Mathematical renormalization in quantum electrodynamics via noncommutative generating series

Gérard Henry Edmond Duchamp, Vincel Hoang Ngoc Minh, Quoc Hoan Ngo,
Karol A. Penson, Pierre Simonnet

- To cite this version:

Gérard Henry Edmond Duchamp, Vincel Hoang Ngoc Minh, Quoc Hoan Ngo, Karol A. Penson, Pierre Simonnet. Mathematical renormalization in quantum electrodynamics via noncommutative generating series. Applications of Computer Algebra: July 20-23, 2015, Kalamata, Greece, Jul 2015, Kalamata, Greece. hal-00927641v2

HAL Id: hal-00927641
https://hal.science/hal-00927641v2

Submitted on 23 Feb 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Mathematical renormalization in quantum electrodynamics via noncommutative generating series

G. H. E. Duchamp - Hoang Ngoc Minh - Q. H. Ngo - K. Penson - P. Simonnet

Abstract

In order to push the study of solutions of nonlinear differential equations involved in quantum electrodynamics ${ }^{1}$, we focus here on combinatorial aspects of their renormalization at $\{0,1,+\infty\}$.

1 Introduction

During the last century, the functional expansions were common in physics as well as in engineering and have been developped, by Tomonaga, Schwinger and Feynman [18], to represent the dynamical systems in quantum electrodynanics. The main difficulty of this approach is the divergence of these expansions at the singularity 0 or at $+\infty$ (see [2]) and leads to the problems of regularization and renormalization

[^0]which can be solved by combinatorial technics : Feynman diagrams [21] and their siblings [15, 26], noncommutative formal power series [23], trees [11].

Recently, in the same vein, and based, on the one hand, on the shuffle and quasishuffle bialgebras [6], the combinatorics of noncommutative formal power series was intensively amplified for the asymptotic analysis of dynamical systems with three regular singularities $\operatorname{in}^{2}\{0,1,+\infty\}$; and, on the other hand with the monodromy and the Galois differential group of the Knizhnik-Zamolodchikov equation $K Z_{3}[42,44]$ i.e., the following noncommutative evolution equation ${ }^{3}$

$$
\frac{d G(z)}{d z}=\left(\frac{x_{0}}{z}+\frac{x_{1}}{1-z}\right) G(z)
$$

the monoidal factorization facilitates mainly the renormalization and the computation of the associators ${ }^{4}$ via the universal one, i.e. $\Phi_{K Z}$ of Drinfel'd [44].

In fact, these associators are noncommutative formal power series on two variables and regularize the Chen generating series of the differential forms admitting singularities at 0 or at 1 along the integration paths on the universal covering of \mathbb{C} without points 0 and 1 (i.e. $\mathbb{C} \backslash\{0,1\}$). Their coefficients are, up to a multiple of powers of $2 \mathrm{i} \pi$, polynomial on polyzetas, i.e. the following real numbers ${ }^{5}[26,46,55]$

$$
\zeta\left(s_{1}, \ldots, s_{r}\right)=\sum_{n_{1}>\ldots>n_{r}>0} \frac{1}{n_{1}^{s_{1}} \ldots n_{r}^{s_{r}}}, \text { for } r \geq 1, s_{1} \geq 2, s_{2}, \ldots, s_{r} \geq 1
$$

and these numbers admit a natural structure of algebra over the rational numbers deduced from the combinatorial aspects of the shuffle and quasi-shuffle Hopf algebras. It is conjectured that this algebra is \mathbb{N}-graded ${ }^{6}$. More precisely, for $s_{1} \geq$ $2, s_{2}, \ldots, s_{r} \geq 1$, the polyzeta $\zeta\left(s_{1}, \ldots, s_{r}\right)$ can be obtained as the limit of the polylogarithm $\mathrm{Li}_{s_{1}, \ldots, s_{r}}(z)$, for $z \rightarrow 1$, and of the harmonic sum $\mathrm{H}_{s_{1}, \ldots, s_{r}}(N)$, for $N \rightarrow+\infty$:

$$
\operatorname{Li}_{s_{1}, \ldots, s_{r}}(z)=\sum_{n_{1}>\ldots>n_{r}>0} \frac{z^{n_{1}}}{n_{1}^{s_{1}} \ldots n_{r}^{s_{r}}} \text { and } \mathrm{H}_{s_{1}, \ldots, s_{r}}(N)=\sum_{n_{1}>\ldots>n_{r}>0}^{N} \frac{1}{n_{1}^{s_{1}} \ldots n_{r}^{s_{r}}}
$$

Then, by a theorem of Abel, one has

$$
\zeta\left(s_{1}, \ldots, s_{r}\right)=\lim _{z \rightarrow 1} \operatorname{Li}_{s_{1}, \ldots, s_{r}}(z)=\lim _{N \rightarrow+\infty} \mathrm{H}_{s_{1}, \ldots, s_{r}}(N) .
$$

[^1]Since the algebras of polylogarithms and of harmonic sums are isomorphic to the shuffle algebra $\left(\mathbb{Q}\langle X\rangle, ш, 1_{X^{*}}\right)$ and quasi-shuffle algebra $\left(\mathbb{Q}\langle Y\rangle, \pm, 1_{Y^{*}}\right)$ respectively both admitting the Lyndon words $\mathscr{L} y n X$ over $X=\left\{x_{0}, x_{1}\right\}$ and $\mathscr{L} y n Y$ over $Y=\left\{y_{i}\right\}_{i \geq 1}$, as transcendence bases (recalled in Section 2.1) then, by using

- The (one-to-one) correspondence between the combinatorial compositions, the words ${ }^{7}$ in Y^{*} and the words in $X^{*} x_{1}+1_{X^{*}}$, i.e. ${ }^{8}$

$$
\begin{equation*}
\left(\{1\}^{k}, s_{k+1}, \ldots, s_{r}\right) \leftrightarrow y_{1}^{k} y_{s_{k+1}} \ldots y_{s_{r}} \stackrel{\pi_{X}}{\underset{\pi_{Y}}{\rightleftharpoons}} x_{1}^{k} x_{0}^{s_{k+1}-1} x_{1} \ldots x_{0}^{s_{r}-1} x_{1} . \tag{1}
\end{equation*}
$$

- The ordering $x_{1} \succ x_{0}$ and $y_{1} \succ y_{2} \succ \ldots$ over X and Y respectively.
- The transcendence base $\left\{S_{l}\right\}_{l \in \mathscr{L} \text { ynX }}$ (resp. $\left.\left\{\Sigma_{l}\right\}_{l \in \mathscr{L} \text { yn }}\right)$ of $\left(\mathbb{Q}\langle X\rangle, ш, 1_{X^{*}}\right)$ (resp. $\left(\mathbb{Q}\langle Y\rangle, \pm, 1_{Y^{*}}\right)$) in duality ${ }^{9}$ with $\left\{P_{l}\right\}_{l \in \mathscr{L} y n X}$ (resp. $\left.\left\{\Pi_{l}\right\}_{l \in \mathscr{L}_{y n Y}}\right)$, a base of the Lie algebra of primitive elements of the bialgebra ${ }^{10} \mathscr{H}_{\amalg}=\left(\mathbb{Q}\langle X\rangle\right.$, conc $\left., 1_{X^{*}}, \Delta_{\amalg}, \varepsilon\right)$ (resp. $\mathscr{H}_{\mathbf{t + ~}}=\left(\mathbb{Q}\langle Y\rangle\right.$, conc, $\left.1_{Y^{*}}, \Delta_{ \pm+}, \varepsilon\right)$) to factorize the following noncommutative generating series of polylogarithms, hormanic sums and polyzetas

$$
\begin{gathered}
\mathrm{L}=\prod_{l \in \mathscr{L} y n X} \exp \left(\operatorname{Li}_{s_{l}} P_{l}\right) \text { and } \mathrm{H}=\prod_{l \in \mathscr{L} y n Y} \exp \left(\mathrm{H}_{\Sigma_{l}} \Pi_{l}\right), \\
Z_{\uplus}=\prod_{l \in \mathscr{L} y n X, l \neq x_{0}, x_{1}} \exp \left(\zeta\left(S_{l}\right) P_{l}\right) \text { and } Z_{\uplus+}=\prod_{l \in \mathscr{L} y n Y, l \neq y_{1}} \exp \left(\zeta\left(\Sigma_{l}\right) \Pi_{l}\right),
\end{gathered}
$$

we then obtain two formal power series over Y, Z_{1} and Z_{2}, such that

$$
\lim _{z \rightarrow 1} \exp \left[y_{1} \log \frac{1}{1-z}\right] \pi_{Y} \mathrm{~L}(z)=Z_{1}, \quad \lim _{N \rightarrow \infty} \exp \left[\sum_{k \geq 1} \mathrm{H}_{y_{k}}(N) \frac{\left(-y_{1}\right)^{k}}{k}\right] \mathrm{H}(N)=Z_{2}
$$

Moreover, Z_{1}, Z_{2} are equal and stand for the noncommutative generating series of $\{\zeta(w)\}_{w \in Y^{*}-y_{1} Y^{*}}$, or $\{\zeta(w)\}_{w \in x_{0} X^{*} x_{1}}$, as one has $Z_{1}=Z_{2}=\pi_{Y} Z_{\amalg}$ [43, 44, 45]. This allows, by extracting the coefficients of the noncommutative generating series, to explicit the counter-terms eliminating the divergence of $\left\{\mathrm{Li}_{w}\right\}_{w \in x_{1} X^{*}}$ and of $\left\{\mathrm{H}_{w}\right\}_{w \in y_{1} Y^{*}}$ and this leads naturally to an equation connecting algebraic structures

$$
\prod_{l \in \mathscr{L} y n Y, l \neq y_{1}}^{\searrow} \exp \left(\zeta\left(\Sigma_{l}\right) \Pi_{l}\right)=\exp \left[\sum_{k \geq 2}-\zeta(k) \frac{\left(-y_{1}\right)^{k}}{k}\right] \pi_{Y} \prod_{l \in \mathscr{L} y n X, l \neq x_{0}, x_{1}}^{\searrow} \exp \left(\zeta\left(S_{l}\right) P_{l}\right)(2)
$$

Identity (2) allows to compute the Euler-MacLaurin constants and the Hadamard finite parts associated to divergent polyzetas $\{\zeta(w)\}_{w \in y_{1} Y^{*}}$ and, by identifying local coordinates, to describe the graded core of $\operatorname{ker} \zeta$ by its algebraic generators.

[^2]In this paper, we will focus on the approach by noncommutative formal power series, adapted from [22, 23], and explain how the results of [43, 44, 45], allow to study the combinatorial aspects of the renormalization at the singularities in $\{0,1,+\infty\}$ of the solutions of linear differential equations (see Example 1 below) as well as the solutions of nonlinear differential equations (see Examples 2 and 3 below) described in Section 3.2 and involved in quantum electrodynamics.

Example 1 (Hypergeometric equation). Let t_{0}, t_{1}, t_{2} be parameters and

$$
z(1-z) \ddot{y}(z)+\left[t_{2}-\left(t_{0}+t_{1}+1\right) z\right] \dot{y}(z)-t_{0} t_{1} y(z)=0
$$

Let $q_{1}(z)=-y(z)$ and $q_{2}(z)=(1-z) \dot{y}(z)$. One has

$$
\binom{\dot{q}_{1}}{\dot{q}_{2}}=\left(\frac{M_{0}}{z}+\frac{M_{1}}{1-z}\right)\binom{q_{1}}{q_{2}},
$$

where M_{0} and M_{1} are the following matrices

$$
M_{0}=-\left(\begin{array}{cc}
0 & 0 \\
t_{0} t_{1} & t_{2}
\end{array}\right) \text { and } M_{1}=-\left(\begin{array}{ll}
0 & 1 \\
0 & t_{2}-t_{0}-t_{1}
\end{array}\right) .
$$

Or equivalently,

$$
\dot{q}(z)=A_{0}(q) \frac{1}{z}+A_{1}(q) \frac{1}{1-z} \text { and } y(z)=-q_{1}(z)
$$

where A_{0} and A_{1} are the following parametrized linear vector fields

$$
A_{0}=-\left(t_{0} t_{1} q_{1}+t_{2} q_{2}\right) \frac{\partial}{\partial q_{2}} \text { and } A_{1}=-q_{1} \frac{\partial}{\partial q_{1}}-\left(t_{2}-t_{0}-t_{1}\right) q_{2} \frac{\partial}{\partial q_{2}}
$$

acting by

$$
\frac{\partial}{\partial q_{1}}(q)=\frac{\partial}{\partial q_{1}}\binom{q_{1}}{q_{2}}=\binom{1}{0} \text { and } \frac{\partial}{\partial q_{2}}(q)=\frac{\partial}{\partial q_{2}}\binom{q_{1}}{q_{2}}=\binom{0}{1}
$$

Example 2 (Harmonic oscillator). Let k_{1}, k_{2} be parameters and

$$
\dot{y}(z)+k_{1} y(z)+k_{2} y^{2}(z)=u_{1}(z)
$$

which can be represented, with the same formalism as above, by the following state equations

$$
\dot{q}(z)=A_{0}(q)+A_{1}(q) u_{1}(z) \text { and } y(z)=q(z)
$$

where A_{0} and A_{1} are the following vector fields

$$
A_{0}=-\left(k_{1} q+k_{2} q^{2}\right) \frac{\partial}{\partial q} \text { and } A_{1}=\frac{\partial}{\partial q}
$$

Example 3 (Duffing's equation). Let a, b, c be parameters and

$$
\ddot{y}(z)+a \dot{y}(z)+b y(z)+c y^{3}(z)=u_{1}(z) .
$$

which can be represented by the following state equations

$$
\dot{q}(z)=A_{0}(q)+A_{1}(q) u_{1}(z), \text { and } y(z)=q_{1}(z)
$$

where A_{0} and A_{1} are the following vector fields

$$
A_{0}=-\left(a q_{2}+b^{2} q_{1}+c q_{1}^{3}\right) \frac{\partial}{\partial q_{2}}+q_{2} \frac{\partial}{\partial q_{1}} \text { and } A_{1}=\frac{\partial}{\partial q_{2}}
$$

Example 4 (Van der Pol oscillator). Let γ, g be parameters and

$$
\partial_{z}^{2} x(z)-\gamma\left[1+x(z)^{2}\right] \partial_{z} x(z)+x(z)=g \cos (\omega z)
$$

which can be tranformed into (with C is some constant of integration)

$$
\partial_{z} x(z)=\gamma\left[1+x(z)^{2} / 3\right] x(z)-\int_{z_{0}}^{z} x(s) d s+\frac{g}{\omega} \sin (\omega z)+C .
$$

Setting $y=\int_{z_{0}}^{z} x(s) d s$ and $u_{1}(z)=g \sin (\omega z) / \omega+C$, it leads then to

$$
\partial_{z}^{2} y(z)=\gamma\left[\partial_{z} y(z)+\left(\partial_{z} y(z)\right)^{3} / 3\right]-y(z)+u_{1}(z)
$$

which can be represented by the following state equations (with $n=2$)

$$
\partial_{z} q(z)=\left[A_{0} u_{0}(z)+A_{1} u_{1}(z)\right](q) \text { and } y(z)=q_{1}(z)
$$

where A_{0} and A_{1} are the following vector fields

$$
A_{1}=\frac{\partial}{\partial q_{2}} \text { and } A_{0}=\left[\gamma\left(q_{2}+q_{2}^{3} / 3\right)-q_{1}\right] \frac{\partial}{\partial q_{2}}+q_{2} \frac{\partial}{\partial q_{1}}
$$

This approach by noncommutative formal power series is adequate for studying the algebraic combinatorial aspects of the asymptotic analysis at the singularities in $\{0,1,+\infty\}$, of the nonlinear dynamical systems described in Section 3.2 because

- The polylogarithms form a basis of an infinite dimensional universal Picard-Vessiot extension by means of these differential equations [42,12] and their algebra, isomorphic to the shuffle algebra, admits $\left\{\mathrm{Li}_{l}\right\}_{l \in \mathscr{L}} y n X$ as a transcendence basis,
- The harmonic sums generate the coefficients of the ordinary Taylor expansions of their solutions (when these expansions exist) [43] and their algebra is isomorphic to the quasi-shuffle algebra admitting $\left\{\mathrm{H}_{l}\right\}_{l \in \mathscr{L} y n Y}$ as a transcendence basis,
- The polyzetas do appear as the fondamental arithmetical constants involved in the computations of the monodromies [39, 36], the Kummer type functional equations [40, 36], the asymptotic expansions of solutions [43, 44] and their algebra is freely generated by the polyzetas encoded by irreducible Lyndon words [44].

Hence, a lot of algorithms can be deduced from these facts and more general studies will be proceeded in $[6,12]$. The organisation of this paper is the following

- In Section 2, we will give algebraic and analytic foundations, i.e. the combinatorial Hopf algebra of shuffles and the indiscernability respectively, for polyzetas.
- These will be exploited, in Section 3, to expand solutions, of nonlinear dynamical systems with singular inputs and their ordinary and functional differentiations.

2 Fundation of the present framework

2.1 Background about combinatorics of shuffle and stuffle bialgebras

2.1.1 Schützenberger's monoidal factorization

Let $\mathbb{Q}\langle X\rangle$ be equipped by the concatenation and the shuffle defined by

$$
\begin{gathered}
\forall w \in X^{*}, \quad w ш 1_{X^{*}}=1_{X^{*}} \amalg w=w, \\
\forall x, y \in X, \forall u, v \in X^{*}, \quad x u ш y v=x(u ш y v)+y(x u ш v),
\end{gathered}
$$

or by their dual co-products, $\Delta_{\text {conc }}$ and Δ_{\uplus}, defined by, for $w \in X^{*}$ and $x \in X$,

$$
\Delta_{\text {conc }}(w)=\sum_{u, v \in X^{*}, u v=w} u \otimes v \text { and } \Delta_{\amalg}(x)=x \otimes 1+1 \otimes x,
$$

Δ_{\amalg} is then extended to a conc-morphism $\mathbb{Q}\langle X\rangle \rightarrow \mathbb{Q}\langle X\rangle \otimes \mathbb{Q}\langle X\rangle$. These two comultiplications satisfy, for any $u, v, w \in X^{*}$,

$$
\left\langle\Delta_{\text {conc }}(w) \mid u \otimes v\right\rangle=\langle w \mid u v\rangle \text { and }\left\langle\Delta_{\amalg}(w) \mid u \otimes v\right\rangle=\langle w \mid u ш v\rangle .
$$

One gets two mutually dual bialgebras

$$
\mathscr{H}_{\amalg}=\left(\mathbb{Q}\langle X\rangle, \text { conc }, 1_{X^{*}}, \Delta_{\amalg}, \varepsilon\right), \mathscr{H}_{\amalg}^{\vee}=\left(\mathbb{Q}\langle X\rangle, ш, 1_{X^{*}}, \Delta_{\text {conc }}, \varepsilon\right) .
$$

After a theorem by Radford [49], $\mathscr{L} y n X$ forms a transcendence basis of $\left(\mathbb{Q}\langle X\rangle, ш, 1_{X^{*}}\right)$ and it can be completed then to the linear basis $\{w\}_{w \in X^{*}}$ which is auto-dual :

$$
\begin{equation*}
\forall v, v \in X^{*}, \quad\langle u \mid v\rangle=\delta_{u, v} \tag{3}
\end{equation*}
$$

But the elements $l \in \mathscr{L} y n X-X$ are not primitive, for Δ_{\amalg}, and then $\mathscr{L} y n X$ does not constitute a basis for $\mathscr{L} i e_{\mathbb{Q}}\langle X\rangle$. Chen, Fox and Lyndon [9] constructed $\left\{P_{w}\right\}_{w \in X^{*}}$, so-called the Poincaré-Birkhoff-Witt-Lyndon basis, for $\mathscr{U}\left(\mathscr{L} e_{\mathbb{Q}}\langle X\rangle\right)$ as follows

$$
\begin{align*}
P_{x} & =\quad x \quad \text { for } x \in X, \tag{4}\\
P_{l} & =\left[P_{s}, P_{r}\right] \quad \text { for } l \in \mathscr{L} y n X, \text { standard factorization of } l=(s, r), \tag{5}\\
P_{w} & =P_{l_{1}}^{i_{1}} \ldots P_{l_{k}}^{i_{k}} \text { for } w=l_{1}^{i_{1}} \ldots l_{k}^{i_{k}}, l_{1} \succ \ldots \succ l_{k}, l_{1} \ldots, l_{k} \in \mathscr{L} y n X . \tag{6}
\end{align*}
$$

where here \succ stands for the lexicographic (strict) ordering defined ${ }^{11}$ by $x_{0} \prec x_{1}$. Schützenberger constructed bases for $(\mathbb{Q}\langle X\rangle, ш)$ defined by duality as follows :

$$
\forall u, v \in X^{*}, \quad\left\langle S_{u} \mid P_{v}\right\rangle=\delta_{u, v}
$$

[^3]and obtained the transcendence and linear bases, $\left\{S_{l}\right\}_{l \in \in \mathscr{L} y n X},\left\{S_{w}\right\}_{w \in X^{*}}$, as follows
\[

$$
\begin{aligned}
S_{l} & =\begin{array}{c}
x S_{u}, \quad \text { for } l=x u \in \mathscr{L} y n X, \\
S_{w}
\end{array}=\frac{S_{l_{1}}^{\amalg i_{1}} ш \ldots ш S_{l_{k}}^{\amalg i_{k}}}{i_{1}!\ldots i_{k}!} \text { for } w=l_{1}^{i_{1}} \ldots l_{k}^{i_{k}}, l_{1} \succ \ldots \succ l_{k} .
\end{aligned}
$$
\]

After that, Mélançon and Reutenauer [51] proved that, for any $w \in X^{*}$,

$$
\begin{equation*}
P_{w}=w+\sum_{v \succ w,|v|_{X}=|w|_{X}} c_{v} v \text { and } S_{w}=w+\sum_{v \prec w,|v|_{X}=|w|_{X}} d_{v} v . \tag{7}
\end{equation*}
$$

where $|w|_{X}=\left(|w|_{x}\right)_{x \in X}$ is the family of all partial degrees (number of times a letter occurs in a word). In other words, the elements of the bases $\left\{S_{w}\right\}_{w \in X^{*}}$ and $\left\{P_{w}\right\}_{w \in X^{*}}$ are lower and upper triangular respectively and they are of multihomogeneous (all the monomials have the same partial degrees).

Example 5 (of $\left\{P_{w}\right\}_{w \in X^{*}}$ and $\left\{S_{w}\right\}_{w \in X^{*}}$, [31]). Let $X=\left\{x_{0}, x_{1}\right\}$ with $x_{0} \prec x_{1}$.

l	P_{l}	S_{l}
x_{0}	x_{0}	x_{0}
x_{1}	x_{1}	x_{1}
$x_{0} x_{1}$	$\left[x_{0}, x_{1}\right]$	$x_{0} x_{1}$
$x_{0}^{2} x_{1}$	$\left[x_{0},\left[x_{0}, x_{1}\right]\right]$	$x_{0}^{2} x_{1}$
$x_{0} x_{1}^{2}$	[$\left.\left[x_{0}, x_{1}\right], x_{1}\right]$	$x_{0} x_{1}^{2}$
$x_{0}^{3} x_{1}$	$\left[x_{0},\left[x_{0},\left[x_{0}, x_{1}\right]\right]\right]$	$x_{0}^{3} x_{1}$
$x_{0}^{2} x_{1}^{2}$	$\left[x_{0},\left[\left[x_{0}, x_{1}\right], x_{1}\right]\right]$	$x_{0}^{2} x_{1}^{2}$
$x_{0} x_{1}^{3}$	$\left[\left[\left[x_{0}, x_{1}\right], x_{1}\right], x_{1}\right]$	$x_{0} x_{1}^{3}$
$x_{0}^{4} x_{1}$	$\left[x_{0},\left[x_{0},\left[x_{0},\left[x_{0}, x_{1}\right]\right]\right]\right]$	$x_{0}^{4} x_{1}$
$x_{0}^{3} x_{1}^{2}$	$\left[x_{0},\left[x_{0},\left[\left[x_{0}, x_{1}\right], x_{1}\right]\right]\right]$	$x_{0}^{3} x_{1}^{2}$
$x_{0}^{2} x_{1} x_{0} x_{1}$	$\left[\left[x_{0},\left[x_{0}, x_{1}\right]\right],\left[x_{0}, x_{1}\right]\right]$	$2 x_{0}^{3} x_{1}^{2}+x_{0}^{2} x_{1} x_{0} x_{1}$
$x_{0}^{2} x_{1}^{3}$	$\left[x_{0},\left[\left[\left[x_{0}, x_{1}\right], x_{1}\right], x_{1}\right]\right]$	$x_{0}^{2} x_{1}^{3}$
$x_{0} x_{1} x_{0} x_{1}^{2}$	$\left[\left[x_{0}, x_{1}\right],\left[\left[x_{0}, x_{1}\right], x_{1}\right]\right]$	$3 x_{0}^{2} x_{1}^{3}+x_{0} x_{1} x_{0} x_{1}^{2}$
$x_{0} x_{1}^{4}$	[[[[$\left.\left.\left.\left.x_{0}, x_{1}\right], x_{1}\right], x_{1}\right], x_{1}\right]$	$x_{0} x_{1}^{4}$
$x_{0}^{5} x_{1}$	$\left[x_{0},\left[x_{0},\left[x_{0},\left[x_{0},\left[x_{0}, x_{1}\right]\right]\right]\right]\right]$	$x_{0}^{5} x_{1}$
$x_{0}^{4} x_{1}^{2}$	$\left.\left[x_{0},\left[x_{0},\left[x_{0},\left[\left[x_{0}, x_{1}\right], x_{1}\right]\right]\right]\right]\right]$	$x_{0}^{4} x_{1}^{2}$
$x_{0}^{3} x_{1} x_{0} x_{1}$	$\left.\left[x_{0},\left[\left[x_{0},\left[x_{0}, x_{1}\right]\right],\left[x_{0}, x_{1}\right]\right]\right]\right]$	$2 x_{0}^{4} x_{1}^{2}+x_{0}^{3} x_{1} x_{0} x_{1}$
$x_{0}^{3} x_{1}^{3}$	$\left[x_{0},\left[x_{0},\left[\left[\left[x_{0}, x_{1}\right], x_{1}\right], x_{1}\right]\right]\right]$	$x_{0}^{3} x_{1}^{3}$
$x_{0}^{2} x_{1} x_{0} x_{1}^{2}$	$\left.\left[x_{0},\left[\left[x_{0}, x_{1}\right],\left[\left[x_{0}, x_{1}\right], x_{1}\right]\right]\right]\right]$	($3 x_{0}^{3} x_{1}^{3}+x_{0}^{2} x_{1} x_{0} x_{1}^{2}$
$x_{0}^{2} x_{1}^{2} x_{0} x_{1}$	$\left[\left[x_{0},\left[\left[x_{0}, x_{1}\right], x_{1}\right]\right],\left[x_{0}, x_{1}\right]\right]$	$6 x_{0}^{3} x_{1}^{3}+3 x_{0}^{2} x_{1} x_{0} x_{1}^{2}+x_{0}^{2} x_{1}^{2} x_{0} x_{1}$
$x_{0}^{2} x_{1}^{4}$	$\left[x_{0},\left[\left[\left[\left[x_{0}, x_{1}\right], x_{1}\right], x_{1}\right], x_{1}\right]\right]$	$x_{0}^{2} x_{1}^{4}$
$x_{0} x_{1} x_{0} x_{1}^{3}$	$\left[\left[x_{0}, x_{1}\right],\left[\left[\left[x_{0}, x_{1}\right], x_{1}\right], x_{1}\right]\right]$	$4 x_{0}^{2} x_{1}^{4}+x_{0} x_{1} x_{0} x_{1}^{3}$
$x_{0} x_{1}^{5}$	$\left[\left[\left[\left[\left[x_{0}, x_{1}\right], x_{1}\right], x_{1}\right], x_{1}\right], x_{1}\right]$	$x_{0} x_{1}^{5}$

Then, Schützenberger's factorization of the diagonal series \mathscr{D}_{X} follows [51]

$$
\begin{equation*}
\mathscr{D}_{X}:=\sum_{w \in X^{*}} w \otimes w=\sum_{w \in X^{*}} S_{w} \otimes P_{w}=\prod_{l \in \mathscr{L} y n X}^{\nmid} \exp \left(S_{l} \otimes P_{l}\right) . \tag{8}
\end{equation*}
$$

2.1.2 Extended Schützenberger's monoidal factorization

Let us define the commutative product over $\mathbb{Q}\langle Y\rangle$, denoted by μ, as follows

$$
\forall y_{n}, y_{m} \in Y, \mu\left(y_{n}, y_{m}\right)=y_{n+m}
$$

or by its associated coproduct, Δ_{μ}, defined by

$$
\forall y_{n} \in Y, \quad \Delta_{\mu}\left(y_{n}\right)=\sum_{i=1}^{n-1} y_{i} \otimes y_{n-i}
$$

satisfying,

$$
\forall x, y, z \in Y,\left\langle\Delta_{\mu} \mid y \otimes z\right\rangle=\langle x \mid \mu(y, z)\rangle
$$

Let $\mathbb{Q}\langle Y\rangle$ be equipped by

1. The concatenation (or by its associated coproduct, $\Delta_{\text {conc }}$).
2. The shuffle product, i.e. the commutative product defined by [23]

$$
\begin{gathered}
\forall w \in Y^{*}, \quad w ш 1_{Y^{*}}=1_{Y^{*}} ш w=w \\
\forall x, y \in Y, u, v \in Y^{*}, \quad x u ш y v=x(u ш y v)+y(x u ш v)
\end{gathered}
$$

or with its associated coproduct, Δ_{\amalg}, defined, on the letters, by

$$
\forall y_{k} \in Y, \quad \Delta_{\uplus} y_{k}=y_{k} \otimes 1+1 \otimes y_{k}
$$

and extended by morphism. It satisfies

$$
\forall u, v, w \in Y^{*},\left\langle\Delta_{\amalg} w \mid u \otimes v\right\rangle=\langle w \mid u ш v\rangle .
$$

3. The quasi-shuffle product, i.e. the commutative product defined by [47]

$$
\begin{aligned}
\forall w \in Y^{*}, & w \uplus 1_{Y^{*}}=1_{Y^{*}} \amalg w=w, \\
\forall x, y \in Y, u, v \in Y^{*}, & y_{i} u \pm y_{j} v=y_{j}\left(y_{i} u \pm v\right)+y_{i}\left(u \pm y_{j} v\right) \\
& +\mu\left(y_{i}, y_{j}\right)(u \pm v)
\end{aligned}
$$

or with its associated coproduct, $\Delta_{\llcorner \pm}$, defined, on the letters, by

$$
\forall y_{k} \in Y, \quad \Delta_{\amalg} y_{k}=\Delta_{\amalg} y_{k}+\Delta_{\mu} y_{k}
$$

and extended by morphism. It satisfies

$$
\forall u, v, w \in Y^{*}, \quad\left\langle\Delta_{ \pm} w \mid u \otimes v\right\rangle=\langle w \mid u \pm v\rangle .
$$

Hence, with the counit e defined by, for any $P \in \mathbb{Q}\langle Y\rangle, \mathrm{e}(P)=\left\langle P \mid 1_{Y^{*}}\right\rangle$, one gets two pairs of mutually dual bialgebras

$$
\begin{gathered}
\mathscr{H}_{\amalg}=\left(\mathbb{Q}\langle Y\rangle, \text { conc }, 1_{Y^{*}}, \Delta_{\amalg}, \mathrm{e}\right) \text { and } \mathscr{H}_{\amalg}^{\vee}=\left(\mathbb{Q}\langle Y\rangle, \amalg, 1_{Y^{*}}, \Delta_{\text {conc }}, \mathrm{e}\right), \\
\mathscr{H}_{\mathbf{+}}=\left(\mathbb{Q}\langle Y\rangle, \text { conc }, 1_{Y^{*}}, \Delta_{\mathbf{+}}, \mathrm{e}\right) \text { and } \mathscr{H}_{\mathbf{+}}^{\vee}=\left(\mathbb{Q}\langle Y\rangle, \pm, 1_{Y^{*}}, \Delta_{\text {conc }}, \mathrm{e}\right) .
\end{gathered}
$$

By the CQMM theorem (see [6]), the connected \mathbb{N}-graded, co-commutative Hopf algebra \mathscr{H}_{w} is isomorphic to the enveloping algebra of the Lie algebra of its primitive elements which is equal to $\mathscr{L} e_{\mathbb{Q}}\langle Y\rangle$:

$$
\mathscr{H}_{\amalg} \cong \mathscr{U}\left(\mathscr{L}_{i e_{\mathbb{Q}}}\langle Y\rangle\right) \text { and } \mathscr{H}_{\amalg}^{\vee} \cong \mathscr{U}\left(\mathscr{L}_{i e_{\mathbb{Q}}}\langle Y\rangle\right)^{\vee} .
$$

Hence, let us consider [9]

1. The PBW-Lyndon basis $\left\{p_{w}\right\}_{w \in Y^{*}}$ for $\mathscr{U}\left(\mathscr{L} e_{\mathbb{Q}}\langle Y\rangle\right)$ constructed recursively

$$
\begin{cases}p_{y}=y & \text { for } y \in Y, \\ p_{l}=\left[p_{s}, p_{r}\right] \quad \text { for } l \in \mathscr{L} y n Y, \text { standard factorization of } l=(s, r), \\ p_{w}=p_{l_{1}}^{i_{1}} \ldots p_{l_{k}}^{i_{k}} & \text { for } w=l_{1}^{i_{1}} \ldots l_{k}^{i_{k}}, l_{1} \succ \ldots \succ l_{k}, l_{1} \ldots, l_{k} \in \mathscr{L} y n Y,\end{cases}
$$

2. And, by duality ${ }^{12}$, the linear basis $\left\{s_{w}\right\}_{w \in Y^{*}}$ for $\left(\mathbb{Q}\langle Y\rangle, ш, 1_{Y^{*}}\right)$, i.e.

$$
\forall u, v \in Y^{*}, \quad\left\langle p_{u} \mid s_{v}\right\rangle=\delta_{u, v}
$$

This basis can be computed recursively as follows [51]

$$
\begin{cases}s_{y}=y, & \text { for } y \in Y, \\ s_{l}=y s_{u}, & \text { for } l=y u \in \mathscr{L} y n Y, \\ s_{w}=\frac{s_{l_{1}} i_{1}}{i_{1} \ldots w s_{l_{k}}^{\amalg i_{k}}} & \text { for } w=l_{1}^{i_{1}} \ldots l_{k}^{i_{k}}, l_{1} \succ \ldots \succ l_{k} \in \mathscr{L} y n Y .\end{cases}
$$

As in (8), one also has Schützenberger's factorization for the diagonal series \mathscr{D}_{Y}

$$
\mathscr{D}_{Y}:=\sum_{w \in Y^{*}} w \otimes w=\sum_{w \in Y^{*}} s_{w} \otimes p_{w}=\prod_{l \in \mathscr{L} y n Y}^{\nmid} \exp \left(s_{l} \otimes p_{l}\right) .
$$

Similarly, by the CQMM theorem, the connected \mathbb{N}-graded, co-commutative Hopf algebra $\mathscr{H}_{ \pm+}$is isomorphic to the enveloping algebra of

$$
\operatorname{Prim}\left(\mathscr{H}_{ \pm \pm}\right)=\operatorname{Im}\left(\pi_{1}\right)=\operatorname{span}_{\mathbb{Q}}\left\{\pi_{1}(w) \mid w \in Y^{*}\right\}
$$

where, for any $w \in Y^{*}, \pi_{1}(w)$ is obtained as follows $[6,44]$

$$
\begin{equation*}
\pi_{1}(w)=w+\sum_{k \geq 2} \frac{(-1)^{k-1}}{k} \sum_{u_{1}, \ldots, u_{k} \in Y^{+}}\left\langle w \mid u_{1}+\ldots \pm u_{k}\right\rangle u_{1} \ldots u_{k} . \tag{9}
\end{equation*}
$$

[^4]Note that Equation (9) is equivalent to the following identity [6, 44, 45]

$$
\begin{equation*}
w=\sum_{k \geq 0} \frac{1}{k!} \sum_{u_{1}, \ldots, u_{k} \in Y^{*}}\left\langle w \mid u_{1} \not \pm \ldots \uplus u_{k}\right\rangle \pi_{1}\left(u_{1}\right) \ldots \pi_{1}\left(u_{k}\right) . \tag{10}
\end{equation*}
$$

In particular, for any $y_{k} \in Y$, we have successively $[6,44,45]$

$$
\begin{align*}
\pi_{1}\left(y_{k}\right) & =y_{k}+\sum_{l \geq 2} \frac{(-1)^{l-1}}{l} \sum_{\substack{j_{1}, \ldots, j_{l} \geq 1 \\
j_{1}+\ldots+j_{l}=k}} y_{j_{1}} \ldots y_{j_{l}}, \tag{11}\\
y_{n} & =\sum_{k \geq 1} \frac{1}{k!} \sum_{s_{1}^{\prime}+\cdots+s_{k}^{\prime}=n} \pi_{1}\left(y_{s_{1}^{\prime}}\right) \ldots \pi_{1}\left(y_{s_{k}^{\prime}}\right) \tag{12}
\end{align*}
$$

Hence, by introducing the new alphabet $\bar{Y}=\{\bar{y}\}_{y \in Y}=\left\{\pi_{1}(y)\right\}_{y \in Y}$, one has

$$
\left(\mathbb{Q}\langle\bar{Y}\rangle, \text { conc }, 1_{\bar{Y}^{*}}, \Delta_{\amalg}\right) \cong\left(\mathbb{Q}\langle Y\rangle, \text { conc }, 1_{Y^{*}}, \Delta_{\text {யコ }}\right)
$$

as one can prove through (12) that the endomorphism $y \mapsto \bar{y}$ is, in fact, an isomorphism

$$
\begin{aligned}
& \mathscr{H}_{ \pm \mathbf{t}} \cong \mathscr{U}\left(\mathscr{L}_{i e_{\mathbb{Q}}}\langle\bar{Y}\rangle\right) \cong \mathscr{U}\left(\operatorname{Prim}\left(\mathscr{H}_{ \pm \mathbf{t}}\right)\right), \\
& \mathscr{H}_{ \pm \pm}^{\vee} \cong \mathscr{U}\left(\mathscr{L}_{\mathbb{Q}}\langle\bar{Y}\rangle\right)^{\vee} \cong \mathscr{U}\left(\operatorname{Prim}\left(\mathscr{H}_{ \pm \mathbf{}}\right)\right)^{\vee} .
\end{aligned}
$$

By considering

1. The PBW-Lyndon basis $\left\{\Pi_{w}\right\}_{w \in Y^{*}}$ for $\mathscr{U}\left(\operatorname{Prim}\left(\mathscr{H}_{ \pm \pm}\right)\right)$constructed recursively as follows [44]

$$
\begin{cases}\Pi_{y}=\pi_{1}(y) & \text { for } y \in Y, \\ \Pi_{l}=\left[\Pi_{s}, \Pi_{r}\right] & \text { for } l \in \mathscr{L} y n Y, \text { standard factorization of } l=(s, r), \\ \Pi_{w}=\Pi_{l_{1}}^{i_{1}} \ldots \Pi_{l_{k}}^{i_{k}} & \text { for } w=l_{1}^{i_{1}} \ldots l_{k}^{i_{k}}, l_{1} \succ \ldots \succ l_{k}, l_{1} \ldots, l_{k} \in \mathscr{L} y n Y\end{cases}
$$

2. And, by duality, the linear basis $\left\{\Sigma_{w}\right\}_{w \in Y^{*}}$ for $\left(\mathbb{Q}\langle Y\rangle, \pm, 1_{Y^{*}}\right)$, i.e.

$$
\forall u, v \in Y^{*},\left\langle\Pi_{u} \mid \Sigma_{v}\right\rangle=\delta_{u, v}
$$

This basis can be computed recursively as follows [5, 44]

$$
\begin{cases}\Sigma_{y}=y, & \text { for } y \in Y, \\ \Sigma_{l}=\sum_{(!)} \frac{y_{s_{k_{1}}+\cdots+s_{k_{i}}} \Sigma_{l_{1} \cdots l_{n}},}{}, & \text { for } l=y_{s_{1}} \ldots y_{s_{w}} \in \mathscr{L} y n Y, \\ \Sigma_{w}=\frac{\Sigma_{l_{1}}^{\amalg \pm i_{1}}+\ldots \pm \Sigma_{l_{k}}^{\amalg \pm i_{k}}}{i_{1}!\ldots i_{k}!}, & \text { for } w=l_{1}^{i_{1}} \ldots l_{k}^{i_{k}}, \text { with } \\ l_{1} \succ \ldots \succ l_{k} \in \mathscr{L} y n .\end{cases}
$$

In (!), the sum is taken over all subsequences $\left\{k_{1}, \ldots, k_{i}\right\} \subset\{1, \ldots, k\}$ and all Lyndon words $l_{1} \succeq \cdots \succeq l_{n}$ such that $\left(y_{s_{1}}, \ldots, y_{s_{k}}\right) \stackrel{*}{\Leftarrow}\left(y_{s_{k_{1}}}, \ldots, y_{s_{k_{i}}}, l_{1}, \ldots, l_{n}\right)$,
where $\stackrel{*}{\Leftarrow}$ denotes the transitive closure of the relation on standard sequences, denoted by \Leftarrow (see [5]).
We also proved that, for any $w \in Y^{*},[6,44,45]$

$$
\begin{equation*}
\Pi_{w}=w+\sum_{v \succ w,(v)=(w)} e_{v} v \text { and } \Sigma_{w}=w+\sum_{v \prec w,(v)=(w)} f_{v} v . \tag{13}
\end{equation*}
$$

In other words, the elements of the bases $\left\{\Sigma_{w}\right\}_{w \in Y^{*}}$ and $\left\{\Pi_{w}\right\}_{w \in Y^{*}}$ are lower and upper triangular respectively and they are of homogeneous in weight.

We also get the extended Schützenberger's factorization of $\mathscr{D}_{Y}[6,44,45]$

$$
\mathscr{D}_{Y}=\sum_{w \in Y^{*}} \Sigma_{w} \otimes \Pi_{w}=\prod_{l \in \mathscr{L} y n Y}^{\searrow} \exp \left(\Sigma_{l} \otimes \Pi_{l}\right) .
$$

Example 6 (of $\left\{\Pi_{w}\right\}_{w \in Y^{*}}$ and $\left\{\Sigma_{w}\right\}_{w \in Y^{*}},[5]$).

l	Π_{l}	Σ_{l}
y_{2}	$y_{2}-\frac{1}{2} y_{1}^{2}$	y_{2}
y_{1}^{2}	y_{1}^{2}	$\frac{1}{2} y_{2}+y_{1}^{2}$
y_{3}	$y_{3}-\frac{1}{2} y_{1} y_{2}-\frac{1}{2} y_{2} y_{1}+\frac{1}{3} y_{1}^{3}$	y_{3}
$y_{2} y_{1}$	$y_{2} y_{1}-y_{2} y_{1}$	$\frac{1}{2} y_{3}+y_{2} y_{1}$
$y_{1} y_{2}$	$y_{2} y_{1}-\frac{1}{2} y_{1}^{3}$	$y_{1} y_{2}$
y_{1}^{3}	y_{1}^{3}	$\frac{1}{6} y_{3}+\frac{1}{2} y_{2} y_{1}+\frac{1}{2} y_{1} y_{2}+y_{1}^{3}$
y_{4}	$y_{4}-\frac{1}{2} y_{1} y_{3}-\frac{1}{2} y_{2}^{2}-\frac{1}{2} y_{3} y_{1}$	y_{4}
	$+\frac{1}{3} y_{1}^{2} y_{2}+\frac{1}{3} y_{1} y_{2} y_{1}+\frac{1}{3} y_{2} y_{1}^{2}-\frac{1}{4} y_{1}^{4}$	
$y_{3} y_{1}$	$y_{3} y_{1}-\frac{1}{2} y_{2} y_{1}^{2}-y_{1} y_{3}+\frac{1}{2} y_{1}^{2} y_{2}$	$\frac{1}{2} y_{4}+y_{3} y_{1}$
y_{2}^{2}	$y_{2}^{2}-\frac{1}{2} y_{2} y_{1}^{2}-\frac{1}{2} y_{1}^{2} y_{2}+\frac{1}{4} y_{1}^{4}$	$\frac{1}{2} y_{4}+y_{2}^{2}$
$y_{2} y_{1}^{2}$	$y_{2} y_{1}^{2}-2 y_{1} y_{2} y_{1}+y_{1}^{2} y_{2}$	$\frac{1}{6} y_{4}+\frac{1}{2} y_{3} y_{1}+\frac{1}{2} y_{2}^{2}+y_{2} y_{1}^{2}$
$y_{1} y_{3}$	$y_{1} y_{3}-\frac{1}{2} y_{1}^{2} y_{2}-\frac{1}{2} y_{1} y_{2} y_{1}+\frac{1}{3} y_{1}^{4}$	$y_{4}+y_{3} y_{1}+y_{1} y_{3}$
$y_{1} y_{2} y_{1}$	$y_{1} y_{2} y_{1}-y_{1}^{2} y_{2}$	$\frac{1}{2} y_{4}+\frac{1}{2} y_{3} y_{1}+y_{2}^{2}$
$y_{1}^{2} y_{2}$	$y_{1}^{2} y_{2}-\frac{1}{2} y_{1}^{4}$	$+2 y_{1}^{2}+\frac{1}{2} y_{1} y_{3}+y_{1} y_{2} y_{1}$
y_{1}		$\frac{1}{2} y_{4}+y_{3} y_{1}+y_{2}^{2}+y_{2} y_{1}^{2}$
	y_{1}	$+y_{1} y_{3}+y_{1} y_{2} y_{1}+y_{1}^{2} y_{2}$
		$\frac{1}{24} y_{4}+\frac{1}{6} y_{3} y_{1}+\frac{1}{4} y_{2}+\frac{1}{2} y_{2} y_{1}^{2}$

2.2 Indiscernability over a class of formal power series

2.2.1 Residual calculus and representative series

Definition 1. Let $S \in \mathbb{Q}\langle\langle X\rangle\rangle$ (resp. $\mathbb{Q}\langle X\rangle$) and let $P \in \mathbb{Q}\langle X\rangle$ (resp. $\mathbb{Q}\langle\langle X\rangle\rangle$). The left and right residual of S by P are respectively the formal power series $P \triangleleft S$ and $S \triangleright P$ in $\mathbb{Q}\langle\langle X\rangle\rangle$ defined by $\langle P \triangleleft S \mid w\rangle=\langle S \mid w P\rangle$ (resp. $\langle S \triangleright P \mid w\rangle=\langle S \mid P w\rangle$).

For any $S \in \mathbb{Q}\langle\langle X\rangle\rangle$ (resp. $\mathbb{Q}\langle X\rangle$) and $P, Q \in \mathbb{Q}\langle X\rangle$ (resp. $\mathbb{Q}\langle\langle X\rangle\rangle$), we straightforwardly get $P \triangleleft(Q \triangleleft S)=P Q \triangleleft S,(S \triangleright P) \triangleright Q=S \triangleright P Q$ and $(P \triangleleft S) \triangleright Q=P \triangleleft(S \triangleright Q)$.

In case $x, y \in X$ and $w \in X^{*}$, we get ${ }^{13} x \triangleleft(w y)=\delta_{x}^{y} w$ and $x w \triangleright y=\delta_{x}^{y} w$.
Lemma 1. (Reconstruction lemma) Let $S \in \mathbb{Q}\langle\langle X\rangle\rangle$. Then

$$
S=\left\langle S \mid 1_{X^{*}}\right\rangle+\sum_{x \in X} x(S \triangleright x)=\left\langle S \mid 1_{X^{*}}\right\rangle+\sum_{x \in X}(x \triangleleft S) x .
$$

Theorem 1. Le $\delta \in \mathfrak{D e r}\left(\mathbb{Q}\langle X\rangle, ш, 1_{X^{*}}\right)$. Moreover, we suppose that δ is locally nilpotent ${ }^{14}$. Then the family $(t \delta)^{n} / n!$ is summable and its sum, denoted $\exp (t \delta)$, is is a one-parameter group of automorphisms of $\left(\mathbb{Q}\langle X\rangle, \omega, 1_{X^{*}}\right)$.

Theorem 2. Let L be a Lie series, i.e. $\Delta_{\amalg}(L)=L \hat{\otimes} 1+1 \hat{\otimes} L$. Let δ_{L}^{r}, δ_{L}^{l} be defined respectively by $\delta_{L}^{r}(P):=P \triangleleft L, \delta_{L}^{l}(P):=L \triangleright P$. Then $\delta_{L}^{r}, \delta_{L}^{l}$ are locally nilpotent derivations of $\left(\mathbb{Q}\langle X\rangle, ш, 1_{X^{*}}\right)$. Hence, $\exp \left(t \delta_{L}^{r}\right), \exp \left(t \delta_{L}^{l}\right)$ are one-parameter groups of $\operatorname{Aut}\left(\mathbb{Q}\langle X\rangle, ш, 1_{X^{*}}\right)$ and $\exp \left(t \delta_{L}^{r}\right) P=P \triangleleft \exp (t L), \exp \left(t \delta_{L}^{l}\right) P=\exp (t L) \triangleright P$.
Example 7. Since $x_{1} \triangleleft$ and $\triangleright x_{0}$ are derivations and the polynomials $\left\{\Sigma_{l}\right\}_{l \in \in \mathscr{L} \text { yn } X-X}$ belong to $x_{0} \mathbb{Q}\langle X\rangle x_{1}$ then $x_{1} \triangleleft l=l \triangleright x_{0}=0$ and $x_{1} \triangleleft \check{S}_{l}=\check{S}_{l} \triangleright x_{0}=0$.

Theorem 3. Let $S \in \mathbb{Q}\langle\langle X\rangle\rangle$. The following properties are equivalent:

1. The left \mathbb{C}-module $\operatorname{Res}_{g}(S)=\operatorname{span}\left\{w \triangleleft S \mid w \in X^{*}\right\}$ is finite dimensional.
2. The right \mathbb{C}-module $\operatorname{Res}_{d}(S)=\operatorname{span}\left\{S \triangleright w \mid w \in X^{*}\right\}$ is finite dimensional.
3. There are matrices $\lambda \in \mathscr{M}_{1, n}(\mathbb{Q}), \eta \in \mathscr{M}_{n, 1}(\mathbb{Q})$ and $\mu: X^{*} \longrightarrow \mathscr{M}_{n, n}$, such that

$$
S=\sum_{w \in X^{*}}[\lambda \mu(w) \eta] w=\lambda\left(\prod_{l \in \mathscr{L} y n X}^{\nu} e^{\mu\left(S_{l}\right) P_{l}}\right) \eta .
$$

A series that satisfies the items of Theorem 3 will be called representative series. This concept can be found in [1, 14, 48, 17]. The two first items are in [22, 28]. The third can be deduced from $[8,14]$ for example and it was used to factorize, for the first time, by Lyndon words, the output of bilinear and analytical dynamical systems respectively in $[30,31]$ and to study polylogarithms, hypergeometric functions and associated functions in [33, 35, 42]. The dimension of $\operatorname{Res}_{g}(S)$ is equal to that of $\operatorname{Res}_{d}(S)$, and to the minimal dimension of a representation satisfying the third point of Theorem 3. This rank is then equal to the rank of the Hankel matrix of S, i.e. the infinite matrix $(\langle S \mid u v\rangle)_{u, v \in X}$ indexed by $X^{*} \times X^{*}$ so called Hankel rank ${ }^{15}$ of S [22, 28]. The triplet (λ, μ, η) is called a linear representation of $S^{16} . S$ is called rational if it belongs to the closure by + , conc and star operation of proper elements ${ }^{17}$. Any noncommutative power series is representative if and only if it is rational [3, 53]. These rationality properties can be expressed in terms of differential operators in noncommutative geometry [14].

[^5]
2.2.2 Background on continuity and indiscernability

Definition 2. ([29, 43]) Let \mathscr{H} be a class of $\mathbb{C}\langle\langle X\rangle\rangle$ and $S \in \mathbb{C}\langle\langle X\rangle\rangle$.

1. S is said to be continuous over \mathscr{H} if for any $\Phi \in \mathscr{H}$, the following sum, denoted by $\langle S \| \Phi\rangle$, is absolutely convergent $\sum_{w \in X^{*}}\langle S \mid w\rangle\langle\Phi \mid w\rangle$.
The set of continuous power series over \mathscr{H} will be denoted by $\mathbb{C}^{\text {cont }}\langle\langle X\rangle\rangle$.
2. S is said to be indiscernable over \mathscr{H} if and only if, for any $\Phi \in \mathscr{H},\langle S \| \Phi\rangle=0$.

Proposition 1. Let $S \in \mathbb{C}^{\text {cont }}\langle\langle X\rangle\rangle$. \mathscr{H} is a monoid containing X and $\left\{e^{t x}\right\}_{x \in X}^{t \in \mathbb{C}}$.

1. If S is indiscernable over \mathscr{H} then for any $x \in X, x \triangleleft S$ and $S \triangleright x$ belong to $\mathbb{C}^{\text {cont }}\langle\langle X\rangle\rangle$ and they are indiscernable over \mathscr{H}.
2. S is indiscernable over \mathscr{H} if and only if $S=0$.

Proof. 1. Of course, $x \triangleleft S$ and $S \triangleright x$ belong to $\mathbb{C}^{\text {cont }}\langle\langle X\rangle\rangle$. Let us calculate $\langle x \triangleleft S \|$ $\Phi\rangle=\langle S \| \Phi x\rangle$ and $\langle S \triangleright x \| \Phi\rangle=\langle S \| x \Phi\rangle$. Since S is indiscernable over \mathscr{H} and note that $x \Phi, \Phi x \in \mathscr{H}$ for evvery $x \in X ; \Phi \in \mathscr{H}$, then

$$
\langle S \| \Phi x\rangle=0, \text { and }\langle S \| x \Phi\rangle=0
$$

Hence $x \triangleleft S$ and $S \triangleright x$ belong to $\mathbb{C}^{\text {cont }}\langle\langle X\rangle\rangle$ are indiscernable over \mathscr{H}.
2. $S=0$ is indiscernable over \mathscr{H}. Conversely, if S is indiscernable over \mathscr{H} then by the previous point and by induction on the length of $w \in X^{*}, w \triangleleft S$ is indiscernable over \mathscr{H}. In particular, $\left\langle w \triangleleft S \mid \operatorname{Id}_{\mathscr{H}}\right\rangle=\langle S \mid w\rangle=0$. In other words, $S=0$.

2.3 Polylogarithms and harmonic sums

2.3.1 Structure of polylogarithms and of harmonic sums

Let $\Omega:=\mathbb{C}-(]-\infty, 0] \cup[1,+\infty[)$ and let $\mathscr{C}:=\mathbb{C}[z, 1 / z, 1 / 1-z]$. Note that the neutral element of \mathscr{C}, for the pointwise product, is $1_{\Omega}: \Omega \longrightarrow \mathbb{C}$ such that $z \longmapsto 1$.

One can check that $\mathrm{Li}_{s_{1}, \ldots, s_{r}}$ is obtained as the iterated integral over the differential forms $\omega_{0}(z)=d z / z$ and $\omega_{1}(z)=d z /(1-z)$ and along the path $0 \rightsquigarrow z[32]$:

$$
\begin{equation*}
\mathrm{Li}_{s_{1}, \ldots, s_{r}}(z)=\alpha_{0}^{z}\left(x_{0}^{s_{1}-1} x_{1} \ldots x_{0}^{s_{r}-1} x_{1}\right)=\sum_{n_{1}>\ldots>n_{r}>0} \frac{z^{n_{1}}}{n_{1}^{s_{1}} \ldots n_{r}^{s_{r}}} \tag{14}
\end{equation*}
$$

Example 8 (of $\mathrm{Li}_{2}=\mathrm{Li}_{x_{0} x_{1}}$).

$$
\alpha_{0}^{z}\left(x_{0} x_{1}\right)=\int_{0}^{z} \frac{d s}{s} \int_{0}^{s} \frac{d t}{1-t}=\int_{0}^{z} \frac{d s}{s} \int_{0}^{s} d t \sum_{k \geq 0} t^{k}=\sum_{k \geq 1} \int_{0}^{z} d s \frac{s^{k-1}}{k}=\sum_{k \geq 1} \frac{z^{k}}{k^{2}} .
$$

The definition of polylogarithms is extended over the words $w \in X^{*}$ by putting $\operatorname{Li}_{x_{0}}(z):=\log (z)$. The $\left\{\operatorname{Li}_{w}\right\}_{w \in X^{*}}$ are \mathscr{C}-linearly independent $[12,39,36]$ and then the following function, for $v=y_{s_{1}} \ldots y_{s_{r}} \in Y^{*}$, are also \mathbb{C}-linearly independent [12, 41]

$$
\mathrm{P}_{v}(z):=\frac{\operatorname{Li}_{v}(z)}{1-z}=\sum_{N \geq 0} \mathrm{H}_{v}(N) z^{N}, \text { where } \mathrm{H}_{v}(N):=\sum_{N \geq n_{1}>\ldots>n_{r}>0} \frac{1}{n_{1}^{s_{1}} \ldots n_{r}^{s_{r}}}
$$

Proposition 2. ([41]) By linearity, the following maps are isomorphisms of algebras

$$
\begin{aligned}
\mathrm{P}_{\bullet}:(\mathbb{C}\langle Y\rangle, \pm) \longrightarrow\left(\mathbb{C}\left\{\mathrm{P}_{w}\right\}_{w \in Y^{*}}, \odot\right), u \longmapsto \mathrm{P}_{u}, \\
\mathrm{H}_{\bullet}:(\mathbb{C}\langle Y\rangle, \pm) \longrightarrow\left(\mathbb{C}\left\{\mathrm{H}_{w}\right\}_{w \in Y^{*}}, .\right), u \longmapsto \mathrm{H}_{u}=\left\{\mathrm{H}_{u}(N)\right\}_{N \geq 0} .
\end{aligned}
$$

Theorem 4. ([43]) The Hadamard \mathscr{C}-algebra of $\left\{\mathrm{P}_{w}\right\}_{w \in Y^{*}}$ can be identified with that of $\left\{\mathrm{P}_{l}\right\}_{l \in \mathscr{L} y n Y}$. In the same way, the algebra of harmonic sums $\left\{\mathrm{H}_{w}\right\}_{w \in Y^{*}}$ with polynomial coefficients can be identified with that of $\left\{\mathrm{H}_{l}\right\}_{l \in \mathscr{L} \text { yn } Y}$.

Let L, P and H be the noncommutative generating series of respectively $\left\{\mathrm{Li}_{w}\right\}_{w \in X^{*}}$, $\left\{\mathrm{P}_{w}\right\}_{w \in X^{*}}$ and $\left\{\mathrm{H}_{w}(N)\right\}_{w \in Y^{*}}$, for $|z|<1$ and $N>1[39,41]:$

$$
\begin{equation*}
\mathrm{L}(z)=\sum_{w \in X^{*}} \mathrm{Li}_{w}(z) w ; \quad \mathrm{P}(z)=\frac{\mathrm{L}(z)}{1-z} ; \quad \mathrm{H}(N)=\sum_{w \in Y^{*}} \mathrm{H}_{w}(N) w . \tag{15}
\end{equation*}
$$

Definition 3 (Polylogarithms and harmonic sums at negative multi-indices). For any $s_{1}, \ldots, s_{r} \in(\mathbb{N})^{r}$, let us define [16], for $|z|<1$ and $N>0$,

$$
\operatorname{Li}_{-s_{1}, \ldots,-s_{r}}(z):=\sum_{n_{1}>\ldots>n_{r}>0} n_{1}^{s_{1}} \ldots n_{r}^{s_{r}} z^{n_{1}} \text { and } \mathrm{H}_{-s_{1}, \ldots,-s_{r}}(N):=\sum_{N \geq n_{1}>\ldots>n_{r}>0} n_{1}^{s_{1}} \ldots n_{r}^{s_{r}} .
$$

The ordinary generating series, $\mathrm{P}_{-s_{1}, \ldots,-s_{r}}(z)$, of $\left\{\mathrm{H}_{-s_{1}, \ldots,-s_{r}}(N)\right\}_{N \geq 0}$ is

$$
\mathrm{P}_{-s_{1}, \ldots,-s_{r}}(z):=\sum_{N \geq 0} \mathrm{H}_{-s_{1}, \ldots,-s_{r}}(N) z^{N}=\frac{1}{1-z} \mathrm{Li}_{-s_{1}, \ldots,-s_{r}}(z)
$$

Now, let ${ }^{18} Y_{0}=Y \cup\left\{y_{0}\right\}$ and let Y_{0}^{*} denotes the free monoid generated by Y_{0} admitting $1_{Y_{0}^{*}}$ as neutral element. As in (1), let us introduce another correspondence

$$
\left(s_{1}, \ldots, s_{r}\right) \in \mathbb{N}^{r} \leftrightarrow y_{s_{1}} \ldots y_{s_{r}} \in Y_{0}^{*}
$$

In all the sequel, for some convenience, we will also adopt the following notations, for any $w=y_{s_{1}} \ldots y_{s_{r}} \in Y_{0}^{*}$,

$$
\mathrm{Li}_{w}^{-}=\mathrm{Li}_{-s_{1}, \ldots,-s_{r}} ; \quad \mathrm{P}_{w}^{-}=\mathrm{P}_{-s_{1}, \ldots,-s_{r}} \quad \text { and } \quad \mathrm{H}_{w}^{-}=\mathrm{H}_{-s_{1}, \ldots,-s_{r}} .
$$

Example $9\left(\mathrm{Li}_{y_{0}^{r}}^{-}\right.$and $\left.\mathrm{H}_{y_{0}^{r}}^{-}\right)$. By Proposition (5), we have $\mathrm{Li}_{y_{0}^{r}}^{-}=\lambda^{r}$. Hence,

[^6]$$
\frac{\operatorname{Li}_{y_{0}^{r}}^{-}(z)}{1-z}=\frac{z^{r}}{(1-z)^{r+1}}=\sum_{N \geq 0}\binom{N}{r} z^{N} \text { and then } \mathrm{H}_{y_{0}^{r}}^{-}(N)=\binom{N}{r}
$$

Definition 4. With the convention $\mathrm{H}_{1_{Y_{0}^{*}}^{-}}^{-}=1$, we put

$$
\mathrm{L}^{-}(z):=\sum_{w \in Y_{0}^{*}} \mathrm{Li}_{w}^{-}(z) w ; \quad \mathrm{P}^{-}(z):=\frac{\mathrm{L}^{-}(z)}{1-z} ; \quad \mathrm{H}^{-}(N):=\sum_{w \in Y_{0}^{*}} \mathrm{H}_{w}^{-}(N) w .
$$

Since, for $y_{k} \in Y, u \in Y^{*}$ (resp. $y_{k} \in Y_{0}, u \in Y_{0}^{*}$) and $N \geq 1$, one has $\mathrm{H}_{y_{k} u}(N)-$ $\mathrm{H}_{y_{k} u}(N-1)=N^{-k} \mathrm{H}_{u}(N-1)\left(\operatorname{resp} . \mathrm{H}_{y_{k} u}^{-}(N)-\mathrm{H}_{y_{k} u}^{-}(N-1)=N^{k} \mathrm{H}_{u}^{-}(N-1)\right)$. Then

Proposition 3. H and H^{-}satisfy the following difference equations

$$
\begin{gathered}
\mathrm{H}(N)=\left(1_{Y^{*}}+\sum_{k \geq 1} \frac{y_{k}}{N^{k}}\right) \mathrm{H}(N-1)=\prod_{n=1}^{N}\left(1_{Y^{*}}+\sum_{k \geq 1} \frac{y_{k}}{n^{k}}\right)=1_{Y^{*}}+\sum_{w \in Y^{*},|w| \geq N} \mathrm{H}_{w}(N) w, \\
\mathrm{H}^{-}(N)=\left(1_{Y_{0}^{*}}+\sum_{k \geq 0} y_{k} N^{k}\right) \mathrm{H}^{-}(N-1)=\prod_{n=1}^{N}\left(1_{Y_{0}^{*}}+\sum_{k \geq 0} y_{k} n^{k}\right)=1_{Y_{0}^{*}}+\sum_{w \in Y_{0}^{*},|w| \geq N} \mathrm{H}_{w}^{-}(N) w .
\end{gathered}
$$

Hence, for any $w \in Y^{*}$ (resp. $w \in Y_{0}^{*}$), $\mathrm{H}_{w}(N)$ (resp. $\mathrm{H}_{w}^{-}(N)$) is of valuation N.
In all the sequel, the length and the weight of $u=y_{i_{1}} \ldots y_{i_{k}} \in Y^{*}$ are defined respectively as the numbers $|u|=k$ and $(u)=i_{1}+\ldots+i_{k}$.
Definition 5. Let $g, h \in \mathbb{Q}\left\langle\left\langle Y_{0}\right\rangle\right\rangle[[t]]$ be defined as follows (here, $\left|1_{Y_{0}^{*}}\right|=\left(1_{Y_{0}^{*}}\right)=0$)

$$
h(t):=\sum_{w \in Y_{0}^{*}}((w)+|w|)!t^{(w)+|w|} w \text { and } g(t):=\sum_{w \in Y_{0}^{*}} t^{(w)+|w|} w=\left(\sum_{y \in Y_{0}} t^{(y)+1} y\right)^{*}
$$

Remark 1. 1. The generating series h is an extension of the Euler series $\sum_{n \geq 0} n!t^{n}$ and it can be obtained as Borel-Laplace transform of g.
2. The ordinary generating series $\mathscr{Y}(t):=1+\sum_{r \geq 0} y_{r} t^{r}$ and its inverse are grouplike. The generating series $\Lambda(t)=\sum_{w \in Y_{0}^{*}} t^{(w)+|\bar{w}|} w$ can be obtained from $1 / \mathscr{Y}(t)$ by use the following change of alphabet $y_{r} \leftarrow t y_{r}$ it can be expressed as

$$
g(t)=\left(1-\sum_{r \geq 0}\left(-t y_{r}\right) t^{r}\right)^{-1}=\left(\sum_{r \geq 0}\left(-t y_{r}\right) t^{r}\right)^{*}
$$

Now, let us consider the following differential and integration operators acting on $\mathbb{C}\left\{\mathrm{Li}_{w}\right\}_{w \in X^{*}}$ which can be extended over $\mathscr{C}\left\{\mathrm{Li}_{w}\right\}_{w \in X^{*}}$ [42] :

$$
\partial_{z}=d / d z, \theta_{0}=z d / d z, \theta_{1}=(1-z) d / d z, \iota_{0}: \mathrm{Li}_{w} \longmapsto \mathrm{Li}_{x_{0} w}, \iota_{1}: \mathrm{Li}_{w} \longmapsto \mathrm{Li}_{x_{1} w}
$$

Let Θ and \mathfrak{I} be monoid morphisms such that $\Theta\left(1_{X^{*}}\right)=\mathfrak{I}\left(1_{X^{*}}\right)=\mathrm{Id}$ and, for $x_{i} \in$ $X, v \in X^{*}, \Theta\left(v x_{i}\right)=\Theta(v) \theta_{i}$ and $\mathfrak{I}\left(v x_{i}\right)=\mathfrak{I}(v) \iota_{i}$. By extension, we obtain $\mathscr{H}_{\text {conc }} \cong$ $\left(\mathbb{Q}\langle\Theta(X)\rangle\right.$, conc $\left., \operatorname{Id}, \Delta_{\amalg}, \varepsilon\right)$ and $\mathscr{H}_{\amalg} \cong\left(\mathbb{Q}\langle\mathfrak{I}(X)\rangle, ш, \mathrm{Id}, \Delta_{\text {conc }}, \varepsilon\right)$. Hence,

Proposition 4. 1. The operators $\left\{\theta_{0}, \theta_{1}, l_{0}, l_{1}\right\}$ satisfy in particular,

$$
\begin{aligned}
& \theta_{1}+\theta_{0}=\left[\theta_{1}, \theta_{0}\right]=\partial_{z} \text { and } \forall k=0,1, \theta_{k} l_{k}=\mathrm{Id}, \\
& \quad\left[\theta_{0} \iota_{1}, \theta_{1} \imath_{0}\right]=0 \text { and }\left(\theta_{0} \imath_{1}\right)\left(\theta_{1} l_{0}\right)=\left(\theta_{1} \imath_{0}\right)\left(\theta_{0} l_{1}\right)=\mathrm{Id} .
\end{aligned}
$$

2. For any $w=y_{s_{1}} \ldots y_{s_{r}} \in Y^{*}\left(\pi_{X}(w)=x_{0}^{s_{1}-1} x_{1} \ldots x_{0}^{s_{r}-1} x_{1}\right)$ and $u=y_{t_{1}} \ldots y_{t_{r}} \in Y_{0}^{*}$, we can rephrase $\mathrm{Li}_{w}, \mathrm{Li}_{u}^{-}$as follows

$$
\begin{aligned}
\mathrm{Li}_{w}= & \left(\imath_{0}^{s_{1}-1} \imath_{1} \ldots l_{0}^{s_{r}-1} \imath_{1}\right) 1_{\Omega} \text { and } \mathrm{Li}_{u}^{-}=\left(\theta_{0}^{t_{1}+1} \imath_{1} \ldots \theta_{0}^{t_{r}+1} \iota_{1}\right) 1_{\Omega}, \\
& \theta_{0} \mathrm{Li}_{x_{0} \pi_{X}(w)}=\mathrm{Li}_{\pi_{X}(w)} \text { and } \theta_{1} \mathrm{Li}_{x_{1}} \pi_{X}(w)=\mathrm{Li}_{\pi_{X}(w)}, \\
& \imath_{0} \mathrm{Li}_{\pi_{X}(w)}=\mathrm{Li}_{x_{0}} \pi_{X}(w) \text { and } \imath_{1} \mathrm{Li}_{w}=\mathrm{Li}_{x_{1}} \pi_{X}(w) .
\end{aligned}
$$

3. $\mathscr{C}\left\{\mathrm{Li}_{w}\right\}_{w \in X^{*}} \cong \mathscr{C} \otimes \mathbb{C}\left\{\mathrm{Li}_{w}\right\}_{w \in X^{*}}$ is closed under of $l_{0}, l_{1}, \theta_{0}, \theta_{1}$.
4. Let $\lambda(z):=z /(1-z) \in \mathscr{C}$. Then λ and $1 / \lambda$ are the eigenvalues of $\theta_{0} l_{1}$ and $\theta_{1} l_{0}$ within $\mathscr{C}\left\{\mathrm{Li}_{w}\right\}_{w \in X^{*}}$ respectively:

$$
\forall f \in \mathscr{C}\left\{\operatorname{Li}_{w}\right\}_{w \in X^{*}},\left(\theta_{0} \iota_{1}\right) f=\lambda f \text { and }\left(\theta_{1} \iota_{0}\right) f=f / \lambda
$$

5. For any $n \geq 0$ and $w \in X^{*}$, one has ${ }^{19}$

$$
\Theta(\widetilde{w}) \mathrm{Li}_{w}=1_{\Omega} \text { and } \partial_{z}^{n}=\sum_{w \in X^{n}}(\Theta \otimes \Theta) \Delta_{\amalg}(w) .
$$

6. For any $P, Q \in \mathbb{Q}\langle X\rangle$ and $R \in \mathscr{L} i_{\mathbb{Q}}\langle X\rangle$, one has

$$
\Theta(R) \operatorname{Li}_{P \amalg Q}=\operatorname{Li}_{(P \amalg Q) \triangleleft R}=\left(\Theta(R) \operatorname{Li}_{P}\right) \operatorname{Li}_{Q}+\operatorname{Li}_{P}\left(\Theta(R) \mathrm{Li}_{Q}\right) .
$$

Proof. The proofs are immediate.

Proposition 5. [16]

1. For any $w \in Y_{0}^{*}$, one has $\operatorname{Li}_{w}^{-}(z)=\lambda^{|w|}(z) A_{w}^{-}(z)(1-z)^{-(w)}$, where A_{w}^{-}is the extended Eulerian polynomial defined recursively as follows

$$
A_{w}^{-}(z)=\left\{\begin{array}{c}
\sum_{k=0}^{n-1} A_{n, k} z^{k} \text { if } w=y_{k} \in Y_{0}, \\
\sum_{i=0}^{s_{1}}\binom{s_{1}}{i} A_{y_{i}} A_{y_{\left(s_{1}+s_{2}-i\right)}^{-} y_{s_{3} \ldots y_{s}}} \text { if } w=y_{k} u \in Y_{0} Y_{0}^{*}
\end{array}\right.
$$

and $A_{n, k}$ are Eulerian numbers satisfying $A_{n, k}=\sum_{j=0}^{k}(-1)^{j}\binom{n+1}{j}(k+1-j)^{n}$.
2. For any $w \in Y^{*}$, let us define $\left\{G_{w}^{-}(n)\right\}_{n \in \mathbb{N}}$ by the following generating series

$$
\sum_{n \geq|w|} \frac{(n+1)!}{(n-|w|)!} G_{w}^{-}(n) z^{n}=\frac{\operatorname{Li}_{w}^{-}(z)}{1-z}
$$

Then $\mathrm{H}_{w}^{-}(N)=(N+1) N(N-1) \ldots(N-|w|+1) G_{w}^{-}(N)$.

[^7]3. $\mathrm{Li}_{w}^{-}(z) \in \mathbb{Q}\left[(1-z)^{-1}\right] \subsetneq \mathscr{C}$ and $\mathrm{H}_{w}^{-}(N) \in \mathbb{Q}[N]$ of degree $|w|+(w)$.

Example 10. [16][Case of $r=1$ by Maple]

1. Since $A_{n}(z) /(1-z)^{n+1}=\sum_{j \geq 0} z^{j}(j+1)^{n}$ then $\operatorname{Li}_{y_{n}}^{-}(z)=z A_{n}(z) /(1-z)^{n+1}$ (see [20] for example). For example,

$$
\begin{array}{ll}
\mathrm{Li}_{y_{1}}^{-}(z)= & z(1-z)^{-2} \\
\mathrm{Li}_{y_{y_{2}}}^{-}(z)= & =-(1-z)^{-1}+(1-z)^{-2} \\
\mathrm{Li}_{y_{3}}(z)=z\left(z^{2}+4 z+1\right)(1-z)^{-3} & =(1-z)^{-1}-3(1-z)^{-2}+2(1-z)^{-3}
\end{array}
$$

2. For any positive integer m, one has

$$
\mathrm{H}_{y_{m}}^{-}(N)=\frac{1}{m+1} \sum_{k=0}^{m}\binom{m+1}{k} B_{k}(N+1)^{m+1-k}=\frac{1}{m+1} \sum_{k=1}^{m+1}\left[\sum_{l=0}^{m+1-k}\binom{m+1}{l}\binom{m+1-l}{k} B_{l}\right] N^{l}
$$

where B_{k} is the k-th Bernoulli's number given by its exponential generating series

$$
\frac{t}{e^{t}-1}=\sum_{k \geq 0} B_{k} \frac{t^{k}}{k!}
$$

For example, (recall that $B_{0}=1, B_{1}=-1 / 2, B_{2}=1 / 6, B_{3}=0, B_{4}=-1 / 30$),

$$
\begin{array}{ll}
\mathrm{H}_{y_{1}}^{-}(N)=\quad(N+1)^{2} / 2-(N+1) / 2 & =N(N+1) / 2 \\
\mathrm{H}_{y_{2}}^{-}(N)=(N+1)^{3} / 3-(N+1)^{2} / 2+(N+1) / 6 & =N(2 N+1)(N+1) / 6 \\
\mathrm{H}_{y_{3}}^{-}(N)=(N+1)^{4} / 4-(N+1)^{3} / 2+(N+1)^{2} / 4 & =(N(N+1) / 2)^{2}
\end{array}
$$

Example 11. [16][Case of $r=2$ by Maple]

1. From what precedes, $\mathrm{Li}_{y_{m} y_{n}}^{-}=\left(\theta_{0}^{m+1} \iota_{1}\right) \mathrm{Li}_{y_{n}}^{-}=\theta_{0}^{m}\left(\theta_{0} \iota_{1}\right) \mathrm{Li}_{y_{n}}^{-}$. Since, by Example 9, we have $\left(\theta_{0} l_{1}\right) \mathrm{Li}_{y_{n}}^{-}=\mathrm{Li}_{y_{0}}^{-} \mathrm{Li}_{y_{n}}^{-}$then $\mathrm{Li}_{y_{m} y_{n}}^{-}=\theta_{0}^{m}\left[\mathrm{Li}_{y_{0}}^{-} \mathrm{Li}_{y_{n}}^{-}\right]=\sum_{l=0}^{m}\binom{m}{l} \mathrm{Li}_{y_{l}}^{-} \mathrm{Li}_{y_{m+n-l}}^{-}$. For example,

$$
\begin{aligned}
\mathrm{Li}_{y_{1}^{2}}^{-}(z) & =\mathrm{Li}_{y_{0}}^{-}(z) \mathrm{Li}_{y_{2}}^{-}(z)+\left(\mathrm{Li}_{y_{1}}^{-}(z)\right)^{2} \\
& =-(1-z)^{-1}+5(1-z)^{-2}-7(1-z)^{-3}+3(1-z)^{-4} \\
\mathrm{Li}_{y_{2} y_{1}}^{-}(z) & =\mathrm{Li}_{y_{0}}^{-}(z) \mathrm{Li}_{y_{3}}^{-}(z)+3 \mathrm{Li}_{y_{1}}^{-}(z) \mathrm{Li}_{y_{2}}^{-}(z) \\
& =(1-z)^{-1}-11(1-z)^{-2}+31(1-z)^{-3}-33(1-z)^{-4}+12(1-z)^{-5} \\
\mathrm{Li}_{y_{1} y_{2}}^{-}(z) & =\mathrm{Li}_{y_{0}}^{-}(z) \mathrm{Li}_{y_{3}}^{-}(z)+\mathrm{Li}_{y_{1}}^{-}(z) \mathrm{Li}_{y_{2}}^{-}(z) \\
& =(1-z)^{-1}-9(1-z)^{-2}+23(1-z)^{-3}-23(1-z)^{-4}+8(1-z)^{-5}
\end{aligned}
$$

2. For any positive integers m, n, one has

$$
\begin{aligned}
\mathrm{H}_{y_{m} y_{n}}^{-}(N)= & \sum_{k_{1}=0}^{n} \sum_{k_{2}=0}^{m+n+1-k_{1}} \sum_{k_{3}=0}^{m+n+2-k_{1}-k_{2}} \frac{B_{k_{1}} B_{k_{2}}}{(n+1)\left(m+n+2-k_{1}\right)} \\
& \binom{n+1}{k_{1}}\binom{m+n+2-k_{1}}{k_{2}}\binom{m+n+2-k_{1}-k_{2}}{k_{3}} N^{k_{3}} .
\end{aligned}
$$

For example,

$$
\begin{aligned}
\mathrm{H}_{y_{2} y_{1}}^{-}(N) & =N\left(N^{2}-1\right)\left(12 N^{2}+15 N+2\right) / 120, \\
\mathrm{H}_{y_{2}^{2}}^{-}(N) & =N(N-1)(2 N+1)(2 N-1)(5 N+6)(N+1) / 360, \\
\mathrm{H}_{y_{2} y_{3}}^{-}(N) & =N(N-1)(N+1)\left(30 N^{4}+35 N^{3}-33 N^{2}-35 N+2\right) / 840, \\
\mathrm{H}_{y_{2} y_{4}}^{-}(N) & =N(N-1)(N+1)\left(63 N^{5}+72 N^{4}-133 N^{3}-138 N^{2}+49 N+30\right) / 2520,
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{H}_{y_{2} y_{5}}^{-}(N) & =N(N-1)(N+1)\left(280 N^{6}+315 N^{5}-920 N^{4}-945 N^{3}+802 N^{2}+630 N-108\right) / 15120, \\
\mathrm{H}_{y_{3}^{3}}^{-}(N) & =N(N-1)(N+1)\left(21 N^{5}+36 N^{4}-21 N^{3}-48 N^{2}+8\right) / 672 .
\end{aligned}
$$

Example 12. [16][General case]

1. One has, for any $y_{s_{1}} u=y_{s_{1}} \ldots y_{s_{r}} \in Y_{0}^{*}$,

$$
\begin{aligned}
\mathrm{Li}_{y_{s_{1}}}^{-}= & \theta_{0}^{s_{1}}\left(\theta_{0} l_{1}\right) \mathrm{Li}_{u}^{-}=\theta_{0}^{s_{1}}\left(\lambda \mathrm{Li}_{u}^{-}\right)=\sum_{k_{1}=0}^{s_{1}}\binom{s_{1}}{k_{1}}\left(\theta_{0}^{k_{1}} \lambda\right)\left(\theta_{0}^{s_{1}-k_{1}} \mathrm{Li}_{u}^{-}\right), \\
\mathrm{Li}_{y_{s_{1}}^{-} \ldots y_{s_{r}}^{-}}^{-}= & \sum_{k_{1}=0}^{s_{1}} \sum_{k_{2}=0}^{s_{1}+s_{2}-k_{1}} \cdots \sum_{k_{r}=0}^{\left(s_{1}+\ldots+s_{r}-\right)}\binom{\left(k_{1}+\cdots+r_{1}\right)}{s_{1}}\binom{s_{1}+s_{2}-k_{1}}{k_{2}} \ldots \\
& \binom{s_{1}+\ldots+s_{r}-k_{1}-\ldots-k_{r-1}}{k_{r}}\left(\theta_{0}^{k_{r}} \lambda\right)\left(\theta_{0}^{k_{2}} \lambda\right) \ldots\left(\theta_{0}^{k_{r}} \lambda\right) .
\end{aligned}
$$

Denoting $S_{2}\left(k_{i}, j\right)$ Stirling numbers of the second kind, one has

$$
\forall i=1, . ., r, \quad \theta_{0}^{k_{i}} \lambda(z)=\left\{\begin{array}{r}
\lambda(z), \text { if } k_{i}=0, \\
\frac{1}{1-z} \sum_{j=1}^{k_{i}} S_{2}\left(k_{i}, j\right) j!\lambda^{j}(z), \text { if } k_{i}>0 .
\end{array}\right.
$$

In particular, if $\omega \in Y^{*}$ then $(1-z)^{|\omega|} \mathrm{Li}_{w}^{-}(z)$ is polynomial of degree (w) in $\lambda(z)$.
2. We define, firstly, the polynomials $\left\{B_{y_{n_{1}} \ldots y_{n_{r}}}(z)\right\}_{n_{1}, \ldots, n_{r} \in \mathbb{N}}$ by their commutative exponential generating series as follows, for $z \in \mathbb{C}$,

$$
\sum_{n_{1}, \ldots, n_{r} \in \mathbb{N}} B_{y_{n_{1}} \ldots y_{n_{r}}}(z) \frac{t_{1}^{n_{1}} \ldots t_{r}^{n_{r}}}{n_{1}!\ldots n_{r}!}=t_{1} \ldots t_{r} e^{z\left(t_{1}+\ldots+t_{r}\right)} \prod_{k=1}^{r}\left(e^{t_{k}+\ldots+t_{r}}-1\right)^{-1},
$$

or by the difference equation, for $n_{1} \in \mathbb{N}_{+}$,

$$
B_{y_{n_{1}} \ldots y_{n_{r}}}(z+1)=B_{y_{n_{1}} \ldots y_{n_{r}}}(z)+n_{1} z^{n_{1}-1} B_{y_{n_{2}} \ldots y_{n_{r}}}(z) .
$$

For any $w \in y_{s} Y_{0}^{*}, s>1$, we have $B_{w}(1)=B_{w}(0)$. Then let also, for any $1 \leq k \leq r$,

$$
\begin{aligned}
& b_{w}:=B_{w}(0) \text { and } \beta_{w}(z):=B_{w}(z)-b_{w} \\
& \\
& b_{y_{k}}^{\prime}:=b_{y_{k}} \text { and } b_{y_{n_{k}} \cdots y_{n r}}^{\prime}:=b_{y_{n_{k}} \cdots y_{n_{r}}}-\sum_{j=0}^{r-1-k} b_{y_{n_{k+j+1}} \ldots y_{n r}} b_{y_{n_{k}} \cdots y_{n_{k+j}}^{\prime}}
\end{aligned}
$$

Then we have the extended Faulhaber's identities

$$
\begin{aligned}
& \beta_{y_{n_{1}} \ldots y_{n_{r}}}(N)=\sum_{k=1}^{r}\left(\prod_{i=1}^{k} n_{i}\right) b_{y_{n_{k+1}} \cdots y_{n_{r}}} \mathrm{H}_{y_{n_{1}-1} \ldots y_{n_{k}-1}}^{-}(N-1), \\
& \mathrm{H}_{y_{n_{1}} \ldots y_{n r}}^{-}(N)=\frac{\beta_{y_{n_{1}+1} \cdots y_{n r+1}}(N+1)-\sum_{k=1}^{r-1} b_{y_{n_{k+1}+1} \cdots y_{n_{r}+1}} \beta_{y_{n_{1}+1} \cdots y_{n_{k}+1}}(N+1)}{\prod_{i=1}^{r}\left(n_{i}+1\right)} .
\end{aligned}
$$

Proposition 6. [16] The following maps are morphisms of algebras

$$
\mathrm{H}^{-}:\left(\mathbb{C}\left\langle Y_{0}\right\rangle, \pm\right) \longrightarrow\left(\mathbb{C}\left\{\mathrm{H}_{w}^{-}\right\}_{w \in Y_{0}^{*}}, .\right) \text { and } \mathrm{P}^{-}:\left(\mathbb{C}\left\langle Y_{0}\right\rangle, \pm\right) \longrightarrow\left(\mathbb{C}\left\{\mathrm{P}^{-} w\right\}_{w \in Y_{0}^{*}}, \odot\right)
$$

Proof. Recall that the quasi-symmetric functions on the variables $\mathbf{t}=\left\{t_{i}\right\}_{N \geq i \geq 1}$, i.e.

$$
\mathrm{F}_{s_{1}, \ldots, s_{r}}(\mathbf{t})=\mathrm{F}_{y_{s_{1}} \ldots y_{s_{r}}}(\mathbf{t})=\sum_{n_{1}>\ldots>n_{r}>0} t_{n_{1}}^{s_{1}} \ldots t_{n_{r}}^{s_{r}}
$$

satisfy the quasi-shuffle relation [51], i.e. for any $u, v \in Y_{0}^{*}, \mathrm{~F}_{u \pm \pm v}(\mathbf{t})=\mathrm{F}_{u}(\mathbf{t}) \mathrm{F}_{v}(\mathbf{t})$.
Since $\mathrm{H}_{s_{1}, \ldots, s_{r}}^{-}(N)$ can be obtained by specializing, in $\mathrm{F}_{S_{1}, \ldots, s_{r}}(\mathbf{t})$, the variables \mathbf{t} at

$$
\forall 1 \leq i \leq N, t_{i}=i \text { and } \forall i>N, t_{i}=0
$$

then H^{-}is a morphism of algebras. Therefore, P^{-}is also a morphism of algebras.

2.3.2 Global renormalizations via noncommutative generating series

By (2.3.2), L and H are images, by the tensor products $\mathrm{Li} \otimes \mathrm{Id}$ and $\mathrm{H} \otimes \mathrm{Id}$, of the diagonal series \mathscr{D}_{X} and \mathscr{D}_{Y} respectively. Then we get

Theorem 5 (Factorization of L and of H, [36, 39, 44]). Let

$$
\mathrm{L}_{\mathrm{reg}}=\prod_{l \in \mathscr{L} \text { ynX }-X}^{\searrow} e^{\mathrm{Li}_{\mathrm{s}_{l}} P_{l}} \text { and } \mathrm{H}_{\mathrm{reg}}(N)=\prod_{l \in \mathscr{L} \text { yn } Y-\left\{y_{1}\right\}}^{\searrow} e^{\mathrm{H}_{\check{\Sigma}_{l}}(N) \Sigma_{l}} .
$$

Then $\mathrm{L}(z)=e^{-x_{1} \log (1-z)} \mathrm{L}_{\mathrm{reg}}(z) e^{x_{0} \log z}$ and $\mathrm{H}(N)=e^{\mathrm{H}_{y_{1}}(N) y_{1}} \mathrm{H}_{\mathrm{reg}}(N)$.
For any $l \in \mathscr{L} y n X-X$ (resp. $\mathscr{L} y n Y-\left\{y_{1}\right\}$), the polynomial S_{l} (resp. Σ_{l}) is a finite combination of words in $x_{0} X^{*} x_{1}\left(\right.$ resp. $\left.Y^{*}-y_{1} Y^{*}\right)$. Then we can state

Proposition 7 ([44]). Let $Z_{\amalg}:=\mathrm{L}_{\mathrm{reg}}(1)$ and $Z_{\amalg+}:=\mathrm{H}_{\mathrm{reg}}(\infty)$. Then Z_{\amalg} and Z_{\amalg} are group-like, for Δ_{\amalg} and $\Delta_{ \pm}$respectively.

Proposition 8 (Successive integrations and differentiations of L, [42]). We have, for any $n \in \mathbb{N}$,

1. $l_{0}^{n} \mathrm{~L}=x_{0}^{n} \triangleright \mathrm{~L}$ and $\imath_{1}^{n} \mathrm{~L}=x_{1}^{n} \triangleright \mathrm{~L}$.
2. $\partial_{z}^{n} \mathrm{~L}=D_{n} \mathrm{~L}$ and $\theta_{0}^{n} \mathrm{~L}=E_{n} \mathrm{~L}$, where ${ }^{20}$ the polynomials D_{n} and E_{n} in $\mathscr{C}\langle X\rangle$ are

$$
\begin{aligned}
D_{n} & =\sum_{w g t(\mathbf{r})=n^{2}} \sum_{w \in X^{\operatorname{deg}(\mathbf{r})}} \prod_{i=1}^{\operatorname{deg}(\mathbf{r})}\binom{\sum_{j=1}^{i} r_{i}+j-1}{r_{i}} \tau_{\mathbf{r}}(w) \\
E_{n} & =\sum_{\mathrm{wgt}(\mathbf{r})=n_{w}} \sum_{w} X^{\operatorname{deg}(\mathbf{r})} \prod_{i=1}^{\operatorname{deg}(\mathbf{r})}\binom{\sum_{j=1}^{i} r_{i}+j-1}{r_{i}} \rho_{\mathbf{r}}(w)
\end{aligned}
$$

and for any $w=x_{i_{1}} \cdots x_{i_{k}}$ and $\mathbf{r}=\left(r_{1}, \ldots, r_{k}\right)$ of degree $\operatorname{deg}(\mathbf{r})=k$ and of weight $\operatorname{wgt}(\mathbf{r})=k+r_{1}+\cdots+r_{k}$, the polynomials $\tau_{\mathbf{r}}(w)=\tau_{r_{1}}\left(x_{i_{1}}\right) \cdots \tau_{r_{k}}\left(x_{i_{k}}\right)$ and $\rho_{\mathbf{r}}(w)=\rho_{r_{1}}\left(x_{i_{1}}\right) \cdots \rho_{r_{k}}\left(x_{i_{k}}\right)$ are defined respectively by, for any $r \in \mathbb{N}$,

[^8]\[

$$
\begin{aligned}
& \tau_{r}\left(x_{0}\right)=\partial_{z}^{r} \frac{x_{0}}{z}=\frac{-r!x_{0}}{(-z)^{r+1}} \text { and } \tau_{r}\left(x_{1}\right)=\partial_{z}^{r} \frac{x_{1}}{1-z}=\frac{r!x_{1}}{(1-z)^{r+1}} \\
& \rho_{r}\left(x_{0}\right)=\theta_{0}^{r} \frac{(-1)^{-1} x_{0}}{z}=0 \text { and } \rho_{r}\left(x_{1}\right)=\theta_{0}^{r} \frac{z x_{1}}{1-z}=\mathrm{Li}_{\pi_{Y}\left(x_{0}^{r-1} x_{1}\right)}^{-}(z) x_{1}
\end{aligned}
$$
\]

Example 13 (Coefficients of $\theta_{0}^{n} \mathrm{~L}$). Since, for any $u \in X^{+}, \theta_{0} \operatorname{Li}_{x_{0} u}=\operatorname{Li}_{u}$ and $\theta_{1} \operatorname{Li}_{x_{0} u}=$ $\mathrm{Li}_{0} \mathrm{Li}_{u}$, one obtains for example

- For any $n \geq 1$ and $w \in X^{*}$, one has $\theta_{0}^{n} \operatorname{Li}_{x_{0}^{n} w}=\operatorname{Li}_{w}$. Hence,

$$
\theta_{0} \mathrm{Li}_{x_{1}}=\mathrm{Li}_{0}, \theta_{0}^{2} \mathrm{Li}_{x_{1}}=\mathrm{Li}_{\pi_{Y}\left(x_{1}\right)}^{-}, \theta_{0}^{3} \mathrm{Li}_{x_{1}}=\mathrm{Li}_{\pi_{Y}\left(x_{0} x_{1}\right)}^{-} \quad \text { and } \quad \theta_{0}^{4} \mathrm{Li}_{x_{1}}=\mathrm{Li}_{\pi_{Y}\left(x_{0}^{2} x_{1}\right)}^{-}
$$

- $\theta_{0} \mathrm{Li}_{x_{1}^{2}}=\mathrm{Li}_{0} \mathrm{Li}_{x_{1}}, \theta_{0}^{2} \mathrm{Li}_{x_{1}^{2}}=\mathrm{Li}_{\pi_{Y}\left(x_{1}\right)}^{-} \mathrm{Li}_{x_{1}}+\mathrm{Li}_{0}^{2}, \theta_{0}^{3} \mathrm{Li}_{x_{1}^{2}}=\mathrm{Li}_{\pi_{Y}\left(x_{0} x_{1}\right)}^{-} \mathrm{Li}_{x_{1}}+3 \mathrm{Li}_{\pi_{Y}\left(x_{1}\right)}^{-} \mathrm{Li}_{0}$ because

$$
\forall k>1, \quad \theta_{0}^{k} \mathrm{Li}_{x_{1}^{2}}=\sum_{j=0}^{k-1}\binom{k-1}{j} \mathrm{Li}_{-j} \mathrm{Li}_{2+j-k}
$$

The noncommutative generating series L satisfies the differential equation

$$
\begin{equation*}
d \mathrm{~L}=\left(x_{0} \omega_{0}+x_{1} \omega_{1}\right) \mathrm{L} \tag{16}
\end{equation*}
$$

with boundary condition

$$
\begin{equation*}
\mathrm{L}(z) \widetilde{z \rightarrow 0} \exp \left(x_{0} \log z\right) \quad \text { and } \quad \mathrm{L}(z) \widetilde{z \rightarrow 1} \exp \left(-x_{1} \log (1-z)\right) Z_{\amalg} \tag{17}
\end{equation*}
$$

This implies that L is the exponential of a Lie series [39, 36]. Hence [42],

$$
\log \mathrm{L}=\sum_{k \geq 1} \frac{(-1)^{k-1}}{k} \sum_{u_{1}, \ldots, u_{k} \in X^{+}} \operatorname{Li}_{u_{1} \amalg \ldots \sqcup u_{k}} u_{1} \ldots u_{k}=\sum_{w \in X^{*}} \operatorname{Li}_{w} \pi_{1}(w)
$$

Theorem 6 ([42]).

1. Let G, H be exponential solutions of (16). Then there exists a constant Lie series C such that $G=H e^{C}$.
2. Let $\mathrm{Gal}_{\mathbb{C}}(D E)$ be the differential Galois group associated to the Drinfel'd equation. Then $\operatorname{Gal}_{\mathbb{C}}(D E)=\left\{e^{C} \mid C \in \mathscr{L} e_{\mathbb{C}}\langle\langle X\rangle\rangle\right\}$ and it contains the monodromy group defined by $\mathscr{M}_{0} \mathrm{~L}=\mathrm{Lexp}\left(2 \mathrm{i} \pi \mathfrak{m}_{0}\right)$ and $\mathscr{M}_{1} \mathrm{~L}=\mathrm{L} Z_{\amalg}^{-1} \exp \left(-2 \mathrm{i} \pi x_{1}\right) Z_{\amalg}=$ $\operatorname{Lexp}\left(2 \mathrm{i} \pi \mathfrak{m}_{1}\right)$, where $\mathfrak{m}_{0}=x_{0}, \mathfrak{m}_{1}=\prod_{l \in \mathscr{L} y n X-X} \exp \left(-\zeta\left(S_{l}\right) \operatorname{ad}_{P_{l}}\right)\left(-x_{1}\right)$.

Then let us put ${ }^{21} \Lambda:=\pi_{Y} \mathrm{~L}$ and [43]

[^9]\[

$$
\begin{align*}
& \operatorname{Mono}(z):=e^{-\left(x_{1}+1\right) \log (1-z)}=\sum_{k \geq 0} \mathrm{P}_{y_{1}^{k}}(z) y_{1}^{k} \tag{18}\\
& \text { Const }:=\sum_{k \geq 0} \mathrm{H}_{y_{1}^{k}} y_{1}^{k}=\exp \left(-\sum_{k \geq 1} \mathrm{H}_{y_{k}} \frac{\left(-y_{1}\right)^{k}}{k}\right), \tag{19}\\
& B\left(y_{1}\right):=\exp \left(\sum_{k \geq 1} \zeta\left(y_{k}\right) \frac{\left(-y_{1}\right)^{k}}{k}\right), \tag{20}
\end{align*}
$$
\]

and finally, $B^{\prime}\left(y_{1}\right):=\exp \left(\gamma_{y_{1}}\right) B\left(y_{1}\right)$. Hence, we get $\pi_{Y} \mathrm{P}(z) \widetilde{z \rightarrow 1} \operatorname{Mono}(z) \pi_{Y} Z_{\amalg}$ and $\mathrm{H}(N) \widetilde{N \rightarrow+\infty} \underset{ }{ } \operatorname{Const}(N) \pi_{Y} Z_{\amalg}$ as a consequence of (18)-(19). Or equivalently,
Theorem 7 (First global renormalizations of divergent polyzetas, [43]).

$$
\lim _{z \rightarrow 1} \exp \left(-y_{1} \log \frac{1}{1-z}\right) \Lambda(z)=\lim _{N \rightarrow+\infty} \exp \left(\sum_{k \geq 1} \mathrm{H}_{y_{k}}(N) \frac{\left(-y_{1}\right)^{k}}{k}\right) \mathrm{H}(N)=\pi_{Y} Z_{\amalg} .
$$

Theorem 8 ([19]). For any $g \in \mathscr{C}\left\{\mathrm{P}_{w}\right\}_{w \in Y^{*}}$, there exist algorithmically computable coefficients $c_{j}, b_{i} \in \mathbb{C}, \alpha_{j}, \eta_{i} \in \mathbb{Z}, \beta_{j}, \kappa_{i} \in \mathbb{N}$ such that

$$
g(z) \underset{z \rightarrow 1}{ } \sum_{j=0}^{+\infty} c_{j}(1-z)^{\alpha_{j}} \log ^{\beta_{j}}(1-z),\left\langle g(z) \mid z^{n}\right\rangle \widetilde{N \rightarrow+\infty} \sum_{i=0}^{+\infty} b_{i} n^{\eta_{i}} \log ^{\kappa_{i}}(n)
$$

Theorem 8 means also that the $\left\{\mathrm{P}_{w}\right\}_{w \in Y^{*}}$ admit a full singular expansion, at 1, and then their ordinary Taylor coefficients, $\left\{\mathrm{H}_{w}\right\}_{w \in Y^{*}}$ admit a full asymptotic expansion, for $+\infty$. More precisely,

Corollary 1. For any $w \in X^{*}$ and for any $k, i, j \in \mathbb{N}, k \geq 1$, there exists uniquely determined coefficients $a_{i}, b_{i, j}$ belonging to $\mathscr{Z} ; \gamma_{\pi_{Y}(w)}, \alpha_{i}$ and $\beta_{i, j}$ belonging to the $\mathbb{Q}[\gamma]$-algebra generated by convergent polyzetas such that,

$$
\begin{equation*}
\operatorname{Li}_{w}(z)=\sum_{i=1}^{|w|} a_{i} \log ^{i}(1-z)+\left\langle Z_{\amalg} \mid w\right\rangle+\sum_{j=1}^{k} \sum_{i=0}^{|w|-1} b_{i, j} \frac{\log ^{i}(1-z)}{(1-z)^{-j}}+\mathbf{o}_{k}^{(1)}\left((1-z)^{k}\right) \tag{21}
\end{equation*}
$$

and, likely

$$
\begin{equation*}
\mathrm{H}_{\pi_{Y}(w)}(N)=\sum_{i=1}^{|w|} \alpha_{i} \log ^{i}(N)+\gamma_{\pi_{Y}(w)}+\sum_{j=1}^{k} \sum_{i=0}^{|w|-1} \beta_{i, j} \frac{1}{N^{j}} \log ^{i}(N)+\mathrm{o}_{k}^{(+\infty)}\left(N^{-k}\right) . \tag{22}
\end{equation*}
$$

Remark 2. i) The two expansions (21) and (22) are asymptotic expansions of $L i_{w}$ and H_{w} with respect to the scales $(1-z)^{n} \log (1-z)^{m} ; n, m \geq 0$ and $N^{-k} \log (N)^{m} ; k, m \geq$ 0 respectively.
ii) In (eq. 21), the error term $\mathrm{o}_{k}^{(1)}\left((1-z)^{k}\right)$ can be put to the form $\mathrm{O}_{k}^{(1)}\left((1-z)^{k+\varepsilon}\right)$ for any $\varepsilon \in] 0,1[$.

More generally, by Theorem 6, we get

Proposition 9. For any commutative \mathbb{Q}-algebra A and for any Lie series $C \in$ \mathscr{L} ie $_{A}\langle X\rangle$, we set $\overline{\mathrm{L}}=\mathrm{L} e^{C}, \bar{\Lambda}=\pi_{Y} \overline{\mathrm{~L}}$ and $\overline{\mathrm{P}}(z)=(1-z)^{-1} \bar{\Lambda}(z)$, then

1. $\bar{Z}_{\amalg}=Z_{\amalg} e^{C}$ is group-like, for the co-product Δ_{\amalg},
2. $\overline{\mathrm{L}}(z) \underset{z \rightarrow 1}{ } \exp \left(-x_{1} \log (1-z)\right) \bar{Z}_{\amalg}$,
3. $\overline{\mathrm{P}}(z) \underset{z \rightarrow 1}{\widetilde{ }} \operatorname{Mono}(z) \pi_{Y} \bar{Z}_{\uplus}$,
4. $\overline{\mathrm{H}}(N) \widetilde{N \rightarrow \infty} \underset{ }{ } \operatorname{Const}(N) \pi_{Y} \bar{Z}_{Ш}$,
where, for any $w \in Y^{*}$ and $N \geq 0$, one defines the coefficient $\langle\overline{\mathrm{H}}(N) \mid w\rangle$ of w in the power series $\overline{\mathrm{H}}(N)$ as the coefficient $\left\langle\overline{\mathrm{P}}_{w}(z) \mid z^{N}\right\rangle$ of z^{N} in the ordinary Taylor expansion of the polylogarithmic function $\overline{\mathrm{P}}_{w}(z)$.

By Proposition 9, we get successively
Proposition 10 ([37]). Let $\bar{\zeta}_{\amalg}$ and $\bar{\zeta}_{+ \pm}$be the characters of respectively $(A\langle X\rangle, ш)$ and $(A\langle Y\rangle, \pm)$ satisfying $\bar{\zeta}_{\amalg}\left(x_{0}\right)=\bar{\zeta}_{\amalg}\left(x_{1}\right)=0$ and $\bar{\zeta}_{ \pm}\left(y_{1}\right)=0$. Then

$$
\begin{aligned}
\sum_{w \in Y^{*}} \bar{\zeta}_{\amalg}(w) w=\bar{Z}_{\uplus} & =\prod_{l \in \mathscr{L} y n X-X}^{\forall} \exp \left(\bar{\zeta}\left(S_{l}\right) P_{l}\right), \\
\sum_{w \in Y^{*}} \bar{\zeta}_{ \pm+}(w) w=\bar{Z}_{\uplus+} & =\prod_{l \in \mathscr{L} y n Y-\left\{y_{1}\right\}}^{\forall} \exp \left(\bar{\zeta}\left(\Sigma_{l}\right) \Pi_{l}\right) .
\end{aligned}
$$

Proposition 11. Let $\left\{\bar{\gamma}_{w}\right\}_{w \in Y^{*}}$ be the Euler-Mac Laurin constants associated to $\left\{\overline{\mathrm{H}}_{w}(N)\right\}_{w \in Y^{*}}$. Let $\overline{\mathrm{Z}}_{\gamma}$ be the noncommutative generating series of these constants. Then,

1. The following map realizes a character :

$$
\bar{\gamma}_{\bullet}:(A\langle Y\rangle, \amalg) \longrightarrow(\mathbb{R}, .), w \longmapsto\left\langle\bar{\gamma}_{\bullet} \mid w\right\rangle=\bar{\gamma}_{w} .
$$

2. The noncommutative power series \bar{Z}_{γ} is group-like, for $\Delta_{ \pm+1}$.
3. There exists a group-like element $\bar{Z}_{ \pm \pm}$, for the co-product $\Delta_{ \pm \pm}$, such that

$$
\bar{Z}_{\gamma}=\sum_{w \in Y^{*}} \bar{\gamma}_{w} w=\exp \left(\gamma y_{1}\right) \bar{Z}_{t+}
$$

By Theorem 7, Propositions 9 and 11, we also get
Proposition 12. For any $C \in \mathscr{L}$ ie $e_{A}\langle X\rangle$ such that $\bar{Z}_{\amalg}=Z_{\amalg} e^{C}$. Then

$$
\bar{Z}_{\gamma}=B\left(y_{1}\right) \pi_{Y} \bar{Z}_{\amalg}, \text { or equivalently by cancellation, } \bar{Z}_{\amalg \pm}=B^{\prime}\left(y_{1}\right) \pi_{Y} \bar{Z}_{\amalg},
$$

where $B\left(y_{1}\right)$ and $B^{\prime}\left(y_{1}\right)$ are given in (20).
By Proposition 9, the noncommutative generating series \bar{Z}_{\amalg} and $\bar{Z}_{ \pm \pm}$are grouplike, for the co-product Δ_{\amalg} and $\Delta_{ \pm+}$respectively, and we also have

$$
\begin{aligned}
\bar{Z}_{\uplus} & =\sum_{l \in \mathscr{L} y n X-X} \bar{\zeta}\left(S_{l}\right) P_{l}+\sum_{w \notin \mathscr{L} y n X-X} \bar{\zeta}_{\amalg}\left(S_{w}\right) P_{w}, \\
\bar{Z}_{\amalg \pm} & =\sum_{l \in \mathscr{L} y n Y-\left\{y_{1}\right\}} \bar{\zeta}\left(\Sigma_{l}\right) \Pi_{l}+\sum_{w \notin \mathscr{L} y n Y-\left\{y_{1}\right\}} \bar{\zeta}_{ \pm}\left(\Sigma_{w}\right) \Pi_{w} .
\end{aligned}
$$

Hence, by Proposition 12, we deduce in particular,

$$
\sum_{l \in \mathscr{L} y n Y-\left\{y_{1}\right\}} \bar{\zeta}\left(\Sigma_{l}\right) \Pi_{l}+\ldots=B^{\prime}\left(y_{1}\right)\left(\sum_{l \in \mathscr{L} y n X-X} \bar{\zeta}\left(\pi_{Y} S_{l}\right) \pi_{Y} P_{l}+\ldots\right)
$$

The elements of $\left\{\pi_{Y} P_{l}\right\}_{l \in \mathscr{L}} y_{\text {ynX }}$ are decomposable in the linear basis $\left\{\Pi_{w}\right\}_{w \in Y^{*}}$ of $\mathscr{U}\left(\operatorname{Prim}\left(\mathscr{H}_{ \pm}\right)\right)$. Thus, by identification of local coordinates, i.e. the coefficients of $\left\{\Pi_{l}\right\}_{l \in \mathscr{L} y n Y-\left\{y_{1}\right\}}$ in the basis $\left\{\Sigma_{l}\right\}_{l \in \mathscr{L}}$ yn $Y-\left\{y_{1}\right\}$, we get homogenous polynomial relations on polyzetas encoded by $\left\{\Sigma_{l}\right\}_{l \in \mathscr{L}}$ yn $Y-\left\{y_{1}\right\}$ [44].
Proposition 13. There exist A, B and $C \in \mathbb{Q}\left\langle Y_{0}\right\rangle$ such that

$$
\mathrm{L}^{-}(z)_{z \rightarrow 1} A \odot g\left(\frac{1}{1-z}\right), \mathrm{P}^{-}(z)_{z \rightarrow 1} B \odot \frac{1}{1-z} g\left(\frac{1}{1-z}\right), \mathrm{H}^{-}(N)_{N \rightarrow+\infty} C \odot g(N)
$$

where the series g, h were defined in the definition 5 .
Proof. By Propositions 5, for $w=y_{s_{1}} \ldots y_{s_{r}}$, there exists $a, b, c \in \mathbb{Q}$ such that

$$
\operatorname{Li}_{w}^{-}(z) \widetilde{z \rightarrow 1} \frac{a}{(1-z)^{|w|+(w)}}, \mathrm{P}_{w}^{-}(z) \widetilde{z \rightarrow 1} \frac{b}{(1-z)^{|w|+(w)+1}}, \mathrm{H}_{w}^{-}(N)_{N \rightarrow+\infty} c N^{|w|+(w)}
$$

Putting $\langle A \mid w\rangle=(-1)^{|w|} a,\langle B \mid w\rangle=(-1)^{|w|} b,\langle C \mid w\rangle=(-1)^{|w|} c$, it follows the expected results.

Proposition 14. [16] For any $w \in Y_{0}^{*}$, there are non-zero constants, namely C_{w}^{-}and B_{w}^{-}, which only depend on w and r such that

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{\mathrm{H}_{w}^{-}(N)}{N^{(w)+|w|} C_{w}^{-}}=1 \text {, i.e. } \mathrm{H}_{w}^{-}(N) \widetilde{N \rightarrow+\infty} \\
& N^{(w)+|w|} C_{w}^{-}, \\
& \lim _{z \rightarrow 1^{-}} \frac{(1-z)^{(w)+|w|} \mathrm{Li}_{w}^{-}(z)}{B_{w}^{-}}=1 \text {, i.e. } \mathrm{Li}_{w}^{-}(z) \widetilde{z \rightarrow 1} \frac{N^{(w)+|w|} B_{w}^{-}}{(1-z)^{n+1}} .
\end{aligned}
$$

Moreover, C_{w}^{-}and B_{w}^{-}are well determined by

$$
C_{w}^{-}=\prod_{w=u v ; v \neq 1_{Y_{0}^{*}}} \frac{1}{(v)+|v|} \in \mathbb{Q} \text { and } B_{w}^{-}=((w)+|w|)!C_{w}^{-} \in \mathbb{N} .
$$

Example 14. [16][of C_{w}^{-}and $\left.B_{w}^{-}\right]$

w	C_{w}^{-}	B_{w}^{-}	w	C_{w}^{-}	B_{w}^{-}
y_{0}	1	1	$y_{1} y_{2}$	$1 / 15$	8
y_{1}	$1 / 2$	1	$y_{2} y_{3}$	$1 / 28$	180
y_{2}	$1 / 3$	2	$y_{3} y_{4}$	$1 / 49$	8064
y_{n}	$1 /(n+1)$	$n!$	$y_{m} y_{n}$	$1 /[(n+1)(m+n+2)]$	$n!m!\binom{m+n+1}{n+1}$
y_{0}^{2}	$1 / 2$	1	$y_{2} y_{2} y_{3}$	$1 / 280$	12960
y_{0}^{n}	$1 /(n!)$	1	$y_{2} y_{10} y_{1}^{2}$	$1 / 2160$	9686476800
y_{1}^{2}	$1 / 8$	3	$y_{2}^{2} y_{4} y_{3} y_{11}$	$1 / 2612736$	4167611825465088000000

Proposition 15. [16] Let $u, v \in Y_{0}^{*}$. We get $\mathrm{H}_{u}^{-} \mathrm{H}_{v}^{-}=\mathrm{H}_{u}^{-} \pm v$.
Proof. Let $w \in Y_{0}^{*}$ associated to $s=\left(s_{1}, \ldots, s_{k}\right)$. The quasi-symmetric monomial functions on the commutative alphabet $t=\left\{t_{i}\right\}_{i \geq 1}$ are defined as follows

$$
M_{1_{Y_{0}^{*}}^{*}}(t)=1 \text { and } M_{w}(t)=\sum_{n_{1}>\ldots>n_{k}>0} t_{n_{1}}^{s_{1}} \ldots t_{n_{k}}^{s_{k}},
$$

For any $u, v \in Y_{0}^{*}$, we have $M_{u}(t) M_{v}(t)=M_{u \pm v}(t)$. Then, the harmonic sum $\mathrm{H}_{s_{1}, \ldots, s_{k}}^{-}(N)$ is obtained by specializing the indeterminates $t=\left\{t_{i}\right\}_{i \geq 1}$ from $M_{w}(t)$ as follows: $t_{i}=i$ for $1 \leq i \leq N$ and $t_{i}=0$ for $N<i$.

Theorem 9 (Second global renormalizations of divergent polyzetas).

1. The generating series H^{-}is group-like and $\log \mathrm{H}^{-}$is primitive. Moreover ${ }^{22}$,

$$
\lim _{N \rightarrow+\infty} g^{\odot-1}(N) \odot \mathrm{H}^{-}(N)=\lim _{z \rightarrow 1} h^{\odot-1}\left((1-z)^{-1}\right) \odot \mathrm{L}^{-}(z)=C^{-} .
$$

2. $\operatorname{kerH}_{\bullet}^{-}$is a prime ideal of $\left(\mathbb{Q}\left\langle Y_{0}\right\rangle, \pm+\right.$, i.e. $\mathbb{Q}\left\langle Y_{0}\right\rangle \backslash \operatorname{kerH}_{\bullet}^{-}$is closed by \pm.

Proof. The first result is a consequence of the extended Friedrichs criterion [6, 44, 45] and the second is a consequence of Proposition 13.

Definition 6. For any $n \in \mathbb{N}_{+}$, let $\mathbb{P}_{n}:=\operatorname{span}_{\mathbb{R}_{+}}\left\{w \in Y_{0}^{*}|(w)+|w|=n\} \backslash\{0\}\right.$ be the blunt ${ }^{23}$ convex cone generated by the set $\left\{w \in Y_{0}^{*}|(w)+|w|=n\}\right.$.

By definition, C_{\bullet}^{-}is linear on the set \mathbb{P}_{n}. For any $u, v \in Y_{0}^{*}$, one has $u \pm v=$ $u ш v+\sum_{|w|<|u|+|v|} x_{w} w$ and the x_{w} 's are positive. Moreover, for any w which belongs $(w)=(u)+(v)$
to the support of $\sum_{\substack{|w|<|u|+|v| \\(w)=(u)+(v)}} x_{w} w$, one has $(w)+|w|<(u)+(v)+|u|+|v|$, thus, by the definition of C_{\bullet}^{-}, one obtains

Corollary 2. 1. Let $w, v \in Y_{0}^{*}$. Then $C_{w}^{-} C_{v}^{-}=C_{w 山 v}^{-}=C_{w+\downarrow v}^{-}$.
2. For any $P, Q \notin \operatorname{kerH}_{\bullet}^{-}, C_{P}^{-} C_{Q}^{-}=C_{P \pm Q}^{-}$and $\mathbb{Q}\left\langle Y_{0}\right\rangle \backslash \operatorname{kerH}_{\bullet}^{-}$is a \pm- multiplicative monoid containing Y_{0}^{*}.
Now, let us prove that C_{\bullet}^{-}can be extended as a character, for $ш$, or equivalently, C^{-}is group-like (see the Freidrichs' criterion [51]) and then $\log C^{-}$is primitive.

[^10]Lemma 2. Let \mathscr{A} be an unitary \mathbb{R}-associative algebra and $f: \sqcup_{n \geq 0} \mathbb{P}_{n} \longrightarrow \mathscr{A}$ such that

1. For any $u, v \in Y_{0}^{*}, f(u ш v)=f(u) f(v)$. In particular, $f\left(1_{Y_{0}^{*}}\right)=1_{\mathscr{A}}$.
2. On every \mathbb{P}_{n}, one has $f\left(\sum_{i \in I} \alpha_{i} w_{i}\right)=\sum_{i \in I} \alpha_{i} f\left(w_{i}\right)$, where $\alpha_{i} \in \mathbb{R}_{+}^{*}$.

Then f can be extended uniquely as a character, i.e. $S_{f}=\sum_{w \in Y_{0}^{*}} f(w) w$ is group-like for Δ_{\amalg}.
Proof. By definition of f and S_{f}, it is immediate $\left\langle S_{f} \mid 1_{Y_{0}^{*}}\right\rangle=1_{\mathscr{A}}$. One can check easily that $\Delta_{\amalg}\left(S_{f}\right)=S_{f} \otimes S_{f}$. Hence, S_{f} is group-like, for Δ_{\uplus}.
Corollary 3. The noncommutative generating series C^{-}is group-like, for Δ_{\amalg}.
Proof. It is a consequence of Lemma 2 and Corollary 2.
Example 15. [16][of $C_{u \amalg v}^{-}$and $C_{u \uplus \pm v}^{-}$] Let $Y_{0}=\left\{y_{i}\right\}_{i \geq 0}$ be an infinite alphabet.

u	C_{u}^{-}	v	C_{v}^{-}	u ш v	$C_{u \amalg v}^{-}$
y_{0}	1	y_{0}	1	$2 y_{0}^{2}$	1
y_{0}^{2}	$1 / 2$				
y_{1}	$1 / 2$	y_{2}	$1 / 3$	$y_{1} y_{2}+y_{2} y_{1}$	$1 / 6$
$y_{1} y_{2}$	$1 / 15$	$y_{2} y_{1}$	$1 / 10$		
y_{m}	$(m+1)^{-1}$	y_{n}	$(n+1)^{-1}$	$y_{m} y_{n}+y_{n} y_{m}$	$[(m+1)(n+1)]^{-1}$
$y_{m} y_{n}$	$\frac{(n+1)^{-1}}{(n+m+2)}$	$y_{n} y_{m}$	$\frac{(m+1)^{-1}}{(m+n+2)}$		
y_{1}	$1 / 2$	$y_{2} y_{5}$	$1 / 54$	$y_{1} y_{2} y_{5}+y_{2} y_{1} y_{5}+y_{2} y_{5} y_{1}$	$1 / 108$
$y_{1} y_{2} y_{5}$	$1 / 594$	$y_{2} y_{1} y_{5}$	$1 / 528$		
$y_{2} y_{5} y_{1}$	$1 / 176$				
$y_{0} y_{1}$	$1 / 6$	$y_{2} y_{3}$	$1 / 28$	$y_{0} y_{1} y_{2} y_{3}+y_{0} y_{2} y_{1} y_{3}$ $+y_{0} y_{2} y_{3} y_{1}+y_{2} y_{3} y_{0} y_{1}$ $+y_{2} y_{0} y_{1} y_{3}+y_{2} y_{0} y_{3} y_{1}$	
$y_{0} y_{1} y_{2} y_{3}$	$1 / 2520$	$y_{0} y_{2} y_{1} y_{3}$	$1 / 2160$		$1 / 168$
$y_{0} y_{2} y_{3} y_{1}$	$1 / 1080$	$y_{2} y_{3} y_{0} y_{1}$	$1 / 420$		
$y_{2} y_{0} y_{1} y_{3}$	$1 / 1680$	$y_{2} y_{0} y_{3} y_{1}$	$1 / 840$		
$y_{a} y_{b}$	$\frac{(b+1)^{-1}}{(a+b+2)}$	$y_{c} y_{d}$	$\frac{(d+1)^{-1}}{(c+d+2)}$	$y_{a} y_{b} y_{c} y_{d}+y_{a} y_{c} y_{b} y_{d}$ $+y_{a} y_{c} y_{d} y_{b}+y_{c} y_{d} y_{a} y_{b}$ $+y_{c} y_{a} y_{b} y_{d}+y_{c} y_{a} y_{d} y_{b}$	$\frac{(b+1)^{-1}(d+1)^{-1}}{(a+b+2)(c+d+2)}$

u	C_{u}^{-}	v	C_{v}^{-}	u L ${ }^{\text {v }}$	C_{u}^{-}し ${ }^{\text {v }}$
y_{0}	1	y_{0}	1	$2 y_{0}^{2}+y_{0}$	1
y_{1}	1/2	y_{2}	1/3	$y_{1} y_{2}+y_{2} y_{1}+y_{3}$	1/6
y_{m}	$(m+1)^{-1}$	y_{n}	$(n+1)^{-1}$	$y_{m} y_{n}+y_{n} y_{m}+y_{n+m}$	$[(m+1)(n+1)]^{-1}$
y_{1}	1/2	$y_{2} y_{5}$	1/54	$\begin{gathered} y_{1} y_{2} y_{5}+y_{2} y_{1} y_{5}+y_{2} y_{5} y_{1} \\ +y_{3} y_{5}+y_{2} y_{6} \\ \hline \end{gathered}$	1/108
$y_{0} y_{1}$	1/6	$y_{2} y_{3}$	1/28	$\begin{gathered} y_{0} y_{1} y_{2} y_{3}+y_{0} y_{2} y_{1} y_{3} \\ +y_{0} y_{2} y_{3} y_{1}+y_{2} y_{3} y_{0} y_{1} \\ +y_{2} y_{0} y_{1} y_{3}+y_{2} y_{0} y_{3} y_{1}+y_{0} y_{2} y_{4} \\ +y_{0} y_{3}^{2}+y_{2} y_{3} y_{1}+y_{2} y_{1} y_{3} \\ +y_{2} y_{0} y_{4}+y_{2} y_{3} y_{1}+y_{2} y_{4} \end{gathered}$	1/168
$y_{a} y_{b}$	$\frac{(b+1)^{-1}}{(a+b+2)}$	$y_{c} y_{d}$	$\frac{(d+1)^{-1}}{(c+d+2)}$	$\begin{gathered} y_{a} y_{b} y_{c} y_{d}+y_{a} y_{c} y_{b} y_{d} \\ +y_{a} y_{c} y_{d} y_{b}+y_{c} y_{d} y_{a} y_{b}+y_{c} y_{a} y_{b} y_{d} \\ +y_{c} y_{a} y_{d} y_{b}+y_{a} y_{c} y_{b+d}+y_{a} y_{b+c} y_{d} \\ +y_{c} y_{a} y_{b+d}+y_{c} y_{a+d} y_{b} \\ +y_{a+c} y_{b} y_{d}+y_{a+c} y_{d} y_{b}+y_{a+c} y_{b+d} \end{gathered}$	$\frac{(b+1)^{-1}(d+1)^{-1}}{(a+b+2)(c+d+2)}$

In the above tables, it is clearly seen that C_{\bullet}^{-}is linear on \mathbb{P}_{n}. For example, let $u=y_{1}$ and $v=$ $y_{2} y_{5}$. Then u Шv $=y_{1} y_{2} y_{5}+y_{2} y_{1} y_{5}+y_{2} y_{5} y_{1}$. Hence, we get $C_{y_{1} y_{2} y_{5}}^{-}+C_{y_{2} y_{1} y_{5}}^{-}+C_{y_{2} y_{5} y_{1}}^{-}=\frac{1}{594}+$ $\frac{1}{528}+\frac{1}{176}=\frac{1}{108}=C_{y_{1}}^{-} C_{y_{2} y_{5}}^{-}=C_{y_{1} \amalg y_{2} y_{5}}^{-}$. Note that $y_{1} y_{2} y_{5}, y_{2} y_{1} y_{5}, y_{2} y_{5} y_{1} \in \mathbb{P}_{11}$. But we have also $u \downarrow v=y_{1} y_{2} y_{5}+y_{2} y_{1} y_{5}+y_{2} y_{5} y_{1}+y_{3} y_{5}+y_{2} y_{6}$. Moreover, $C_{y_{1} y_{2} y_{5}}^{-}+C_{y_{2} y_{1} y_{5}}^{-}+C_{y_{2} y_{5} y_{1}}^{-}+C_{y_{3} y_{5}}^{-}+$ $C_{y_{2} y_{6}}^{-}=\frac{1}{108}+\frac{13}{420} \neq \frac{1}{108}=C_{y_{1}}^{-} C_{y_{2} y_{5}}^{-}$. However, from $y_{3} y_{5}, y_{2} y_{6} \in \mathbb{P}_{10}$, we can conclude that

$$
C_{y_{1}}^{-} \downarrow y_{2} y_{5}=C_{y_{1} y_{2} y_{5}+y_{2} y_{1} y_{5}+y_{2} y_{5} y_{1}+y_{3} y_{5}+y_{2} y_{6}}^{-}=C_{y_{1} y_{2} y_{5}+y_{2} y_{1} y_{5}+y_{2} y_{5} y_{1}}^{-}=1 / 108=C_{y_{1}}^{-} C_{y_{2} y_{5}}^{-} .
$$

3 Polysystems and differential realization

3.1 Polysystems and convergence criterion

3.1.1 Estimates (from above) for series

Here, $(\mathbb{K},\|\|$.$) is a normed space.$
Definition 7. ([29, 43]) Let ξ, χ be real positive functions over X^{*}. Let $S \in \mathbb{K}\langle\langle X\rangle\rangle$.

1. S will be said ξ - exponentially bounded from above if it satisfies

$$
\exists K \in \mathbb{R}_{+}, \exists n \in \mathbb{N}, \forall w \in X^{\geq n}, \quad\|\langle S \mid w\rangle\| \leq K \xi(w) /|w|!
$$

We denote by $\mathbb{K}^{\xi-\mathrm{em}}\langle\langle X\rangle\rangle$ the set of formal power series in $\mathbb{K}\langle\langle X\rangle\rangle$ which are $\xi-$ exponentially bounded from above.
2. S satisfies the χ-growth condition if it satisfies

$$
\exists K \in \mathbb{R}_{+}, \exists n \in \mathbb{N}, \forall w \in X^{\geq n}, \quad\|\langle S \mid w\rangle\| \leq K \chi(w)|w|!
$$

We denote by $\mathbb{K}^{\chi-\mathrm{gc}}\langle\langle X\rangle\rangle$ the set of formal power series in $\mathbb{K}\langle\langle X\rangle\rangle$ satisfying the χ-growth condition.

Lemma 3. If $R=\sum_{w \in X^{*}}|w|$! w then $\left\langle R^{\amalg 2} \mid w\right\rangle=\sum_{\substack{u, v \in X^{*} \\ \operatorname{supp}(u \sqcup v) \ni w}}|u|!|v|!\leq 2^{|w|}|w|$!.
Proof. One has

$$
\sum_{\substack{u, v \in X^{*} \\ \operatorname{supp}(u \amalg v) \ni w}}|u|!|v|!=\sum_{k=0}^{|w|} \sum_{\substack{|w|=k,|v|=|w|-k \\ \operatorname{supp}(u \sqcup v) \ni w}} k!(|w|-k)!=\sum_{k=0}^{|w|}\binom{|w|}{k} k!(|w|-k)!=\sum_{k=0}^{|w|}|w|!.
$$

The last sum is equal to $(1+|w|)|w|$!. By induction on $|w|$, one has $1+|w| \leq 2^{|w|}$. Then the expected result follows.

Proposition 16. If S_{1}, S_{2} satisfy the growth condition then $S_{1}+S_{2}, S_{1} \sqcup S_{2}$ do also.

Proof. It is immediate for $S_{1}+S_{2}$. Next, since $\left\|\left\langle S_{i} \mid w\right\rangle\right\| \leq K_{i} \chi_{i}(w)|w|$! then

$$
\begin{aligned}
\left\langle S_{1} \amalg S_{2} \mid w\right\rangle & =\sum_{\operatorname{supp}(u \amalg v) \ni w}\left\langle S_{1} \mid u\right\rangle\left\langle S_{2} \mid v\right\rangle, \\
\Rightarrow \quad\left\|\left\langle S_{1} \amalg S_{2} \mid w\right\rangle\right\| & \leq K_{1} K_{2} \sum_{\substack{u, v \in X^{*} \\
\text { supp }(u \amalg v) \ni}}\left(\chi_{1}(u)|u|!\right)\left(\chi_{2}(v)|v|!\right) .
\end{aligned}
$$

Let $K=K_{1} K_{2}$ and let χ be a real positive function over X^{*} such that, for any $w \in X^{*}$

$$
\chi(w)=\max \left\{\chi_{1}(u) \chi_{2}(v) \mid u, v \in X^{*} \text { and } \operatorname{supp}(u ш v) \ni w\right\}
$$

With the notations in Lemma 3, we get $\left\|\left\langle S_{1} ш S_{2} \mid w\right\rangle\right\| \leq K \chi(w)\left\langle S_{1} R^{\uplus 2} \mid w\right\rangle$. Hence, $S_{1} ш S_{2}$ satisfies the χ^{\prime}-growth condition with $\chi^{\prime}(w)=2{ }^{|w|} \chi(w)$.
Definition 8. ([29, 43]) Let ξ be a real positive function defined over X^{*}, S will be said ξ-exponentially continuous if it is continuous over \mathbb{K}^{ξ}-em $\langle\langle X\rangle\rangle$. The set of formal power series which are ξ-exponentially continuous is denoted by $\mathbb{K}^{\xi-e c}\langle\langle X\rangle\rangle$.

Lemma 4. [29, 43] For any real positive function ξ defined over X^{*}, we have $\mathbb{K}\langle X\rangle \subset \mathbb{K}^{\xi-e c}\langle\langle X\rangle\rangle$. Otherwise, for $\xi=0$, we get $\mathbb{K}\langle X\rangle=\mathbb{K}^{0-e c}\langle\langle X\rangle\rangle$. Hence, any polynomial is 0 -exponentially continuous.

Proposition 17 ([29, 43]). Let ξ, χ be real positive functions over X^{*} and $P \in \mathbb{K}\langle X\rangle$.

1. Let $S \in \mathbb{K}^{\xi-\mathrm{em}}\langle\langle X\rangle\rangle$. The right residual of S by P belongs to $\mathbb{K}^{\xi-\mathrm{em}}\langle\langle X\rangle\rangle$.
2. Let $R \in \mathbb{K}^{\chi-\mathrm{gc}}\langle\langle X\rangle\rangle$. The concatenation $S R$ belongs to $\mathbb{K}^{\chi-\mathrm{gc}}\langle\langle X\rangle\rangle$.
3. Moreover, if ξ and χ are morphisms over X^{*} satisfying $\sum_{x \in X} \chi(x) \xi(x)<1$ then, for any $F \in \mathbb{K}^{\chi-\mathrm{gc}}\langle\langle X\rangle\rangle, F$ is continuous over $\mathbb{K}^{\xi-\mathrm{em}}\langle\langle X\rangle\rangle$.
Proof. 1. Since $S \in \mathbb{K}^{\xi-\mathrm{em}}\langle\langle X\rangle\rangle$ then

$$
\exists K \in \mathbb{R}_{+}, \exists n \in \mathbb{N}, \forall w \in X^{\geq n}, \quad\|\langle S \mid w\rangle\| \leq K \xi(w) /|w|!.
$$

If $u \in \operatorname{supp}(P)$ then, for any $w \in X^{*}$, one has $\langle S \triangleright u \mid w\rangle=\langle S \mid u w\rangle$ and $S \triangleright u$ belongs to $\mathbb{K}^{\xi}-\mathrm{em}\langle\langle X\rangle\rangle$:

$$
\exists K \in \mathbb{R}_{+}, \exists n \in \mathbb{N}, \forall w \in X^{\geq n}, \quad\|\langle S \triangleright u \mid w\rangle\| \leq[K \xi(u)] \xi(w) /|w|!.
$$

It follows that $S \triangleright P$ is $\mathbb{K}^{\xi-\mathrm{em}}\langle\langle X\rangle\rangle$ by taking $K_{1}=K \max _{u \in \operatorname{supp}(P)} \xi(u)$.
2. Since $R \in \mathbb{K}^{\chi-\mathrm{gc}}\langle\langle X\rangle\rangle$ then

$$
\exists K \in \mathbb{R}_{+}, \exists n \in \mathbb{N}, \forall w \in X^{\geq n}, \quad\|\langle S \mid w\rangle\| \leq K \chi(w)|w|!
$$

Let $v \in \operatorname{supp}(P)$ such that $v \neq \varepsilon$. Since $R v$ belongs to $\mathbb{K}^{\chi-g c}\langle\langle X\rangle\rangle$ and one has, for $w \in X^{*},\langle R v \mid w\rangle=\langle R \mid v \triangleleft w\rangle$, i.e. there exists $K \in \mathbb{R}_{+}, n \in \mathbb{N}$ such that

$$
\|\langle R \mid v \triangleleft w\rangle\| \leq K \chi(v \triangleleft w)(|w|-|v|)!\leq K|w| \chi(w) / \chi(v) .
$$

Note if $v \triangleleft w=0$ then $\langle R v \mid w\rangle=0$ and the previous conclusion holds. It follows that $R P$ is $\mathbb{K}^{\chi-\mathrm{gc}}\langle\langle X\rangle\rangle$ by taking $K_{2}=K \min _{v \in \operatorname{supp}(P)} \chi(v)^{-1}$.
3. Let ξ, χ be functions which satisfy the upper bound condition. The following quantity is well defined

$$
\sum_{w \in X^{*}} \chi(w) \xi(w)=\left(\sum_{x \in X} \chi(x) \xi(x)\right)^{*}
$$

If $F \in \mathbb{K}^{\chi-\mathrm{gc}}\langle\langle X\rangle\rangle, C \in \mathbb{K}^{\xi-\mathrm{em}}\langle\langle X\rangle\rangle$ then there exist $K_{i} \in \mathbb{R}_{+}, n_{i} \in \mathbb{N}, i=1,2$ such that, for $w \in X^{\geq n_{i}},\|\langle F \mid w\rangle\| \leq K_{1} \chi(w)|w|$! and $\|\langle C \mid w\rangle\| \leq K_{2} \xi(w) /|w|$!. Thus,

$$
\begin{gathered}
\forall w \in X^{*},|w| \geq \max \left\{n_{1}, n_{2}\right\}, \quad\|\langle F \mid w\rangle\langle C \mid w\rangle\| \leq K_{1} K_{2} \chi(w) \xi(w) \\
\Rightarrow \quad \sum_{w \in X^{*}}\|\langle F \mid w\rangle\langle C \mid w\rangle\| \leq K_{1} K_{2} \sum_{w \in X^{*}} \chi(w) \xi(w)=K_{1} K_{2}\left(\sum_{x \in X} \chi(x) \xi(x)\right)^{*} .
\end{gathered}
$$

3.1.2 Upper bounds à la Cauchy

The algebra of formal power series on commutative indeterminates $\left\{q_{1}, \ldots, q_{n}\right\}$ with coefficients in \mathbb{C} is denoted by $\mathbb{C}\left[\llbracket q_{1}, \ldots, q_{n}\right]$.

Definition 9. ([29, 43]) Let $f=\in \mathbb{C}\left[\left[q_{1}, \ldots, q_{n}\right]\right]$. We set

$$
E(f):=\left\{\rho \in \mathbb{R}_{+}^{n}: \exists C_{f} \in \mathbb{R}_{+} \text {s.t. } \forall i_{1}, \ldots, i_{n} \geq 0,\left|f_{i_{1}, \ldots, i_{n}}\right| \rho_{1}^{i_{1}} \ldots \rho_{n}^{i_{n}} \leq C_{f}\right\}
$$

$\breve{E}(f)$: the interior of $E(f)$ in \mathbb{R}^{n}.
$\operatorname{CV}(f):=\left\{q \in \mathbb{C}^{n}:\left(\left|q_{1}\right|, \ldots,\left|q_{n}\right|\right) \in \breve{E}(f)\right\}: \quad$ the convergence domain of f.
f is convergent if $\mathrm{CV}(f) \neq \emptyset$. Let $\mathscr{U} \subset \mathbb{C}^{n}$ be an open domain and $q \in \mathbb{C}^{n}$. f is convergent on q (resp. over \mathscr{U}) if $q \in \mathrm{CV}(f)$ (resp. $\mathscr{U} \subset \mathrm{CV}(f)$). We set $\left.\mathbb{C}^{\mathrm{cv}}\left[\left[q_{1}, \ldots, q_{n}\right]\right]:=\left\{f \in \mathbb{C}\left[q_{1}, \ldots, q_{n}\right]\right]: \mathrm{CV}(f) \neq \emptyset\right\}$. Let $q \in \mathrm{CV}(f)$. There exist $C_{f} \in \mathbb{R}_{+}, \rho \in E(f), \bar{\rho} \in \breve{E}(f)$ such that $\left|q_{1}\right|<\bar{\rho}_{1}<\rho_{1}, \ldots,\left|q_{n}\right|<\bar{\rho}_{n}<\rho_{n}$ and $\left|f_{i_{1}, \ldots, i_{n}}\right| \rho_{1}^{i_{1}} \ldots \rho_{n}^{i_{n}} \leq C_{f}$, for $i_{1}, \ldots, i_{n} \geq 0$.

The convergence modulus of f at q is $\left(C_{f}, \rho, \bar{\rho}\right)$.
Suppose $\mathrm{CV}(f) \neq \emptyset$ and let $q \in \operatorname{CV}(f)$. If $\left(C_{f}, \rho, \bar{\rho}\right)$ is a convergence modulus of f at q then $\left|f_{i_{1}, \ldots, i_{n}} q_{1}^{i_{1}} \ldots q_{n}^{i_{n}}\right| \leq C_{f}\left(\bar{\rho}_{1} / \rho_{1}\right)^{i_{1}} \ldots\left(\bar{\rho}_{1} / \rho_{1}\right)^{i_{n}}$. Hence, at q, f is majored termwise by $C_{f} \prod_{k=0}^{m}\left(1-\bar{\rho}_{k} / \rho_{k}\right)^{-1}$ and it is uniformly absolutely convergent in $\left\{q \in \mathbb{C}^{n}:\left|q_{1}\right|<\bar{\rho}, \ldots,\left|q_{n}\right|<\bar{\rho}\right\}$ which is open in \mathbb{C}^{n}. Thus, $\mathrm{CV}(f)$ is open in \mathbb{C}^{n}. Since the partial derivation $D_{1}^{j_{1}} \ldots D_{n}^{j_{n}} f$ is estimated by

$$
\left\|D_{1}^{j_{1}} \ldots D_{n}^{j_{n}} f\right\| \leq C_{f} \frac{\partial^{j_{1}+\ldots+j_{n}}}{\partial^{j_{1}} \bar{\rho}_{1} \ldots \partial^{j_{n}} \bar{\rho}_{n}} \prod_{k=0}^{m}\left(1-\frac{\bar{\rho}_{k}}{\rho_{k}}\right)^{-1}
$$

Proposition 18. ([29]) We have $\mathrm{CV}(f) \subset \mathrm{CV}\left(D_{1}^{j_{1}} \ldots D_{n}^{j_{n}} f\right)$.
Let $f \in \mathbb{C}^{\text {cv }}\left[q_{1}, \ldots, q_{n}\right]$. Let $\left\{A_{i}\right\}_{i=0,1}$ be a polysystem defined as follows

$$
\begin{equation*}
A_{i}=\sum_{j=1}^{n} A_{i}^{j} \frac{\partial}{\partial q_{j}}, \forall j=1, \ldots, n, A_{i}^{j}(q) \in \mathbb{C}^{\mathrm{cv}} \llbracket q_{1}, \ldots, q_{n} \rrbracket . \tag{23}
\end{equation*}
$$

Let $\left(\rho, \bar{\rho}, C_{f}\right),\left\{\left(\rho, \bar{\rho}, C_{i}\right)\right\}_{i=0,1}$ be convergence modulus at $q \in \operatorname{CV}(f) \cap_{i=0,1, j=1, \ldots, n}$ $\operatorname{CV}\left(A_{i}^{j}\right)$ of f and $\left\{A_{i}^{j}\right\}_{j=1, \ldots, n}$. Let us consider the following monoid morphisms

$$
\begin{align*}
\mathscr{A}\left(1_{X^{*}}\right) & =\text { identity and } C\left(1_{X^{*}}\right)=1, \tag{24}\\
\forall w=v x_{i}, x_{i} \in X, v \in X^{*}, \quad \mathscr{A}(w) & =\mathscr{A}(v) A_{i} \text { and } C(w)=C(v) C_{i} . \tag{25}
\end{align*}
$$

Lemma 5. ([25]) For $i=0,1$ and $j=1, \ldots, n$, one has $A_{i} \circ q_{j}=A_{i}^{j}$. Hence,

$$
\forall i=0,1, A_{i}=\sum_{j=1}^{n}\left(A_{i} \circ q_{j}\right) \frac{\partial}{\partial q_{j}} .
$$

Lemma 6. ([23]) For any word $w, \mathscr{A}(w)$ is continuous over $\left.\mathbb{C}^{\text {cv }} \llbracket q_{1}, \ldots, q_{n}\right]$ and, for any $f, g \in \mathbb{C}^{\text {č }}\left[q_{1}, \ldots, q_{n}\right]$, one has

$$
\mathscr{A}(w) \circ(f g)=\sum_{u, v \in X^{*}}\langle u ш v \mid w\rangle(\mathscr{A}(u) \circ f)(\mathscr{A}(v) \circ g) .
$$

These notations are extended, by linearity, to $\mathbb{K}\langle X\rangle$ and we will denote $\mathscr{A}(w) \circ f_{\mid q}$ the evaluation of $\mathscr{A}(w) \circ f$ at q.
Definition 10. ([23]) Let $f \in \mathbb{C}^{\text {cv }}\left[q_{1}, \ldots, q_{n}\right]$. The generating series of the polysystem $\left\{A_{i}\right\}_{i=0,1}$ and of the observation f is given by

$$
\left.\sigma f:=\sum_{w \in X^{*}} \mathscr{A}(w) \circ f w \quad \in \quad \mathbb{C}^{\mathrm{cv}} \llbracket q_{1}, \ldots, q_{n} \rrbracket \backslash\langle X\rangle\right\rangle .
$$

Then the following generating series is called Fliess generating series of the polysystem $\left\{A_{i}\right\}_{i=0,1}$ and of the observation f at q :

$$
\sigma f_{\left.\right|_{q}}:=\sum_{w \in X^{*}} \mathscr{A}(w) \circ f_{\mid q} w \in \mathbb{C}\langle\langle X\rangle\rangle .
$$

Lemma 7. ([23]) The map $\left.\left.\sigma:\left(\mathbb{C}^{\text {cv }}\left[q_{1}, \ldots, q_{n}\right],.\right) \longrightarrow\left(\mathbb{C}^{\text {cv }}\left[q_{1}, \ldots, q_{n}\right]\right]\langle X\rangle\right\rangle, ш\right)$ is an algebra morphism, i.e. for any $\left.f, g \in \mathbb{C}^{c \mathrm{c}} \llbracket q_{1}, \ldots, q_{n}\right]$ and $\mu, v \in \mathbb{C}$, one has $\sigma(v f+\mu h)=v \sigma f+\mu \sigma g$ and $\sigma(f g)=\sigma f ш \sigma g$.

Lemma 8. ([25]) For any $\left.\left.w \in X^{*}, \sigma(\mathscr{A}(w) \circ f)=w \triangleleft \sigma f \in \mathbb{C}^{\text {cv }} \llbracket q_{1}, \ldots, q_{n}\right] \backslash\langle X\rangle\right\rangle$.
Theorem 10. ([29])

1. Let $\tau=\min _{1 \leq k \leq n} \rho_{k}$ and $r=\max _{1 \leq k \leq n} \bar{\rho}_{k} / \rho_{k}$. We have

$$
\begin{aligned}
\|\mathscr{A}(w) \circ f\| & \leq C_{f} \frac{(n+1)}{(1-r)^{n}} \frac{C(w)|w|!}{\binom{n+|w|-1}{|w|}}\left[\frac{n}{\tau(1-r)^{n+1}}\right]^{|w|} \\
& \leq C_{f} \frac{(n+1)}{(1-r)^{n}} C(w)\left[\frac{n}{\tau(1-r)^{n+1}}\right]^{|w|}|w|!.
\end{aligned}
$$

2. Let $K=C_{f}(n+1)(1-r)^{-n}$ and χ be the real positive function defined over X^{*} :

$$
\forall i=0,1, \quad \chi\left(x_{i}\right)=C_{i} n(1-r)^{-(n+1)} / \tau
$$

Then ${ }^{24}$ the generating series σf of the polysystem $\left\{A_{i}\right\}_{i=0,1}$ and of the observation f satisfies the χ-growth condition.

3.2 Polysystem and nonlinear differential equation

3.2.1 Nonlinear differential equation (with three singularities)

Let us consider the singular inputs ${ }^{25} u_{0}(z):=z^{-1}$ and $u_{1}(z):=(1-z)^{-1}$, and

$$
\left\{\begin{array}{l}
y(z)=f(q(z)) \tag{26}\\
\dot{q}(z)=A_{0}(q) u_{0}(z)+A_{1}(q) u_{1}(z) \\
q\left(z_{0}\right)=q_{0}
\end{array}\right.
$$

where the state $q=\left(q_{1}, \ldots, q_{n}\right)$ belongs to a complex analytic manifold of dimension n, q_{0} is the initial state, the observation f belongs to $\mathbb{C}^{\mathrm{cv}}\left[\left[q_{1}, \ldots, q_{n}\right]\right]$ and $\left\{A_{i}\right\}_{i=0,1}$ is the polysystem defined on (23).

Definition 11. ([31]) The following power series is called transport operator ${ }^{26}$ of the polysystem $\left\{A_{i}\right\}_{i=0,1}$ and of the observation f

$$
\mathscr{T}:=\sum_{w \in X^{*}} \alpha_{z_{0}}^{z}(w) \mathscr{A}(w)
$$

By the factorization of the monoid by Lyndon words, we have [31]

$$
\mathscr{T}=\left(\alpha_{z_{0}}^{z} \otimes \mathscr{A}\right)\left(\sum_{w \in X^{*}} w \otimes w\right)=\prod_{l \in \mathscr{L} y n X} \exp \left[\alpha_{z_{0}}^{z}\left(S_{l}\right) \mathscr{A}\left(P_{l}\right)\right] .
$$

The Chen generating series along the path $z_{0} \rightsquigarrow z$, associated to ω_{0}, ω_{1} is

[^11]\[

$$
\begin{equation*}
S_{z_{0} \rightsquigarrow z}:=\sum_{w \in X^{*}}\langle S \mid w\rangle w \text { with }\langle S \mid w\rangle=\alpha_{z_{0}}^{z}(w) \tag{27}
\end{equation*}
$$

\]

which solves the differential equation (16) with the initial condition $S_{z_{0} \rightsquigarrow z_{0}}=1$. Thus, $S_{z_{0} \rightsquigarrow z}$ and $\mathrm{L}(z) \mathrm{L}\left(z_{0}\right)^{-1}$ satisfy the same differential equation taking the same value at z_{0} and $S_{z_{0} \rightsquigarrow z}=\mathrm{L}(z) \mathrm{L}\left(z_{0}\right)^{-1}$. Any Chen generating series $S_{z_{0} \rightsquigarrow z}$ is group like [50] and depends only on the homotopy class of $z_{0} \rightsquigarrow z$ [10]. The product of $S_{z_{1} \rightsquigarrow z_{2}}$ and $S_{z_{0} \rightsquigarrow z_{1}}$ is $S_{z_{0} \rightsquigarrow z_{2}}=S_{z_{1} \rightsquigarrow z_{2}} S_{z_{0} \rightsquigarrow z_{1}}$. Let $\left.\varepsilon \in\right] 0,1\left[\right.$ and $z_{i}=\varepsilon \exp \left(\mathrm{i} \beta_{i}\right)$, for $i=0,1$. We set $\beta=\beta_{1}-\beta_{0}$. Let $\Gamma_{0}\left(\varepsilon, \beta_{0}\right)$ (resp. $\left.\Gamma_{1}\left(\varepsilon, \beta_{1}\right)\right)$ be the path turning around 0 (resp. 1) in the positive direction from z_{0} to z_{1}. By induction on the length of w, one has $\left|\left\langle S_{\Gamma_{i}(\varepsilon, \beta)} \mid w\right\rangle\right|=(2 \varepsilon)^{|w| x_{i}} \beta^{|w|} /|w|$!, where $|w|$ denotes the length of w and $|w|_{x_{i}}$ denotes the number of occurrences of letter x_{i} in w, for $i=0$ or 1 . When ε tends to 0^{+}, these estimations yield $S_{\Gamma_{i}(\varepsilon, \beta)}=e^{\mathrm{i} \beta x_{i}}+o(\varepsilon)$. In particular, if $\Gamma_{0}(\varepsilon)\left(\operatorname{resp} . \Gamma_{1}(\varepsilon)\right)$ is a circular path of radius ε turning around 0 (resp. 1) in the positive direction, starting at $z=\varepsilon$ (resp. $1-\varepsilon$), then, by the noncommutative residue theorem $[39,36]$, we get

$$
\begin{equation*}
S_{\Gamma_{0}(\varepsilon)}=e^{2 \mathrm{i} \pi x_{0}}+o(\varepsilon) \text { and } S_{\Gamma_{1}(\varepsilon)}=e^{-2 \mathrm{i} \pi x_{1}}+o(\varepsilon) \tag{28}
\end{equation*}
$$

Finally, the asymptotic behaviors of L on (17) give [36, 39]

$$
\begin{equation*}
S_{\varepsilon \rightsquigarrow 1-\varepsilon} \widetilde{\varepsilon \rightarrow 0^{+}} e^{-x_{1} \log \varepsilon} Z_{\amalg} e^{-x_{0} \log \varepsilon} \tag{29}
\end{equation*}
$$

In other terms, Z_{\amalg} is the regularized Chen generating series $S_{\varepsilon \rightsquigarrow 1-\varepsilon}$ of diffferential forms ω_{0} and $\omega_{1}: Z_{\amalg}$ is the noncommutative generating series of the finite parts of the coefficients of the Chen generating series $e^{x_{1} \log \varepsilon} S_{\varepsilon \rightsquigarrow 1-\varepsilon} e^{x_{0} \log \varepsilon}$.

3.2.2 Asymptotic behavior via extended Fliess fundamental formula

Theorem 11. ([43]) $y(z)=\mathscr{T} \circ f_{\left.\right|_{q_{0}}}=\left\langle\sigma f_{\left.\right|_{q_{0}}} \mid S_{z_{0} \rightsquigarrow z}\right\rangle$.
This extends then Fliess fundamental formula [23]. By Theorem 5, the expansions of the output y of nonlinear dynamical system with singular inputs follow

Corollary 4 (Combinatorics of Dyson series).

$$
\begin{aligned}
y(z) & =\sum_{w \in X^{*}} g_{w}(z) \mathscr{A}(w) \circ f_{\mid q_{0}} \\
& =\sum_{k \geq 0} \sum_{n_{1}, \ldots, n_{k} \geq 0} g_{x_{0}^{n_{1}} x_{1} \ldots x_{0}^{k_{k}}}(z) \operatorname{ad}_{A_{0}}^{n_{1}} A_{1} \ldots \operatorname{ad}_{A_{0}}^{n_{k}} A_{1} e^{\log z A_{0}} \circ f_{\mid q_{0}} \\
& =\prod_{l \in \mathscr{L} \text { YnX }} \exp \left(g_{S_{l}}(z) \mathscr{A}\left(P_{l}\right) \circ f_{\mid q_{0}}\right) \\
& =\exp \left(\sum_{w \in X^{*}} g_{w}(z) \mathscr{A}\left(\pi_{1}(w)\right) \circ f_{\mid q_{0}}\right),
\end{aligned}
$$

where, for any word w in X^{*}, g_{w} belongs to the polylogarithm algebra.

Since $S_{z_{0} \rightsquigarrow z}=\mathrm{L}(z) \mathrm{L}\left(z_{0}\right)^{-1}$ and $\sigma f_{\left.\right|_{0}}, \mathrm{~L}\left(z_{0}\right)^{-1}$ are invariant by $\partial_{z}=d / d z$ and $\theta_{0}=z d / d z$ then we get the n-th order differentiation of y, with respect to ∂_{z} and θ_{0} :

$$
\begin{aligned}
& \partial_{z}^{n} y(z)=\left\langle\sigma f_{\left.\right|_{q_{0}}} \mid \partial^{n} S_{z_{0} \rightsquigarrow z}\right\rangle=\left\langle\sigma f_{{\mid q_{0}}\left|\partial_{z}^{n} \mathrm{~L}(z) \mathrm{L}\left(z_{0}\right)^{-1}\right\rangle,}^{\theta_{0}^{n} y(z)=\left\langle\sigma f_{\mid q_{0}} \mid \theta_{0}^{n} S_{z_{0} \rightsquigarrow z}\right\rangle=\left\langle\sigma f_{\left.\right|_{q_{0}}} \mid \theta_{0}^{n} \mathrm{~L}(z) \mathrm{L}\left(z_{0}\right)^{-1}\right\rangle .} .\right.
\end{aligned}
$$

With the notations of Proposition 8, we get respectively

$$
\begin{aligned}
\partial_{z}^{n} y(z)=\left\langle\sigma f_{\left.\right|_{0}} \mid\left[D_{n}(z) \mathrm{L}(z)\right] \mathrm{L}\left(z_{0}\right)^{-1}\right\rangle & =\left\langle\sigma f_{\left.\right|_{q_{0}}} \triangleright D_{n}(z) \mid \mathrm{L}(z) \mathrm{L}\left(z_{0}\right)^{-1}\right\rangle \\
\left.\left.\theta_{0}^{n} y(z)=\left\langle\sigma f_{\left.\right|_{0}}\right| E_{n}(z) \mathrm{L}(z)\right] \mathrm{L}\left(z_{0}\right)^{-1}\right\rangle & =\left\langle\sigma f_{\left.\right|_{0}} \triangleright E_{n}(z) \mid \mathrm{L}(z) \mathrm{L}\left(z_{0}\right)^{-1}\right\rangle
\end{aligned}
$$

For $z_{0}=\varepsilon \rightarrow 0^{+}$, the asymptotic behavior and the renormalization at $z=1$ of $\partial_{z}^{n} y$ and $\theta_{0}^{n} y$ (or the asymptotic expansion and the renormalization of its Taylor coefficients at $+\infty$) are deduced from (29) and extend a little bit results of [43, 44] :

Corollary 5 (Asymptotic behavior of output).

1. The n-order differentiation of the output y of the system (26) is a \mathscr{C}-combination of the elements g belonging to the polylogarithm algebra and ${ }^{27}$, for any $n \geq 0$,

$$
\begin{aligned}
& \partial_{z}^{n} y(1) \underset{\varepsilon \rightarrow 0^{+}}{\widetilde{ }} \sum_{w \in X^{*}}\left\langle\mathscr{A}(w) \circ f_{q_{0}} \mid w\right\rangle\left\langle D_{n}(1-\varepsilon) e^{-x_{1} \log \varepsilon} Z_{\amalg} e^{-x_{0} \log \varepsilon} \mid w\right\rangle, \\
& \theta_{0}^{n} y(1) \underset{\varepsilon \rightarrow 0^{+}}{\widetilde{ }} \sum_{w \in X^{*}}\left\langle\mathscr{A}(w) \circ f_{\left.\right|_{q_{0}}} \mid w\right\rangle\left\langle E_{n}(1-\varepsilon) e^{-x_{1} \log \varepsilon} Z_{\amalg} e^{-x_{0} \log \varepsilon} \mid w\right\rangle .
\end{aligned}
$$

2. If the ordinary Taylor expansions of $\partial_{z}^{n} y$ and $\theta_{0}^{n} y$ exist then the coefficients of these expansions belong to the algebra of harmonic sums and there exist algorithmically computable coefficients $a_{i}, a_{i}^{\prime} \in \mathbb{Z}, b_{i}, b_{i}^{\prime} \in \mathbb{N}, c_{i}, c_{i}^{\prime} \in \mathscr{Z}[\gamma]$ such that

$$
\begin{gathered}
\partial_{z}^{n} y(z)=\sum_{k \geq 0} d_{k} z^{n} \text { and } d_{k} \underset{k \rightarrow \infty}{ } \sum_{i \geq 0} c_{i} k^{a_{i}} \log ^{b_{i}} k, \\
\theta_{0}^{n} y(z)=\sum_{k \geq 0} t_{k} z^{k} \text { and } t_{k} \underset{k \rightarrow \infty}{ } \sum_{i \geq 0} c_{i}^{\prime} k^{a_{i}^{\prime}} \log ^{b_{i}^{\prime}} k .
\end{gathered}
$$

[^12]
3.3 Differential realization

3.3.1 Differential realization

Definition 12. The Lie rank of a formal power series $S \in \mathbb{K}\langle\langle X\rangle\rangle$ is the dimension of the vector space generated by

$$
\left\{S \triangleright \Pi \mid \Pi \in \mathscr{L} i_{\mathbb{K}}\langle X\rangle\right\}, \text { or respectively by }\left\{\Pi \triangleleft S \mid \Pi \in \mathscr{L} i e_{\mathbb{K}}\langle X\rangle\right\} .
$$

Definition 13. Let $S \in \mathbb{K}\langle\langle X\rangle\rangle$ and let us put $\operatorname{Ann}(S):=\left\{\Pi \in \mathscr{L} e_{\mathbb{K}}\langle X\rangle \mid S \triangleright \Pi=0\right\}$, and $\mathrm{Ann}^{\perp}(S):=\{Q \in(\mathbb{K}\langle\langle X\rangle\rangle, ш) \mid Q \triangleright \operatorname{Ann}(S)=0\}$.

It is immediate that $\mathrm{Ann}^{\perp}(S) \ni S$. It follows then(see [25,52] and Lemma 7),

Lemma 9. Let $S \in \mathbb{K}\langle\langle X\rangle\rangle$. Then

1. If S is of finite Lie rank, d, then the dimension of $\mathrm{Ann}^{\perp}(S)$ is d.
2. For any Q_{1} and $Q_{2} \in \operatorname{Ann}^{\perp}(S)$, one has $Q_{1} ш Q_{2} \in \operatorname{Ann}^{\perp}(S)$.
3. For any $P \in \mathbb{K}\langle X\rangle$ and $Q_{1} \in \operatorname{Ann}^{\perp}(S)$, one has $P \triangleleft Q_{1} \in \operatorname{Ann}^{\perp}(S)$.

Definition 14. ([25]) The formal power series $S \in \mathbb{K}\langle\langle X\rangle\rangle$ is differentially produced if there exist an integer d, a power series $f \in \mathbb{K}\left[\left[\bar{q}_{1}, \ldots, \bar{q}_{d}\right]\right]$, a homomorphism \mathscr{A} from X^{*} to the algebra of differential operators generated by
$\mathscr{A}\left(x_{i}\right)=\sum_{j=1}^{d} A_{i}^{j}\left(\bar{q}_{1}, \ldots, \bar{q}_{d}\right) \frac{\partial}{\partial \bar{q}_{j}}$, where $\forall j=1, \ldots, d, A_{i}^{j}\left(\bar{q}_{1}, \ldots, \bar{q}_{d}\right) \in \mathbb{K}\left[\left[\bar{q}_{1}, \ldots, \bar{q}_{d}\right]\right.$
such that, for any $w \in X^{*}$, one has $\langle S \mid w\rangle=\mathscr{A}(w) \circ f_{\left.\right|_{0}}$.
The pair (\mathscr{A}, f) is called the differential representation of S of dimension d.
Proposition 19. ([52]) Let $S \in \mathbb{K}\langle\langle X\rangle\rangle$. If S is differentially produced then it satisfies the growth condition and its Lie rank is finite.

Proof. Let (\mathscr{A}, f) be a differential representation of S of dimension d. Then, by the notations of Definition 10, we get

$$
\sigma f_{\left.\right|_{0}}=S=\sum_{w \in X^{*}}(\mathscr{A}(w) \circ f)_{\left.\right|_{0}} w .
$$

We put

$$
\forall j=1, \ldots, d, \quad T_{j}=\sum_{w \in X^{*}} \frac{\partial(\mathscr{A}(w) \circ f)}{\partial \bar{q}_{j}} w .
$$

Firstly, by Theorem 10, the generating series σf satisfies the growth condition. Secondly, for any $\Pi \in \mathscr{L} i e_{\mathbb{K}}\langle X\rangle$ and for any $w \in X^{*}$, one has

$$
\langle\sigma f \triangleright \Pi \mid w\rangle=\langle\sigma f \mid \Pi w\rangle=\mathscr{A}(\Pi w) \circ f=\mathscr{A}(\Pi) \circ(\mathscr{A}(w) \circ f) .
$$

Since $\mathscr{A}(\Pi)$ is a derivation over $\mathbb{K}\left[\left[\bar{q}_{1}, \ldots, \bar{q}_{d}\right]\right]$:

$$
\begin{aligned}
\mathscr{A}(\Pi) & =\sum_{j=1}^{d}\left(\mathscr{A}(\Pi) \circ \bar{q}_{j}\right) \frac{\partial}{\partial \bar{q}_{j}}, \\
\Rightarrow \quad \mathscr{A}(\Pi) \circ(\mathscr{A}(w) \circ f) & =\sum_{j=1}^{d}\left(\mathscr{A}(\Pi) \circ \bar{q}_{j}\right) \frac{\partial(\mathscr{A}(w) \circ f)}{\partial \bar{q}_{j}}
\end{aligned}
$$

then we deduce that

$$
\begin{aligned}
\forall w \in X^{*}, & \langle\sigma f \triangleright \Pi \mid w\rangle=\sum_{j=1}^{d}\left(\mathscr{A}(\Pi) \circ \bar{q}_{j}\right)\left\langle T_{j} \mid w\right\rangle \\
& \Longleftrightarrow \quad \sigma f \triangleright \Pi=\sum_{j=1}^{d}\left(\mathscr{A}(\Pi) \circ \bar{q}_{j}\right) T_{j} .
\end{aligned}
$$

This means that $\sigma f \triangleright \Pi$ is a \mathbb{K}-linear combination of $\left\{T_{j}\right\}_{j=1, \ldots, d}$ and the dimension of the vector space span $\left\{\sigma f \triangleright \Pi \mid \Pi \in \mathscr{L} e_{\mathbb{K}}\langle X\rangle\right\}$ is less than or equal to d.

3.3.2 Fliess' local realization theorem

Proposition 20. ([52]) Let $S \in \mathbb{K}\langle\langle X\rangle\rangle$ with Lie rank d. Then there exists a basis $S_{1}, \ldots, S_{d} \in \mathbb{K}\langle\langle X\rangle\rangle$ of $\left(\operatorname{Ann}^{\perp}(S), ш\right) \cong\left(\mathbb{K}\left[\left[S_{1}, \ldots, S_{d}\right]\right], ш\right)$ such that the S_{i} 's are proper and for any $R \in \operatorname{Ann}^{\perp}(S)$, one has

$$
R=\sum_{i_{1}, \ldots, i_{d} \geq 0} \frac{r_{i_{1}, \ldots, i_{n}}^{i_{1}!\ldots i_{d}!} S_{1}^{\amalg i_{1}} ш \ldots ш S_{d}^{\amalg i_{d}}, \text { where } r_{0, \ldots, 0}=\left\langle R \mid 1_{X^{*}}\right\rangle, r_{i_{1}, \ldots, i_{d}} \in \mathbb{K}}{}
$$

Proof. By Lemma 9, such a basis exists. More precisely, since the Lie rank of S is d then there exist $P_{1}, \ldots, P_{d} \in \mathscr{L}$ ie $e_{\mathbb{K}}\langle X\rangle$ such that $S \triangleright P_{1}, \ldots, S \triangleright P_{d} \in(\mathbb{K}\langle\langle X\rangle\rangle, ш)$ are \mathbb{K}-linearly independent. By duality, there exists $S_{1}, \ldots, S_{d} \in(\mathbb{K}\langle\langle X\rangle\rangle, ш)$ such that

$$
\forall i, j=1, \ldots, d, \quad\left\langle S_{i} \mid P_{j}\right\rangle=\delta_{i, j}, \text { and } R=\prod_{i=1}^{d} \exp \left(S_{i} P_{i}\right)
$$

Expanding this product, one obtains, via PBW theorem, the expected expression for the coefficients $\left\{r_{i_{1}, \ldots, i_{d}}=\left\langle R \mid P_{1}^{i_{1}} \ldots P_{d}^{i_{d}}\right\rangle\right\}_{i_{1}, \ldots, i_{d} \geq 0}$. Hence, $\left(\operatorname{Ann}^{\perp}(S), ш\right)$ is generated by S_{1}, \ldots, S_{d}.

With the notations of Proposition 20, one has
Corollary 6. 1. If $S \in \mathbb{K}\left[S_{1}, \ldots, S_{d}\right]$ then, for any $i=0,1$ and for any $j=1, \ldots, d$, one has $x_{i} \triangleleft S \in \operatorname{Ann}^{\perp}(S)=\mathbb{K}\left[S_{1}, \ldots, S_{d}\right]$.
2. The power series S satisfies the growth condition if and only if, for any $i=$ $1, \ldots, d, S_{i}$ also satisfies the growth condition.

Proof. Assume there exists $j \in[1, \ldots, d]$ such that S_{j} does not satisfy the growth condition. Since $S \in \operatorname{Ann}^{\perp}(S)$ then using the decomposition of S on S_{1}, \ldots, S_{d}, one obtains a contradiction with the fact that S satisfies the growth condition.

Conservely, using Proposition 16, we get the expected results.
Theorem 12. ([25]) The formal power series $S \in \mathbb{K}\langle\langle X\rangle\rangle$ is differentially produced if and only if its Lie rank is finite and if it satifies the χ-growth condition.

Proof. By Proposition 19, one gets a direct proof. Conversely, since the Lie rank of S equals d then by Proposition 20, setting $\sigma f_{l_{0}}=S$ and, for $j=1, \ldots, d, \sigma \bar{q}_{i}=S_{i}$,

1. We choose the observation f as follows

$$
f\left(\bar{q}_{1}, \ldots, \bar{q}_{d}\right)=\sum_{i_{1}, \ldots, i_{d} \geq 0} \frac{r_{i_{1}, \ldots, i_{n}} i_{1}!\ldots i_{d}!}{\left.\bar{q}_{1}^{i_{1}} \ldots \bar{q}_{d}^{i_{d}} \in \mathbb{K}\left[\bar{q}_{1}, \ldots, \bar{q}_{d}\right]\right]}
$$

such that
2. It follows that, for $i=0,1$ and for $j=1, \ldots, d$, the residual $x_{i} \triangleleft \sigma \bar{q}_{j}$ belongs to $\mathrm{Ann}^{\perp}\left(\sigma f_{\left.\right|_{0}}\right)$ (see also Lemma 9),
3. Since σf satisfies the χ-growth condition then, the generating series $\sigma \bar{q}_{j}$ and $x_{i} \triangleleft \sigma \bar{q}_{j}$ (for $i=0,1$ and for $j=1, \ldots, d$) verify also the growth condition. We then take (see Lemma 8)

$$
\forall i=0,1, \forall j=1, \ldots, d, \sigma A_{j}^{i}\left(\bar{q}_{1}, \ldots, \bar{q}_{d}\right)=x_{i} \triangleleft \sigma \bar{q}_{j}
$$

by expressing σA_{j}^{i} on the basis $\left\{\sigma \bar{q}_{i}\right\}_{i=1, \ldots, d}$ of $\mathrm{Ann}^{\perp}\left(\sigma f_{\left.\right|_{0}}\right)$,
4. The homomorphism \mathscr{A} is then determined as follows

$$
\forall i=0,1, \mathscr{A}\left(x_{i}\right)=\sum_{j=0}^{d} A_{j}^{i}\left(\bar{q}_{1}, \ldots, \bar{q}_{d}\right) \frac{\partial}{\partial \bar{q}_{j}},
$$

where, by Lemma 5, one has $A_{j}^{i}\left(\bar{q}_{1}, \ldots, \bar{q}_{d}\right)=\mathscr{A}\left(x_{i}\right) \circ \bar{q}_{j}$.
Thus, (\mathscr{A}, f) provides a differential representation ${ }^{28}$ of dimension d of S.
Moreover, one also has the following
Theorem 13. ([25]) Let $S \in \mathbb{K}\langle\langle X\rangle\rangle$ be a differentially produced formal power series. Let (\mathscr{A}, f) and $\left(\mathscr{A}^{\prime}, f^{\prime}\right)$ be two differential representations of dimension n of S. There exist a continuous and convergent automorphism h of \mathbb{K} such that

$$
\forall w \in X^{*}, \forall g \in \mathbb{K}, \quad h(\mathscr{A}(w) \circ g)=\mathscr{A}^{\prime}(w) \circ(h(g)) \text { and } f^{\prime}=h(f) .
$$

[^13]Since any rational power series satisfies the growth condition and its Lie rank is less than or equal to its Hankel rank which is finite [25] then

Corollary 7. Any rational power series and any polynomial over X with coefficients in \mathbb{K} are differentially produced.

References

1. Abe, E., Hopf algebra, Cambridge (1980).
2. Bender C.M., Brody D. C., Meister B.K., Quantum field theory of partitions, J. Math. Phys. 40, pp. 3239-3245.
3. Berstel, J., Reutenauer, C., Rational series and their languages, Springer-Verlag (1988).
4. J.M. Borwein, D.M. Bradley, D.J. Broadhurst \& P. Lisonek,Special Values of Multiple Polylogarithms, in Trans. of the Amer. Math. Soc., 2000.
5. C. Bui, G. H. E. Duchamp, V. Hoang Ngoc Minh, Schützenberger's factorization on the (completed) Hopf algebra of $q-$ stuffle product.
6. Bui V. C., Duchamp G. H. E., Hoang Ngoc Minh V., Tollu C., Ngo Q. H., (Pure) transcendence bases in ϕ-deformed shuffle bialgebras, Seminaire Lotharingien de Combinatoire, Université Louis Pasteur, 2015, pp.1-31, arXiv:1507.01089 [cs.SC].
7. Cartier, P., Développements récents sur les groupes de tresses, Applications à la topologie et à l'algèbre, Sém BOURBAKI, 42 ème 1989-1990, $n^{\circ} 716$.
8. Chari, R., Pressley, A., A guide to quantum group, Cambridge (1994).
9. K.T. Chen, R.H. Fox, R.C. Lyndon, Free differential calculus, IV. The quotient groups of the lower central series, Ann. of Math., 68 (1958) pp. 8195.
10. Chen, K.T., Iterated path integrals, Bull. Am. Math. Soc. 83, 831-879 (1977).
11. Connes A., Kreimer D., Hopf algebras, renormalization and noncommutative geometry, Comm. Math. Phys., 199 (1998), pp. 203242.
12. M. Deneufchâtel, G.H.E. Duchamp, Hoang Ngoc Minh, A.I. Solomon, Independence of hyperlogarithms over function fields via algebraic combinatorics, dans Lecture Notes in Computer Science (2011), Volume 6742/2011, 127-139.
13. M. Deneufchâtel, G.H. E. Duchamp, Hoang Ngoc Minh, Radford bases and Schützenberger's Factorizations, arXiv:1111.6759 (November 2011).
14. Duchamp, G., Reutenauer, C., Un critère de rationalité provenant de la géométrie noncommutative, Invent. Math. 613-622 (1997)
15. G.H.E. Duchamp, Hoang Ngoc Minh, A.I. Solomon, S. Goodenough, An interface between physics and number theory, in Journal of Physics (2011), 284(1), pp. 012-023.
16. Gérard H. E. Duchamp, Hoang Ngoc Minh, Ngo Quoc Hoan, Harmonic sums and polylogarithms at negative multi - indices, submited to the Journal of Symbolic Computation, 2015.
17. Duchamp, G.H.E., Tollu, C., Sweedler's duals and Schützenberger's calculus, "Conference on Combinatorics and Physics", arXiv: 0712.0125v3
18. Dyson, F.J., The radiation theories of Tomonaga, Schwinger and Feynman, Physical Rev, vol 75, (1949), pp. 486-502.
19. Costermans, C., Enjalbert, J.Y., Hoang Ngoc Minh, Algorithmic and combinatorial aspects of multiple harmonic sums, Discrete Mathematics \& Theoretical Computer Science Proceedings (2005).
20. Foata, D., Schützenberger, M.P., Théorie Géométrique des Polynômes Eulériens, Lecture Notes in Mathematics, (1970) 138.
21. Feynman R.P., Hibbs A.R., Quantum Mechanics and Path Integrals, McGraw-Hill, New York, (1965).
22. Fliess, M., Matrices de Hankel, J. Math. Purs Appl. 53, 197-222 (1974).
23. Fliess, M., Fonctionnelles causales non linéaires et indéterminées non commutatives, Bull. SMF 109, 3-40 (1981).
24. Fliess, M., Vers une notion de dérivation fonctionnelle causale, Annales de l'institut Henri Poincar (C) Analyse non linaire, 3 no. 1 (1986), p. 67-76.
25. Fliess, M., Réalisation locale des systèmes non linéaires, algèbres de Lie filtrées transitives et séries génératrices non commutatives, Inven. Math. 71(3), 521-537 (1983).
26. Lê, T.Q.T., Murakami, J., Kontsevich's integral for Kauffman polynomial, Nagoya Math., 39-65 (1996).
27. A.B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes, Math. Res Letters, vol 5, pp 497-516, 1998.
28. Hespel, C., Une étude des séries formelles noncommutatives pour l'Approximation et l'Identification des systèmes dynamiques, thèse docteur d'état, Université Lille 1 (1998).
29. Hoang Ngoc Minh, Contribution au développement d'outils informatiques pour résoudre des problèmes d'automatique non linéaire, Thèse, Lille, 1990.
30. Hoang Ngoc Minh, Input/Output behaviour of nonlinear control systems: about exact and approximated computations, IMACS-IFAC Symposium, Lille, Mai 1991.
31. Hoang Ngoc Minh, Jacob, G., Oussous, N., Input/Output Behaviour of Nonlinear Control Systems: Rational Approximations, Nilpotent structural Approximations, in Analysis of controlled Dynamical Systems, (B. Bonnard, B. Bride, J.P. Gauthier \& I. Kupka eds.), Progress in Systems and Control Theory, Birkhäuser, 253-262 (1991)
32. Hoang Ngoc Minh: Summations of polylogarithms via evaluation transform. dans Math. \& Comput. Simul. 1336, 707-728 (1996)
33. Hoang Ngoc Minh, Fonctions de Dirichlet d'ordre n et de paramètre t, dans Discrete Math. 180, 221-242 (1998)
34. Hoang Ngoc Minh, Calcul symbolique non commutatif: aspects combinatoires des fonctions spéciales et des nombres spéciaux. HDR, Lille 2000
35. Hoang Ngoc Minh, Jacob, G., Symbolic integration of meromorphic differential systems via Dirichlet functions, Discrete Math. 210, 87-116 (2000)
36. Hoang Ngoc Minh, Jacob, G., Oussous, N.E., Petitot, M., Aspects combinatoires des polylogarithmes et des sommes d'Euler-Zagier, Journal électronique du Séminaire Lotharingien de Combinatoire, B43e (2000)
37. Hoang Ngoc Minh, Jacob, G., Oussous, N.E., Petitot, M., De l'algèbre des ζ de Riemann multivariées l'algèbre des ζ de Hurwitz multivariées, Journal électronique du Séminaire Lotharingien de Combinatoire 44 (2001)
38. Hoang Ngoc Minh, Petitot, M., Lyndon words, polylogarithmic functions and the Riemann ζ function, Discrete Math. 217, 273-292 (2000)
39. Hoang Ngoc Minh, Petitot, M., Van der Hoeven, J., Polylogarithms and Shuffle algebra, Proceedings of FPSAC'98(1998)
40. Hoang Ngoc Minh, Petitot, M., Van der Hoeven, J., L'algèbre des polylogarithmes par les séries génératrices, Proceedings of FPSAC'99 (1999)
41. Hoang Ngoc Minh, Finite polyzêtas, Poly-Bernoulli numbers, identities of polyzêtas and noncommutative rational power series, Proceedings of $4^{\text {th }}$ International Conference on Words, 232-250 (2003)
42. Hoang Ngoc Minh, Differential Galois groups and noncommutative generating series of polylogarithms, in "Automata, Combinatorics and Geometry". 7th World Multi-conference on Systemics, Cybernetics and Informatics, Florida (2003)
43. Hoang Ngoc Minh, Algebraic combinatoric aspects of asymptotic analysis of nonlinear dynamical system with singular inputs, Acta Academiae Aboensis, Ser. B 67(2), 117-126 (2007)
44. Hoang Ngoc Minh, On a conjecture by Pierre Cartier about a group of associators, in Acta Mathematica Vietnamica, Vol. 3, (2013).
45. Hoang Ngoc Minh,Structure of polyzetas and Lyndon words, Vietnamese Mathematics Journal (2013),

DOI 10.1007/10013-013-0047-x.
46. Hoffman, M.,The multiple harmonic series, Pac. J. Math. 152(2), 275-290 (1992)
47. Hoffman, M.,The algebra of multiple harmonic series, J. Algebra (1997)
48. Hochschild, G., The structure of Lie groups, Holden-Day (1965)
49. D.E. Radford,A natural ring basis for shuffle algebra and an application to group schemes, Journal of Algebra, 58, pp. 432-454, 1979.
50. Ree, R.,Lie elements and an algebra associated with shuffles, Ann. Math. 68, 210-220 (1985)
51. Reutenauer, C.,Free Lie Algebras, London Math. Soc. Monographs (1993)
52. Reutenauer, C., The local realisation of generating series of finite Lie rank, Algebraic and Geometric Methods In Nonlinear Control Theory, 33-43
53. Schützenberger, M.P., On the definition of a family of automata, Information and Control 4, 245-270 (1961)
54. Viennot, G., Algèbres de Lie Libres et Monoïdes Libres, Lecture Notes in Mathematics, (1978) 691: 94-112, January 01, 1978.
55. Zagier, D., Values of zeta functions and their applications, in "First European Congress of Mathematics", vol. 2, Birkhäuser, 497-512 (1994)

[^0]: G. H. E. Duchamp

 LIPN - UMR 7030, CNRS, 93430 Villetaneuse, France, e-mail: gheduchamp@ gmail.com
 Hoang Ngoc Minh
 Université Lille II, 59024 Lille, France, e-mail: hoang @univ.lille2.fr
 Q. H. Ngo

 Université Paris XIII, 93430 Villetaneuse, France, e-mail: quochoan_ngo@yahoo.com.vn
 K. Penson

 Université Paris VI - LPTMC, 75252 Paris Cedex 05, France, e-mail: penson@1ptmc.jussieu.fr
 P. Simonnet

 Université de Corse, 20250 Corte, France, e-mail: simonnet@univ-corse.fr
 ${ }^{1}$ The present work is part of a series of papers devoted to the study of the renormalization of divergent polyzetas (at positive and at negatice indices) via the factorization of the non commutative generating series of polylogarithms and of harmonic sums and via the effective construction of pairs of bases in duality in φ-deformed shuffle algebras. It is a sequel of [6] and its content was presented in several seminars and meetings, including the 66th and 74th Séminaire Lotharingien de Combinatoire.

[^1]: ${ }^{2}$ Any differential equation with singularities in $\{a, b, c\}$ can be changed into a differential equation with singularities in $\{0,1,+\infty\}$ via an homographic transformation.
 ${ }^{3} x_{0}:=t_{1,2} / 2 \mathrm{i} \pi$ and $x_{1}:=-t_{2,3} / 2 \mathrm{i} \pi$ are noncommuative variables and $t_{1,2}, t_{2,3}$ belong to $\mathscr{T}_{3}=$ $\left\{t_{1,2}, t_{1,3}, t_{2,3}\right\}$ satisfying the infinitesimal 3-braid relations, i.e. $\left[t_{1,3}, t_{1,2}+t_{2,3}\right]=\left[t_{2,3}, t_{1,2}+t_{1,3}\right]=0$.
 ${ }^{4}$ They were introduced in QFT by Drinfel'd and it plays an important role for the still open problem of the effective determination of the polynomial invariants of knots and links via Kontsevich's integral (see [7, 26]) and $\Phi_{K Z}$, was obtained firstly, in [26], with explicit coefficients which are polyzetas and regularized polyzetas (see [44,45] for the computation of the other involving only convergent polyzetas as local coordinates, and for algorithms regularizing divergent polyzetas).
 ${ }^{5} s_{1}+\ldots+s_{r}$ is the weight of $\zeta\left(s_{1}, \ldots, s_{r}\right)$, i.e. the weight of the composition $\left(s_{1}, \ldots, s_{r}\right)$.
 ${ }^{6}$ One of us proposed a proof in $[44,45]$.

[^2]: ${ }^{7}$ Here, $X^{*}\left(\right.$ resp. $\left.Y^{*}\right)$ is the monoid generated by X (resp. Y) and its neutral element of is denoted by $1_{X^{*}}$ (resp. $1_{Y^{*}}$).
 ${ }^{8}$ Here, π_{Y} is the adjoint of π_{X} for the canonical scalar products where π_{X} is the morphism of AAU $k\langle Y\rangle \rightarrow k\langle X\rangle$ defined by $\pi_{X}\left(y_{k}\right)=x_{0}^{k-1} x_{1}$.
 ${ }^{9}$ in a more precise way the S and Σ are the "Lyndon part" of the dual bases of the PBW expansions of the P and the Π respectively.
 ${ }^{10} \varepsilon$ is the "constant term" character.

[^3]: ${ }^{11}$ In here, the order relation \succ on X^{*} is defined by, for any $u, v \in X^{*}, u \succ v$ iff $u=v w$ with $w \in X^{+}$ else there are $w, w_{1}, w_{2} \in X^{*}$ and $a \succ b \in X$ such that $u=w a w_{1}$ and $v=w b w_{2}$.

[^4]: ${ }^{12}$ The dual family of a basis lies in the algebraic dual which is here the space of noncommutative series, but as the enveloping algebra under consideration is graded in finite dimensions (here by the multidegree), these series are in fact (multihomogeneous) polynomials.

[^5]: ${ }^{13}$ For any words $u, v \in X^{*}$, if $u=v$ then $\delta_{u}^{v}=1$ else 0 .
 ${ }^{14} \phi \in \operatorname{End}(V)$ is said to be locally nilpotent iff, for any $v \in V$, there exists $N \in \mathbb{N}$ s.t. $\phi^{N}(v)=0$.
 ${ }^{15}$ i.e. the dimension of $\operatorname{span}\{S \triangleright \Pi \mid \Pi \in \mathbb{C}\langle X\rangle\}$ (resp. $\operatorname{span}\{\Pi \triangleleft S \mid \Pi \in \mathbb{C}\langle X\rangle\}$).
 ${ }^{16}$ The minimal representation of S as being a representation of S of minimal dimension. It can be shown that all minimal representations are isomorphic (see [3]).
 ${ }^{17}$ For any proper series S, i.e. $\left\langle S \mid 1_{X^{*}}\right\rangle=0$, the series $S^{*}=1+S+S^{2}+\ldots$ is called "star of $S^{\prime \prime}$

[^6]: ${ }^{18}$ with $y_{0} \succ y_{1}$.

[^7]: ${ }^{19}$ For any $w=x_{i_{1}} \ldots x_{i_{r}} \in X^{*}$, we denote $\widetilde{w}=x_{i_{r}} \ldots x_{i_{1}}$.

[^8]: ${ }^{20}$ Since $\theta_{0}+\theta_{1}=\partial_{z}$ then we also have $\theta_{1}^{n} \mathrm{~L}(z)=\left[D_{n}(z)-E_{n}(z)\right] \mathrm{L}(z)$. The more general actions of $\{\Theta(w)\}_{w \in X^{*}}$ on L are more complicated to be expressed here.

[^9]: ${ }^{21}$ Here, the coefficient $\left\langle B\left(y_{1}\right) \mid y_{1}^{k}\right\rangle$ corresponds to the Euler-Mac Laurin constant associated to $\left\langle\operatorname{Const}(N) \mid y_{1}^{k}\right\rangle$, i.e. the finite party of its asymptotic expansion in the scale of comparison $\left\{n^{a} \log ^{b}(n)\right\}_{a \in \mathbb{Z}, b \in \mathbb{N}}$.

[^10]: ${ }^{22}$ Here, the Hadamard product is denoted by \odot and and its dual law, the diagonal comultiplication is denoted by Δ_{\odot}. The series g, h are defined in Definition 5.
 ${ }^{23}$ i.e. without zero or see Appendix A.

[^11]: ${ }^{24}$ It is the same for the Fliess generating series $\sigma f_{\mid q}$ of $\left\{A_{i}\right\}_{i=0,1}$ and of f at q.
 ${ }^{25}$ These singular inputs are not included in the studies of Fliess motivated, in particular, by the renormalization of y at $+\infty$ [23, 25].
 ${ }^{26}$ It plays the rôle of the resolvent in Mathematics and the evolution operator in Physics.

[^12]: ${ }^{27}$ Moreover, we get more out of this i.e. $\theta_{1}^{n} y(z)=\left\langle\sigma f_{{\mid q_{0}}} \| \theta_{1}^{n} S_{z_{0} \rightsquigarrow z z}\right\rangle=\left\langle\sigma f_{\left.\right|_{q_{0}}} \|\right.$ $\left.\theta_{1}^{n} \mathrm{~L}(z) \mathrm{L}\left(z_{0}\right)^{-1}\right\rangle$. Therefore, $\theta_{1}^{n} y(z)=\left\langle\sigma f_{q_{0}} \mid\left[D_{n}(z)-E_{n}(z)\right] \mathrm{L}(z) \mathrm{L}\left(z_{0}\right)^{-1}\right\rangle=\left\langle\sigma f_{\left.\right|_{0}} \triangleright\left[D_{n}(z)-\right.\right.$ $\left.E_{n}(z)\right]\left|\mathrm{L}(z) \mathrm{L}\left(z_{0}\right)^{-1}\right\rangle$. Hence, $\theta_{1}^{n} y(1) \underset{\varepsilon \rightarrow 0^{+}}{\widetilde{ }} \sum_{w \in X^{*}}\left\langle\mathscr{A}(w) \circ f_{\left.\right|_{q_{0}}} \mid w\right\rangle\left\langle\left[D_{n}(1-\varepsilon)-E_{n}(1-\right.\right.$ $\varepsilon)] e^{-x_{1} \log \varepsilon} Z_{\amalg} e^{-x_{0} \log \varepsilon}|w\rangle$.

 The actions of $\theta_{0}=u_{0}(z)^{-1} d / d z$ and $\theta_{1}=u_{1}(z)^{-1} d / d z$ over y are equivalent to those of the residuals of $\sigma f_{\left.\right|_{q_{0}}}$ by respectively x_{0} and x_{1}. They correspond to functional differentiations [24] while $\partial_{z}=d / d z$ is the ordinary differentiation and is equivalent to the residual by $x_{0}+x_{1}$.

[^13]: ${ }^{28}$ In $[25,52]$, the reader can find the discussion on the minimal differential representation.

