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Mathematical renormalization in quantum electrodynamics via noncommutative generating series

In order to push the study of solutions of nonlinear differential equations involved in quantum electrodynamics 1 , we focus here on combinatorial aspects of their renormalization at {0, 1, +∞}.

Introduction

) and leads to the problems of regularization and renormalization

which can be solved by combinatorial technics : Feynman diagrams [START_REF] Feynman | Quantum Mechanics and Path Integrals[END_REF] and their siblings [START_REF] Duchamp | An interface between physics and number theory[END_REF][START_REF] Lê | Kontsevich's integral for Kauffman polynomial[END_REF], noncommutative formal power series [START_REF] Fliess | Fonctionnelles causales non linéaires et indéterminées non commutatives[END_REF], trees [START_REF] Connes | Hopf algebras, renormalization and noncommutative geometry[END_REF].

Recently, in the same vein, and based, on the one hand, on the shuffle and quasishuffle bialgebras [START_REF] Bui | Pure) transcendence bases in φ -deformed shuffle bialgebras[END_REF], the combinatorics of noncommutative formal power series was intensively amplified for the asymptotic analysis of dynamical systems with three regular singularities in 2 {0, 1, +∞} ; and, on the other hand with the monodromy and the Galois differential group of the Knizhnik-Zamolodchikov equation KZ 3 [START_REF] Ngoc | Differential Galois groups and noncommutative generating series of polylogarithms[END_REF][START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF] i.e., the following noncommutative evolution equation 3

dG(z) dz = x 0 z + x 1 1 -z G(z),
the monoidal factorization facilitates mainly the renormalization and the computation of the associators 4 via the universal one, i.e. Φ KZ of Drinfel'd [44].

In fact, these associators are noncommutative formal power series on two variables and regularize the Chen generating series of the differential forms admitting singularities at 0 or at 1 along the integration paths on the universal covering of C without points 0 and 1 (i.e. C \ {0, 1}). Their coefficients are, up to a multiple of powers of 2iπ, polynomial on polyzetas, i.e. the following real numbers 5 [START_REF] Lê | Kontsevich's integral for Kauffman polynomial[END_REF][START_REF] Hoffman | The multiple harmonic series[END_REF][START_REF] Zagier | Values of zeta functions and their applications[END_REF] ζ (s 1 , . . . , s r ) = ∑ n 1 >...>n r >0 1 n s 1 1 . . . n s r r , for r ≥ 1, s 1 ≥ 2, s 2 , . . . , s r ≥ 1, and these numbers admit a natural structure of algebra over the rational numbers deduced from the combinatorial aspects of the shuffle and quasi-shuffle Hopf algebras. It is conjectured that this algebra is N-graded 6 . More precisely, for s 1 ≥ 2, s 2 , . . . , s r ≥ 1, the polyzeta ζ (s 1 , . . . , s r ) can be obtained as the limit of the polylogarithm Li s 1 ,...,s r (z), for z → 1, and of the harmonic sum H s 1 ,...,s r (N), for N → +∞ :

Li s 1 ,...,s r (z) =

∑ n 1 >...>n r >0

z n 1 n s 1 1 . . . 2 Any differential equation with singularities in {a, b, c} can be changed into a differential equation with singularities in {0, 1, +∞} via an homographic transformation. 3 x 0 := t 1,2 /2iπ and x 1 := -t 2,3 /2iπ are noncommuative variables and t 1,2 ,t 2,3 belong to T 3 = {t 1,2 ,t 1,3 ,t 2,3 } satisfying the infinitesimal 3-braid relations, i.e. [t 1,3 ,t 1,2 +t 2,3 ] = [t 2,3 ,t 1,2 +t 1,3 ] = 0. 4 They were introduced in QFT by Drinfel'd and it plays an important role for the still open problem of the effective determination of the polynomial invariants of knots and links via Kontsevich's integral (see [START_REF] Cartier | Développements récents sur les groupes de tresses, Applications à la topologie et à l'algèbre[END_REF][START_REF] Lê | Kontsevich's integral for Kauffman polynomial[END_REF]) and Φ KZ , was obtained firstly, in [START_REF] Lê | Kontsevich's integral for Kauffman polynomial[END_REF], with explicit coefficients which are polyzetas and regularized polyzetas (see [START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF] for the computation of the other involving only convergent polyzetas as local coordinates, and for algorithms regularizing divergent polyzetas). 5 s 1 + . . . + s r is the weight of ζ (s 1 , . . ., s r ) , i.e. the weight of the composition (s 1 , . . ., s r ). 6 One of us proposed a proof in [START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF].

Since the algebras of polylogarithms and of harmonic sums are isomorphic to the shuffle algebra (Q X , ⊔⊔ , 1 X * ) and quasi-shuffle algebra (Q Y , , 1 Y * ) respectively both admitting the Lyndon words L ynX over X = {x 0 , x 1 } and L ynY over Y = {y i } i≥1 , as transcendence bases (recalled in Section 2.1) then, by using

• The (one-to-one) correspondence between the combinatorial compositions, the words 7 in Y * and the words in X * x 1 + 1 X * , i.e. 8({1} k , s k+1 , . . . , s r ) ↔ y k 1 y s k+1 . . .

y s r π X ⇋ π Y x k 1 x s k+1 -1 0 x 1 . . . x s r -1 0 x 1 . (1) 
• The ordering x 1 ≻ x 0 and y 1 ≻ y 2 ≻ . . . over X and Y respectively.

• The transcendence base {S l } l∈L ynX (resp. {Σ l } l∈L ynY ) of (Q X , ⊔⊔ , 1 X * ) (resp.

(Q Y , , 1 Y * )) in duality 9 with {P l } l∈L ynX (resp. {Π l } l∈L ynY ), a base of the Lie algebra of primitive elements of the bialgebra 10 H ⊔⊔ = (Q X , conc, 1 X * , ∆ ⊔⊔ , ε) we then obtain two formal power series over Y , Z 1 and Z 2 , such that lim

(resp. H = (Q Y , conc, 1 Y * , ∆ , ε)) to
z→1 exp y 1 log 1 1 -z π Y L(z) = Z 1 , lim N→∞ exp ∑ k≥1 H y k (N) (-y 1 ) k k H(N) = Z 2 .
Moreover, Z 1 , Z 2 are equal and stand for the noncommutative generating series of {ζ (w)} w∈Y * -y 1 Y * , or {ζ (w)} w∈x 0 X * x 1 , as one has Z 1 = Z 2 = π Y Z ⊔⊔ [43, 44, 45]. This allows, by extracting the coefficients of the noncommutative generating series, to explicit the counter-terms eliminating the divergence of {Li w } w∈x 1 X * and of {H w } w∈y 1 Y * and this leads naturally to an equation connecting algebraic structures

ց ∏ l∈L ynY,l =y 1 exp(ζ (Σ l )Π l ) = exp ∑ k≥2 -ζ (k) (-y 1 ) k k π Y ց ∏ l∈L ynX,l =x 0 ,x 1 exp(ζ (S l )P l ). (2) 
Identity [START_REF] Bender | Quantum field theory of partitions[END_REF] allows to compute the Euler-MacLaurin constants and the Hadamard finite parts associated to divergent polyzetas {ζ (w)} w∈y 1 Y * and, by identifying local coordinates, to describe the graded core of ker ζ by its algebraic generators.

In this paper, we will focus on the approach by noncommutative formal power series, adapted from [START_REF] Fliess | Matrices de Hankel[END_REF][START_REF] Fliess | Fonctionnelles causales non linéaires et indéterminées non commutatives[END_REF], and explain how the results of [START_REF] Ngoc | Algebraic combinatoric aspects of asymptotic analysis of nonlinear dynamical system with singular inputs[END_REF][START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF], allow to study the combinatorial aspects of the renormalization at the singularities in {0, 1, +∞} of the solutions of linear differential equations (see Example 1 below) as well as the solutions of nonlinear differential equations (see Examples 2 and 3 below) described in Section 3.2 and involved in quantum electrodynamics.

Example 1 (Hypergeometric equation). Let t 0 ,t 1 ,t 2 be parameters and

z(1 -z) ÿ(z) + [t 2 -(t 0 + t 1 + 1)z] ẏ(z) -t 0 t 1 y(z) = 0. Let q 1 (z) = -y(z) and q 2 (z) = (1 -z) ẏ(z). One has q1 q2 = M 0 z + M 1 1 -z q 1 q 2 ,
where M 0 and M 1 are the following matrices

M 0 = - 0 0 t 0 t 1 t 2 and M 1 = - 0 1 0 t 2 -t 0 -t 1 .
Or equivalently,

q(z) = A 0 (q) 1 z + A 1 (q) 1 1 -z and y(z) = -q 1 (z),
where A 0 and A 1 are the following parametrized linear vector fields

A 0 = -(t 0 t 1 q 1 + t 2 q 2 ) ∂ ∂ q 2 and A 1 = -q 1 ∂ ∂ q 1 -(t 2 -t 0 -t 1 )q 2 ∂ ∂ q 2 .
acting by

∂ ∂ q 1 (q) = ∂ ∂ q 1 q 1 q 2 = 1 0 and ∂ ∂ q 2 (q) = ∂ ∂ q 2 q 1 q 2 = 0 1 .

Example 2 (Harmonic oscillator).

Let k 1 , k 2 be parameters and

ẏ(z) + k 1 y(z) + k 2 y 2 (z) = u 1 (z).
which can be represented, with the same formalism as above, by the following state equations q(z) = A 0 (q) + A 1 (q)u 1 (z) and y(z) = q(z),

where A 0 and A 1 are the following vector fields

A 0 = -(k 1 q + k 2 q 2 ) ∂ ∂ q and A 1 = ∂ ∂ q .
Example 3 (Duffing's equation). Let a, b, c be parameters and

ÿ(z) + a ẏ(z) + by(z) + cy 3 (z) = u 1 (z).
which can be represented by the following state equations q(z) = A 0 (q) + A 1 (q)u 1 (z), and y(z) = q 1 (z),

where A 0 and A 1 are the following vector fields

A 0 = -(aq 2 + b 2 q 1 + cq 3 1 ) ∂ ∂ q 2 + q 2 ∂ ∂ q 1 and A 1 = ∂ ∂ q 2 .
Example 4 (Van der Pol oscillator). Let γ, g be parameters and

∂ 2 z x(z) -γ[1 + x(z) 2 ]∂ z x(z) + x(z) = g cos(ωz)
which can be tranformed into (with C is some constant of integration)

∂ z x(z) = γ[1 + x(z) 2 /3]x(z) - z z 0 x(s)ds + g ω sin(ωz) +C.
Setting y = z z 0 x(s)ds and u 1 (z) = g sin(ωz)/ω +C, it leads then to

∂ 2 z y(z) = γ[∂ z y(z) + (∂ z y(z)) 3 /3] -y(z) + u 1 (z)
which can be represented by the following state equations (with n = 2)

∂ z q(z) = [A 0 u 0 (z) + A 1 u 1 (z)](q) and y(z) = q 1 (z)
where A 0 and A 1 are the following vector fields

A 1 = ∂ ∂ q 2 and A 0 = [γ(q 2 + q 3 2 /3) -q 1 ] ∂ ∂ q 2 + q 2 ∂ ∂ q 1 .
This approach by noncommutative formal power series is adequate for studying the algebraic combinatorial aspects of the asymptotic analysis at the singularities in {0, 1, +∞}, of the nonlinear dynamical systems described in Section 3.2 because

• The polylogarithms form a basis of an infinite dimensional universal Picard-Vessiot extension by means of these differential equations [START_REF] Ngoc | Differential Galois groups and noncommutative generating series of polylogarithms[END_REF][START_REF] Deneufchâtel | Independence of hyperlogarithms over function fields via algebraic combinatorics[END_REF] and their algebra, isomorphic to the shuffle algebra, admits {Li l } l∈L ynX as a transcendence basis, • The harmonic sums generate the coefficients of the ordinary Taylor expansions of their solutions (when these expansions exist) [START_REF] Ngoc | Algebraic combinatoric aspects of asymptotic analysis of nonlinear dynamical system with singular inputs[END_REF] and their algebra is isomorphic to the quasi-shuffle algebra admitting {H l } l∈L ynY as a transcendence basis, • The polyzetas do appear as the fondamental arithmetical constants involved in the computations of the monodromies [START_REF] Hoang | Polylogarithms and Shuffle algebra[END_REF][START_REF] Hoang | Aspects combinatoires des polylogarithmes et des sommes d'Euler-Zagier[END_REF], the Kummer type functional equations [START_REF] Hoang | L'algèbre des polylogarithmes par les séries génératrices[END_REF][START_REF] Hoang | Aspects combinatoires des polylogarithmes et des sommes d'Euler-Zagier[END_REF], the asymptotic expansions of solutions [START_REF] Ngoc | Algebraic combinatoric aspects of asymptotic analysis of nonlinear dynamical system with singular inputs[END_REF][START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF] and their algebra is freely generated by the polyzetas encoded by irreducible Lyndon words [START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF].

Hence, a lot of algorithms can be deduced from these facts and more general studies will be proceeded in [START_REF] Bui | Pure) transcendence bases in φ -deformed shuffle bialgebras[END_REF][START_REF] Deneufchâtel | Independence of hyperlogarithms over function fields via algebraic combinatorics[END_REF]. The organisation of this paper is the following • In Section 2, we will give algebraic and analytic foundations, i.e. the combinatorial Hopf algebra of shuffles and the indiscernability respectively, for polyzetas. • These will be exploited, in Section 3, to expand solutions, of nonlinear dynamical systems with singular inputs and their ordinary and functional differentiations.

2 Fundation of the present framework 2.1 Background about combinatorics of shuffle and stuffle bialgebras

Sch ützenberger's monoidal factorization

Let Q X be equipped by the concatenation and the shuffle defined by

∀w ∈ X * , w ⊔⊔ 1 X * = 1 X * ⊔⊔ w = w, ∀x, y ∈ X, ∀u, v ∈ X * , xu ⊔⊔ yv = x(u ⊔⊔ yv) + y(xu ⊔⊔ v),
or by their dual co-products, ∆ conc and ∆ ⊔⊔ , defined by, for w ∈ X * and x ∈ X,

∆ conc (w) = ∑ u,v∈X * ,uv=w u ⊗ v and ∆ ⊔⊔ (x) = x ⊗ 1 + 1 ⊗ x, ∆ ⊔⊔ is then extended to a conc-morphism Q X → Q X ⊗ Q X . These two comul- tiplications satisfy, for any u, v, w ∈ X * , ∆ conc (w) | u ⊗ v = w | uv and ∆ ⊔⊔ (w) | u ⊗ v = w | u ⊔⊔ v .
One gets two mutually dual bialgebras

H ⊔⊔ = (Q X , conc, 1 X * , ∆ ⊔⊔ , ε), H ∨ ⊔⊔ = (Q X , ⊔⊔ , 1 X * , ∆ conc , ε).
After a theorem by Radford [START_REF] Radford | A natural ring basis for shuffle algebra and an application to group schemes[END_REF], L ynX forms a transcendence basis of (Q X , ⊔⊔ , 1 X * ) and it can be completed then to the linear basis {w} w∈X * which is auto-dual :

∀v, v ∈ X * , u | v = δ u,v . (3) 
But the elements l ∈ L ynX -X are not primitive, for ∆ ⊔⊔ , and then L ynX does not constitute a basis for L ie Q X . Chen, Fox and Lyndon [START_REF] Chen | Free differential calculus, IV. The quotient groups of the lower central series[END_REF] constructed {P w } w∈X * , so-called the Poincaré-Birkhoff-Witt-Lyndon basis, for U (L ie Q X ) as follows

P x = x for x ∈ X, (4) 
P l = [P s , P r ] for l ∈ L ynX, standard factorization of l = (s, r), (5) 
P w = P i 1 l 1 . . . P i k l k forw = l i 1 1 . . . l i k k , l 1 ≻ . . . ≻ l k , l 1 . . . , l k ∈ L ynX. ( 6 
)
where here ≻ stands for the lexicographic (strict) ordering defined11 by x 0 ≺ x 1 .

Schützenberger constructed bases for (Q X , ⊔⊔ ) defined by duality as follows :

∀u, v ∈ X * , S u | P v = δ u,v
and obtained the transcendence and linear bases, {S l } l∈∈L ynX , {S w } w∈X * , as follows

S l = xS u , for l = xu ∈ L ynX, S w = S ⊔⊔ i 1 l 1 ⊔⊔ . . . ⊔⊔ S ⊔⊔ i k l k i 1 ! . . . i k ! for w = l i 1 1 . . . l i k k , l 1 ≻ . . . ≻ l k .
After that, Mélanc ¸on and Reutenauer [START_REF] Reutenauer | Free Lie Algebras[END_REF] proved that, for any w ∈ X * ,

P w = w + ∑ v≻w,|v| X =|w| X c v v and S w = w + ∑ v≺w,|v| X =|w| X d v v. ( 7 
)
where |w| X = (|w| x ) x∈X is the family of all partial degrees (number of times a letter occurs in a word). In other words, the elements of the bases {S w } w∈X * and {P w } w∈X * are lower and upper triangular respectively and they are of multihomogeneous (all the monomials have the same partial degrees).

Example 5 (of {P w } w∈X * and {S w } w∈X * , [START_REF] Hoang | Input/Output Behaviour of Nonlinear Control Systems: Rational Approximations, Nilpotent structural Approximations[END_REF]). Let X = {x 0 , x 1 } with x 0 ≺ x 1 .

l P l S l x 0 x 0 x 0 x 1 x 1 x 1 x 0 x 1 [x 0 , x 1 ] x 0 x 1 x 2 0 x 1 [x 0 , [x 0 , x 1 ]] x 2 0 x 1 x 0 x 2 1 [[x 0 , x 1 ], x 1 ] x 0 x 2 1 x 3 0 x 1 [x 0 , [x 0 , [x 0 , x 1 ]]] x 3 0 x 1 x 2 0 x 2 1 [x 0 , [[x 0 , x 1 ], x 1 ]] x 2 0 x 2 1 x 0 x 3 1 [[[x 0 , x 1 ], x 1 ], x 1 ] x 0 x 3 1 x 4 0 x 1 [x 0 , [x 0 , [x 0 , [x 0 , x 1 ]]]] x 4 0 x 1 x 3 0 x 2 1 [x 0 , [x 0 , [[x 0 , x 1 ], x 1 ]]] x 3 0 x 2 1 x 2 0 x 1 x 0 x 1 [[x 0 , [x 0 , x 1 ]], [x 0 , x 1 ]] 2x 3 0 x 2 1 + x 2 0 x 1 x 0 x x 2 0 x 3 1 [x 0 , [[[x 0 , x 1 ], x 1 ], x 1 ]] x 2 0 x 3 1 x 0 x 1 x 0 x 2 1 [[x 0 , x 1 ], [[x 0 , x 1 ], x 1 ]] 3x 2 0 x 3 1 + x 0 x 1 x 0 x x 0 x 4 1 [[[[x 0 , x 1 ], x 1 ], x 1 ], x 1 ] x 0 x 4 1 x 5 0 x 1 [x 0 , [x 0 , [x 0 , [x 0 , [x 0 , x 1 ]]]]] x 5 0 x 1 x 4 0 x 2 1 [x 0 , [x 0 , [x 0 , [[x 0 , x 1 ], x 1 ]]]] x 4 0 x 2 1 x 3 0 x 1 x 0 x 1 [x 0 , [[x 0 , [x 0 , x 1 ]], [x 0 , x 1 ]]] 2x 4 0 x 2 1 + x 3 0 x 1 x 0 x x 3 0 x 3 1 [x 0 , [x 0 , [[[x 0 , x 1 ], x 1 ], x 1 ]]] x 3 0 x 3 1 x 2 0 x 1 x 0 x 2 1 [x 0 , [[x 0 , x 1 ], [[x 0 , x 1 ], x 1 ]]] 3x 3 0 x 3 1 + x 2 0 x 1 x 0 x x 2 0 x 2 1 x 0 x 1 [[x 0 , [[x 0 , x 1 ], x 1 ]], [x 0 , x 1 ]] 6x 3 0 x 3 1 + 3x 2 0 x 1 x 0 x 2 1 + x x 2 1 x 0 x 1 x 2 0 x 4 1 [x 0 , [[[[x 0 , x 1 ], x 1 ], x 1 ], x 1 ]] x 2 0 x 4 1 x 0 x 1 x 0 x 3 1 [[x 0 , x 1 ], [[[x 0 , x 1 ], x 1 ], x 1 ]] 4x 2 0 x 4 1 + x 0 x 1 x 0 x x 0 x 5 1 [[[[[x 0 , x 1 ], x 1 ], x 1 ], x 1 ], x 1 ] x 0 x 5 1
Then, Schützenberger's factorization of the diagonal series D X follows [51]

D X := ∑ w∈X * w ⊗ w = ∑ w∈X * S w ⊗ P w = ց ∏ l∈L ynX exp(S l ⊗ P l ). (8) 

Extended Sch ützenberger's monoidal factorization

Let us define the commutative product over Q Y , denoted by µ, as follows

∀y n , y m ∈ Y, µ(y n , y m ) = y n+m ,
or by its associated coproduct, ∆ µ , defined by

∀y n ∈ Y, ∆ µ (y n ) = n-1 ∑ i=1 y i ⊗ y n-i satisfying, ∀x, y, z ∈ Y, ∆ µ | y ⊗ z = x | µ(y, z) .
Let Q Y be equipped by 1. The concatenation (or by its associated coproduct, ∆ conc ).

2. The shuffle product, i.e. the commutative product defined by [START_REF] Fliess | Fonctionnelles causales non linéaires et indéterminées non commutatives[END_REF] ∀w

∈ Y * , w ⊔⊔ 1 Y * = 1 Y * ⊔⊔ w = w, ∀x, y ∈ Y, u, v ∈ Y * , xu ⊔⊔ yv = x(u ⊔⊔ yv) + y(xu ⊔⊔ v)
or with its associated coproduct, ∆ ⊔⊔ , defined, on the letters, by

∀y k ∈ Y, ∆ ⊔⊔ y k = y k ⊗ 1 + 1 ⊗ y k
and extended by morphism. It satisfies

∀u, v, w ∈ Y * , ∆ ⊔⊔ w | u ⊗ v = w | u ⊔⊔ v .
3. The quasi-shuffle product, i.e. the commutative product defined by [START_REF] Hoffman | The algebra of multiple harmonic series[END_REF] ∀w ∈ Y * , w

1 Y * = 1 Y * w = w, ∀x, y ∈ Y, u, v ∈ Y * , y i u y j v = y j (y i u v) + y i (u y j v) +µ(y i , y j )(u v)
or with its associated coproduct, ∆ , defined, on the letters, by

∀y k ∈ Y, ∆ y k = ∆ ⊔⊔ y k + ∆ µ y k
and extended by morphism. It satisfies

∀u, v, w ∈ Y * , ∆ w | u ⊗ v = w | u v .
Hence, with the counit e defined by, for any P ∈ Q Y , e(P) = P | 1 Y * , one gets two pairs of mutually dual bialgebras

H ⊔⊔ = (Q Y , conc, 1 Y * , ∆ ⊔⊔ , e) and H ∨ ⊔⊔ = (Q Y , ⊔⊔ , 1 Y * , ∆ conc , e), H = (Q Y , conc, 1 Y * , ∆ , e) and H ∨ = (Q Y , , 1 Y * , ∆ conc , e).
By the CQMM theorem (see [START_REF] Bui | Pure) transcendence bases in φ -deformed shuffle bialgebras[END_REF]), the connected N-graded, co-commutative Hopf algebra H ⊔⊔ is isomorphic to the enveloping algebra of the Lie algebra of its primitive elements which is equal to L ie Q Y :

H ⊔⊔ ∼ = U (L ie Q Y ) and H ∨ ⊔⊔ ∼ = U (L ie Q Y ) ∨ .
Hence, let us consider [START_REF] Chen | Free differential calculus, IV. The quotient groups of the lower central series[END_REF] 1. The PBW-Lyndon basis

{p w } w∈Y * for U (L ie Q Y ) constructed recursively    p y = y for y ∈ Y, p l = [p s , p r ] for l ∈ L ynY, standard factorization of l = (s, r), p w = p i 1 l 1 . . . p i k l k for w = l i 1 1 . . . l i k k , l 1 ≻ . . . ≻ l k , l 1 . . . , l k ∈ L ynY, 2.
And, by duality 12 , the linear basis

{s w } w∈Y * for (Q Y , ⊔⊔ , 1 Y * ), i.e. ∀u, v ∈ Y * , p u | s v = δ u,v .
This basis can be computed recursively as follows

[51]        s y = y, for y ∈ Y, s l = ys u , for l = yu ∈ L ynY, s w = s ⊔⊔ i 1 l 1 ⊔⊔ . . . ⊔⊔ s ⊔⊔ i k l k i 1 ! . . . i k ! for w = l i 1 1 . . . l i k k , l 1 ≻ . . . ≻ l k ∈ L ynY.
As in [START_REF] Chari | A guide to quantum group[END_REF], one also has Schützenberger's factorization for the diagonal series D Y

D Y := ∑ w∈Y * w ⊗ w = ∑ w∈Y * s w ⊗ p w = ց ∏ l∈L ynY exp(s l ⊗ p l ).
Similarly, by the CQMM theorem, the connected N-graded, co-commutative Hopf algebra H is isomorphic to the enveloping algebra of

Prim(H ) = Im(π 1 ) = span Q {π 1 (w)|w ∈ Y * },
where, for any w ∈ Y * , π 1 (w) is obtained as follows [6, 44] π

1 (w) = w + ∑ k≥2 (-1) k-1 k ∑ u 1 ,...,u k ∈Y + w | u 1 . . . u k u 1 . . . u k . (9) 
Note that Equation ( 9) is equivalent to the following identity [START_REF] Bui | Pure) transcendence bases in φ -deformed shuffle bialgebras[END_REF][START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF]]

w = ∑ k≥0 1 k! ∑ u 1 ,...,u k ∈Y * w | u 1 . . . u k π 1 (u 1 ) . . . π 1 (u k ). (10) 
In particular, for any y k ∈ Y , we have successively [START_REF] Bui | Pure) transcendence bases in φ -deformed shuffle bialgebras[END_REF][START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF]]

π 1 (y k ) = y k + ∑ l≥2 (-1) l-1 l ∑ j 1 ,..., j l ≥1 j 1 +...+ j l =k y j 1 . . . y j l , (11) 
y n = ∑ k≥1 1 k! ∑ s ′ 1 +•••+s ′ k =n π 1 (y s ′ 1 ) . . . π 1 (y s ′ k ) (12) 
Hence, by introducing the new alphabet Ȳ = { ȳ} y∈Y = {π 1 (y)} y∈Y , one has

(Q Ȳ , conc, 1 Ȳ * , ∆ ⊔⊔ ) ∼ = (Q Y , conc, 1 Y * , ∆ )
as one can prove through ( 12) that the endomorphism y → ȳ is, in fact, an isomorphism

H ∼ = U (L ie Q Ȳ ) ∼ = U (Prim(H )), H ∨ ∼ = U (L ie Q Ȳ ) ∨ ∼ = U (Prim(H )) ∨ .
By considering

1. The PBW-Lyndon basis {Π w } w∈Y * for U (Prim(H )) constructed recursively as follows [44]    Π y = π 1 (y) for y ∈ Y, Π l = [Π s , Π r ] for l ∈ L ynY, standard factorization of l = (s, r), Π w = Π i 1 l 1 . . . Π i k l k for w = l i 1 1 . . . l i k k , l 1 ≻ . . . ≻ l k , l 1 . . . , l k ∈ L ynY,

And, by duality, the linear basis

{Σ w } w∈Y * for (Q Y , , 1 Y * ), i.e. ∀u, v ∈ Y * , Π u | Σ v = δ u,v .
This basis can be computed recursively as follows [START_REF] Bui | Schützenberger's factorization on the (completed) Hopf algebra of q-stuffle product[END_REF][START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF] 

             Σ y = y, for y ∈ Y, Σ l = ∑ (!) y s k 1 +•••+s k i i! Σ l 1 •••l n , for l = y s 1 . . . y s w ∈ L ynY, Σ w = Σ i 1 l 1 . . . Σ i k l k i 1 ! . . . i k ! , for w = l i 1 1 . . . l i k k , with l 1 ≻ . . . ≻ l k ∈ L ynY.
In (!), the sum is taken over all subsequences {k 1 , . . . , k i } ⊂ {1, . . . , k} and all Lyndon words

l 1 • • • l n such that (y s 1 , . . . , y s k ) * ⇐ (y s k 1 , . . . , y s k i , l 1 , . . . , l n ),
where * ⇐ denotes the transitive closure of the relation on standard sequences, denoted by ⇐ (see [START_REF] Bui | Schützenberger's factorization on the (completed) Hopf algebra of q-stuffle product[END_REF]).

We also proved that, for any w ∈ Y * , [START_REF] Bui | Pure) transcendence bases in φ -deformed shuffle bialgebras[END_REF][START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF] 

Π w = w + ∑ v≻w,(v)=(w) e v v and Σ w = w + ∑ v≺w,(v)=(w) f v v. ( 13 
)
In other words, the elements of the bases {Σ w } w∈Y * and {Π w } w∈Y * are lower and upper triangular respectively and they are of homogeneous in weight.

We also get the extended Schützenberger's factorization of D Y [START_REF] Bui | Pure) transcendence bases in φ -deformed shuffle bialgebras[END_REF][START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF]]

D Y = ∑ w∈Y * Σ w ⊗ Π w = ց ∏ l∈L ynY exp(Σ l ⊗ Π l ).
Example 6 (of {Π w } w∈Y * and {Σ w } w∈Y * , [START_REF] Bui | Schützenberger's factorization on the (completed) Hopf algebra of q-stuffle product[END_REF]).

l Π l Σ l y 2 y 2 -1 2 y 2 1 y 2 y 2 1 y 2 1 1 2 y 2 + y 2 1 y 3 y 3 -1 2 y 1 y 2 -1 2 y 2 y 1 + 1 3 y 3 1 y 3 y 2 y 1 y 2 y 1 -y 2 y 1 1 2 y 3 + y 2 y 1 y 1 y 2 y 2 y 1 -1 2 y 3 1 y 1 y 2 y 3 1 y 3 1 1 6 y 3 + 1 2 y 2 y 1 + 1 2 y 1 y 2 + y 3 1 y 4 y 4 -1 2 y 1 y 3 -1 2 y 2 2 -1 2 y 3 y 1 y 4 + 1 3 y 2 1 y 2 + 1 3 y 1 y 2 y 1 + 1 3 y 2 y 2 1 -1 4 y 4 1 y 3 y 1 y 3 y 1 -1 2 y 2 y 2 1 -y 1 y 3 + 1 2 y 2 1 y 2 1 2 y 4 + y 3 y 1 y 2 2 y 2 2 -1 2 y 2 y 2 1 -1 2 y 2 1 y 2 + 1 4 y 4 1 1 2 y 4 + y 2 2 y 2 y 2 1 y 2 y 2 1 -2 y 1 y 2 y 1 + y 2 1 y 2 1 6 y 4 + 1 2 y 3 y 1 + 1 2 y 2 2 + y 2 y 2 1 y 1 y 3 y 1 y 3 -1 2 y 2 1 y 2 -1 2 y 1 y 2 y 1 + 1 3 y 4 1 y 4 + y 3 y 1 + y 1 y 3 y 1 y 2 y 1 y 1 y 2 y 1 -y 2 1 y 2 1 2 y 4 + 1 2 y 3 y 1 + y 2 2 +y 2 y 2 1 + 1 2 y 1 y 3 + y 1 y 2 y 1 y 2 1 y 2 y 2 1 y 2 -1 2 y 4 1 1 2 y 4 + y 3 y 1 + y 2 2 + y 2 y 2 1 +y 1 y 3 + y 1 y 2 y 1 + y 2 1 y 2 y 4 1 y 4 1 1 24 y 4 + 1 6 y 3 y 1 + 1 4 y 2 2 + 1 2 y 2 y 2 1 + 1 6 y 1 y 3 + 1 2 y 1 y 2 y 1 + 1 2 y 2 1 y 2 + y 4 1 2.
2 Indiscernability over a class of formal power series

Residual calculus and representative series

Definition 1. Let S ∈ Q X (resp. Q X ) and let P ∈ Q X (resp. Q X ).
The left and right residual of S by P are respectively the formal power series P ⊳ S and S ⊲ P in Q X defined by

P ⊳ S | w = S | wP (resp. S ⊲ P | w = S | Pw ). For any S ∈ Q X (resp. Q X ) and P, Q ∈ Q X (resp. Q X ), we straightfor- wardly get P ⊳ (Q ⊳ S) = PQ ⊳ S, (S ⊲ P) ⊲ Q = S ⊲ PQ and (P ⊳ S) ⊲ Q = P ⊳ (S ⊲ Q).
In case x, y ∈ X and w ∈ X * , we get 13 x ⊳ (wy) = δ y x w and xw ⊲ y = δ y x w.

Lemma 1. (Reconstruction lemma) Let S ∈ Q X . Then S = S | 1 X * + ∑ x∈X x(S ⊲ x) = S | 1 X * + ∑ x∈X (x ⊳ S)x. Theorem 1. Le δ ∈ Der(Q X , ⊔⊔ , 1 X * )
. Moreover, we suppose that δ is locally nilpotent 14 . Then the family (tδ ) n /n! is summable and its sum, denoted exp(tδ ), is is a one-parameter group of automorphisms of (Q X , ⊔⊔ , 1 X * ).

Theorem 2. Let L be a Lie series, i.e. ∆ ⊔⊔ (L) = L ⊗1 + 1 ⊗L. Let δ r L , δ l L be defined respectively by δ r L (P) := P ⊳ L, δ l L (P) := L ⊲ P. Then δ r L , δ l L are locally nilpotent derivations of (Q X , ⊔⊔ , 1 X * ). Hence, exp(tδ r L ), exp(tδ l L ) are one-parameter groups of Aut(Q X , ⊔⊔ , 1 X * ) and exp(tδ r L )P = P ⊳ exp(tL), exp(tδ l L )P = exp(tL) ⊲ P. Example 7. Since x 1 ⊳ and ⊲x 0 are derivations and the polynomials

{Σ l } l∈∈L ynX-X belong to x 0 Q X x 1 then x 1 ⊳ l = l ⊲ x 0 = 0 and x 1 ⊳ Šl = Šl ⊲ x 0 = 0. Theorem 3. Let S ∈ Q X .
The following properties are equivalent:

1. The left C-module Res g (S) = span{w ⊳ S | w ∈ X * } is finite dimensional. 2. The right C-module Res d (S) = span{S ⊲ w | w ∈ X * } is finite dimensional. 3. There are matrices λ ∈ M 1,n (Q), η ∈ M n,1 (Q) and µ : X * -→ M n,n , such that S = ∑ w∈X * [λ µ(w)η] w = λ ց ∏ l∈L ynX e µ(S l ) P l η.
A series that satisfies the items of Theorem 3 will be called representative series. This concept can be found in [START_REF] Abe | Hopf algebra[END_REF][START_REF] Duchamp | Un critère de rationalité provenant de la géométrie noncommutative[END_REF][START_REF] Hochschild | The structure of Lie groups[END_REF][START_REF] Duchamp | Sweedler's duals and Schützenberger's calculus[END_REF]. The two first items are in [START_REF] Fliess | Matrices de Hankel[END_REF][START_REF] Hespel | Une étude des séries formelles noncommutatives pour l'Approximation et l'Identification des systèmes dynamiques[END_REF]. The third can be deduced from [START_REF] Chari | A guide to quantum group[END_REF][START_REF] Duchamp | Un critère de rationalité provenant de la géométrie noncommutative[END_REF] for example and it was used to factorize, for the first time, by Lyndon words, the output of bilinear and analytical dynamical systems respectively in [START_REF] Ngoc | Input/Output behaviour of nonlinear control systems: about exact and approximated computations[END_REF][START_REF] Hoang | Input/Output Behaviour of Nonlinear Control Systems: Rational Approximations, Nilpotent structural Approximations[END_REF] and to study polylogarithms, hypergeometric functions and associated functions in [START_REF] Ngoc | Fonctions de Dirichlet d'ordre n et de paramètre t[END_REF][START_REF] Hoang | Symbolic integration of meromorphic differential systems via Dirichlet functions[END_REF][START_REF] Ngoc | Differential Galois groups and noncommutative generating series of polylogarithms[END_REF]. The dimension of Res g (S) is equal to that of Res d (S), and to the minimal dimension of a representation satisfying the third point of Theorem 3. This rank is then equal to the rank of the Hankel matrix of S, i.e. the infinite matrix ( S | uv ) u,v∈X indexed by X * × X * so called Hankel rank 15 of S [START_REF] Fliess | Matrices de Hankel[END_REF][START_REF] Hespel | Une étude des séries formelles noncommutatives pour l'Approximation et l'Identification des systèmes dynamiques[END_REF]. The triplet (λ , µ, η) is called a linear representation of S 16 . S is called rational if it belongs to the closure by +, conc and star operation of proper elements 17 . Any noncommutative power series is representative if and only if it is rational [START_REF] Berstel | Rational series and their languages[END_REF][START_REF] Schützenberger | On the definition of a family of automata[END_REF]. These rationality properties can be expressed in terms of differential operators in noncommutative geometry [START_REF] Duchamp | Un critère de rationalité provenant de la géométrie noncommutative[END_REF]. 13 For any words 16 The minimal representation of S as being a representation of S of minimal dimension. It can be shown that all minimal representations are isomorphic (see [START_REF] Berstel | Rational series and their languages[END_REF]). 17 For any proper series S, i.e. S | 1 X * = 0, the series S * = 1 + S + S 2 + . . . is called "star of S" 

u, v ∈ X * , if u = v then δ v u = 1 else 0. 14 φ ∈ End(V ) is said to be locally nilpotent iff, for any v ∈ V , there exists N ∈ N s.t. φ N (v) = 0. 15 i.e. the dimension of span{S ⊲ Π | Π ∈ C X } (resp. span{Π ⊳ S | Π ∈ C X }).

Polylogarithms and harmonic sums

Structure of polylogarithms and of harmonic sums

Let

Ω := C -(] -∞, 0] ∪ [1, +∞[) and let C := C[z, 1/z, 1/1 -z].
Note that the neutral element of C , for the pointwise product, is 1

Ω : Ω -→ C such that z -→ 1.
One can check that Li s 1 ,...,s r is obtained as the iterated integral over the differential forms ω 0 (z) = dz/z and ω 1 (z) = dz/(1 -z) and along the path 0 z [32] :

Li s 1 ,...,s r (z) = α z 0 (x s 1 -1 0 x 1 . . . x s r -1 0 x 1 ) = ∑ n 1 >...>n r >0 z n 1 n s 1 1 . . . n s r r . (14) 
By (1), Li s 1 ,...,s r is then denoted also by Li

x s 1 -1 0 x 1 ...x sr -1 0 x 1
or Li y s 1 ...y sr -1 [START_REF] Ngoc | Fonctions de Dirichlet d'ordre n et de paramètre t[END_REF][START_REF] Hoang | Symbolic integration of meromorphic differential systems via Dirichlet functions[END_REF][START_REF] Hoang | Aspects combinatoires des polylogarithmes et des sommes d'Euler-Zagier[END_REF].

Example 8 (of Li 2 = Li x 0 x 1 ).

α z 0 (x 0 x 1 ) = z 0 ds s s 0 dt 1 -t = z 0 ds s s 0 dt ∑ k≥0 t k = ∑ k≥1 z 0 ds s k-1 k = ∑ k≥1 z k k 2 .
The definition of polylogarithms is extended over the words w ∈ X * by putting Li x 0 (z) := log(z). The {Li w } w∈X * are C -linearly independent [START_REF] Deneufchâtel | Independence of hyperlogarithms over function fields via algebraic combinatorics[END_REF][START_REF] Hoang | Polylogarithms and Shuffle algebra[END_REF][START_REF] Hoang | Aspects combinatoires des polylogarithmes et des sommes d'Euler-Zagier[END_REF] and then the following function, for v = y s 1 . . . y s r ∈ Y * , are also C-linearly independent [START_REF] Deneufchâtel | Independence of hyperlogarithms over function fields via algebraic combinatorics[END_REF][START_REF] Ngoc | Finite polyzêtas, Poly-Bernoulli numbers, identities of polyzêtas and noncommutative rational power series[END_REF] 

P v (z) := Li v (z) 1 -z = ∑ N≥0 H v (N) z N , where H v (N) := ∑ N≥n 1 >...>n r >0 1 n s 1 1 . . . n s r r .
Proposition 2. ( [START_REF] Ngoc | Finite polyzêtas, Poly-Bernoulli numbers, identities of polyzêtas and noncommutative rational power series[END_REF]) By linearity, the following maps are isomorphisms of algebras

P • : (C Y , ) -→ (C{P w } w∈Y * , ⊙) , u -→ P u , H • : (C Y , ) -→ (C{H w } w∈Y * , .) , u -→ H u = {H u (N)} N≥0 .
Theorem 4. ( [START_REF] Ngoc | Algebraic combinatoric aspects of asymptotic analysis of nonlinear dynamical system with singular inputs[END_REF]) The Hadamard C -algebra of {P w } w∈Y * can be identified with that of {P l } l∈L ynY . In the same way, the algebra of harmonic sums {H w } w∈Y * with polynomial coefficients can be identified with that of {H l } l∈L ynY .

Let L, P and H be the noncommutative generating series of respectively {Li w } w∈X * , {P w } w∈X * and {H w (N)} w∈Y * , for | z |< 1 and N > 1 [START_REF] Hoang | Polylogarithms and Shuffle algebra[END_REF][START_REF] Ngoc | Finite polyzêtas, Poly-Bernoulli numbers, identities of polyzêtas and noncommutative rational power series[END_REF] :

L(z) = ∑ w∈X * Li w (z)w; P(z) = L(z) 1 -z ; H(N) = ∑ w∈Y * H w (N) w. ( 15 
)
Definition 3 (Polylogarithms and harmonic sums at negative multi-indices). For any s 1 , . . . , s r ∈ (N) r , let us define [START_REF] Gérard | Harmonic sums and polylogarithms at negative multi -indices[END_REF], for | z |< 1 and N > 0,

Li -s 1 ,...,-s r (z) := ∑ n 1 >...>n r >0 n s 1 1 . . . n s r r z n 1 and H -s 1 ,...,-s r (N) := ∑ N≥n 1 >...>n r >0 n s 1 1 . . . n s r r .
The ordinary generating series, P -s 1 ,...,-s r (z), of {H -s 1 ,...,-s r (N)} N≥0 is

P -s 1 ,...,-s r (z) := ∑ N≥0 H -s 1 ,...,-s r (N) z N = 1 1 -z Li -s 1 ,...,-s r (z).
Now, let 18 Y 0 = Y ∪ {y 0 } and let Y * 0 denotes the free monoid generated by Y 0 admitting 1 Y * 0 as neutral element. As in (1), let us introduce another correspondence

(s 1 , . . . , s r ) ∈ N r ↔ y s 1 . . . y s r ∈ Y * 0 .
In all the sequel, for some convenience, we will also adopt the following notations, for any w = y s 1 . . .

y s r ∈ Y * 0 , Li - w = Li -s 1 ,...,-s r ; P - w = P -s 1 ,...,-s r and H - w = H -s 1 ,...,-s r .
Example 9 (Li - ). By Proposition (5), we have Li -

y r 0 = λ r . Hence, Li - y r 0 (z) 1 -z = z r (1 -z) r+1 = ∑ N≥0 N r z N and then H - y r 0 (N) = N r .
Definition 4. With the convention H -

1 Y * 0 = 1, we put L -(z) := ∑ w∈Y * 0 Li - w (z)w; P -(z) := L -(z) 1 -z ; H -(N) := ∑ w∈Y * 0 H - w (N)w. Since, for y k ∈ Y, u ∈ Y * (resp. y k ∈ Y 0 , u ∈ Y * 0 ) and N ≥ 1, one has H y k u (N) - H y k u (N -1) = N -k H u (N -1) (resp. H - y k u (N) -H - y k u (N -1) = N k H - u (N -1)). Then Proposition 3.
H and H -satisfy the following difference equations

H(N) = 1 Y * + ∑ k≥1 y k N k H(N -1) = N ∏ n=1 1 Y * + ∑ k≥1 y k n k = 1 Y * + ∑ w∈Y * ,|w|≥N H w (N) w, H -(N) = 1 Y * 0 + ∑ k≥0 y k N k H -(N -1) = N ∏ n=1 1 Y * 0 + ∑ k≥0 y k n k = 1 Y * 0 + ∑ w∈Y * 0 ,|w|≥N H - w (N) w.
Hence, for any w

∈ Y * (resp. w ∈ Y * 0 ), H w (N) (resp. H - w (N)) is of valuation N.
In all the sequel, the length and the weight of u = y i 1 . . .

y i k ∈ Y * are defined respectively as the numbers | u |= k and (u) = i 1 + . . . + i k . Definition 5. Let g, h ∈ Q Y 0 [[t]] be defined as follows (here, | 1 Y * 0 |= (1 Y * 0 ) = 0) h(t) := ∑ w∈Y * 0 ((w)+ | w |)!t (w)+|w| w and g(t) := ∑ w∈Y * 0 t (w)+|w| w = ∑ y∈Y 0 t (y)+1 y * .
Remark 1. 1. The generating series h is an extension of the Euler series ∑ n≥0 n!t n and it can be obtained as Borel-Laplace transform of g. 2. The ordinary generating series Y (t) := 1 + ∑ r≥0 y r t r and its inverse are grouplike. The generating series Λ (t) = ∑ w∈Y * 0 t (w)+|w| w can be obtained from 1/Y (t) by use the following change of alphabet y r ← ty r it can be expressed as

g(t) = 1 -∑ r≥0 (-ty r ) t r -1 = ∑ r≥0 (-ty r ) t r * .
Now, let us consider the following differential and integration operators acting on C{Li w } w∈X * which can be extended over C {Li w } w∈X * [START_REF] Ngoc | Differential Galois groups and noncommutative generating series of polylogarithms[END_REF] :

∂ z = d/dz, θ 0 = zd/dz, θ 1 = (1 -z)d/dz, ι 0 : Li w -→ Li x 0 w , ι 1 : Li w -→ Li x 1 w
Let Θ and ℑ be monoid morphisms such that Θ (1

X * ) = ℑ(1 X * ) = Id and, for x i ∈ X, v ∈ X * , Θ (vx i ) = Θ (v)θ i and ℑ(vx i ) = ℑ(v)ι i . By extension, we obtain H conc ∼ = (Q Θ (X) , conc, Id, ∆ ⊔⊔ , ε) and H ⊔⊔ ∼ = (Q ℑ(X) , ⊔⊔ , Id, ∆ conc , ε). Hence, Proposition 4. 1. The operators {θ 0 , θ 1 , ι 0 , ι 1 } satisfy in particular, θ 1 + θ 0 = θ 1 , θ 0 = ∂ z and ∀k = 0, 1, θ k ι k = Id, [θ 0 ι 1 , θ 1 ι 0 ] = 0 and (θ 0 ι 1 )(θ 1 ι 0 ) = (θ 1 ι 0 )(θ 0 ι 1 ) = Id.
2. For any w = y s 1 . . .

y s r ∈ Y * (π X (w) = x s 1 -1 0 x 1 . . . x s r -1 0
x 1 ) and u = y t 1 . . . y t r ∈ Y * 0 , we can rephrase Li w , Li - u as follows

Li w = (ι s 1 -1 0 ι 1 . . . ι s r -1 0 ι 1 )1 Ω and Li - u = (θ t 1 +1 0 ι 1 . . . θ t r +1 0 ι 1 )1 Ω , θ 0 Li x 0 π X (w) = Li π X (w) and θ 1 Li x 1 π X (w) = Li π X (w) , ι 0 Li π X (w) = Li x 0 π X (w) and ι 1 Li w = Li x 1 π X (w) . 3. C {Li w } w∈X * ∼ = C ⊗ C{Li w } w∈X * is closed under of ι 0 , ι 1 , θ 0 , θ 1 . 4. Let λ (z) := z/(1 -z) ∈ C .
Then λ and 1/λ are the eigenvalues of θ 0 ι 1 and θ 1 ι 0 within C {Li w } w∈X * respectively :

∀ f ∈ C {Li w } w∈X * , (θ 0 ι 1 ) f = λ f and (θ 1 ι 0 ) f = f /λ .

5.

For any n ≥ 0 and w ∈ X * , one has19 

Θ ( w) Li w = 1 Ω and ∂ n z = ∑ w∈X n (Θ ⊗ Θ )∆ ⊔⊔ (w).

For any

P, Q ∈ Q X and R ∈ L ie Q X , one has Θ (R) Li P ⊔⊔ Q = Li (P ⊔⊔ Q)⊳R = (Θ (R) Li P ) Li Q + Li P (Θ (R) Li Q ).
Proof. The proofs are immediate.

Proposition 5. [16]

1. For any w ∈ Y * 0 , one has Li - w) , where A - w is the extended Eulerian polynomial defined recursively as follows

w (z) = λ |w| (z)A - w (z)(1 -z) -(
A - w (z) =          n-1 ∑ k=0 A n,k z k if w = y k ∈ Y 0 , s 1 ∑ i=0 s 1 i A y i A - y (s 1 +s 2 -i) y s 3 ...y sr if w = y k u ∈ Y 0 Y * 0 ,
and A n,k are Eulerian numbers satisfying A n,k = ∑ k j=0 (-1) j n+1 j (k + 1j) n . 2. For any w ∈ Y * , let us define {G - w (n)} n∈N by the following generating series n+1 (see [START_REF] Foata | Théorie Géométrique des Polynômes Eulériens[END_REF] for example). For example,

∑ n≥|w| (n + 1)! (n-| w |)! G - w (n)z n = Li - w (z) 1 -z . Then H - w (N) = (N + 1)N(N -1) . . .(N-| w | +1)G - w (N). 3. Li - w (z) ∈ Q[(1 -z) -1 ] C and H - w (N) ∈ Q[N] of degree | w | +(w). Example 10. [16][Case of r = 1 by Maple] 1. Since A n (z)/(1 -z) n+1 = ∑ j≥0 z j ( j + 1) n then Li - yn (z) = zA n (z)/(1 -z)
Li - y 1 (z) = z(1 -z) -2 = -(1 -z) -1 + (1 -z) -2 . Li - y 2 (z) = z(z + 1)(1 -z) -3 = (1 -z) -1 -3(1 -z) -2 + 2(1 -z) -3 . Li - y 3 (z) = z(z 2 + 4z + 1)(1 -z) -4 = -(1 -z) -1 + 7(1 -z) -2 -12(1 -z) -3 + 6(1 -z) -4 .
2. For any positive integer m, one has

H - ym (N) = 1 m + 1 m ∑ k=0 m + 1 k B k (N + 1) m+1-k = 1 m + 1 m+1 ∑ k=1 m+1-k ∑ l=0 m + 1 l m + 1 -l k B l N l ,
where B k is the k-th Bernoulli's number given by its exponential generating series

t e t -1 = ∑ k≥0 B k t k k! .
For example, (recall that

B 0 = 1, B 1 = -1/2, B 2 = 1/6, B 3 = 0, B 4 = -1/30), H - y 1 (N) = (N + 1) 2 /2 -(N + 1)/2 = N(N + 1)/2, H - y 2 (N) = (N + 1) 3 /3 -(N + 1) 2 /2 + (N + 1)/6 = N(2N + 1)(N + 1)/6, H - y 3 (N) = (N + 1) 4 /4 -(N + 1) 3 /2 + (N + 1) 2 /4 = (N(N + 1)/2) 2 .
Example 11. [START_REF] Gérard | Harmonic sums and polylogarithms at negative multi -indices[END_REF][Case of r = 2 by Maple]

1. From what precedes, Li - ymyn = (θ m+1 0 ι 1 ) Li - yn = θ m 0 (θ 0 ι 1 ) Li - yn .
Since, by Example 9, we have

(θ 0 ι 1 ) Li - yn = Li - y 0 Li - yn then Li - ymyn = θ m 0 [Li - y 0 Li - yn ] = ∑ m l=0 m l Li - y l Li - y m+n-l . For example, Li - y 2 1 (z) = Li - y 0 (z) Li - y 2 (z) + (Li - y 1 (z)) 2 = -(1 -z) -1 + 5(1 -z) -2 -7(1 -z) -3 + 3(1 -z) -4 Li - y 2 y 1 (z) = Li - y 0 (z) Li - y 3 (z) + 3 Li - y 1 (z) Li - y 2 (z) = (1 -z) -1 -11(1 -z) -2 + 31(1 -z) -3 -33(1 -z) -4 + 12(1 -z) -5 , Li - y 1 y 2 (z) = Li - y 0 (z) Li - y 3 (z) + Li - y 1 (z) Li - y 2 (z) = (1 -z) -1 -9(1 -z) -2 + 23(1 -z) -3 -23(1 -z) -4 + 8(1 -z) -5 .

For any positive integers m, n, one has

H - ymyn (N) = n ∑ k 1 =0 m+n+1-k 1 ∑ k 2 =0 m+n+2-k 1 -k 2 ∑ k 3 =0 B k 1 B k 2 (n + 1)(m + n + 2 -k 1 ) n + 1 k 1 m + n + 2 -k 1 k 2 m + n + 2 -k 1 -k 2 k 3 N k 3 .
For example,

H - y 2 y 1 (N) = N(N 2 -1)(12N 2 + 15N + 2)/120, H - y 2 2 (N) = N(N -1)(2N + 1)(2N -1)(5N + 6)(N + 1)/360, H - y 2 y 3 (N) = N(N -1)(N + 1)(30N 4 + 35N 3 -33N 2 -35N + 2)/840, H - y 2 y 4 (N) = N(N -1)(N + 1)(63N 5 + 72N 4 -133N 3 -138N 2 + 49N + 30)/2520, H - y 2 y 5 (N) = N(N -1)(N + 1)(280N 6 + 315N 5 -920N 4 -945N 3 + 802N 2 + 630N -108)/15120, H - y 3 3 (N) = N(N -1)(N + 1)(21N 5 + 36N 4 -21N 3 -48N 2 + 8)/672.

Example 12. [16][General case]

1. One has, for any

y s 1 u = y s 1 . . .y sr ∈ Y * 0 , Li - ys 1 u = θ s 1 0 (θ 0 ι 1 ) Li - u = θ s 1 0 (λ Li - u ) = s 1 ∑ k 1 =0 s 1 k 1 (θ k 1 0 λ )(θ s 1 -k 1 0 Li - u ), Li - ys 1 ...ys r = s 1 ∑ k 1 =0 s 1 +s 2 -k 1 ∑ k 2 =0
. . .

(s 1 +...+sr )- (k 1 +...+k r-1 ) ∑ kr =0 s 1 k 1 s 1 + s 2 -k 1 k 2 . . . s 1 + . . . + s r -k 1 -. . . -k r-1 k r (θ kr 0 λ )(θ k 2 0 λ ) . . .(θ kr 0 λ ).
Denoting S 2 (k i , j) Stirling numbers of the second kind, one has Then we have the extended Faulhaber's identities

∀i = 1, .., r, θ k i 0 λ (z) =      λ (z), if k i = 0, 1 1 -z k i ∑ j=1 S 2 (k i , j) j!λ j (z), if k i > 0. In particular, if ω ∈ Y * then (1 -z) |w| Li - w (z) is polynomial of degree (w) in λ (z). 2.
β yn 1 ...yn r (N) = r ∑ k=1 ( k ∏ i=1 n i )b yn k+1 ...yn r H - y n 1 -1 ...y n k -1 (N -1), H - yn 1 ...yn r (N) = β y n 1 +1 ...y nr +1 (N + 1) -∑ r-1 k=1 b ′ y n k+1 +1 ...y nr +1 β y n 1 +1 ...y n k +1 (N + 1) ∏ r i=1 (n i + 1)
. Proposition 6. [START_REF] Gérard | Harmonic sums and polylogarithms at negative multi -indices[END_REF] The following maps are morphisms of algebras

H -: (C Y 0 , ) -→ (C{H - w } w∈Y * 0 , .) and P -: (C Y 0 , ) -→ (C{P -w} w∈Y * 0 , ⊙).
Proof. Recall that the quasi-symmetric functions on the variables t = {t i } N≥i≥1 , i.e. Then L(z) = e -x 1 log(1-z) L reg (z)e x 0 log z and H(N) = e H y 1 (N) y 1 H reg (N).

F
For any l ∈ L ynX -X (resp. L ynY -{y 1 }), the polynomial S l (resp. Σ l ) is a finite combination of words in x 0 X * x 1 (resp. Y *y 1 Y * ). Then we can state Proposition 7 ( [START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF]). Let Z ⊔⊔ := L reg (1) and Z := H reg (∞). Then Z ⊔⊔ and Z are group-like, for ∆ ⊔⊔ and ∆ respectively. Proposition 8 (Successive integrations and differentiations of L, [START_REF] Ngoc | Differential Galois groups and noncommutative generating series of polylogarithms[END_REF]). We have, for any n ∈ N,

1. ι n 0 L = x n 0 ⊲ L and ι n 1 L = x n 1 ⊲ L. 2. ∂ n z L = D n L and θ n 0 L = E n L
, where 20 the polynomials D n and E n in C X are

D n = ∑ wgt(r)=n ∑ w∈X deg(r) deg(r) ∏ i=1 ∑ i j=1 r i + j -1 r i τ r (w), E n = ∑ wgt(r)=n ∑ w∈X deg(r) deg(r) ∏ i=1 ∑ i j=1 r i + j -1 r i ρ r (w),
and for any w

= x i 1 • • • x i k and r = (r 1 , . . . , r k ) of degree deg(r) = k and of weight wgt(r) = k + r 1 + • • • + r k , the polynomials τ r (w) = τ r 1 (x i 1 ) • • • τ r k (x i k ) and ρ r (w) = ρ r 1 (x i 1 ) • • • ρ r k (x i k ) are defined respectively by, for any r ∈ N, τ r (x 0 ) = ∂ r z x 0 z = -r!x 0 (-z) r+1 and τ r (x 1 ) = ∂ r z x 1 1 -z = r!x 1 (1 -z) r+1 , ρ r (x 0 ) = θ r 0 (-1) -1 x 0 z = 0 and ρ r (x 1 ) = θ r 0 zx 1 1 -z = Li - π Y (x r-1 0 x 1 ) (z)x 1 .
Example 13 (Coefficients of θ n 0 L). Since, for any u ∈ X + , θ 0 Li x 0 u = Li u and θ 1 Li x 0 u = Li 0 Li u , one obtains for example

• For any n ≥ 1 and w ∈ X * , one has θ n 0 Li x n 0 w = Li w . Hence,

θ 0 Li x 1 = Li 0 , θ 2 0 Li x 1 = Li - π Y (x 1 ) , θ 3 0 Li x 1 = Li - π Y (x 0 x 1 )
and θ 4 0 Li

x 1 = Li - π Y (x 2 0 x 1 ) . • θ 0 Li x 2 1 = Li 0 Li x 1 , θ 2 0 Li x 2 1 = Li - π Y (x 1 ) Li x 1 + Li 2 0 , θ 3 0 Li x 2 1 = Li - π Y (x 0 x 1 ) Li x 1 +3 Li - π Y (x 1 ) Li 0 because ∀k > 1, θ k 0 Li x 2 1 = k-1 ∑ j=0 k -1 j Li -j Li 2+ j-k .
The noncommutative generating series L satisfies the differential equation

dL = (x 0 ω 0 + x 1 ω 1 )L (16) 
with boundary condition L(z) z→0 exp(x 0 log z) and L(z) z→1 exp(-

x 1 log(1 -z)) Z ⊔⊔ . ( 17 
)
This implies that L is the exponential of a Lie series [START_REF] Hoang | Polylogarithms and Shuffle algebra[END_REF][START_REF] Hoang | Aspects combinatoires des polylogarithmes et des sommes d'Euler-Zagier[END_REF]. Hence [START_REF] Ngoc | Differential Galois groups and noncommutative generating series of polylogarithms[END_REF],

log L = ∑ k≥1 (-1) k-1 k ∑ u 1 ,...,u k ∈X + Li u 1 ⊔⊔ ... ⊔⊔ u k u 1 . . . u k = ∑ w∈X *
Li w π 1 (w).

Theorem 6 ([42]

).

1. Let G, H be exponential solutions of [START_REF] Gérard | Harmonic sums and polylogarithms at negative multi -indices[END_REF]. Then there exists a constant Lie series C such that G = He C . Then let us put 21 Λ := π Y L and [43] 21 Here, the coefficient B(y 1 ) | y k 1 corresponds to the Euler-Mac Laurin constant associated to Const(N) | y k 1 , i.e. the finite party of its asymptotic expansion in the scale of comparison

Let Gal

{n a log b (n)} a∈Z,b∈N . Mono(z) := e -(x 1 +1) log(1-z) = ∑ k≥0 P y k 1 (z) y k 1 (18) Const := ∑ k≥0 H y k 1 y k 1 = exp -∑ k≥1 H y k (-y 1 ) k k , (19) 
B(y 1 ) := exp ∑ k≥1 ζ (y k ) (-y 1 ) k k , (20) 
and finally, B ′ (y 1 ) := exp(γy 1 )B(y 1 ). Hence, we get π Y P(z) z→1 Mono(z)π Y Z ⊔⊔ and H(N) N→+∞ Const(N)π Y Z ⊔⊔ as a consequence of ( 18)- [START_REF] Costermans | Algorithmic and combinatorial aspects of multiple harmonic sums[END_REF]. Or equivalently, Theorem 7 (First global renormalizations of divergent polyzetas, [START_REF] Ngoc | Algebraic combinatoric aspects of asymptotic analysis of nonlinear dynamical system with singular inputs[END_REF]).

lim z→1 exp -y 1 log 1 1 -z Λ (z) = lim N→+∞ exp ∑ k≥1 H y k (N) (-y 1 ) k k H(N) = π Y Z ⊔⊔ .
Theorem 8 ( [START_REF] Costermans | Algorithmic and combinatorial aspects of multiple harmonic sums[END_REF]). For any g ∈ C {P w } w∈Y * , there exist algorithmically computable

coefficients c j , b i ∈ C, α j , η i ∈ Z, β j , κ i ∈ N such that g(z) z→1 +∞ ∑ j=0 c j (1 -z) α j log β j (1 -z), g(z) | z n N→+∞ +∞ ∑ i=0 b i n η i log κ i (n).
Theorem 8 means also that the {P w } w∈Y * admit a full singular expansion, at 1, and then their ordinary Taylor coefficients, {H w } w∈Y * admit a full asymptotic expansion, for +∞. More precisely, Corollary 1. For any w ∈ X * and for any k, i, j ∈ N, k ≥ 1, there exists uniquely determined coefficients a i , b i, j belonging to Z ; γ π Y (w) , α i and β i, j belonging to the Q[γ]-algebra generated by convergent polyzetas such that,

Li w (z) = |w| ∑ i=1 a i log i (1-z)+ Z ⊔⊔ | w + k ∑ j=1 |w|-1 ∑ i=0 b i, j log i (1 -z) (1 -z) -j +o (1) k ((1-z) k ) (21)
and, likely

H π Y (w) (N) = |w| ∑ i=1 α i log i (N) + γ π Y (w) + k ∑ j=1 |w|-1 ∑ i=0 β i, j 1 N j log i (N) + o (+∞) k (N -k ). ( 22 
)
Remark 2. i) The two expansions ( 21) and ( 22) are asymptotic expansions of Li w and H w with respect to the scales (1z) n log(1z) m ; n, m ≥ 0 and N -k log(N) m ; k, m ≥ 0 respectively. ii) In (eq. 21), the error term o

(1) k ((1 -z) k ) can be put to the form O (1) k ((1 -z) k+ε ) for any ε ∈]0, 1[.

More generally, by Theorem 6, we get Proposition 9. For any commutative Q-algebra A and for any Lie series C ∈

L ie A X , we set L = Le C ,Λ = π Y L and P(z) = (1 -z) -1 Λ (z), then 1. Z ⊔⊔ = Z ⊔⊔ e C is group-like, for the co-product ∆ ⊔⊔ , 2. L(z) z→1 exp(-x 1 log(1 -z)) Z ⊔⊔ , 3. P(z) z→1 Mono(z)π Y Z ⊔⊔ , 4. H(N) N→∞ Const(N)π Y Z ⊔⊔ ,
where, for any w ∈ Y * and N ≥ 0, one defines the coefficient H(N) | w of w in the power series H(N) as the coefficient P w (z) | z N of z N in the ordinary Taylor expansion of the polylogarithmic function P w (z).

By Proposition 9, we get successively Proposition 10 ( [START_REF] Hoang | De l'algèbre des ζ de Riemann multivariées l'algèbre des ζ de Hurwitz multivariées[END_REF]). Let ζ ⊔⊔ and ζ be the characters of respectively (A X , ⊔⊔ )

and (A Y , ) satisfying ζ ⊔⊔ (x 0 ) = ζ ⊔⊔ (x 1 ) = 0 and ζ (y 1 ) = 0. Then ∑ w∈Y * ζ ⊔⊔ (w) w = Z ⊔⊔ = ց ∏ l∈L ynX-X exp(ζ (S l ) P l ), ∑ w∈Y * ζ (w) w = Z = ց ∏ l∈L ynY -{y 1 } exp(ζ (Σ l ) Π l ).
Proposition 11. Let {γ w } w∈Y * be the Euler-Mac Laurin constants associated to {H w (N)} w∈Y * . Let Z γ be the noncommutative generating series of these constants. Then, 1. The following map realizes a character :

γ • : (A Y , ) -→ (R, .), w -→ γ • | w = γ w .
2. The noncommutative power series Z γ is group-like, for ∆ . 3. There exists a group-like element Z , for the co-product ∆ , such that Z γ = ∑ w∈Y * γ w w = exp(γy 1 )Z . By Theorem 7, Propositions 9 and 11, we also get

Proposition 12. For any C ∈ L ie A X such that Z ⊔⊔ = Z ⊔⊔ e C . Then Z γ = B(y 1 )π Y Z ⊔⊔ , or equivalently by cancellation, Z = B ′ (y 1 )π Y Z ⊔⊔ ,
where B(y 1 ) and B ′ (y 1 ) are given in [START_REF] Foata | Théorie Géométrique des Polynômes Eulériens[END_REF].

By Proposition 9, the noncommutative generating series Z ⊔⊔ and Z are grouplike, for the co-product ∆ ⊔⊔ and ∆ respectively, and we also have

Z ⊔⊔ = ∑ l∈L ynX-X ζ (S l ) P l + ∑ w / ∈L ynX-X ζ ⊔⊔ (S w ) P w , Z = ∑ l∈L ynY -{y 1 } ζ (Σ l ) Π l + ∑ w / ∈L ynY -{y 1 } ζ (Σ w ) Π w .
Hence, by Proposition 12, we deduce in particular, 

∑ l∈L ynY -{y 1 } ζ (Σ l ) Π l + . . . = B ′ (y 1 ) ∑ l∈L ynX-X ζ (π Y S l ) π Y P l + . . . .

The elements of {π

L -(z) z→1 A ⊙ g 1 1 -z , P -(z) z→1 B ⊙ 1 1 -z g 1 1 -z , H -(N) N→+∞ C ⊙ g(N).
where the series g, h were defined in the definition 5.

Proof. By Propositions 5, for w = y s 1 . . . y s r , there exists a, b, c

∈ Q such that Li - w (z) z→1 a (1 -z) |w|+(w) , P - w (z) z→1 b (1 -z) |w|+(w)+1 , H - w (N) N→+∞ cN |w|+(w) . Putting A | w = (-1) |w| a, B | w = (-1) |w| b, C | w = (-1
) |w| c, it follows the expected results.

Proposition 14. [START_REF] Gérard | Harmonic sums and polylogarithms at negative multi -indices[END_REF] For any w ∈ Y * 0 , there are non-zero constants, namely C - w and B - w , which only depend on w and r such that

lim N→∞ H - w (N) N (w)+|w| C - w = 1, i.e. H - w (N) N→+∞ N (w)+|w| C - w , lim z→1 - (1 -z) (w)+|w| Li - w (z) B - w = 1, i.e. Li - w (z) z→1 N (w)+|w| B - w (1 -z) n+1 .
Moreover, C - w and B - w are well determined by 

C - w = ∏ w=uv;v =1 Y * 0 1 (v)+ | v | ∈ Q and B - w = ((w)+ | w |)!C - w ∈ N. Example 14. [16][of C - w and B - w ] w C - w B - w w C - w B - w y 0 1 1 y 1 y 2 1/
H - u H - v = H - u v .
Proof. Let w ∈ Y * 0 associated to s = (s 1 , . . . , s k ). The quasi-symmetric monomial functions on the commutative alphabet t = {t i } i≥1 are defined as follows

M 1 Y * 0 (t) = 1 and M w (t) = ∑ n 1 >...>n k >0 t s 1 n 1 . . .t s k n k , For any u, v ∈ Y * 0 , we have M u (t)M v (t) = M u v (t).
Then, the harmonic sum H - s 1 ,...,s k (N) is obtained by specializing the indeterminates t = {t i } i≥1 from M w (t) as follows: t i = i for 1 ≤ i ≤ N and t i = 0 for N < i.

Theorem 9 (Second global renormalizations of divergent polyzetas).

The generating series H -is group-like and log H

-is primitive. Moreover 22 , lim N→+∞ g ⊙-1 (N) ⊙ H -(N) = lim z→1 h ⊙-1 ((1 -z) -1 ) ⊙ L -(z) = C -. 2. ker H - • is a prime ideal of (Q Y 0 , ), i.e. Q Y 0 \ ker H - • is closed by .
Proof. The first result is a consequence of the extended Friedrichs criterion [START_REF] Bui | Pure) transcendence bases in φ -deformed shuffle bialgebras[END_REF][START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF] and the second is a consequence of Proposition 13. 

v = u ⊔⊔ v + ∑ |w|<|u|+|v| (w)=(u)+(v)
x w w and the x w 's are positive. Moreover, for any w which belongs to the support of ∑ |w|<|u|+|v|

(w)=(u)+(v) x w w, one has (w) + |w| < (u) + (v) + |u| + |v|, thus, by the definition of C - • , one obtains Corollary 2. 1. Let w, v ∈ Y * 0 . Then C - w C - v = C - w ⊔⊔ v = C - w v . 2. For any P, Q / ∈ ker H - • , C - P C - Q = C - P Q and Q Y 0 \ ker H - • is a -multiplica- tive monoid containing Y * 0 . Now, let us prove that C -
• can be extended as a character, for ⊔⊔ , or equivalently, C -is group-like (see the Freidrichs' criterion [START_REF] Reutenauer | Free Lie Algebras[END_REF]) and then logC -is primitive. Lemma 2. Let A be an unitary R-associative algebra and f :

⊔ n≥0 P n -→ A such that 1. For any u, v ∈ Y * 0 , f (u ⊔⊔ v) = f (u) f (v). In particular, f (1 Y * 0 ) = 1 A . 2. On every P n , one has f (∑ i∈I α i w i ) = ∑ i∈I α i f (w i ), where α i ∈ R *
+ . Then f can be extended uniquely as a character, i.e. S f = ∑ w∈Y * 0 f (w)w is group-like for ∆ ⊔⊔ .

Proof. By definition of f and S f , it is immediate

S f | 1 Y * 0 = 1 A . One can check easily that ∆ ⊔⊔ (S f ) = S f ⊗ S f . Hence, S f is group-like, for ∆ ⊔⊔ .
Corollary 3. The noncommutative generating series C -is group-like, for ∆ ⊔⊔ .

Proof. It is a consequence of Lemma 2 and Corollary 2.

Example 15. [16][of C - u ⊔⊔ v and C - u v ] Let Y 0 = {y i } i≥0 be an infinite alphabet. u C - u v C - v u ⊔⊔ v C - u ⊔⊔ v y 0 1 y 0 1 2y 2 0 1 y 2 0 1/2 y 1 1/2 y 2 1/3 y 1 y 2 + y 2 y 1 1/6 y 1 y 2 1/15 y 2 y 1 1/10 y m (m + 1) -1 y n (n + 1) -1 y m y n + y n y m [(m + 1)(n + 1)] -1 y m y n (n+1) -1 (n+m+2) y n y m (m+1) -1 (m+n+2)
y 1 1/2 y 2 y 5 1/54 y 1 y 2 y 5 + y 2 y 1 y 5 + y 2 y 5 y 1 1/108 y 1 y 2 y 5 1/594 y 2 y 1 y 5 1/528 y 2 y 5 y 1 1/176 y 0 y 1 1/6 y 2 y 3 1/28 y 0 y 1 y 2 y 3 + y 0 y 2 y 1 y 3 1/168 +y 0 y 2 y 3 y 1 + y 2 y 3 y 0 y 1 +y 2 y 0 y 1 y 3 + y 2 y 0 y 3 y 1 y 0 y 1 y 2 y 3 1/2520 y 0 y 2 y 1 y 3 1/2160 y 0 y 2 y 3 y 1 1/1080 y 2 y 3 y 0 y 1 1/420 y 2 y 0 y 1 y 3 1/1680 y 2 y 0 y 3 y 1 1/840 

y a y b (b+1) -1 (a+b+2) y c y d (d+1) -1 (c+d+2)
u C - u v C - v u v C - u v y 0 1 y 0 1 2y 2 0 + y 0 1 y 1 1/2 y 2 1/3 y 1 y 2 + y 2 y 1 + y 3 1/6 y m (m + 1) -1 y n (n + 1) -1 y m y n + y n y m + y n+m [(m + 1)(n + 1)] -1 y 1
1/2 y 2 y 5 1/54 y 1 y 2 y 5 + y 2 y 1 y 5 + y 2 y 5 y 1 1/108 +y 3 y 5 + y 2 y 6 y 0 y 1 1/6 y 2 y 3 1/28 y 0 y 1 y 2 y 3 + y 0 y 2 y 1 y 3 1/168 +y 0 y 2 y 3 y 1 + y 2 y 3 y 0 y 1 +y 2 y 0 y 1 y 3 + y 2 y 0 y 3 y 1 + y 0 y 2 y 4 +y 0 y 2 3 + y 2 y 3 y 1 + y 2 y 1 y 3 +y 2 y 0 y 4 + y 2 y 3 y 1 + y 2 y 4 y a y b 1. S will be said ξexponentially bounded from above if it satisfies

(b+1) -1 (a+b+2) y c y d (d+1) -1 (c+d+2)
∃K ∈ R + , ∃n ∈ N, ∀w ∈ X ≥n , S | w ≤ Kξ (w)/| w |!.
We denote by K ξ -em X the set of formal power series in K X which are ξexponentially bounded from above. 2. S satisfies the χ-growth condition if it satisfies

∃K ∈ R + , ∃n ∈ N, ∀w ∈ X ≥n , S | w ≤ Kχ(w) | w |!.
We denote by K χ-gc X the set of formal power series in K X satisfying the χ-growth condition.

Lemma 3. If R = ∑ w∈X * | w |! w then R ⊔⊔ 2 | w = ∑ u,v∈X * supp(u ⊔⊔ v)∋w | u |! | v |! ≤ 2 |w| | w |!. Proof. One has ∑ u,v∈X * supp(u ⊔⊔ v)∋w | u |! | v |! = |w| ∑ k=0 ∑ |u|=k,|v|=|w|-k supp(u ⊔⊔ v)∋w k!(| w | -k)! = |w| ∑ k=0 | w | k k!(| w | -k)! = |w| ∑ k=0 | w |!.
The last sum is equal to 

(1+ | w |) | w |!.
i | w ≤ K i χ i (w) | w |! then S 1 ⊔⊔ S 2 | w = ∑ supp(u ⊔⊔ v)∋w S 1 | u S 2 | v , ⇒ S 1 ⊔⊔ S 2 | w ≤ K 1 K 2 ∑ u,v∈X * supp(u ⊔⊔ v)∋w (χ 1 (u) | u |!)(χ 2 (v) | v |!).
Let K = K 1 K 2 and let χ be a real positive function over X * such that, for any w ∈ X * χ(w) = max{χ 1 (u)χ 2 (v) | u, v ∈ X * and supp(u ⊔⊔ v) ∋ w}.

With the notations in Lemma 3, we get S 1 ⊔⊔ S 2 | w ≤ Kχ(w) S 1 R ⊔⊔ 2 | w . Hence, S 1 ⊔⊔ S 2 satisfies the χ ′ -growth condition with χ ′ (w) = 2 |w| χ(w). Definition 8. ([29,[START_REF] Ngoc | Algebraic combinatoric aspects of asymptotic analysis of nonlinear dynamical system with singular inputs[END_REF]) Let ξ be a real positive function defined over X * , S will be said ξ -exponentially continuous if it is continuous over K ξ -em X . The set of for- mal power series which are ξ -exponentially continuous is denoted by K ξ -ec X . Lemma 4. [START_REF] Ngoc | Contribution au développement d'outils informatiques pour résoudre des problèmes d'automatique non linéaire[END_REF][START_REF] Ngoc | Algebraic combinatoric aspects of asymptotic analysis of nonlinear dynamical system with singular inputs[END_REF] For any real positive function ξ defined over X * , we have K X ⊂ K ξ -ec X . Otherwise, for ξ = 0, we get K X = K 0-ec X . Hence, any polynomial is 0-exponentially continuous.

Proposition 17 ([29, 43]). Let ξ , χ be real positive functions over X * and P ∈ K X .

1. Let S ∈ K ξ -em X . The right residual of S by P belongs to K ξ -em X . 2. Let R ∈ K χ-gc X . The concatenation SR belongs to K χ-gc X . 3. Moreover, if ξ and χ are morphisms over X * satisfying ∑ x∈X χ(x)ξ (x) < 1 then, for any F ∈ K χ-gc X , F is continuous over K ξ -em X .

Proof. 1. Since S ∈ K ξ -em X then

∃K ∈ R + , ∃n ∈ N, ∀w ∈ X ≥n , S | w ≤ Kξ (w)/| w |!.
If u ∈ supp(P) then, for any w ∈ X * , one has S ⊲ u | w = S | uw and S ⊲ u belongs to K ξ -em X :

∃K ∈ R + , ∃n ∈ N, ∀w ∈ X ≥n , S ⊲ u | w ≤ [Kξ (u)]ξ (w)/| w |!. It follows that S ⊲ P is K ξ -em X by taking K 1 = K max u∈supp(P) ξ (u). 2. Since R ∈ K χ-gc X then ∃K ∈ R + , ∃n ∈ N, ∀w ∈ X ≥n , S | w ≤ Kχ(w) | w |!. Let v ∈ supp(P) such that v = ε. Since Rv belongs to K χ-gc X and one has, for w ∈ X * , Rv | w = R | v ⊳ w , i.e. there exists K ∈ R + , n ∈ N such that R | v ⊳ w ≤ Kχ(v ⊳ w)(| w | -| v |)! ≤ K | w | χ(w)/χ(v).
Note if v ⊳ w = 0 then Rv | w = 0 and the previous conclusion holds. It follows that RP is K χ-gc X by taking K 2 = K min v∈supp(P) χ(v) -1 . 3. Let ξ , χ be functions which satisfy the upper bound condition. The following quantity is well defined

∑ w∈X * χ(w)ξ (w) = ∑ x∈X χ(x)ξ (x) * . If F ∈ K χ-gc X ,C ∈ K ξ -em X then there exist K i ∈ R + , n i ∈ N, i = 1, 2 such that, for w ∈ X ≥n i , F | w ≤ K 1 χ(w) |w|! and C | w ≤ K 2 ξ (w)/| w |!. Thus, ∀w ∈ X * , | w |≥ max{n 1 , n 2 }, F|w C|w ≤ K 1 K 2 χ(w)ξ (w), ⇒ ∑ w∈X * F|w C|w ≤ K 1 K 2 ∑ w∈X * χ(w)ξ (w) = K 1 K 2 ∑ x∈X χ(x)ξ (x) * .

Upper bounds à la Cauchy

The algebra of formal power series on commutative indeterminates {q 1 , . . . , q n } with coefficients in C is denoted by C[[q 1 , . . . , q n ]].

Definition 9. ( [START_REF] Ngoc | Contribution au développement d'outils informatiques pour résoudre des problèmes d'automatique non linéaire[END_REF][START_REF] Ngoc | Algebraic combinatoric aspects of asymptotic analysis of nonlinear dynamical system with singular inputs[END_REF]) Let f =∈ C[[q 1 , . . . , q n ]]. We set

E( f ) := {ρ ∈ R n + : ∃C f ∈ R + s.t. ∀i 1 , . . . , i n ≥ 0, | f i 1 ,...,i n | ρ i 1 1 . . . ρ i n n ≤ C f }. Ȇ( f ) : the interior of E( f ) in R n . CV( f ) := {q ∈ C n : (| q 1 |, . . . , | q n |) ∈ Ȇ( f )} : the convergence domain of f . f is convergent if CV( f ) = / 0. Let U ⊂ C n
be an open domain and q ∈ C n . f is convergent on q (resp. over U ) if q ∈ CV( f ) (resp. U ⊂ CV( f )). We set C cv [[q 1 , . . . , q n ]] := { f ∈ C[[q 1 , . . . , q n ]] : CV( f ) = / 0}. Let q ∈ CV( f ). There exist

C f ∈ R + , ρ ∈ E( f ), ρ ∈ Ȇ( f ) such that | q 1 |< ρ1 < ρ 1 , . . . , | q n |< ρn < ρ n and | f i 1 ,...,i n | ρ i 1 1 . . . ρ i n n ≤ C f , for i 1 , . . . , i n ≥ 0. The convergence modulus of f at q is (C f , ρ, ρ). Suppose CV( f ) = / 0 and let q ∈ CV( f ). If (C f , ρ, ρ) is a convergence modulus of f at q then | f i 1 ,...,i n q i 1 1 . . . q i n n |≤ C f ( ρ1 /ρ 1 ) i 1 . . . ( ρ1 /ρ 1 ) i n . Hence, at q, f is majored termwise by C f ∏ m k=0 (1 -ρk /ρ k ) -1 and it is uniformly absolutely convergent in {q ∈ C n :| q 1 |< ρ, . . . , | q n |< ρ} which is open in C n . Thus, CV( f ) is open in C n . Since the partial derivation D j 1 1 . . . D j n n f is estimated by D j 1 1 . . . D j n n f ≤ C f ∂ j 1 +...+ j n ∂ j 1 ρ1 . . . ∂ j n ρn m ∏ k=0 1 - ρk ρ k -1 . Proposition 18. ([29]) We have CV( f ) ⊂ CV(D j 1 1 . . . D j n n f ). Let f ∈ C cv [[q 1 , . . . , q n ]].
Let {A i } i=0,1 be a polysystem defined as follows

A (w) • f ≤ C f (n + 1) (1 -r) n C(w) | w |! n+|w|-1 |w| n τ(1 -r) n+1 |w| ≤ C f (n + 1) (1 -r) n C(w) n τ(1 -r) n+1 |w| | w |!.
2. Let K = C f (n + 1)(1r) -n and χ be the real positive function defined over X * :

∀i = 0, 1, χ(x i ) = C i n(1 -r) -(n+1) /τ.
Then 24 the generating series σ f of the polysystem {A i } i=0,1 and of the observation f satisfies the χ-growth condition. 

Polysystem and nonlinear differential equation

(z) = f (q(z)), q(z) = A 0 (q) u 0 (z) + A 1 (q) u 1 (z), q(z 0 ) = q 0 , (26) 
where the state q = (q 1 , . . . , q n ) belongs to a complex analytic manifold of dimension n, q 0 is the initial state, the observation f belongs to C cv [[q 1 , . . . , q n ]] and {A i } i=0,1 is the polysystem defined on [START_REF] Fliess | Fonctionnelles causales non linéaires et indéterminées non commutatives[END_REF].

Definition 11. ([31])

The following power series is called transport operator 26 of the polysystem {A i } i=0,1 and of the observation f

T := ∑ w∈X * α z z 0 (w) A (w).
By the factorization of the monoid by Lyndon words, we have [START_REF] Hoang | Input/Output Behaviour of Nonlinear Control Systems: Rational Approximations, Nilpotent structural Approximations[END_REF] T

= (α z z 0 ⊗ A ) ∑ w∈X * w ⊗ w = ∏ l∈L ynX exp[α z z 0 (S l ) A (P l )].
The Chen generating series along the path z 0 z, associated to ω 0 , ω 1 is

S z 0 z := ∑ w∈X * S | w w with S | w = α z z 0 (w) (27) 
which solves the differential equation ( 16) with the initial condition S z 0 z 0 = 1. Thus, S z 0 z and L(z)L(z 0 ) -1 satisfy the same differential equation taking the same value at z 0 and S z 0 z = L(z)L(z 0 ) -1 . Any Chen generating series S z 0 z is group like [START_REF] Ree | Lie elements and an algebra associated with shuffles[END_REF] and depends only on the homotopy class of z 0 z [START_REF] Chen | Iterated path integrals[END_REF]. The product of S z 1 z 2 and S z 0 z 1 is

S z 0 z 2 = S z 1 z 2 S z 0 z 1 . Let ε ∈]0, 1[ and z i = ε exp(iβ i ), for i = 0, 1. We set β = β 1 -β 0 . Let Γ 0 (ε, β 0 ) (resp. Γ 1 (ε, β 1 
)) be the path turning around 0 (resp. 1) in the positive direction from z 0 to z 1 . By induction on the length of w, one has

| S Γ i (ε,β ) | w |= (2ε) |w| x i β |w| /| w |!,
where | w | denotes the length of w and | w | x i denotes the number of occurrences of letter x i in w, for i = 0 or 1. When ε tends to 0 + , these estimations yield

S Γ i (ε,β ) = e iβ x i + o(ε). In particular, if Γ 0 (ε) (resp. Γ 1 (ε))
is a circular path of radius ε turning around 0 (resp. 1) in the positive direction, starting at z = ε (resp. 1 -ε), then, by the noncommutative residue theorem [START_REF] Hoang | Polylogarithms and Shuffle algebra[END_REF][START_REF] Hoang | Aspects combinatoires des polylogarithmes et des sommes d'Euler-Zagier[END_REF], we get

S Γ 0 (ε) = e 2iπx 0 + o(ε) and S Γ 1 (ε) = e -2iπx 1 + o(ε). ( 28 
)
Finally, the asymptotic behaviors of L on [START_REF] Duchamp | Sweedler's duals and Schützenberger's calculus[END_REF] give [START_REF] Hoang | Aspects combinatoires des polylogarithmes et des sommes d'Euler-Zagier[END_REF][START_REF] Hoang | Polylogarithms and Shuffle algebra[END_REF] S ε 1-ε ε→0 + e -x 1 log ε Z ⊔⊔ e -x 0 log ε .

In other terms, Z ⊔⊔ is the regularized Chen generating series S ε 1-ε of diffferential forms ω 0 and ω 1 : Z ⊔⊔ is the noncommutative generating series of the finite parts of the coefficients of the Chen generating series e x 1 log ε S ε 1-ε e x 0 log ε .

Asymptotic behavior via extended Fliess fundamental formula

Theorem 11. ( [START_REF] Ngoc | Algebraic combinatoric aspects of asymptotic analysis of nonlinear dynamical system with singular inputs[END_REF])

y(z) = T • f | q 0 = σ f | q 0 | S z 0 z .
This extends then Fliess fundamental formula [START_REF] Fliess | Fonctionnelles causales non linéaires et indéterminées non commutatives[END_REF]. By Theorem 5, the expansions of the output y of nonlinear dynamical system with singular inputs follow Corollary 4 (Combinatorics of Dyson series).

y(z) = ∑ w∈X * g w (z) A (w) • f |q 0 = ∑ k≥0 ∑ n 1 ,...,n k ≥0 g x n 1 0 x 1 ...x n k 0 x 1 (z) ad n 1 A 0 A 1 . . . ad n k A 0 A 1 e log zA 0 • f |q 0 = ∏ l∈L ynX exp g S l (z) A (P l ) • f |q 0 = exp ∑ w∈X * g w (z) A (π 1 (w)) • f | q 0 ,
where, for any word w in X * , g w belongs to the polylogarithm algebra.

Since S z 0 z = L(z)L(z 0 ) -1 and σ f | q 0 , L(z 0 ) -1 are invariant by ∂ z = d/dz and θ 0 = zd/dz then we get the n-th order differentiation of y, with respect to ∂ z and θ 0 :

∂ n z y(z) = σ f | q 0 | ∂ n S z 0 z = σ f | q 0 | ∂ n z L(z)L(z 0 ) -1 , θ n 0 y(z) = σ f | q 0 | θ n 0 S z 0 z = σ f | q 0 | θ n 0 L(z)L(z 0 ) -1 .
With the notations of Proposition 8, we get respectively

∂ n z y(z) = σ f | q 0 | [D n (z)L(z)]L(z 0 ) -1 = σ f | q 0 ⊲ D n (z) | L(z)L(z 0 ) -1 , θ n 0 y(z) = σ f | q 0 | E n (z)L(z)]L(z 0 ) -1 = σ f | q 0 ⊲ E n (z) | L(z)L(z 0 ) -1 .
For z 0 = ε → 0 + , the asymptotic behavior and the renormalization at z = 1 of ∂ n z y and θ n 0 y (or the asymptotic expansion and the renormalization of its Taylor coefficients at +∞) are deduced from [START_REF] Ngoc | Contribution au développement d'outils informatiques pour résoudre des problèmes d'automatique non linéaire[END_REF] and extend a little bit results of [START_REF] Ngoc | Algebraic combinatoric aspects of asymptotic analysis of nonlinear dynamical system with singular inputs[END_REF][START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF] :

Corollary 5 (Asymptotic behavior of output).

1. The n-order differentiation of the output y of the system ( 26) is a C -combination of the elements g belonging to the polylogarithm algebra and 27 , for any n ≥ 0,

∂ n z y(1) ε→0 + ∑ w∈X * A (w) • f | q 0 | w D n (1 -ε) e -x 1 log ε Z ⊔⊔ e -x 0 log ε | w , θ n 0 y(1) ε→0 + ∑ w∈X * A (w) • f | q 0 | w E n (1 -ε) e -x 1 log ε Z ⊔⊔ e -x 0 log ε | w .
2. If the ordinary Taylor expansions of ∂ n z y and θ n 0 y exist then the coefficients of these expansions belong to the algebra of harmonic sums and there exist algorithmically computable coefficients a i , a

′ i ∈ Z, b i , b ′ i ∈ N, c i , c ′ i ∈ Z [γ] such that ∂ n z y(z) = ∑ k≥0 d k z n and d k k→∞ ∑ i≥0 c i k a i log b i k, θ n 0 y(z) = ∑ k≥0 t k z k and t k k→∞ ∑ i≥0 c ′ i k a ′ i log b ′ i k.
27 Moreover, we get more out of this i.e.

θ n 1 y(z) = σ f |q 0 || θ n 1 S z 0 z = σ f |q 0 || θ n 1 L(z)L(z 0 ) -1 . Therefore, θ n 1 y(z) = σ f |q 0 | [D n (z) -E n (z)]L(z)L(z 0 ) -1 = σ f |q 0 ⊲ [D n (z) - E n (z)] | L(z)L(z 0 ) -1 . Hence, θ n 1 y(1) ε→0 + ∑ w∈X * A (w) • f |q 0 | w [D n (1 -ε) -E n (1 - ε)]e -x 1 log ε Z ⊔⊔ e -x 0 logε | w .
The actions of θ 0 = u 0 (z) -1 d/dz and θ 1 = u 1 (z) -1 d/dz over y are equivalent to those of the residuals of σ f |q 0 by respectively x 0 and x 1 . They correspond to functional differentiations [24] while ∂ z = d/dz is the ordinary differentiation and is equivalent to the residual by x 0 + x 1 . It is immediate that Ann ⊥ (S) ∋ S. It follows then( see [START_REF] Fliess | Réalisation locale des systèmes non linéaires, algèbres de Lie filtrées transitives et séries génératrices non commutatives[END_REF][START_REF] Reutenauer | The local realisation of generating series of finite Lie rank, Algebraic and Geometric Methods In Nonlinear Control Theory[END_REF] and Lemma 7), Lemma 9. Let S ∈ K X . Then 1. If S is of finite Lie rank, d, then the dimension of Ann ⊥ (S) is d. 2. For any Q 1 and Q 2 ∈ Ann ⊥ (S), one has Q 1 ⊔⊔ Q 2 ∈ Ann ⊥ (S). 3. For any P ∈ K X and Q 1 ∈ Ann ⊥ (S), one has P ⊳ Q 1 ∈ Ann ⊥ (S). We put

Differential realization

∀ j = 1, . . . , d, T j = ∑ w∈X * ∂ (A (w) • f ) ∂ q j w.
Firstly, by Theorem 10, the generating series σ f satisfies the growth condition. Secondly, for any Π ∈ L ie K X and for any w ∈ X * , one has

σ f ⊲ Π | w = σ f | Π w = A (Π w) • f = A (Π ) • (A (w) • f ).
Since A (Π ) is a derivation over K[[ q1 , . . . , qd ]]:

A (Π ) = d ∑ j=1 (A (Π ) • q j ) ∂ ∂ q j , ⇒ A (Π ) • (A (w) • f ) = d ∑ j=1 (A (Π ) • q j ) ∂ (A (w) • f ) ∂ q j then we deduce that ∀w ∈ X * , σ f ⊲ Π | w = d ∑ j=1 (A (Π ) • q j ) T j | w , ⇐⇒ σ f ⊲ Π = d ∑ j=1 (A (Π ) • q j ) T j .
This means that σ f ⊲ Π is a K-linear combination of {T j } j=1,...,d and the dimension of the vector space span{σ f ⊲ Π | Π ∈ L ie K X } is less than or equal to d. Expanding this product, one obtains, via PBW theorem, the expected expression for the coefficients {r i 1 ,...,i d = R | P i 2. It follows that, for i = 0, 1 and for j = 1, . . . , d, the residual x i ⊳ σ q j belongs to Ann ⊥ (σ f | 0 ) (see also Lemma 9), 3. Since σ f satisfies the χ-growth condition then, the generating series σ q j and x i ⊳ σ q j (for i = 0, 1 and for j = 1, . . . , d) verify also the growth condition. We then take (see Lemma 8) ∀i = 0, 1, ∀ j = 1, . . . , d, σ A i j ( q1 , . . . , qd ) = x i ⊳ σ q j , by expressing σ A i j on the basis {σ qi } i=1,...,d of Ann ⊥ (σ f | 0 ), 4. The homomorphism A is then determined as follows ∀i = 0, 1, A (x i ) = d ∑ j=0 A i j ( q1 , . . . , qd )

∂ ∂ q j ,
where, by Lemma 5, one has A i j ( q1 , . . . , qd ) = A (x i ) • q j . Thus, (A , f ) provides a differential representation 28 of dimension d of S.

Moreover, one also has the following Theorem 13. ( [START_REF] Fliess | Réalisation locale des systèmes non linéaires, algèbres de Lie filtrées transitives et séries génératrices non commutatives[END_REF]) Let S ∈ K X be a differentially produced formal power series. Let (A , f ) and (A ′ , f ′ ) be two differential representations of dimension n of S. There exist a continuous and convergent automorphism h of K such that ∀w ∈ X * , ∀g ∈ K, h(A (w) • g) = A ′ (w) • (h(g)) and f ′ = h( f ).

n s r r and H s 1

 1 ,...,s r (N) = a theorem of Abel, one has ζ (s 1 , . . . , s r ) = lim z→1 Li s 1 ,...,s r (z) = lim N→+∞ H s 1 ,...,s r (N).

  factorize the following noncommutative generating series of polylogarithms, hormanic sums and polyzetasL = ∏ l∈L ynX exp(Li S l P l ) and H = ∏ l∈L ynY exp(H Σ l Π l ), Z ⊔⊔ = ∏ l∈L ynX,l =x 0 ,x 1 exp(ζ (S l )P l ) and Z = ∏ l∈L ynY,l =y 1 exp(ζ (Σ l )Π l ),

For

  any w ∈ y s Y * 0 , s > 1, we have B w (1) = B w (0). Then let also, for any 1 ≤ k ≤ r, b w := B w (0) and β w (z) := B w (z) -b w . b ′ y k := b y k and b ′ yn k ...yn r := b yn k ...yn r -r-1-k ∑ j=0 b yn k+ j+1 ...yn r b ′ yn k ...yn k+ j

  C (DE) be the differential Galois group associated to the Drinfel'd equation. Then Gal C (DE) = {e C | C ∈ L ie C X } and it contains the monodromy group defined by M 0 L = L exp(2iπm 0 ) and M 1 L = LZ -1 ⊔⊔ exp(-2iπx 1 )Z ⊔⊔ = L exp(2iπm 1 ), where m 0 = x 0 , m 1 = ∏ ց l∈L ynX-X exp(-ζ (S l ) ad P l )(-x 1 ).

  Y P l } l∈L ynX are decomposable in the linear basis {Π w } w∈Y * of U (Prim(H )). Thus, by identification of local coordinates, i.e. the coefficients of {Π l } l∈L ynY -{y 1 } in the basis {Σ l } l∈L ynY -{y 1 } , we get homogenous polynomial relations on polyzetas encoded by {Σ l } l∈L ynY -{y 1 } [44]. Proposition 13. There exist A, B and C ∈ Q Y 0 such that

Definition 6 .

 6 For any n ∈ N + , let P n := span R + {w ∈ Y * 0 |(w) + |w| = n} \ {0} be the blunt 23 convex cone generated by the set {w ∈ Y * 0 |(w) + |w| = n}. By definition, C - • is linear on the set P n . For any u, v ∈ Y * 0 , one has u

  y a y b y c y d + y a y c y b y d (b+1) -1 (d+1) -1 (a+b+2)(c+d+2) +y a y c y d y b + y c y d y a y b +y c y a y b y d + y c y a y d y b

  y a y b y c y d + y a y c y b y d (b+1) -1 (d+1) -1 (a+b+2)(c+d+2) +y a y c y d y b + y c y d y a y b + y c y a y b y d +y c y a y d y b + y a y c y b+d + y a y b+c y d +y c y a y b+d + y c y a+d y b +y a+c y b y d + y a+c y d y b + y a+c y b+d 3 Polysystems and differential realization 3.1 Polysystems and convergence criterion 3.1.1 Estimates (from above) for series Here, (K, . ) is a normed space. Definition 7. ([29, 43]) Let ξ , χ be real positive functions over X * . Let S ∈ K X .

3. 2 . 1

 21 Nonlinear differential equation (with three singularities) Let us consider the singular inputs 25 u 0 (z) := z -1 and u 1 (z) := (1z) -1 , and    y

3. 3 . 1

 31 Differential realization Definition 12. The Lie rank of a formal power series S ∈ K X is the dimension of the vector space generated by{S ⊲ Π | Π ∈ L ie K X }, or respectively by {Π ⊳ S | Π ∈ L ie K X }.Definition 13. Let S ∈ K X and let us put Ann(S) := {Π ∈ L ie K X | S ⊲ Π = 0}, and Ann ⊥ (S) := {Q ∈ (K X , ⊔⊔ ) | Q ⊲ Ann(S) = 0}.

Definition 14 .

 14 ([25]) The formal power series S ∈ K X is differentially produced if there exist an integer d, a power series f ∈ K[[ q1 , . . . , qd ]], a homomorphism A from X * to the algebra of differential operators generated byA (x i ) = d ∑ j=1 A j i ( q1 , . . . , qd ) ∂ ∂ q j , where ∀ j = 1, . . . , d, A j i ( q1 , . . . , qd ) ∈ K[[ q1 , . . . , qd ]]such that, for any w ∈ X * , one hasS | w = A (w) • f | 0 . The pair (A , f ) is called the differential representation of S of dimension d.Proposition 19. ([52]) Let S ∈ K X . If S is differentially produced then it satisfies the growth condition and its Lie rank is finite. Proof. Let (A , f ) be a differential representation of S of dimension d. Then, by the notations of Definition 10, we get σ f | 0 = S = ∑ w∈X * (A (w) • f ) | 0 w.

3. 3 . 2

 32 Fliess' local realization theorem Proposition 20. ([52]) Let S ∈ K X with Lie rank d. Then there exists a basis S 1 , . . . , S d ∈ K X of (Ann ⊥ (S), ⊔⊔ ) ∼ = (K[[S 1 , . . . , S d ]], ⊔⊔ ) such that the S i 's are proper and for any R ∈ Ann ⊥ (S), one hasR = ∑ i 1 ,...,i d ≥0 r i 1 ,...,i n i 1 ! . . . i d ! S ⊔⊔ i 1 1 ⊔⊔ . . . ⊔⊔ S ⊔⊔ i d d , where r 0,...,0 = R | 1 X * , r i 1 ,...,i d ∈ K.Proof. By Lemma 9, such a basis exists. More precisely, since the Lie rank of S is d then there exist P 1 , . . . , P d ∈ L ie K X such that S ⊲ P 1 , . . . , S ⊲ P d ∈ (K X , ⊔⊔ ) are K-linearly independent. By duality, there exists S 1 , . . . , S d ∈ (K X , ⊔⊔ ) such that ∀i, j = 1, . . . , d, S i | P j = δ i, j , and R = d ∏ i=1 exp(S i P i ).

  2.2.2 Background on continuity and indiscernabilityDefinition 2. ([START_REF] Ngoc | Contribution au développement d'outils informatiques pour résoudre des problèmes d'automatique non linéaire[END_REF][START_REF] Ngoc | Algebraic combinatoric aspects of asymptotic analysis of nonlinear dynamical system with singular inputs[END_REF]) Let H be a class of C X and S ∈ C X . 1. S is said to be continuous over H if for any Φ ∈ H , the following sum, denoted by S || Φ , is absolutely convergent ∑ w∈X * S | w Φ | w . The set of continuous power series over H will be denoted by C cont X . 2. S is said to be indiscernable over H if and only if, for any Φ ∈ H , S || Φ = 0. Proposition 1. Let S ∈ C cont X . H is a monoid containing X and {e tx } t∈C x∈X . 1. If S is indiscernable over H then for any x ∈ X, x ⊳ S and S ⊲ x belong to C cont X and they are indiscernable over H . 2. S is indiscernable over H if and only if S = 0. Proof. 1. Of course, x ⊳ S and S ⊲ x belong to C cont X . Let us calculate x ⊳ S || Φ = S || Φx and S ⊲ x || Φ = S || xΦ . Since S is indiscernable over H and note that xΦ, Φx

∈ H for evvery x ∈ X; Φ ∈ H , then S || Φx = 0, and S || xΦ = 0. Hence x ⊳ S and S ⊲ x belong to C cont X are indiscernable over H . 2. S = 0 is indiscernable over H . Conversely, if S is indiscernable over H then by the previous point and by induction on the length of w ∈ X * , w⊳ S is indiscernable over H . In particular, w ⊳ S | Id H = S | w = 0. In other words, S = 0.

  We define, firstly, the polynomials {B yn 1 ...yn r (z)} n 1 ,...,nr∈N by their commutative exponential generating series as follows, for z ∈ C,

∑ n 1 ,...,nr ∈N B yn 1 ...yn r (z) t n 1 1 . . .t nr r n 1 ! . . . n r ! = t 1 . . .t r e z(t 1 +...+tr) r ∏ k=1 (e t k +...+tr -1) -1 , or by the difference equation, for n 1 ∈ N + , B yn 1 ...yn r (z + 1) = B yn 1 ...yn r (z) + n 1 z n 1 -1 B yn 2 ...yn r (z).

  s 1 ,...,s r (t) = F y s 1 ...y sr (t) = satisfy the quasi-shuffle relation[START_REF] Reutenauer | Free Lie Algebras[END_REF], i.e. for any u, v ∈ Y * 0 , F u v (t) = F u (t)F v (t). Since H - s 1 ,...,s r (N) can be obtained by specializing, in F s 1 ,...,s r (t), the variables t at ∀1 ≤ i ≤ N,t i = i and ∀i > N,t i = 0 then H -is a morphism of algebras. Therefore, P -is also a morphism of algebras.2.3.2 Global renormalizations via noncommutative generating seriesBy (2.3.2), L and H are images, by the tensor products Li ⊗Id and H ⊗ Id, of the diagonal series D X and D Y respectively. Then we get

	∑ n 1 >...>n r >0	t s 1 n 1 . . .t s r n r
	Theorem 5 (Factorization of L and of H, [36, 39, 44]). Let
	L reg =	

ց ∏ l∈L ynX-X e Li S l P l and H reg (N) = ց ∏ l∈L ynY -{y 1 } e H Σl (N) Σ l .

  By induction on |w|, one has 1 + |w| ≤ 2 |w| . Then the expected result follows. Proposition 16. If S 1 , S 2 satisfy the growth condition then S 1 + S 2 , S 1 ⊔⊔ S 2 do also. Proof. It is immediate for S 1 + S 2 . Next, since S

  } i 1 ,...,i d ≥0 . Hence, (Ann ⊥ (S), ⊔⊔ ) is generated by S 1 , . . . , S d . With the notations of Proposition 20, one has Corollary 6. 1. If S ∈ K[S 1 , . . . , S d ] then, for any i = 0, 1 and for any j = 1, . . . , d, one has x i ⊳ S ∈ Ann ⊥ (S) = K[S 1 , . . . , S d ]. 2. The power series S satisfies the growth condition if and only if, for any i = 1, . . . , d, S i also satisfies the growth condition. Proof. Assume there exists j ∈ [1, . . . , d] such that S j does not satisfy the growth condition. Since S ∈ Ann ⊥ (S) then using the decomposition of S on S 1 , . . . , S d , one obtains a contradiction with the fact that S satisfies the growth condition. Conservely, using Proposition 16, we get the expected results. Theorem 12. ([25]) The formal power series S ∈ K X is differentially produced if and only if its Lie rank is finite and if it satifies the χ-growth condition. Proof. By Proposition 19, one gets a direct proof. Conversely, since the Lie rank of S equals d then by Proposition 20, setting σ f | 0 = S and, for j = 1, . . . , d, σ qi = S i , 1. We choose the observation f as follows f ( q1 , . . . , qd ) = ∑ i 1 ,...,i d ≥0 r i 1 ,...,i n i 1 ! . . . i d ! qi 1 1 . . . qi d d ∈ K[[ q1 , . . . , qd ]] such that σ f | 0 ( q1 , . . . , qd ) = ∑ i 1 ,...,i d ≥0 r i 1 ,...,i n i 1 ! . . . i d ! (σ q1 ) ⊔⊔ i 1 ⊔⊔ . . . ⊔⊔ (σ qd ) ⊔⊔ i d ,

1 1 . . . P i d d

The present work is part of a series of papers devoted to the study of the renormalization of divergent polyzetas (at positive and at negatice indices) via the factorization of the non commutative generating series of polylogarithms and of harmonic sums and via the effective construction of pairs of bases in duality in ϕ-deformed shuffle algebras. It is a sequel of[START_REF] Bui | Pure) transcendence bases in φ -deformed shuffle bialgebras[END_REF] and its content was presented in several seminars and meetings, including the 66th and 74th Séminaire Lotharingien de Combinatoire. 1

Here, X * (resp. Y * ) is the monoid generated by X (resp. Y ) and its neutral element of is denoted by 1 X * (resp. 1 Y * ).

Here, π Y is the adjoint of π X for the canonical scalar products where π X is the morphism of AAU k Y → k X defined by π X (y k ) = x k-1 0 x 1 .

in a more precise way the S and Σ are the "Lyndon part" of the dual bases of the PBW expansions of the P and the Π respectively.

ε is the "constant term" character.

In here, the order relation ≻ on X * is defined by, for any u, v ∈ X * , u ≻ v iff u = vw with w ∈ X + else there are w, w 1 , w 2 ∈ X * and a ≻ b ∈ X such that u = waw 1 and v = wbw 2 .

The dual family of a basis lies in the algebraic dual which is here the space of noncommutative series, but as the enveloping algebra under consideration is graded in finite dimensions (here by the multidegree), these series are in fact (multihomogeneous) polynomials.

For any w = x i 1 . . .x ir ∈ X * , we denote w = x ir . . . x i 1 .

Since θ 0 + θ 1 = ∂ z then we also have θ n 1 L(z) = [D n (z) -E n (z)]L(z).The more general actions of {Θ (w)} w∈X * on L are more complicated to be expressed here.

Here, the Hadamard product is denoted by ⊙ and and its dual law, the diagonal comultiplication is denoted by ∆ ⊙ . The series g, h are defined in Definition 5.

It is the same for the Fliess generating series σ f |q of {A i } i=0,1 and of f at q.

These singular inputs are not included in the studies of Fliess motivated, in particular, by the renormalization of y at +∞[START_REF] Fliess | Fonctionnelles causales non linéaires et indéterminées non commutatives[END_REF][START_REF] Fliess | Réalisation locale des systèmes non linéaires, algèbres de Lie filtrées transitives et séries génératrices non commutatives[END_REF].

It plays the rôle of the resolvent in Mathematics and the evolution operator in Physics.

In[START_REF] Fliess | Réalisation locale des systèmes non linéaires, algèbres de Lie filtrées transitives et séries génératrices non commutatives[END_REF][START_REF] Reutenauer | The local realisation of generating series of finite Lie rank, Algebraic and Geometric Methods In Nonlinear Control Theory[END_REF], the reader can find the discussion on the minimal differential representation.

In the above tables, it is clearly seen that C -

• is linear on P n . For example, let u = y 1 and v = y 2 y 5 . Then u ⊔⊔ v = y 1 y 2 y 5 + y 2 y 1 y 5 + y 2 y 5 y 1 . Hence, we get C - y 1 y 2 y 5 + C - y 2 y 1 y 5 + C - y 2 y 5 y 1 = 1 594 +

Note that y 1 y 2 y 5 , y 2 y 1 y 5 , y 2 y 5 y 1 ∈ P 11 . But we have also u v = y 1 y 2 y 5 + y 2 y 1 y 5 + y 2 y 5 y 1 + y 3 y 5 + y 2 y 6 . Moreover, C - y 1 y 2 y 5 + C - y 2 y 1 y 5 + C - y 2 y 5 y 1 + C - y 3 y 5 + C - y 2 y 6 = 1 108 + 13 420 = 1 108 = C - y 1 C - y 2 y 5 . However, from y 3 y 5 , y 2 y 6 ∈ P 10 , we can conclude that C - y 1 y 2 y 5 = C - y 1 y 2 y 5 +y 2 y 1 y 5 +y 2 y 5 y 1 +y 3 y 5 +y 2 y 6 = C - y 1 y 2 y 5 +y 2 y 1 y 5 +y 2 y 5 y

Let (ρ, ρ,C f ), {(ρ, ρ,C i )} i=0,1 be convergence modulus at q ∈ CV( f ) ∩ i=0,1, j=1,...,n CV(A j i ) of f and {A j i } j=1,...,n . Let us consider the following monoid morphisms

Lemma 5. ( [START_REF] Fliess | Réalisation locale des systèmes non linéaires, algèbres de Lie filtrées transitives et séries génératrices non commutatives[END_REF]) For i = 0, 1 and j = 1, . . . , n, one has A i • q j = A j i . Hence,

Lemma 6. ( [START_REF] Fliess | Fonctionnelles causales non linéaires et indéterminées non commutatives[END_REF]) For any word w, A (w) is continuous over C cv [[q 1 , . . . , q n ]] and, for any f , g ∈ C cv [[q 1 , . . . , q n ]], one has

These notations are extended, by linearity, to K X and we will denote

The generating series of the polysystem {A i } i=0,1 and of the observation f is given by

Then the following generating series is called Fliess generating series of the polysystem {A i } i=0,1 and of the observation f at q:

Lemma 7. ( [START_REF] Fliess | Fonctionnelles causales non linéaires et indéterminées non commutatives[END_REF]) The map σ : (C cv [[q 1 , . . . , q n ]], .) -→ (C cv [[q 1 , . . . , q n ]] X , ⊔⊔ ) is an algebra morphism, i.e. for any f , g ∈ C cv [[q 1 , . . . , q n ]] and µ, ν ∈ C, one has

1. Let τ = min 1≤k≤n ρ k and r = max 1≤k≤n ρk /ρ k . We have Since any rational power series satisfies the growth condition and its Lie rank is less than or equal to its Hankel rank which is finite [START_REF] Fliess | Réalisation locale des systèmes non linéaires, algèbres de Lie filtrées transitives et séries génératrices non commutatives[END_REF] then Corollary 7. Any rational power series and any polynomial over X with coefficients in K are differentially produced.