on a non-overlapping Domain Decompo-

sition. In [17], a similar method, the DCS-DGLC algorithm was proposed. Both

the DCS-DMNV and the DCS-DGLC are well suited to finite element discretizations.

Also, a similar approach was proposed in [8] for Restricted Additive Schwarz(RAS),

an overlapping DDM,

It was proven recently that the proof of convergence for Schwarz found in [11, 1]

can be extended to the Discrete Optimized Schwarz algorithm with cell centered finite

volume methods, see [10]. It would be interesting to have a discontinuous corse space

algorithm that is suited to cell centered finite volumes. Unfortunately, neither the DCS-

DMNV algorithm nor the DCS-DGLC algorithm are practical for cell centered-finite

volume methods: the stiffness matrix necessary to compute the coarse correction isn’t

as sparse as one would intuitively believe. In this paper, our main goal is to describe

one family of algorithms making use of discontinuous coarse spaces but suitable for

cell centered finite volumes discretizations.

In §2, we briefly recall the motivations behind the use of discontinuous coarse

space. In §3, we present the DCS-RJMin algorithm. In §4, we prove that under some

conditions on the algorithm parameter, the L2-norm of the difference between two con-

secutive iterates goes to zero. Finally, we present numerical results in §5.
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2 Optimized Schwarz and Discontinuous Coarse Spaces

Let’s consider a polygonal domain Ω in R
2. As a simple test case, we wish to solve

ηu−△u = f in Ω,

u = 0 on ∂Ω.

Without a coarse space, the Optimized Schwarz Method is defined as

Algorithm 2.1 (Coarseless OSM). 1. Set u0
i to either the null function or to the

coarse solution.

2. Until convergence

(a) Set un+1
i as the unique solution to

ηun+1
i −△un+1

i = f in Ωi,

∂un+1
i

∂nnni

+ pun+1
i =

∂un
j

∂nnni

+ pun
j on ∂Ωi ∩∂Ω j,

un+1 = 0 on ∂Ωi ∩∂Ω.

In practical applications, such an algorithm should be accelerated using Krylov

methods. However, studying the iterative (Richardson) version can give mathematical

insight on the convergence speed of the Krylov accelerated algorithm.

The main shortcoming of the coarseless Optimized Schwarz methods is the absence

of direct communication between distant subdomains. To get a scalable algorithm, one

can use a coarse space. A general version of a coarse space method for the OSM is

Algorithm 2.2 (Generic OSM with coarse space). 1. Set u0
i to either the null func-

tion or to the coarse solution.

2. Until convergence

(a) Set un+1
i as the unique solution to

ηu
n+1/2
i −△un+1

i = f in Ωi,

∂u
n+1/2
i

∂nnni

+ pu
n+1/2
i =

∂un
j

∂nnni

+ pun
j on ∂Ωi ∩∂Ω j,

un+1/2 = 0 on ∂Ωi ∩∂Ω.

(b) Compute in some way a coarse corrector Un+1 belonging to the coarse

space X , then set

un+1 = un+1/2 +Un+1.

More important than the algorithm used to compute the coarse correction Un+1 is

the choice of an adequate coarse space itself. The ideas presented in [9] still apply. In

particular, the coarse space should contain discontinuous functions and the discontinu-

ities of the coarse corrector should be located at the interfaces between subdomains.
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For these reasons, we suppose the whole domain Ω is meshed by either a coarse trian-

gular mesh or a cartesian meshTH and we use each coarse cell of TH as a subdomain

Ωi of Ω. The optimal theoretical coarse space A is the set of all functions that are

solutions to the homogenous equation inside each subdomain: for linear problems,

the errors made by any iterate are guaranteed to belong to that space. With an ade-

quate algorithm to compute Un+1, the coarse space A gives a convergence in a single

coarse iteration. Unfortunately this complete coarse space is only practical for one di-

mensional problems as it is of infinite dimension in higher dimensions. One should

therefore choose a finite dimensional subset Xd of A .

The choice of the coarse space Xd is primordial. It should have a dimension that is

a small multiple of the number of subdomains. To choose Xd , one only need to choose

boundary conditions on every subdomain, then fill the interior of each subdomain by

solving the homogenous equation in each subdomain. In this paper, we have not tried

to optimize Xd and for the sake of simplicity have chosen Xd as the set of all functions

in A with linear Dirichlet boundary conditions on each interface between any two

adjacent subdomains.

3 The DCS-RJMin Algorithm

We now describe the DCS-Robin Jump Minimizer algorithm:

Algorithm 3.1 (DCS-RJMin).

Set p > 0 and q > 0 and Xd a finite dimensional subspace of A .

Set u0 to either 0 or to the coarse space solution.

Until Convergence

1. Set un+ 1
2 as the unique solution to

ηun+ 1
2 −△un+ 1

2 = f in Ωi,

∂u
n+ 1

2
i

∂ννν i j

+ pu
n+ 1

2
i =

∂un
j

∂ννν i j

+ pun
j on ∂Ωi ∩∂Ω j,

ui = 0 on ∂Ωi ∩∂Ω j.

2. Set Un+1 in Xd as the unique coarse function that minimizes

N

∑
i=1

∑
j∈N (i)

∥

∥

∥

∥

∂ (u
n+ 1

2
i +Un+1

i )

∂ννν i

+q(u
n+ 1

2
i +Un+1

i )

−
∂ (u

n+ 1
2

j +Un+1
j )

∂ννν i

−q(u
n+ 1

2
j +Un+1

j )

∥

∥

∥

∥

2

L2(∂Ωi∩∂Ω j)

,

where ννν i is the outward normal to subdomain Ωi and N (i) the set of all j such

that Ω j and Ωi are adjacent.

3. Set un+1 := un+1/2 +Un+1.
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4 Partial “Convergence” results for DCS-RJMin

We don’t have a complete convergence theorem for the DCS-RJMin algorithm. How-

ever, we can prove the iterates of the DCS-RJMin algorithm are close to converging

when p = q:

Proposition 4.1. If q = p. Then, the iterates produced by the DCS-RJMin algo-

rithm 3.1 satisfy limn→+∞‖u
n+1/2
i −un

i ‖L2 = 0.

Proof. Let u be the mono-domain solution, set en
i = un

i − ui, then, following Lions

energy estimates [11],

η

∫

Ωi

|en+1/2
i − en

i |2Dxxx+
∫

Ωi

|∇(e
n+1/2
i − en

i )|2Dxxx

=
∫

∂Ωi

∂ (e
n+1/2
i − en

i )

∂ννν
· (en+1/2

i − en
i )

=
1

4p

(

∫

∂Ωi

|∂ (e
n+1/2
i − en

i )

∂ννν
+ p(e

n+1/2
i − en

i )|2 −|∂ (e
n+1/2
i − en

i )

∂ννν
− p(e

n+1/2
i − en

i )|2
)

=
1

4p

(

∫

∂Ωi

|∂ (e
n+1/2
i − en

i )

∂ννν
+ p(e

n+1/2
i − en

i )|2 −
∫

∂Ωi

|∂ (e
n+1/2
i − en

i )

∂ννν
− p(e

n+1/2
i − en

i )|2
)

=
1

4p

(

∑
j

∫

∂Ωi∩∂Ω j

∣

∣

∣

∣

∣

(

∂en
j

∂ννν i

+ pen
j

)

−
(

∂e
n)
i

∂ννν i

+ pen
i

)∣

∣

∣

∣

∣

2

−∑
j

∫

∂Ωi∩∂Ω j

∣

∣

∣

∣

∣

∣

(

∂e
n+1/2
i

∂ννν i

− pe
n+1/2
i

)

−





∂e
n+1/2)
j

∂ννν i

− pe
n+1/2
j





∣

∣

∣

∣

∣

∣

2
)

We sum the above equality over all subdomains Ωi and get

η ∑
i

∫

Ωi

|en+1/2
i − en

i |2Dxxx+
∫

Ωi

|∇(e
n+1/2
i − en

i )|2Dxxx =

= ∑
(i, j)

1

4p





∫

Γi j

∣

∣

∣

∣

[

∂en

∂ννν i

+ pen

]∣

∣

∣

∣

2

−
∫

Γi j

∣

∣

∣

∣

∣

[

∂en+1/2

∂ννν i

+ pen+1/2

]∣

∣

∣

∣

∣

2


 ,

where [·] represents a jump across the interface. Since the coarse step of the DCS-

RJMin algorithm minimizes the Robin Jumps, we have

η ∑
i

∫

Ωi

|en+1/2
i − en

i |2Dxxx+
∫

Ωi

|∇(e
n+1/2
i − en

i )|2Dxxx ≤

≤ ∑
(i, j)

1

4p

(

∫

Γi j

∣

∣

∣

∣

[

∂en

∂ννν i

+ pen

]∣

∣

∣

∣

2

−
∫

Γi j

∣

∣

∣

∣

[

∂en+1

∂ννν i

+ pen+1

]∣

∣

∣

∣

2
)

.

Summing over n ≥ 0 yields the stated result.
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5 Numerical Results

Figure 1: Convergence for OSM and DCS-RJmin with Ω = [0,4]2, f (x,y) = 0 and

random initial boundary conditions. Plotting log(‖e50‖∞/‖e0‖∞).

We have implemented the DCS-RJMin algorithm in C++ for cell-centered finite

volumes on a cartesian grid. We chose Ω =]0,4[×]0,4[, η = 0 and iterated directly

on the errors by choosing f = 0. We initialized the Robin boundary conditions at the

interfaces between subdomains at random and performed multiple runs of the DCS-

RJMin algorithm for various values of p, q and of the number of subdomains. We had

p vary from 1.0 to 20.0 with 0.5 increments and q takes the following values pm×10pe

with pm in {1.0,2.0,4.0,8.0} and pe in {0,1}. We consider 2× 2, 4× 4, 6× 6 and

8× 8 subdomains. There are always 20× 20 cells per subdomains. In Figure 1, we

plot log(‖e50‖∞/‖e0‖∞) as a function of p for various values of q. First, we notice that

for each value of q, the convergence deteriorates above a certain pq. In fact, for low

values of q and high values of p, the iterates diverge. For two different values of q,

the curves are very close when p is smaller than both pq. We also notice than even

though we could only prove Proposition 4.1 for the case p = q, we observe numerical

convergence even when p 6= q. In fact p = q is not the numerical optimum. This is

to be expected at the intuitive level: for a theoretical proof of convergence, we want

the algorithm to keep lowering some functional. The existence of such a functional

is likely only if all the substeps of the algorithm are optimized for the same kind of

errors. If p = q, both the coarse step or the local step will either remove low frequency

errors (small p and q) or high frequency ones (high p and q). An efficient numerical

algorithm should have substeps optimized for completely different kind of errors. This

is why efficient numerical algorithms are usually the ones for which the convergence

proofs are the more difficult.
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6 Conclusion

In this paper, we have introduced a new discontinuous coarse space algorithm, the

DCS-RJMin, that is suitable for cell-centered finite volume discretizations. The coarse

space greatly improve numerical convergence. It would be of great interest to study

which is the optimal low-dimensional subspace of all piecewise discontinuous piece-

wise harmonic functions. Future work also includes the development of a possible

alternative to coarse space in order to get scalability: “Piecewise Krylov Methods”

where the same minimization problem than the one used in DCS-RJMin is used but

where the coarse space are made of piecewise, per subdomain, differences between

consecutive one-level iterates.
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