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Abstract

XMapTools is a MATLAB®-based graphical user interface program for electron
microprobe X-ray image processing, which can be used to estimate the pressure-
temperature conditions of crystallization of minerals in metamorphic rocks. This

program (available online at http://www.xmaptools.com) provides a method to

standardize raw electron microprobe data and includes functions to calculate the oxide
weight percent compositions for various minerals. A set of external functions is
provided to calculate structural formulae from the standardized analyses as well as to
estimate pressure-temperature conditions of crystallization, using empirical and semi-
empirical thermobarometers from the literature. Two graphical user interface
modules, Chem2D and Triplot3D, are used to plot mineral compositions into binary
and ternary diagrams. As an example, the software is used to study a high-pressure
Himalayan eclogite sample from the Stak massif in Pakistan. The high-pressure
paragenesis consisting of omphacite and garnet has been retrogressed to a
symplectitic assemblage of amphibole, plagioclase and clinopyroxene. Mineral
compositions corresponding to ~165 000 analyses yield estimates for the eclogitic
pressure-temperature retrograde path from 25 kbar to 9 kbar. Corresponding pressure-
temperature maps were plotted and used to interpret the link between the equilibrium
conditions of crystallization and the symplectitic microstructures. This example
illustrates the usefulness of XMapTools for studying variations of the chemical
composition of minerals and for retrieving information on metamorphic conditions on
a microscale, towards computation of continuous pressure-temperature-and relative
time path in zoned metamorphic minerals not affected by post-crystallization

diffusion.
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Keywords: XMapTools program; X-ray chemical imaging; quantitative micro-

mapping; PT-maps

1. Introduction

Our understanding of the geodynamics and processes in orogens, subduction zones
and the lower crust relies on estimations of the pressure-temperature (P-7) conditions
of crystallization of mineral assemblages. Deriving reliable pressure and temperature
information from a rock is critical to our knowledge of the thermal structure of the
crust, whose variations can be recorded through time within individual samples via
consecutive partial re-equilibration events. Thermobarometric tools such as multi-
equilibrium thermobarometry (e.g. Berman, 1991), pseudosections (e.g. Holland and
Powell, 1998; 2011) and empirical thermometers (e.g. Cathelineau and Nieva, 1985)
provide these estimates from the nature and composition of minerals, even for high-
variance assemblages (Vidal and Parra, 2000). To shed light on the recrystallization
history of metamorphic rocks, chemical compositions of the minerals are required.
This is commonly achieved using point mode analyses obtained with an electron
probe microanalyser (EPMA). The use of X-ray images allows to identify the
relationships between microstructures, variations of composition and variations of P-T'
conditions of crystallization (e.g. Vidal et al., 2006). Since the first X-ray “dot maps”
compositional image (Cosslett and Duncumb 1956), this technique has been
developed (see Friel and Lyman 2006 for a review) using both energy-dispersive and
wavelength dispersive X-ray spectrometers (EDS and WDS). For instance, previous

work has used X-ray images for classification and modal analysis (Launeau et al.,
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1994; Bonnet, 1998; Cossio et al., 2002; Prét et al., 2010) and to reconstruct P-T paths
(Kohn and Spear, 2000; De Andrade et al., 2006; Mufioz et al., 2006; Vidal et al.,
2006; Yamato et al., 2007; Ganne et al., 2012; Fiannacca et al., 2012; Lanari et al.,
2012; Plunder et al., 2012; Pourteau et al., 2013; Lanari et al., 2013). Quantitative
electron microprobe analyses require an analytical standardization of the number of
collected photons (X-ray intensity). The acquisition time for standardized point
analysis for eight major elements (e.g. Si, Al, Mn, Mg, Fe, Na, Ca, K) under classical
conditions (typically 10nA, 15keV, 40s) averages around two minutes. This approach
is therefore difficult to apply to chemical mapping, where samples are typically
heterogeneous on a ~10um scale and maps typically contain about 150 000 pixels,
that would correspond to ~200 days of measurements. X-ray maps for quantitative
mapping can be obtained within a reasonable time frame by using a higher current
intensity and a lower counting time (100nA, 15 KeV, 100-300ms, see De Andrade et
al., 2006). In order to transform the X-ray intensities into calibrated weight
percentages, Clarke et al. (2001) used a Bence-Albee approach (Bence and Albee,
1968), which has been later implemented in the program XRMapAnal (Tinkham and
Ghent, 2005). However, the precision of this standardization procedure is subject to
caution, because it can result in unreliable compositions for some geologically
important phases (e.g. quartz, muscovite, plagioclase and garnet, compositions listed
in the table 3 of Tinkham and Ghent, 2005). De Andrade et al. (2006) showed that
standardization of X-ray intensities using point analyses as internal standards
(Castaing, 1951) provides more reliable results.

In the present contribution, we present a MATLAB -based Graphical User Interface
(GUI) program named XMapTools that can be used to: (1) classify mineral phases in

the sample, (2) convert X-ray intensities into calibrated weight percentages using
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Castaing’s approach, (3) calculate the structural formulae of the identified minerals,
(4) plot minerals compositions using various chemical diagrams, and (5) calculate P-T'
conditions of equilibration using various empirical and semi-empirical
thermobarometers. An example of application of the program to a retrogressed

eclogite is presented below.

2. Description of the program

The XMapTools program (available at http://www.xmaptools.com) can be run with a
MATLAB® version 7.5 release R2007b or later. It uses a graphical interface named
XMapTools.fig (Fig. 1) built using the MATLAB® Graphical User Interface
Development Environment (GUIDE) tool. Each of the GUI components dragged with
the GUIDE is associated with a callback function in the program file XMapTools.p,
corresponding to a content-obscured version (encrypted executable).

The program is structured into three parts: Xray, Quanti and Results (Fig. 2)
corresponding to three different steps of the mapping process. The first step (Xray
column in Fig. 2), starts by loading the map. From statistical analysis of their
composition, pixels are grouped within mineral phases and possibly fractures or
voids, and corresponding masks are created. The user then identifies the nature of the
various groups. This steps ends with the standardization stage. In the second step,
(Quanti column in Fig. 2), standardized maps are turned into maps of structural
formulae and into P-T maps. The last step (Results column in Fig. 2), allows the user
to produce binary and ternary chemical diagrams with the Chem2D and TriPlot3D

modules. All the functions used in these different stages are detailed below.

2.1 Raw data treatment (Xray)
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Two types of datasets can be uploaded into XMapTools, namely the raw X-ray data in
photon counts per pixel (matrixes corresponding to the number of collected photons
per analyzed element per pixel) and the point analyses used as internal standards.
With both Cameca® and Jeol° EPMA, the raw data of chemical maps can be exported
in ASCII format text files such as *ixt file. Typically, one file is created for each
measured element, and contains header lines reporting information about analytical
conditions and coordinates of the selected area, followed by a matrix of X-ray
intensity data (see Appendix 1). After removal of the header lines by the user, the
loading function of XMapTools reads the input files and creates X-ray intensity
images. This function includes dead-time correction, where the time interval after the
arrival of a pulse during which the spectrometer is unresponsive to further pulses
(Reed 2005) is accounted for, and transforms the measured counting rates into true
rates.

Point analyses, their coordinates and the map coordinates are the other required inputs
to the standardization step. Usually, the point analyses are made along different
transects at high angles to (mineral grain boundaries includes 'each other') mineral
grain boundaries to capture the total extent of the minerals heterogeneity. Experience
has shown that a minimum of 20 point analyses encompassing most of the chemical
heterogeneity of each mineral phases in the selected area of the sample is necessary to
reach optimum precision. The standard loading function reads a series of point
analyses. The locations of the point analyses must be carefully reported from stage
coordinates corrected for mechanical backlash and are then projected on the map with
the EMPA map coordinate system. The user can compare the X-ray intensities along
the profiles measured by point analyses to those of the map, which is useful to detect

problems of location of profiles on the map, for example due to drifting of the sample
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stage during analysis or to a projection problem. The point analyses showing outlying
or unwanted compositions such as mixtures of fine minerals, inclusions, or grain

boundaries must be deleted before the standardization.

2.1.1 Classification: mask creating function

This function creates masks corresponding to entities identified in the map (e.g.
mineral, mineral boundaries, fractures), where each mask is a matrix of logical
numbers indexed on the coordinates of the composition map: the value of 1 is
attributed to the pixels belonging to a given mineral phase, and 0 to the other pixels.
This function allocates each individual pixel to one of the minerals phases. The mask
creating function uses the statistical analysis method K-means clustering to distribute
the pixels into groups of similar compositions. K-means identifies clusters and
allocates pixels to these clusters by minimization of the distance in compositional
space between the pixels and the gravity centre of each cluster (Saporta 1990).

The user selects one pixel of each phase on the chemical map as needed by the mask
creating function for initial guess. The compositions of these pixels are used as
starting cluster centroids. In an iterative loop, each pixel is assigned to the nearest
cluster and the centroids are recalculated until the sum of point-to-centroid
distancesover all clusters is minimized (Seber, 1984; Spath, 1985). Two approaches
are available in XMapTools: the ‘normalized’ and the ‘classical’ approaches. Both of
them use a K-means clustering approach, but with different X-ray intensities inputs.
In the ‘normalized’ function, X-ray intensities of each element are normalized to their
mean values, with the result that all elements have the same weight and only the
variances are compared. In contrast, the X-ray intensities of each element in the

‘classical’ method depend on the absolute concentration in each element. This
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‘classical’ method is therefore more appropriate for elements present in high
concentration. Different masks may be derived using both methods, depending on the
magnitude of the differences between the compositions of the phases. An example is
shown in section 3.2. Other approaches for the classification of different mineral
phases can be found in the PetroMod program (Cossio et al., 2002). Here the K-means

algorithm was chosen for its straightforwardness and efficiency.

2.1.2 Standardization function

The analytical standardization consists in converting the measured X-ray intensities
into oxide weight percent concentrations using standards (Reed, 2005). The
standardization function performs this transformation for each mask where
quantitative information is available from point analysis or using user-defined
concentrations. The standardization of pixels requires calibration curves describing
how X-ray intensities change with concentration (Castaing, 1951). One calibration
curve is calculated for each element in each phase from the intensity versus
concentration relations constrained with point analyses. The calibration curves for Si
in the different phases of the studied sample are shown in Figure 3. For each mineral,
the calibration curve is a straight line between the origin (0 intensity and
concentration) and the central point of the cluster of the point analyses.

The standardization can be performed using one of the three methods available in
XMapTools. The first method ‘Auto (median approach)’ is fully automatic, and the
cluster centroids are the median values separating the higher half from the lower half
of the data. The ‘Manual’ approach allows the user to define the center of the clusters
and therefore the calibration curve. The last method ‘Manual (homogeneous phase)’ is

adapted to minerals assumed to be homogeneous such as might be the case for quartz.
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The calibration curve is then defined as the mean value of X-ray intensity for the
selected mineral and the user enters the corresponding concentration, e.g. 100% for

SiO; in the case of quartz.

2.2 Calculations from quantified data (Quanti)

Once the masks have been defined and element concentrations have been estimated,
structural formulae may be calculated and equilibrium conditions derived using
external functions (see below). Users can add new thermobarometry or structural
formula functions. The file ‘List-thermometers.txt’ lists all information about these
external functions (i.e. category, name, input and output variables) that are stored into
the folder ‘Functions’. All these functions are MATLAB® script m-files that can be

read and edited.

2.2.1 Structural formulae functions

Several structural formulae and atom site allocations models from the literature are
implemented in XMapTools (Table 1). A general function is also available to calculate
a structural formula normalized to a given number of oxygen atoms. This additional
function is used to compute the number of moles of elements per formula unit (p.f.u.)

for each pixel assuming that the total sums up to 100%.

2.2.2 Thermobarometry functions

XMapTools includes a large selection of thermobarometry functions based on
empirical and semi-empirical calibrations. These methods are distributed into two
groups: exchange reactions for thermometry (Table 2) and thermobarometer functions

(Table 3).
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In exchange reactions, cations such as Fe’" and Mg”" are swapped between two
minerals (e.g. Spear, 1995). P-T conditions of equilibrium may be derived from the
cations partition between the two phases (e.g., Ravna, 2000a for garnet-
clinopyroxene). XMapTools generates an image with the oxide weight percent
compositions of the two minerals and allows the user to select pairs of pixels (spot
mode) or pairs of groups of pixels (area mode).

In the spot mode, the selected compositions are used to estimate the equilibrium
conditions. In the area mode, all the possible pairs of pixels are used to calculate an
average equilibrium condition with associated uncertainty. This mode allows to
propagate the effect of composition variation in any phase through the whole
thermobarometer calculation.

For exchange reactions, 7 is usually estimated for a given pressure. If the minerals
exhibit metamorphic zoning preserving paleo-equilibrium conditions, and if the
zoning pattern is not due to post-crystallization diffusion, the variations of 7'
conditions can be investigated using exchange reactions. A set of mineral pairs
selected between the core and the rim of two minerals provides a trend for the
evolution of the temperature conditions. This approach is essentially the same as
commonly used with point analyses.

The thermobarometry functions provide information on the 7" and/or P of mineral
crystallization for each pixel of the map, which can be turned into P, 7, or P and T
maps. Both P and T conditions are derived from only one mineral composition (one
pixel) with fixed variables such as other mineral composition, or P or 7. Methods are
listed in Table 3 in three groups: (1) thermometers, (2) barometers, and (3)
thermobarometers where P-T conditions are derived from at least two reactions (one

T-dependent and one P-dependent) within a given mineral assemblage. This is done
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using groups of pixel compositions and assuming equilibrium between the groups.

The use of thermobarometry functions should be restrained to cases where the
relevant saturating assemblages are present in the studied sample. The functions
implemented in XMapTools do not check the presence of such assemblages because
some minerals may be outside the mapped area. This is then the responsibility of the

user to decide whether the functions can be applied to the studied sample.

2.3 Chemical plots

The mineral compositions or end-member proportions can be plotted as maps or into
chemical diagrams such as binary diagrams (Fig. 4a) using the Chem2D module, or
ternary diagrams (Fig. 5a) using the 7riplot3D module. Both modules have a
graphical interface in which the user can select the plotted variables and manage the
diagram axes. A density plot function is also available to contour the analyzed
variables for density, which is useful when a large number of points is plotted as is the
case when working with maps (see examples in Fig. 4b and 5b). This function
displays a density map using the mineral composition data and grid spacing defined
by the user for density counting. The unit of the output of the density map is a number
of analyses per surface unit of the grid on the graph, which has the dimension of the x
axis multiplied to the y axis.

Two selection functions, namely ‘identify pixels’ and ‘multi-groups’, may be used to
select ranges of composition (rectangles) in the diagrams, as well as to identify the
selected pixels on the corresponding map (Fig. 4c and Fig. 5c) and to calculate modal
abundances.

Several functions may be used to create masks from user-defined chemical groups

within a phase. These masks are either built from manual selections (with the tools
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“identify pixel” and “multi-groups”) or automatically using a K-means clustering
approach. The mask variable can be exported into ASCII format (*.txt file) and used
in the Quanti stage to export the average oxide composition corresponding to a

selection of pixels.

2.4 Other functions

All the results can be saved and previously saved projects can be loaded at any time
using the functions ‘save’, ‘save as’ and ‘load’. The save functions store the data in a
MATLABO formatted binary file MAT-file (with .mat extension).

Functions in the ‘figure’ window are dedicated to the management of the color bar
such as setting the minimum and maximum values, the auto and reset buttons, and the
phase separator button (PhaseSep in Fig. 1). The user can also export the main figure
in usual image formats.

Functions in the ‘sampling’ window are used to select a subset of the data into the
main displayed image. These functions are available for any image (X-ray raw
measurement, map of oxide compositions, structural formulae, equilibrium conditions
maps). The selected data may be individual pixels, arrays or areas of pixels. This tool
can be used for example to draw the composition variations of a mineral grain along a

transect.

3. Tests and evaluation

Generating structural formulae and P-7 maps from microprobe analysis is of interest
for petrology and geodynamics studies. In this section, we present an example of the
use of XMapTools on a metamorphic rock sample. Compositional maps were acquired

on an eclogite sample from the Stak area, a high pressure (HP) continental massifs in
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NW Himalaya (Guillot et al., 2008; Lanari et al., 2013). This sample contains a well-
preserved eclogitic assemblage consisting of garnet and omphacite, which formed
during continental subduction. Omphacite was subsequently retrogressed to a Na-
poorer clinopyroxene + plagioclase + amphibole symplectite. The final metamorphic
event is recorded in the sample as a foliation comprising large crystals of amphibole
developed as a result of deformation and syntectonic hydration under mid-upper

crustal conditions (Lanari et al., 2013).

3.1 Data acquisition

An area of 0.348 mm” (520pum x 670pum) located in a symplectite zone and containing
garnet, clinopyroxene, amphibole, plagioclase, Ti- and Fe-oxides was mapped at the
Institute of Earth and Environmental Science, University of Potsdam, using a JEOL
JXA-8200 EMPA. Mapping conditions were 15 keV accelerating voltage and 100 nA
beam current, beam diameter smaller than 1 pm, 200 ms dwell time and 1 um step
size (i.e. pixel size). X-ray intensities for Si, Ti, Al, Fe, Mg, Mn, Ca, Na and K were

measured in two passes.

3.2 Classification

An image of the mineral phases created using the ‘mask creating function’ (see §2.1)
is shown in Figure 6a. The two methods for the mask creating function (classical and
normalized) were tested and lead to similar estimates of the mineral modal
proportions except for garnet (Table. 4). The difference for garnet is due to the
erroneous allocation of the contour pixels around amphibole to the garnet mask when
using the classical approach. This artefact may be corrected by creating an additional

mask corresponding to the borders of the mineral or by using the normalized method.
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Additional differences between the ‘normalized’ and ‘classical’ approaches are shown
in Figure 6b for a part of the map (dashed square in Fig. 6a). For instance, zone 1 in
Fig. 6b shows that omphacite is identified in the core of clinopyroxene using the
‘normalized’ method only. This is due to the normalization procedure and originates
from the small chemical differences between omphacite and clinopyroxene in their
Na- and Mg-contents. These differences are not detected with the ‘classical’ method,
which allocates more pixels to the clinopyroxene mask. The other examples (2 and 3
in Fig. 6) show that in some cases, the opposite effect is observed when variations
occur in only one highly concentrated element, keeping effects of the variations in
low-concentrated elements to a minimum. From this, we conclude that the two
methods should be tested and we recommend to check the difference between the two
results and to compute different mask-files with different number of phases (including

the fractures and/or mineral boundaries).

3.4 Test of the standardization

Analytical standardization of the X-ray images was performed using the
‘standardization function’ (see §4.1) with the ‘Auto (median approach)’ method.
Calibration curves (see §3.1 and graphical representation in Fig. 3) were calculated
for clinopyroxene, garnet, amphibole and plagioclase.

The quality and accuracy of the standardization can be investigated using the function
‘Test of standardization’. This function plots the composition difference between
point analyses and the standardized composition on the same location on the maps. As
an example, the results for the standardization of garnet are reported in Fig. 8, which
shows that the pixel compositions derived from the standardized maps are in good

agreement, within analytical uncertainties, with the corresponding point analyses for



351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

elements showing homogeneous compositions such as SiO,, Al,Os, FeO (Fig. 8a, 8b
and 8c) and heterogeneous compositions due to zoning such as CaO, MgO and MnO
(Fig. 8d, 8¢ and 8f). In contrast, the point analyses of low concentration elements
TiO, and K,O show trends not recorded in the standardized maps (Fig. 8g and 8h),
indicating that the concentrations of TiO, and K>O mapped in garnet are not reliable,
because they are close to the detection limits for the used mapping analytical

conditions.

3.5 Structural formulae and chemical study

Clinopyroxene structural formulae were calculated on a 6 oxygen-basis by
distributing elements on tetrahedral (T1) and octahedral (M1, M2) sites. End-
members proportions of jadeite, diopside, hedenbergite, acmite and Ca-tschermak
(Table 1) were estimated according to the atom site allocation model of Spear (1995)
and Warren and Waters (2006). The amphiboles structural formulae were calculated
on a 23 oxygen-basis and elements were distributed on tetrahedral (T1, T2),
octahedral (M2, M13, M4), and 10 to 12-fold coordinated (A) sites. End-members
proportions of glaucophane, tremolite, tschermakite, pargasite, cumingtonite (Table 1)
were calculated according to the atom site allocation model of Dale et al. (2000;
2005). Structural formulae for garnet and plagioclase were respectively calculated on
a 12 and 8 oxygen-basis following classical atom-site allocation models (Table 1).
Structural formulae maps highlight the relationship between atom-site composition
and microstructures. The two chemical modules Chem2D and Triplot3D were used to
investigate the variations of clinopyroxene structural formulae (i.e. varying end-
member proportions). In Figure 4a, Na-rich clinopyroxene compositions were

selected (red dots) using the ‘identify pixel’ tool (§2.3) in the Na vs. Mg diagram. The
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pixels belonging to the selected composition range are plotted in red on the map (Fig.
4c). These Na-rich clinopyroxene compositions are omphacitic and make up to ~25%
of the total clinopyroxene pixels. Then, clinopyroxene compositions were divided into
three groups using the ‘multi-groups’ tool within the jadeite-diopside-hedenbergite
ternary diagram (groups 1, 2 and 3 in Fig. 5a). The pixels belonging to the three
composition ranges are plotted on the map with corresponding colors (Fig. 5c). The
clinopyroxene compositions into the symplectite have lower Na contents,
corresponding to lower jadeite contents. Clinopyroxene-amphibole-plagioclase
symplectites are known to nucleate on grain boundaries between two omphacite
grains and to grow into the grain on one side, when the rock is sufficiently out of
equilibrium to nucleate the product (Joanny et al., 1991; Waters, 2002, 2003). In the
mapped area (Fig. 7), Na-rich clinopyroxene previously identified as omphacite
shows high Na contents (up to 0.4 p.f.u, zone 1 in Fig. 7). This primary omphacite
(width > 100um) is destabilized into a first symplectite containing Na-poorer
clinopyroxene, plagioclase and amphibole. Clinopyroxene in this first symplectite
(zone 2 in Fig. 7) crystallizes as broad lamellae (30-40um width) preserving the
original shape of omphacite, but with a lower Na-content (0.35 to 0.28 p.f.u.) than the
original omphacite grains. A second symplectite with the same minerals is observed
in zone 3 of figure 7, which shows smaller-size clinopyroxene lamellae (10-20um
width) and Na-content (0.28 to 0.18 p.f.u.). Clinopyroxene lamellae are even smaller

in the last symplectite (width < 10um) and also have lower Na-content (<15 p.f.u.).

3.6 Precision and resolution
In the previous section, maps of structural formulae highlight variations in the

clinopyroxene composition according to the symplectite microstructures. Na-content
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in clinopyroxene decreases with decreasing size of the symplectite (i.e. with time).
The clinopyroxene solid solution includes jadeite while diopside hedenbergite and Ca-
tschermak are calcic end-members. As the multiplicity of the M2 site is one and
XFe®™ = 0 (corresponding to Xacmite = 0), the jadeite proportion is equal to the Na-
content in clinopyroxene. Estimating the uncertainties associated with the
compositional values of the structural formulae is needed before discussing the
implications linked to the chemical zoning.

The precision of the electron microprobe measurement with our experimental protocol

can be estimated using a Poisson law (De Andrade et al., 2006):

2
Vi (1)

p=
with p the precision (in % at 2c6), and n the number of recorded counts. The mean
intensities and precision measurements for each element (Si, Ti, Al, Fe, Mg, Ca, Na,
K) of clinopyroxene pixels are listed in Table 4. The precision measurements range
from 1.8% for Si to 20% for Ti. Uncertainties in the structural formula originating
from analytical errors were estimated using a Monte Carlo simulation where a total of
100 000 random clinopyroxene compositions were computed with a normal
distribution around the mean intensity compositions (Table 4) within 26 of the
measured precisions. The standardization procedure was carried out for all the
compositions using the calibration curves estimated above. The average oxide
concentrations structural formulae and the associated standard deviations are listed in
Table 4. The average Na-content is estimated at 0.28 + 0.03 p.f.u., which indicates
that the compositional variations identified above (ranging from 0.41 to 0.13) are
significant. It is emphasized that the uncertainties reported here are valid for the

present EPMA settings and range of clinopyroxene composition, and can be decreased

by increasing the dwell time.
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3.7 Combined P and T functions: P-7 maps of Cpx

P-T maps were built using combined P and 7 functions available in XMapTools
(description in §4.2 and list in Table 2). At the thin section scale, two assemblages
involving clinopyroxene are in equilibrium: the HP assemblage made of garnet,
omphacite and phengite (as inclusions in garnet, not present in the mapped area) and
the retrogressed assemblage represented by the clinopyroxene-plagioclase-amphibole
symplectite. These two parageneses were treated separately.

For the HP assemblage, P-T conditions for clinopyroxene pixels were estimated using
the XMapTools function ‘Cpx-P-T Rav (Omp-Gar-Phg)’. P was estimated using the
garnet, omphacite and phengite geobarometer of Waters and Martin (1993) and
Waters (1996). T was estimated using the garnet and omphacite geothermometer of
Ravna (2000a). The function estimates first 7; at a given P (Pinpu), and recalculates
T,+; and P,.; until convergence (respectively 5°C and 0.1 kbar) between 7, and 7,,+;
and P, and P,.;. As the compositions of garnet show a slight zoning (Almag Prps;-33
Grs17-19 Spsi), two average garnet compositions were defined, one for the core and
one for the rim (Lanari et al., 2013). In both groups, garnet compositions are
homogeneous within errors. Each pixel of omphacite was assumed in equilibrium
with one garnet average composition (core-core, rim-rim). Then, P-T estimates were
calculated for all omphacite compositions.

For the symplectite, 7 was first estimated using the edenite-richterite calibration
(Holland and Blundy, 1994) with the composition of amphibole pixels for a fixed
composition of plagioclase (function ‘Amp-T, Holland and Blundy 1994a).
Crystallization 7 for amphibole were found to vary from 680+6°C in contact with

Jd3oy, clinopyroxene to 640+8°C in contact with Jdjy clinopyroxene. This
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relationship was used to calculate the 7 of clinopyroxene. P for clinopyroxene
crystallization were subsequently calculated using the calibration of Waters (2003) for
the equilibrium reaction: jad + trem = alb + ed.

About 165 000 P-T calculations (one for each Cpx pixels) have been obtained and the
results have been plotted into binary diagrams (Fig. 9a and 9b) using the module
Chem2D, and into P and 7 maps (Fig. 9c and Fig. 9d). The density P-7 diagram
option (Fig. 9b) plotted using the Chem2D module shows that the apparent deviation
in P is composed of a small proportion of points (< 1%). In contrast, the density
diagram shows a significant trend for 7" and P corresponding to the prograde evolution
from 650°C to 750°C and from 24 kbar to 25 kbar. This increase in 7" and the slight
increase of P along the prograde path is confirmed by the spatial distribution of the
obtained 7 and P when plotted on a map: omphacite grains show high P at ~25kbar,
and are zoned in 7 from 650°C in the old grain cores to 750°C in the old grain rims.
Clinopyroxene in the symplectite shows a different trend with a decrease of both P
and 7T with the decreasing size of the intergrowths (Fig. 9). This interpretation on the
preservation of P and T in symplectite during the exhumation is in good agreement
with the reported high cooling rates (Guillot et al., 2009). This example typifies the
importance of the mapping approach, which allows to test for relationships between

P-T conditions and the textural information from metamorphic microstructures.

4. Concluding remarks

This paper describes XMapTools, a MATLAB©-based GUI program to quantify raw
X-ray electron microprobe data using internal standards, plot chemical diagrams and
calculate P-T conditions of crystallization for metamorphic parageneses. The

XMapTools program includes 15 user-friendly main functions for the different steps
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to the procedure, from the loading of the raw data to calculating P-T maps, and two
external modules Chem2D and TriPlot3D with independent graphical user interfaces
to plot chemical diagrams. Beside the treatment of compositional maps, XMapTools
offers the possibility of estimating thermobarometric conditions, which can be linked
to the observed deformation features. For the study of metamorphic and magmatic
rocks, a set of external functions specific to geothermobarometry is also included.
This set comprises a range of structural formulae functions for usual rock-forming
silicate minerals as well as empirical and semi-empirical geothermobarometers from
the literature. Application of XMapTools to an eclogite sample shows that the
accuracy of the mapped minerals composition is good enough to discuss the
compositional-structural-P-7"  relationships based from Na distribution in
clinopyroxene. A strong link between metamorphic textures and composition has
been found, and the retrieved P-T information gives a detailed reconstruction of the
metamorphic history of the sample.

A more detailed thermobarometric study can be made using independent programs
such as e.g. Theriak-Domino (de Capitani and Petrakakis 2010) or Tweeq (Berman,
2007) with the whole range of mineral compositions derived from XMapTools, which
can be easily exported to the required formats. Moreover, an interesting feature of
XMapTools is the possibility to calculating local bulk rock compositions from
selected parts of the 2D maps. Such compositions can be used to calculate the stable
mineral assemblages, compositions and abundance by free energy minimizing (e.g.
Powell, 2008), and to compare them with the observed features. This approach,
illustrated in Lanari et al. (2013) for the example discussed in the present
contribution, can provide valuable information on the degree of achievement of

thermodynamic equilibrium, the link between deformation and reequilibration, and
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possibly the extend of mass transfer controlled by deformation. Future release of
XMapTools will incorporate energy minimizing and multi-equilibrium modules to

facilitate advanced thermobarometric studies.
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Figure Caption

Fig. 1: XMapTools v1.5.2 graphic user interface. The displayed image is the raw Al-
content map of the sample ‘Eclogite’ (see text for details) unit: number of recorded
counts.

Fig. 2: XMapTools operating diagram, schematizing the structure of the program. All
steps marked with a star require user action. Light arrows indicate the way forward,
bold-arrows the transition between the different sub-programs (Xray, Quanti, Results,
see text), and the dashed arrows the available feedback.

Fig. 3: Intensity recorded on the map versus oxide weight percent concentrations for
Si in the studied sample. Blue crosses show point analyses, lines are regressed
calibration curves obtained using the median approach described in text. The
precision is given depending on the intensity (% at 2c) following equation 1 (see
text).

Fig. 4: Results from the XMapTools Chem2D module. (A) The clinopyroxene
compositions are plotted in a binary diagram Na vs Mg. Unit is per formula unit
(p.fu.). The pixels displayed in the map are colored in red. (B) Density map
calculated from the binary diagram (see text for details). (C) Map of the analyzed area
in which clinopyroxene pixels selected in A are in red and the unselected pixels in
blue. Black pixels do not belong to the clinopyroxene mask. Selected Na-rich pixels
correspond to 25% of the total clinopyroxene pixels.

Fig. 5: Results from the XMapTools TriPlot3D module. (A) Clinopyroxene
compositions plotted in a ternary diagram jadeite-diopside-hedenbergite. Unit is the
end-member proportion. The selected pixel groups displayed into a map in C are

colored according to their group (blue: group 1, cyan: group 2, yellow: group 3). (B)
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Density map calculated from the ternary diagram. (C) Map of the analyzed area, in
which the selected groups of clinopyroxene pixels in A are plotted with the same
colors as in A.

Fig. 6: Phase masks for the “eclogite” sample (A) computed using the ‘normalized’
method (see text). The part used to compare the two available methods is marked
using a dashed rectangle. (B) Comparison between the “classical” and “normalized”
methods with a difference image in which black pixels are the pixels not allocated to
the same groups with both methods.

Fig. 7: Na-content of clinopyroxene (including omphacite). The different stages of
crystallization (labeled 1 to 4) are discussed in the text.

Fig. 8: Diagrams showing the difference between point analyses composition
(standard) and the standardized composition on the same location on the X-ray maps
for garnet and different elements. (A) SiO,, (B) Al,Os, (C) FeO, (D) CaO, (E) MgO,
(F) MnO, (G) TiO,, (H) K,0, (I) Na,O. BDL: below detection limit.

Fig. 9: P-T path and P-T maps of the Stak sample estimated from the compositions of
clinopyroxenes (see text for details). The interpreted P-T path is from Lanari et al.

(2013).
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Table captions

Table 1: List of solid-solution models and associated end-members included in
XMapTools.

Table 2: List of exchange reaction calibrations included in XMapTools.

Table 3: List of empirical thermometers, barometers and multi-equilibrium functions
implemented in XMapTools.

Table 4: Phase proportions (volume %) estimated with XMapTools using the
available methods ‘normalized’ and ‘classical’. The difference in percentage is an
absolute difference.

Table 5: Uncertainties resulting from microprobe acquisition on raw data and error-
propagation using Monte-Carlo techniques on quantified data and structural formulae
for clinopyroxene. The precision at 2c-level on raw data (in %) was estimated using
the equation 2 (see text) on the average intensity of all the pixels of clinopyroxene.
This uncertainty was propagated on the quantification process using a Monte-Carlo
simulation with n=100 000 analyses. The uncertainty was similarly propagated on the

structural formulae calculation process, including atom-site distribution.
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Table 1

End-members (**) References

827
Group Mineral (*)

Ortho- & ring Garnet (12) almandine (alm) Spear (1995)
silicates pyrope (pyr)
spessartine (spe)

grossular (gro)
Spear (1995)

Olivine (4) forsterite
fayalite

Framework Feldspar (8) albite (ab) Spear (1995)
silicates anortite (an)
microcline (mic)

828  * Oxygen basis; ** abbreviation

829
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832
833
834

Table 2

Method

Calibrations

Amphibole-Plagioclase
Chlorite-Chloritoid
Garnet-Biotite
Garnet-Muscovite
Garnet-Chlorite
Garnet-Amphibole
Garnet-Cpx

Blundy and Holland (1990); Holland and Blundy (1994)

Vidal et al. (1999)

Thompson (1976); Goldman and Albee (1977); Holdaway and Lee (1977)
Green and Hellman (1982); Krogh and Raheim (1978)

Dickenson and Hewitt (1986); Grambling (1990)

Ravna (2000b); Perchuk et al. (1985); Graham and Powell (1984)

Ravna (2000a); Ai (1994); Sengupta et al. (1989); Pattisson and Newton
(1989); Krogh (1988); Powell (1985); Dahl (1980); Ganguly (1979); Ellis and
Green (1979); Mori and Green (1978); Raheim and Green (1974); Mysen and
Heier (1972)




835 Table 3
836

Mineral Thermometers Barometers Multi-equilibrium

Chlorite T; Inoue et al. (2009)

T; Zang and Fyfe
(1995)
T; Jowett (1991)

T; Hillier and Velde
(1991)

T; Cathelineau (1988)

T; Kranidiotis and
MacClean (1987)

T; Cathelineau and
Nieva (1985)

K-White mica P; Massone and Schreyer
(1987)

Rutile T; Zack et al. (2004)

837  * Fixed composition
838
839
840
841



842
843

844
845

Ti-oxide
Garnet
Fe-Oxide
Amphibole
Plagioclase
Omphacite
Cpx

Normalized
0.43

7.00

1.10

13.20
21.26
30.97

26.04

Classical
0.43

7.70

1.13
12.77
21.52
29.88
26.57

Table 4

Difference (%)
0

9.09

2.65

3.37

1.21

3.65

1.99
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Raw data
Element
Si

Ti

Al

Fe

Mg

Ca

Na

K

Mean Intensity
11086

93

2529

631

1381

6486

470

127

Table 5

Precision (% at 20)
0.950
10.35
1.988
3.981
2.689
1.242
4.609
8.889

Quantified data

Oxide
Si02
TiO2
AI203
FeO
MgO
CaO
Na20
K20

Composition
54.718
0.180

9.690

4.529

10.211
16.379
4.050

0.020

Structural formula

Si Tl
Al T1
Al M1
Mg M1
Fe M1
Ca_M2
Na M2
XMg
XFe
Xjd
Xdi
Xhed
Xcats

Composition
1.962
0.038
0.371
0.546
0.136
0.629
0.281
0.801
0.199
0.281
0.546
0.136
0.019

Error (20)
0.528
0.018
0.194
0.176
0.276
0.206
0.188
0.002

Error (20)
0.010
0.010
0.010
0.014
0.005
0.008
0.013
0.008
0.008
0.013
0.014
0.005
0.005



851 Appendix 1

852  Ca.xt (file)
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854  Ca.txt chemical image for the high-pressure Himalayan eclogite sample from the Stak
855  massif in northern Pakistan displayed using XMapTools (unit number of recorded
856  counts, auto-contrast).
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