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Abstract

In this work, we focus on on the approach by noncommutative formal

power series to study the combinatorial aspects of the renormalization

at the singularities in {0, 1,+∞} of the solutions of nonlinear differential

equations involved in quantum electrodynamics.
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1 Introduction

During the last century, the functional expansions were common in physics as
well as in engineering and have been developped, by Tomonaga, Schwinger and
Feynman [16], to represent the nonlinear dynamical systems in quantum elec-
trodynanics. The main difficulty of this approach is the divergence of these
expansions at the singularity 0 or at +∞ (see [2]) and leads to the problems of
regularization and renormalization which can be solved by combinatorial tech-
nics : Feynman diagrams [18] and their derivatives [14, 23], noncommutative
formal power series [19, 20], trees [10], . . . .

Recently, following the previous vein, and basing on

• the shuffle and quasi-shuffle Hopf algebras [5], the combinatorics on non-
commutative formal power series were intensively amplified for the asymp-
totic analysis of nonlinear dynamical systems with three regular singular-
ities in2 {0, 1,+∞} [39, 40],

• the monodromy and the Galois differential groups of the Knizhnik-Zamo-
lodchikov differential equation KZ3 [38, 40], i.e. the following noncom-
mutative evolution equation3

dG(z)

dz
=

(

x0

z
+

x1

1− z

)

G(z), (1)

the Schützenberger’s monoidal factorization facilitates mainly the renor-
malization and the computation of the associators4 via the universal one,
i.e. the associator ΦKZ of Drinfel’d.

2Any differential equation with three singularities in {a, b, c}, via homographic transforma-
tion (z − a)(c − b)(z − b)−1(c− a)−1 can be changed into a differential equation with three
singularities in {0, 1,+∞}.

3Here, x0 and x1 are noncommuative variables. More precisely (with i2 = −1),

x0 :=
t1,2

2iπ
and x1 := −

t2,3

2iπ
,

where t1,2 and t2,3 bebong to T3 = {t1,2, t1,3, t2,3} satisfying the infinitesimal 3-braid relations

[t1,3, t1,2 + t2,3] = [t2,3, t1,2 + t1,3] = 0.

4They were introduced in quantum field theory by Drinfel’d and it plays an important
role for the still open problem of the effective determination of the polynomial invariants of
knots and links via Kontsevich’s integral (see [6, 23]) and ΦKZ , was obtained firstly, in [23],
with explicit coefficients which are polyzetas and regularized polyzetas (see [40, 41] for the
computation of the other associators involving only convergent polyzetas as local coordinates,
and for three algorithmical process to regularize the divergent polyzetas).
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In fact, these associators are noncommutative formal power series on two
variables and regularize the Chen generating series of the differential forms
admitting singularities at 0 or at 1 along the integration paths on the universal

covering ˜C− {0, 1} of C without points 0 and 1. Their coefficients which are,
up to multiple of power of 2iπ, polynomial on polyzetas, i.e. the following real
numbers5 (for r ≥ 1, s1 ≥ 2 and s2, . . . , sr ≥ 1) [42, 23, 51]

ζ(s1, . . . , sr) =
∑

n1>...>nr>0

1

ns1
1 . . . nsr

r
(2)

and it is reasonable to think that these numbers admit a structure of N-graded,
by weight, algebra over the rational numbers deduced from the combinatorial
aspects of the shuffle and quasi-shuffle Hopf algebras [40, 41].

More precisely, for s1 ≥ 2, s2, . . . , sr ≥ 1, the polyzeta ζ(s1, . . . , sr) can be
obtained as the limit of

• the polylogarithm Lis1,...,sr (z), for z → 1 (recalled in Section 2.3.1)

Lis1,...,sr (z) =
∑

n1>...>nr>0

zn1

ns1
1 . . . nsr

r
(3)

• the harmonic sum Hs1,...,sr (N), for N → +∞ (recalled in Section 2.3.1)

Hs1,...,sr (N) =

N
∑

n1>...>nr>0

1

ns1
1 . . . nsr

r
. (4)

Then, by a theorem of Abel, one has

ζ(s1, . . . , sr) = lim
z→1

Lis1,...,sr(z) = lim
N→+∞

Hs1,...,sr(N). (5)

Since the algebras of polylogarithms and of harmonic sums are isomor-
phic respectively to the shuffle algebra (Q〈X〉, ⊔⊔) and the quasi-shuffle algebra
(Q〈Y 〉, ) both admitting the Lyndon words LynX over X = {x0, x1} and
LynY over Y = {yi}i≥1, as transcendence bases (recalled in Section 2.1) then,
by using

• the correspondence between the composition in N+ with the words in Y ∗

and in X∗x1, i.e.

(s1, . . . , sr)←→ ys1 . . . ysr ←→ xs1−1
0 x1 . . . x

sr−1
0 x1, (6)

• the non commutative generating series in the factorized forms, i.e.

L =
∏

l∈LynX

exp(LiSl
Pl) and H =

∏

l∈LynY

exp(HΣl
Πl), (7)

Z⊔⊔ =
∏

l∈LynX
l 6=x0,x1

exp(ζ(Sl)Pl) and Z =
∏

l∈LynY
l 6=y1

exp(ζ(Σl)Πl), (8)

5The sum s1 + . . . + sr is the weight of ζ(s1, . . . , sr) which equals to the weight of the
composition (s1, . . . , sr).
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where {Sl}l∈LynX and {Σl}l∈LynY are transcendence bases of (Q〈X〉, ⊔⊔)
and (Q〈Y 〉, ), {Pl}l∈LynX and {Πl}l∈LynY are bases of the Lie algebras
of the primitive elements of the bi-algebrasH⊔⊔ = (Q〈X〉, conc,∆⊔⊔ , 1X∗)
andH = (Q〈Y 〉, conc,∆ , 1Y ∗) in duality respectively with {Sl}l∈LynX

and {Σl}l∈LynY ,

we obtain the Abel like theorem [39, 40, 41], i.e. there exist two noncommutative
formal series over Y , Z1 and Z2 with constant terms, such that :

lim
z→1

exp

(

y1 log
1

1− z

)

πY L(z) = Z1, (9)

lim
N→∞

exp

(

∑

k≥1

Hyk
(N)

(−y1)k

k

)

H(N) = Z2. (10)

Moreover, Z1, Z2 are equal and stand for the noncommutative generating series
of the convergent polyzetas {ζ(w)}w∈Y ∗−y1Y ∗ , or equivalently {ζ(w)}w∈x0X∗x1 :

Z1 = Z2 = πY Z⊔⊔ , (11)

where πY denotes the projection over Y ∗.
This Abel theorem allows to explicit the counter-terms eliminating the di-

vergence of

• the polylogarithms {Liw(z)}w∈x1X∗ for z → 1,

• the harmonic sums {Hw(N)}w∈y1Y ∗ for N →∞

and leads naturally to an equation connecting these two algebraic structures

ց
∏

l∈LynY
l 6=y1

exp(ζ(Σl)Πl) = exp

(

∑

k≥2

ζ(k)
(−y1)k

k

)

πY

ց
∏

l∈LynX
l 6=x0,x1

exp(ζ(Sl)Pl). (12)

This identity (12) enables, in particular,

• to calculate the Euler-Mac Laurin constants and the Hadamard finite par-
ties associated to the divergent polyzetas {ζ(w)}w∈y1Y ∗ ,

• to describe completely, via identification of local coordinates in infinite
dimension, the kernel of ζ by its algebraic generators, and thus this kernel
is generated by homogenous polynomials.

In this paper, we will focus on the approach by noncommutative formal
power series, adapted from [19, 20], and explaining the results of [39, 40, 41]
allowing to study the combinatorial aspects of the renormalization at the sin-
gularities in {0, 1,+∞} of the solutions of linear differential equations (see Ex-
ample 1 bellows) as well as the solutions of nonlinear differential equations (see
Examples 2 and 3 bellow) described in Section 3.2 and involved in quantum
electrodynamics.
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Example 1 (Hypergeometric equation). Let t0, t1, t2 be parameters and

z(1− z)ÿ(z) + [t2 − (t0 + t1 + 1)z]ẏ(z)− t0t1y(z) = 0.

Let q1(z) = y(z) and q2(z) = z(1− z)ẏ(z). One has
(

q̇1
q̇2

)

=

(

M0

z
+

M1

1− z

)(

q1
q2

)

,

where M0 and M1 are the following matrices

M0 = −

(

0 0
t0t1 t2

)

and M1 = −

(

0 1
0 t2 − t0 − t1

)

.

Or equivalently,

q̇(z) = A0(q)
1

z
+A1(q)

1

1− z
,

y(z) = q(z),

where A0 and A1 are the following pamaetrized linear vectors fields

A0(q) = −(t0t1q1 + t2q2)
∂

∂q2
and A1(q) = −q1

∂

∂q1
− (t2 − t0 − t1)q2

∂

∂q2
.

Example 2 (Harmonic oscillator). Let k1, k2 be parameters and

ẏ(z) + k1y(z) + k2y
2(z) = u1(z).

which can be represented by the following state equations

q̇(z) = A0(q) +A1(q)u1(z),

y(z) = q(z),

where A0 and A1 are the following vectors fields

A0(q) = −(k1q + k2q
2)

∂

∂q
and A1(q) =

∂

∂q
.

Example 3 (Duffing’s equation). Let a, b, c be parameters and

ÿ(z) + aẏ(z) + by(z) + cy3(z) = u1(z).

which can be represented by the following state equations

q̇(z) = A0(q) +A1(q)u1(z),

y(z) = q(z),

where A0 and A1 are the following vectors fields

A0(q) = −(aq2 + b2q1 + cq31)
∂

∂q2
+ q2

∂

∂q1
and A1(q) =

∂

∂q2
.
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This approach by noncommutative formal power series is adequate for study-
ing the algebraic combinatorial aspects of the asymptotic analysis, at the singu-
larities in {0, 1,+∞}, of the nonlinear dynamical systems described in Section
3.2 because

• the polylogarithms form the universal Picard-Vessiot of these nonlinear
differential equations [38] and their algebra is isomorphic to the shuffle
algebra admitting {Lil}l∈LynX as transcendence basis,

• the harmonic sums generate the coefficients of the ordinary Taylor expan-
sion of their solutions (when these expansion exist) [39] and their algebra is
isomorphic to the shuffle algebra admitting {Hl}l∈LynY as transcendence
basis,

• the polyzetas do appear as the fondamental arithmetical constants in-
volved in the computations of the monomdomies [35, 32], the Kummer
type functional equations [36, 32], the asymptotic expansions of the solu-
tions of these equations [39, 40] and their algebra is freely generated by
the polyzetas encoded by irreducible Lyndon words [40].

Hence, a lot of algorithms can be deduced from these facts and the more
general studies will be proceed (see [5, 11] for example).

The organisation of this paper is following

• In Section 2, we will give algbraic and analytic foundations, i.e. the com-
binatorial Hopf algebra of shuffles and the indiscernability respectively, for
polylogarithms and harmonic sums.

• These will be exploited systematically, in Section 3, to expand the solu-
tions of nonlinear dynamical systems with singular inputs.

2 Background

2.1 Combinatorics on shuffle and stuffle Hopf algebras

2.1.1 Schützenberger’s monoidal factorization

Let X be a finite totally ordered alphabet. The free monoid and the set of
Lyndon words, over X , are denoted respectively by X∗ and LynX . The neutral
element of X∗ is denoted by 1X∗ . Let Q〈X〉 be equipped by the concatenation
and the shuffle defined by

∀w ∈ X∗, w ⊔⊔ 1X∗ = 1X∗ ⊔⊔ w = w, (13)

∀x, y ∈ X, ∀u, v ∈ X∗, xu ⊔⊔ yv = x(u ⊔⊔ yv) + y(xu ⊔⊔ v), (14)

or by their dual co-products, ∆conc,∆⊔⊔ , defined by

∀w ∈ X∗, ∆conc(w) =
∑

u,v∈X∗,uv=w

u⊗ v, (15)

∀x ∈ X, ∆⊔⊔ (x) = x⊗ 1 + 1⊗ x, (16)
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satisfying, for any u, v, w ∈ X∗,

〈∆conc(w) | u⊗ v〉 = 〈w | uv〉, (17)

〈∆⊔⊔ (w) | u⊗ v〉 = 〈w | u ⊔⊔ v〉. (18)

With the co-unit and the antipode defined by

∀P ∈ Q〈X〉, ǫ(P ) = 〈P | 1X∗〉, (19)

∀w = xi1 . . . xir ∈ X∗, a⊔⊔ (w) = (−1)−|w|xir . . . xi1 , (20)

one gets two mutually dual Hopf algebras

H⊔⊔ = (Q〈X〉, conc, 1X∗ ,∆⊔⊔ , ǫ, a⊔⊔ ), (21)

H∨
⊔⊔

= (Q〈X〉, ⊔⊔ , 1X∗ ,∆conc, ǫ, a⊔⊔ ). (22)

By the Cartier-Quillen-Milnor-Moore theorem, the connected graded posi-
tively, co-commutative Hopf algebra H is isomorphic to the envelopping algebra
of the Lie algebra of its primitive elements which is equal to LieQ〈X〉. Hence,
any graded6 suited7 basis of LieQ〈X〉, can be completed, by the Poincaré-
Birkhoff-Witt theorem, as a linear (graded) basis {bw}w∈X∗ for U(LieQ〈X〉).
One can then8 construct, by duality, a basis {b̌w}w∈X∗ of H⊔⊔ such that :

∀u, v ∈ X∗, 〈b̌u | bv〉 = δu,v, (23)

and, for any x ∈ X , b̌x = x and for any w = li11 . . . likk with l1, . . . , lk ∈ LynX
and l1 > . . . > lk, one has

b̌w =
b̌i1l1 × . . .× b̌iklk

i1! . . . ik!
. (24)

For that, one can use a theorem of Viennot [50] to construct, by bijection with
LynX , a basis for LieQ〈X〉 and, by the PBW theorem, one completes then to
a linear basis for U(LieQ〈X〉).

On an other way, by a Radford’s theorem [45], the elements of LynX con-
stitute also a transcendence basis for (Q〈X〉, ⊔⊔) and it can be completed then
to the linear basis {w}w∈X∗ which is auto-dual :

∀v, v ∈ X∗, 〈u | v〉 = δu,v. (25)

But the elements l ∈ LynX − X are not primitive, for ∆⊔⊔ , and then LynX
does not constitute a basis for LieQ〈X〉. Denoting DX the diagonal series over
X , one has

DX =
∑

w∈X∗

w ⊗ w =
∑

l∈LynX

l ⊗ l +
∑

w/∈LynX

w ⊗ w (26)

6for the multidegree.
7i.e. a basis of polynomials indexed by their initial words which is a Lyndon word.
8because H is graded in finite dimensions by the multidegree.
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and DX can be also factorized as follows

DX =

ց
∏

l∈LynX

exp(l ⊗ l). (27)

Using the transcendence basis {l}l∈LynX , Mélançon and Reutenauer give an
other completion by putting [47]

S′
l = l, for l ∈ LynX, (28)

S′
w =

l⊔⊔
i1

1 ⊔⊔ . . . ⊔⊔ l⊔⊔
ik

k

i1! . . . ik!
, for w = li11 . . . likk , l1 > . . . > lk, (29)

= w +
∑

v<w,|v|=|w|

c′vv. (30)

The linear basis {S′
w}w∈X∗ admits the dual basis {P ′

w}w∈X∗ but it is not of
PBW type although the elements of {P ′

l }l∈LynX are primitive, for ∆⊔⊔ [12].
Chen, Fox and Lyndon [8] constructed {Pw}w∈X∗ , so-called the PBW-Lyndon

basis, for U(LieQ〈X〉) as follows

Px = x for x ∈ X, (31)

Pl = [Ps, Pr] for l ∈ LynX, standard factorization of l = (s, r), (32)

Pw = P i1
l1

. . . P ik
lk

for w = li11 . . . likk , l1 > . . . > lk, l1 . . . , lk ∈ LynX. (33)

Schützenberger constructed bases for (Q〈X〉, ⊔⊔) defined by duality as follows :

∀u, v ∈ X∗, 〈Su | Pv〉 = δu,v, (34)

and obtained the transcendence basis {Sl}l∈∈LynX and the linear basis {Sw}w∈X∗

as follows

Sl = xSu, for l = xu ∈ LynX, (35)

Sw =
S⊔⊔ i1
l1

⊔⊔ . . . ⊔⊔ S⊔⊔ ik
lk

i1! . . . ik!
for w = li11 . . . likk , l1 > . . . > lk. (36)

After that, Mélançon and Reutenauer [47] proved that9, for any w ∈ X∗,

Pw = w +
∑

v>w,|v|=|w|

cvv and Sw = w +
∑

v<w,|v|=|w|

cvv. (37)

9 Recall that the duality preserves the (multi)-homogeneous degree and interchanges the
triangularity of polynomials [47]. For that, one can construct the triangular matrices M and N
admitting coeffients as the coefficients of the homogeneous of degree k triangular polynomials,
{Pw}w∈X∗ and {Sw}w∈X∗ in the basis {w}w∈X∗ respectively :

Mu,v = 〈Pu | v〉 and Nv,u = 〈Su | v〉.

The triangular matrices M and N are unipotent and satisfy the identity N = (tM)−1.
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In other words, the elements of the bases {Sw}w∈X∗ and {Pw}w∈X∗ are lower
and upper triangular respectively and they are of homogeneous by degree.

Thanks to the duality of the bases {Pw}w∈X∗ and {Sw}w∈X∗ and the basis
{Pw}w∈X∗ is of PBW type, one also has [47]

DX =
∑

w∈X∗

Sw ⊗ Pw (38)

=
∑

l∈LynX

Sl ⊗ Pl +
∑

w/∈LynX

Sw ⊗ Pw (39)

=

ց
∏

l∈LynX

exp(Sl ⊗ Pl). (40)

Example 4 ([27]). Let X = {x0, x1} with x0 < x1.

l Pl Sl

x0 x0 x0

x1 x1 x1

x0x1 [x0, x1] x0x1

x2
0x1 [x0, [x0, x1]] x2

0x1

x0x
2
1 [[x0, x1], x1] x0x

2
1

x3
0x1 [x0, [x0, [x0, x1]]] x3

0x1

x2
0x

2
1 [x0, [[x0, x1], x1]] x2

0x
2
1

x0x
3
1 [[[x0, x1], x1], x1] x0x

3
1

x4
0x1 [x0, [x0, [x0, [x0, x1]]]] x4

0x1

x3
0x

2
1 [x0, [x0, [[x0, x1], x1]]] x3

0x
2
1

x2
0x1x0x1 [[x0, [x0, x1]], [x0, x1]] 2x3

0x
2
1 + x2

0x1x0x1

x2
0x

3
1 [x0, [[[x0, x1], x1], x1]] x2

0x
3
1

x0x1x0x
2
1 [[x0, x1], [[x0, x1], x1]] 3x2

0x
3
1 + x0x1x0x

2
1

x0x
4
1 [[[[x0, x1], x1], x1], x1] x0x

4
1

x5
0x1 [x0, [x0, [x0, [x0, [x0, x1]]]]] x5

0x1

x4
0x

2
1 [x0, [x0, [x0, [[x0, x1], x1]]]] x4

0x
2
1

x3
0x1x0x1 [x0, [[x0, [x0, x1]], [x0, x1]]] 2x4

0x
2
1 + x3

0x1x0x1

x3
0x

3
1 [x0, [x0, [[[x0, x1], x1], x1]]] x3

0x
3
1

x2
0x1x0x

2
1 [x0, [[x0, x1], [[x0, x1], x1]]] 3x3

0x
3
1 + x2

0x1x0x
2
1

x2
0x

2
1x0x1 [[x0, [[x0, x1], x1]], [x0, x1]] 6x3

0x
3
1 + 3x2

0x1x0x
2
1 + x2

0x
2
1x0x1

x2
0x

4
1 [x0, [[[[x0, x1], x1], x1], x1]] x2

0x
4
1

x0x1x0x
3
1 [[x0, x1], [[[x0, x1], x1], x1]] 4x2

0x
4
1 + x0x1x0x

3
1

x0x
5
1 [[[[[x0, x1], x1], x1], x1], x1] x0x

5
1

2.1.2 Extended Schützenberger’s monoidal factorization

Now, let Y = {yi}i≥1 be an infinite totally ordered alphabet10. The free monoid
and the set of Lyndon words, over Y , are denoted respectively by Y ∗ and LynY .
The neutral element of Y ∗ is denoted by 1Y ∗ .

10by y1 > y2 > y3 > . . ..

9



Let u = yi1 . . . yik ∈ Y ∗, the length and the weight of u are defined respec-
tively as the numbers |u |= k and (u) = i1 + . . .+ ik.

Let us define the commutative product over Q〈Y 〉, denoted by µ, as follows

∀yn, ym ∈ Y, µ(yn, ym) = yn+m, (41)

or by its associated coproduct, ∆+, defined by

∀yn ∈ Y, ∆+yn =

n−1
∑

i=1

yi ⊗ yn−i (42)

satisfying,

∀x, y, z ∈ Y, 〈∆+x | y ⊗ z〉 = 〈x | µ(y, z)〉. (43)

Let Q〈Y 〉 be equipped by

1. The concatenation (or by its associated coproduct, ∆conc).

2. The shuffle product, i.e. the commutative product defined by [47]

∀w ∈ Y ∗, w ⊔⊔ 1Y ∗ = 1Y ∗ ⊔⊔ w = w,

∀x, y ∈ Y, ∀u, v ∈ Y ∗, xu ⊔⊔ yv = x(u ⊔⊔ yv) + y(xu ⊔⊔ v)

or by its associated coproduct, ∆⊔⊔ , defined, on the letters, by

∀yk ∈ Y, ∆⊔⊔ yk = yk ⊗ 1 + 1⊗ yk

and extended by morphism. It satisfies

∀u, v, w ∈ Y ∗, 〈∆⊔⊔w | u⊗ v〉 = 〈w | u ⊔⊔ v〉.

3. The quasi-shuffle product, i.e. the commutative product defined by [43],
for any w ∈ Y ∗,

w 1Y ∗ = 1Y ∗ w = w,

and, for any yi, yj ∈ Y, ∀u, v ∈ Y ∗,

yiu yjv = yj(yiu v) + yi(u yjv) + µ(yi, yj)(u v),

= yj(yiu v) + yi(u yjv) + yi+j(u v)

or by its associated coproduct, ∆ , defined, on the letters, by

∀yk ∈ Y, ∆ yk = ∆⊔⊔ yk +∆+yk

and extended by morphism. It satisfies

∀u, v, w ∈ Y ∗, 〈∆ w | u⊗ v〉 = 〈w | u v〉.

Note that ∆ and ∆⊔⊔ are morphisms for the concatenation (by defini-
tion) whereas ∆+ is not a morphism for the product of kY (for example
∆+(y

2
1) = y1 ⊗ y1, whereas ∆+(y1)

2 = 0).
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Hence, with the counit e defined by

∀P ∈ Q〈Y 〉, e(P ) = 〈P | 1Y ∗〉, (44)

one gets two pairs of mutually dual bialgebras

H⊔⊔ = (Q〈Y 〉, conc, 1Y ∗ ,∆⊔⊔ , e) and H∨
⊔⊔

= (Q〈Y 〉, ⊔⊔ , 1Y ∗ ,∆conc, e),(45)

H = (Q〈Y 〉, conc, 1Y ∗ ,∆ , e) and H∨ = (Q〈Y 〉, , 1Y ∗ ,∆conc, e).(46)

As in (26-27), one has

DY =
∑

w∈Y ∗

w ⊗ w (47)

=
∑

l∈LynY

l⊗ l +
∑

w/∈LynY

w ⊗ w (48)

=

ց
∏

l∈LynY

exp(l ⊗ l). (49)

By the CQMM theorem (see [5]), the connected N-graded, co-commutative
Hopf algebra H⊔⊔ is isomorphic to the enveloping algebra of the Lie algebra of
its primitive elements which is equal to LieQ〈Y 〉 :

H⊔⊔
∼= U(LieQ〈Y 〉) and H∨

⊔⊔
∼= U(LieQ〈Y 〉)

∨. (50)

Hence, let us consider [8]

1. the PBW-Lyndon basis {pw}w∈Y ∗ for U(LieQ〈Y 〉) constructed recursively







py = y for y ∈ Y,
pl = [ps, pr] for l ∈ LynY, standard factorization of l = (s, r),

pw = pi1l1 . . . p
ik
lk

for w = li11 . . . likk , l1 > . . . > lk, l1 . . . , lk ∈ LynY,

2. and, by duality11, the linear basis {sw}w∈Y ∗ for (Q〈Y 〉, ⊔⊔ , 1Y ∗), i.e.

∀u, v ∈ Y ∗, 〈pu | sv〉 = δu,v.

This basis can be computed recursively as follows [47]















sy = y, for y ∈ Y,
sl = ysu, for l = yu ∈ LynY,

sw =
s⊔⊔ i1
l1

⊔⊔ . . . ⊔⊔ s⊔⊔ ik
lk

i1! . . . ik!
for w = li11 . . . likk , l1 > . . . > lk.

11The dual family (i.e. the set of coordinate forms) of a basis lies in the algebraic dual
which is here the space of noncommutative series, but as the enveloping algebra under con-
sideration is graded in finite dimensions (here by the multidegree), these series are in fact
(multihomogeneous) polynomials.
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Hence, since {pw}w∈Y ∗ is of PBW type then, as in (38)-(40), we get also

DY =
∑

w∈Y ∗

sw ⊗ pw (51)

=
∑

l∈LynY

sl ⊗ pl +
∑

w/∈LynY

sw ⊗ pw (52)

=

ց
∏

l∈LynY

exp(sl ⊗ pl). (53)

Similarly, by the CQMM theorem, the connected N-graded, co-commutative
Hopf algebra H is isomorphic to the enveloping algebra of

Prim(H ) = Im(π1) = spanQ{π1(w)|w ∈ Y ∗}, (54)

where, for any w ∈ Y ∗, π1(w) is obtained as follows [40]

π1(w) = w +
∑

k≥2

(−1)k−1

k

∑

u1,...,uk∈Y +

〈w | u1 . . . uk〉 u1 . . . uk. (55)

Note that Equation (55) is equivalent to the following identity [40, 41]

w =
∑

k≥0

1

k!

∑

u1,...,uk∈Y ∗

〈w | u1 . . . uk〉 π1(u1) . . . π1(uk). (56)

In particular, for any yk ∈ Y , we have successively [40, 41]

π1(yk) = yk +
∑

l≥2

(−1)l−1

l

∑

j1,...,jl≥1

j1+...+jl=k

yj1 . . . yjl , (57)

yn =
∑

k≥1

1

k!

∑

s′1+···+s′
k
=n

π1(ys′1) . . . π1(ys′
k
). (58)

Hence, by introducing the new alphabet Ȳ = {ȳ}y∈Y = {π1(y)}y∈Y , one has

(Q〈Ȳ 〉, conc, 1Ȳ ∗ ,∆⊔⊔ ) ∼= (Q〈Y 〉, conc, 1Y ∗ ,∆ ) (59)

and

H ∼= U(LieQ〈Ȳ 〉) ∼= U(Prim(H )), (60)

H∨ ∼= U(LieQ〈Ȳ 〉)
∨ ∼= U(Prim(H ))∨. (61)

By considering

1. the PBW-Lyndon basis {Πw}w∈Y ∗ for U(Prim(H )) constructed recur-
sively as follows [40]






Πy = π1(y) for y ∈ Y,
Πl = [Πs,Πr] for l ∈ LynY, standard factorization of l = (s, r),

Πw = Πi1
l1
. . .Πik

lk
for w = li11 . . . likk , l1 > . . . > lk, l1 . . . , lk ∈ LynY,
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2. and, by duality, the linear basis {Σw}w∈Y ∗ for (Q〈Y 〉, , 1Y ∗), i.e.

∀u, v ∈ Y ∗, 〈Πu | Σv〉 = δu,v.

This basis can be computed recursively as follows [4, 40]































Σy = y for y ∈ Y,

Σl =
∑

{s′
1
,··· ,s′

i
}⊂{s1,··· ,sk},l1≥···≥ln∈LynY

(ys1 ···ysk
)
∗
⇐(y

s′
1
,··· ,y

s′n
,l1,··· ,ln)

1

i!
ys′1+···+s′

i
Σl1···ln

for l∈LynY
l=ys1 ···ysk

,

Σw =
1

i1! . . . ik!
Σ i1

l1
. . . Σ ik

lk

for l1>...>lk
w=l

i1
1 ...l

ik
k

,

Hence, we get the following extended Schützenberger’s factorization of DY [40,
41]

DY =

ց
∏

l∈LynY

exp(Σl ⊗Πl). (62)

Proposition 1 ([40]). Let πY : (Q⊕Q〈X〉x1, .) −→ (Q〈Y 〉, .) be the morphism
mapping xs1−1

0 x1 . . . x
sr−1
0 x1 to ys1 . . . ysr and πX be its inverse. Its extension

over Q〈X〉 verifying πY (p) = 0, for p ∈ Q〈X〉x0, is still denoted by πY . Then

1. The polynomials {πY PπX l}l∈LynY are homogeneous in weight, linearly in-
dependent and upper triangular :

πY PπX l = Πl +
∑

v>l,(v)=(l)

pvv.

2. For any w ∈ Y ∗, the following polynomial, homogeneous in weight,

πY PπXw = Πw +
∑

v>w,(v)=(w)

cvv

is of multi-degree (w) and {πY PπXw}w∈Y ∗ forms a basis for Q〈Y 〉.

3. Let {Θw}w∈Y ∗ be the family of polynomials, homogeneous in weight, in
duality with the family {πY PπXw}w∈Y ∗ :

∀u, v ∈ Y ∗, 〈πY PπXu | Θu〉 = δu,v.

Then, the family {Θw}w∈Y ∗ generates freely (Q〈Y 〉, ) and

∀w ∈ Y ∗, Θw = Σw +
∑

v<w,(v)=(w)

dvv.

Remark 1. The family {Θl}l∈LynY is not a transcendence basis of (Q〈Y 〉, )
because if {Θl}l∈LynY constitutes a transcendence basis of (Q〈Y 〉, ) then, for
any l ∈ LynY, πY PπX l is primitive but it is false in general.

13



Example 5 ([41]).

Πy4 = y4 −
1

2
y1y3 −

1

2
y2y2 −

1

2
y3y1 +

1

3
y21y2 +

1

3
y1y2y1 +

1

3
y2y

2
1 −

1

4
y41 ,

Πy3y1 = y3y1 −
1

2
y2y

2
1 − y1y3 +

1

2
y21y2,

Πy2y2 = y2y2 −
1

2
y2y

2
1 −

1

2
y21y2 +

1

4
y41 ,

Πy2y2
1

= y2y
2
1 − 2 y1y2y1 + y21y2,

Πy1y3 = y1y3 −
1

2
y21y2 −

1

2
y1y2y1 +

1

3
y41 ,

Πy1y2y1 = y1y2y1 − y21y2,

Πy2
1y2

= y21y2 −
1

2
y41,

Πy4
1

= y41 .

Σy4 = y4,

Σy3y1 =
1

2
y4 + y3y1,

Σy2
2

=
1

2
y4 + y22 ,

Σy2y2
1

=
1

6
y4 +

1

2
y3y1 +

1

2
y2y2 + y2y

2
1 ,

Σy1y3 = y4 + y3y1 + y1y3,

Σy1y2y1 =
1

2
y4 +

1

2
y3y1 + y22 ++y2y

2
1 +

1

2
y1y3 + y1y2y1,

Σy2
1y2

=
1

2
y4 + y3y1 + y22 + y2y

2
1 + y1y3 + y1y2y1 + y21y2,

Σy4
1

=
1

24
y4 +

1

6
y3y1 +

1

4
y22 +

1

2
y2y

2
1 +

1

6
y1y3 +

1

2
y1y2y1 +

1

2
y21y2 + y41 .

Example 6 ([41]). Let us express {πY Pl}l∈Lyn≤4Y in the basis {Πw}w∈Y ∗ :

l πY Pl

x0 0
x1 Πy1

x0x1 Πy2 +
Π2

y1

2

x2
0x1 Πy3 +

Πy2y1

2
+ Πy1y2 +

Πy3
1

6

x0x
2
1 Πy2y1 − 2Πy1y2 −

Πy3
1

2

x3
0x1 Πy4 +

Πy3y1

2
+ Πy1y3 +

Πy2
2

2
+

Πy2
1y2

+Πy1Πy2Πy1 +Πy2Πy2
1

6
+

Πy4
1

24

x2
0x

2
1 Πy3Πy1 −

Πy2Πy2
1

2
+

Πy1Πy2Πy1

2
−Πy2

1
Πy2 − 2Πy2

2
−

Πy4
1

3

x0x
3
1 Πy2Πy2

1
− 3Πy1Πy2Πy1 + 3Πy2

1
Πy2 +

Πy4
1

2
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2.2 Indiscernability over a class of formal power series

2.2.1 Residual calculus and representative series

Definition 1. Let S ∈ Q〈〈X〉〉 and let P ∈ Q〈X〉. The left (resp. right) residual
of S by P is the formal power series P ⊳ S (resp. S ⊲ P ) in Q〈〈X〉〉 defined by:

〈P ⊳ S | w〉 = 〈S | wP 〉 (resp. 〈S ⊲ P | w〉 = 〈S | Pw〉).

We straightforwardly get, for any P,Q ∈ Q〈X〉:

P ⊳ (Q ⊳ S) = PQ ⊳ S, (S ⊲ P ) ⊲ Q = S ⊲ PQ, (P ⊳ S) ⊲ Q = P ⊳ (S ⊲ Q). (63)

In case x, y ∈ X and w ∈ X∗, we get12:

x ⊳ (wy) = δx,yw and xw ⊲ y = δx,yw. (64)

Lemma 1. (Reconstruction lemma) Let S ∈ Q〈〈X〉〉. Then

S = 〈S | 1X∗〉+
∑

x∈X

x(S ⊲ x) = 〈S | 1X∗〉+
∑

x∈X

(x ⊳ S)x.

Lemma 2. The residuals by a letter x is a derivation of (Q〈〈X〉〉, ⊔⊔):

x ⊳ (u ⊔⊔ v) = (x ⊳ u) ⊔⊔ v + u ⊔⊔(x ⊳ v), (u ⊔⊔ v) ⊲ x = (u ⊲ x) ⊔⊔ v + u ⊔⊔(v ⊲ x).

Proof. Use the recursive definitions of the shuffle product.

Consequently,

Lemma 3. For any Lie polynomial Q ∈ LieQ〈X〉, the linear maps “Q⊳” and
“⊲Q” are derivations on (Q[LynX ], ⊔⊔).

Proof. For any l, l1, l2 ∈ LynX , we have

l̂ ⊳ (l1 ⊔⊔ l2) = l1 ⊔⊔(l̂ ⊳ l2) + (l̂ ⊳ l1) ⊔⊔ l2 = l1δl2,l̂ + δl1,l̂l2,

(l1 ⊔⊔ l2) ⊲ l̂ = l1 ⊔⊔(l2 ⊲ l̂) + (l1 ⊲ l̂) ⊔⊔ l2 = l1δl2,l̂ + δl1,l̂l2.

Lemma 4. For any Lyndon word l ∈ LynX and Šl defined as in (??), one has

x1 ⊳ l = l ⊲ x0 = 0 and x1 ⊳ Šl = Šl ⊲ x0 = 0.

Proof. Since x1⊳ and ⊲x0 are derivations and for any l ∈ LynX −X , the poly-
nomial Šl belongs to x0Q〈X〉x1 then the expected results follow.

Theorem 1. (On representative series) The following properties are equivalent
for any series S ∈ Q〈〈X〉〉:

12For any words u and v ∈ X∗, if u = v then δu,v = 1 else 0.
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(1) The left C-module Resg(S) = span{w ⊳ S | w ∈ X∗} is finite dimensional.

(2) The right C-module Resd(S) = span{S ⊲ w | w ∈ X∗} is finite dimensional.

(3) There are matrices λ ∈M1,n(Q), η ∈ Mn,1(Q) and a representation of X∗

in Mn,n, such that

S =
∑

w∈X∗

[λµ(w)η] w,

= λ

( ց
∏

l∈LynX

eµ(Sl) Pl

)

η.

A series that satisfies the items of this theorem will be called representative
series. This concept can be found in [1, 44, 15]. The two first items are in
[19, 24]. The third item can be deduced from [7, 13] for example and it was
used to factorize first time, by Lyndon words, the output of bilinear and ana-
lytical dynamical systems respectively in [26, 27] and to study polylogarithms,
hypergeometric functions and associated functions in [29, 31, 38]. The dimen-
sion of Resg(S) is equal to that of Resd(S), and to the minimal dimension of a
representation satisfying the third point of Theorem 1. This rank is then equal
to the rank of the Hankel matrix of S, that is the infinite matrix (〈S | uv〉)u,v∈X

indexed by X∗ ×X∗ and is also called Hankel rank of S [19, 24]:

Definition 2. ([19, 24]) The Hankel rank of a formal power series S ∈ C〈〈X〉〉
is the dimension of the vector space

{S ⊲Π | Π ∈ C〈X〉}, (resp. {Π ⊳ S | Π ∈ C〈X〉}.

The triplet (λ, µ, η) is called a linear representation of S. We define the min-
imal representation13 of S as being a representation of S of minimal dimension.

For any proper series S, the following power series is called “star of S”

S∗ = 1 + S + S2 + · · ·+ Sn + . . . . (65)

Definition 3. ([3, 49]) A series S is called rational if it belongs to the closure
in Q〈〈X〉〉 of the noncommutative polynomial algebra by sum, product, and star
operation of proper14 elements. The set of rational power series will be denoted
by Qrat〈〈X〉〉.

Lemma 5. For any noncommutative rational series (resp. polynomial) R and
for any polynomial P , the left and right residuals of R by P are rational (resp.
polynomial).

Theorem 2. (Schützenberger, [3, 49]) Any noncommutative power series is
representative if and only if it is rational.

13It can be shown that all minimal representations are isomorphic (see [3]).
14A series S is said to be proper if 〈S | ǫ〉 = 0.
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Example 7. Let S = (x0x1)
∗ be the rational power sries over X = {x0, x1}.

Since
S = (x0x1)

∗ = 1X∗ + x0x1 + (x0x1)
2 + . . .

then

S ⊲ x0 = x1 + x1x0x1 + . . . ,
S ⊲ x1 = 0,
S ⊲ x2

0 = 0,
S ⊲ x0x1 = S.

The Hankel rank of S is then 3.

2.2.2 Continuity and indiscernability

Definition 4. ([25, 39]) Let H be a class of formal power series over X and let
S ∈ C〈〈X〉〉.

(1) S is said to be continuous15 over H if for any Φ ∈ H, the following sum,
denoted by 〈S || Φ〉, is convergent in norm

∑

w∈X∗

〈S | w〉〈Φ | w〉.

The set of continuous power series over H will be denoted by Ccont〈〈X〉〉.

(2) S is said to be indiscernable16 over H if and only if

∀Φ ∈ H, 〈S || Φ〉 = 0.

Lemma 6. Let H be a monoid containing {etx}t∈C
x∈X. Let S ∈ Ccont〈〈X〉〉 be

indiscernable over H. Then for any x ∈ X, x ⊳ S and S ⊲ x belong to Ccont〈〈X〉〉
and they are indiscernable over H.

Proof. Let us calculate 〈x⊳S || Φ〉 = 〈S || Φx〉 and 〈S ⊲x || Φ〉 = 〈S || xΦ〉. Since

lim
t→0

etx − 1

t
= x and lim

t→0

etx − 1

t
= x

then, for any Φ ∈ H, by uniform convergence, one has

〈S || Φx〉 = 〈S || lim
t→0

Φ
etx − 1

t
〉 = lim

t→0
〈S || Φ

etx − 1

t
〉,

〈S || xΦ〉 = 〈S || lim
t→0

etx − 1

t
Φ〉 = lim

t→0
〈S ||

etx − 1

t
Φ〉.

15See [25, 39] for a convergence criterion and an example of continuous generating series.
16Here, we adapt this notion developped in [25] via the residual calculus.
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Since S is indiscernable over H then

〈S || Φx〉 = lim
t→0

1

t
〈S || Φetx〉 − lim

t→0

1

t
〈S || Φ〉 = 0,

〈S || xΦ〉 = lim
t→0

1

t
〈S || etxΦ〉 − lim

t→0

1

t
〈S || Φ〉 = 0.

Proposition 2. Let H be a monoid containing {etx}t∈C
x∈X. The formal power

series S ∈ Ccont〈〈X〉〉 is indiscernable over H if and only if S = 0.

Proof. If S = 0 then it is immediate that S is indiscernable over H. Conversely,
if S is indiscernable over H then by Lemma 6, for any word w ∈ X∗ and, by
induction on the length of w, w ⊳ S is indiscernable over H. In particular,

〈w ⊳ S || IdH〉 = 〈S | w〉 = 0.

In other words, S = 0.

2.3 Polylogarithms and harmonic sums

2.3.1 Structures of polylogarithms and harmonic sums

Let Y be the infinite alphabet {yi}i≥1 equipped with the order y1 > y2 >
y3 > . . . and let LynY be the set of Lyndon words over Y . The length of
w = ys1 . . . ysr ∈ Y ∗ is denoted by | w | and its degree equals s1 + · · ·+ sr.

Let X be the finite alphabet {x0, x1} equipped with the order x0 < x1 and

C := C

[

z,
1

z
,

1

1− z

]

and G :=

{

z,
1

z
,
z − 1

z
,

z

z − 1
,

1

1− z
, 1− z

}

.(66)

This ring C is invariant under differentiation and under the homographic trans-
formations belonging to the group G whose elements commute the singulari-
ties {0, 1,+∞}. The iterated integral over ω0, ω1 associated to the word w =
xi1 · · ·xik over X∗ (the monoid generated by X) and along the integration path
z0  z is the following multiple integral defined by

∫

z0 z

ωi1 · · ·ωik =

∫ z

z0

ωi1(t1)

∫ t1

z0

ωi2(t2) . . .

∫ tr−1

z0

ωir(tr), (67)

where t1 · · · tr−1 is a subdivision of the path z0  z. In a shortened notation,
we denote this integral by αz

z0(w) and
17 αz

z0(1X∗) = 1. One can check that the
polylogarithm Lis1,...,sr is also the value of the iterated integral over ω0, ω1 and
along the integration path 0 z [29, 31]:

Liw(z) = αz
0(x

s1−1
0 x1 . . . x

sr−1
0 x1). (68)

17Here, 1X∗ stands for the empty word over X.
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Example 8.

αz
0(x0x1) =

∫ z

0

ds

s

∫ s

0

dt

1− t

=

∫ z

0

ds

s

∫ s

0

dt
∑

k≥0

tk

=
∑

k≥1

∫ z

0

ds
sk−1

k

=
∑

k≥1

zk

k2

= Li2(z).

The definition of polylogarithms is extended over the words w ∈ X∗ by
putting Lix0(z) := log(z). Thus, {Liw}w∈X∗, and then {Pw(z) := (1−z)−1 Liw(z)}w∈Y ∗ ,
are C-linearly independent [35, 32]. Since, for any v = ys1 . . . ysr ∈ Y ∗,Pv is the
ordinary generating function of the sequence {Hv(N)}N≥0 [37]:

Pv(z) =
∑

N≥0

Hv(N) zN , with Hv(N) =
∑

N≥n1>...>nr>0

1

ns1
1 . . . nsr

r
(69)

then, as a consequence of the classical isomorphism between convergent Taylor
series and their associated sums, the harmonic sums {Hw}w∈Y ∗ are also C-
linearly independent. Firstly, kerP = {0} and kerH = {0}, and secondly, P is
a morphism for the Hadamard product:

Pu(z)⊙ Pv(z) =
∑

N≥0

Hu(N)Hv(N)zN =
∑

N≥0

Hu v(N)zN = Pu v(z). (70)

Proposition 3. ([37]) Extended by linearity, the map

P : (C〈Y 〉, ) −→ (C{Pw}w∈Y ∗ ,⊙) ,

u 7−→ Pu

is an isomorphism of algebras. Moreover, the map

H : (C〈Y 〉, ) −→ (C{Hw}w∈Y ∗ , .) ,

u 7−→ Hu = {Hu(N)}N≥0

is an isomorphism of algebras.

Studying the equivalence between action of {(1− z)l}l∈Z over {Pw(z)}w∈Y ∗

and that of {Nk}k∈Z over {Hw(N)}w∈Y ∗ (see [17]), we have

Theorem 3. ([39]) The Hadamard C-algebra of {Pw}w∈Y ∗ can be identified with
that of {Pl}l∈LynY . In the same way, the algebra of harmonic sums {Hw}w∈Y ∗

with polynomial coefficients can be identified with that of {Hl}l∈LynY .
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2.3.2 Results à la Abel for noncommutative generating and global
regularizations

Let L and H be the noncommutative generating series of respectively {Liw}w∈X∗

and {Hw(N)}w∈Y ∗ [35, 37]:

L =
∑

w∈X∗

Liw w and H =
∑

w∈Y ∗

Hw w. (71)

Hence, L and H are image, by the tensor products Li⊗Id and H ⊗ Id, of the
diagonal series DX and DY respectively. We get

Theorem 4 (Factorization of L and of H, [35, 32, 40]). Let

Lreg =

ց
∏

l∈LynX−X

eLiSl
Pl and Hreg(N) =

ց
∏

l∈LynY −{y1}

eHΣ̌l
(N) Σl .

Then L(z) = e−x1 log(1−z)Lreg(z)e
x0 log z and H(N) = eHy1(N) y1Hreg(N).

For any l ∈ LynX−X (resp. LynY −{y1}), the polynomial Sl (resp. Σl) is
a finite combination of words in x0X

∗x1 (resp. Y ∗ − y1Y
∗). Then we can state

the following

Proposition 4 ([40]). Let Z⊔⊔ := Lreg(1) and Z := Hreg(∞).
Then Z⊔⊔ and Z are group-like, for ∆⊔⊔ and ∆ respectively.

Proposition 5 (Successive differentiations of L, [38]). Let ∂z = d/dz and let
θ0 = zd/dz. For any n ∈ N, we have

∂n
z L(z) = Dn(z)L(z) and θn0L(z) = En(z)L(z),

where18

• the polynomials Dn(z) and En(z) in C〈X〉 are defined as follows

Dn(z) =
∑

wgt(r)=n

∑

w∈Xdeg(r)

deg(r)
∏

i=1

(∑i
j=1 ri + j − 1

ri

)

τr(w),

En(z) =
∑

wgt(r)=n

∑

w∈Xdeg(r)

deg(r)
∏

i=1

(∑i
j=1 ri + j − 1

ri

)

ρr(w),

• for any w = xi1 · · ·xik and r = (r1, . . . , rk) of degree deg(r) = k and of
weight wgt(r) = k+r1+· · ·+rk, the polynomials τr(w) = τr1(xi1) · · · τrk(xik)
and ρr(w) = ρr1(xi1 ) · · · ρrk(xik ) are defined respectively by, for any r ∈ N,

τr(x0) = ∂r
z

x0

z
=
−r!x0

(−z)r+1
and τr(x1) = ∂r

z

x1

1− z
=

r!x1

(1− z)r+1
,

ρr(x0) = θr0
x0

z
= 0 and ρr(x1) = θr0

zx1

1− z
= Li−r(z)x1.

18Consider also θ1 = (1−z)d/dz. But θ0+θ1 = ∂z and then θn1 L(z) = [Dn(z)−En(z)]L(z).
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Example 9 (Coefficients of θn0L). Since, for any w ∈ X+, one has

θ0 Liw =

{

Liu if w = x0u,
Li0 Liu if w = x1u.

then one obtains, for example

• For any n ≥ 1 and for any w ∈ X∗, one has

θn0 Lixn
0 w

(z) = Liw(z).

In particular,

θn0 Lixn
0
(z) = 1.

• Letting E(n,m) denote the Eulerian numbers :

E(n,m) =
m
∑

j=0

(−1)j
(

n+ 1

j

)

(m+ 1− j)n,

one has, for any n ≥ 0,

θn+1
0 Lix1(z) =

z

(1− z)n+1

n
∑

m=0

E(n,m)xm =: Li−n(z).

In particular,

θ0 Lix1(z) =
z

(1− z)
= Li0(z).

• For any k ∈ N∗, one has

θk0 Lix2
1
(z) =

k−1
∑

j=0

(

k − 1

j

)

Li−j(z) Li2+j−k(z).

For example

θ0 Lix2
1
(z) = Li0(z) Li1(z),

θ20 Lix2
1
(z) = Li−1(z) Li1(z) + Li20(z),

θ30 Lix2
1
(z) = Li−2(z) Li1(z) + 3Li−1(z) Li0(z),

θ40 Lix2
1
(z) = Li−3(z) Li1(z) + 4Li−2(z) Li0(z) + 3Li2−1(z),

...
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The noncommutative generating series of polylogarithms [35, 32] satisfies
the differential equation

dL = (x0ω0 + x1ω1)L (72)

with boundary condition

L(z)
z̃→0

exp(x0 log z) and L(z)
z̃→1

exp(−x1 log(1− z)) Z⊔⊔ . (73)

This implies L is the exponential of a Lie series [35, 32]. Hence [38],

log L(z) =
∑

k≥1

(−1)k−1

k

∑

u1,...,uk∈X+

Liu1 ⊔⊔ ...⊔⊔ uk
(z) u1 . . . uk (74)

=
∑

w∈X∗

Liw(z) π1(w). (75)

Proposition 6 ([38]). Let G(z), H(z) be exponential solutions of (72). Then
there exists a constant Lie series C such that G(z) = H(z)eC.

Theorem 5 ([38]). Let GalC(DE) be the differential Galois group associated
to the Drinfel’d equation. Then GalC(DE) = {eC | C ∈ LieC〈〈X〉〉} and it
constains the monodromy group defined as follows

M0L = Le2iπm0 and M1L = LZ−1
⊔⊔

e−2iπx1Z⊔⊔ = Le2iπm1,

where m0 = x0 and m1 =

ց
∏

l∈LynX−X

e−ζ(Sl) adPl (−x1).

Let us call LIC the smallest algebra containing C, closed under derivation
and under integration with respect to ω0 and ω1. It is the C-module generated
by the polylogarithms {Liw}w∈X∗ .

Let Λ(z) := πY L(z). Then [39]

Λ(z)
z̃→1

exp

(

y1 log
1

1− z

)

πY Z⊔⊔ . (76)

Since the coefficient of zN in the ordinary Taylor expansion of Pyk
1
(z) is

Hyk
1
(N) then let us put [39]

Mono(z) := e−(x1+1) log(1−z) =
∑

k≥0

Pyk
1
(z) yk1 (77)

Const :=
∑

k≥0

Hyk
1
yk1 = exp

(

−
∑

k≥1

Hyk

(−y1)
k

k

)

. (78)

We put also19 [39]

B(y1) := exp

(

∑

k≥1

ζ(yk)
(−y1)k

k

)

and B′(y1) := exp(γy1)B(y1). (79)

19Here, the coefficient 〈B(y1) | yk1 〉 corresponds to the Euler–Mac Laurin constant associated
to 〈Const(N) | yk1 〉, i.e. the finite party of its asymptotic expansion in the scale of comparison

{na logb(n)}a∈Z,b∈N.
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As a consequence of (76)-(78), one gets

Theorem 6 ([39]).

πY P(z) z̃→1
Mono(z)πY Z⊔⊔ and H(N)

Ñ→∞
Const(N)πY Z⊔⊔ .

Or equivalently,

lim
z→1

exp

(

y1 log
1

1− z

)

Λ(z) = lim
N→∞

exp

(

∑

k≥1

Hyk
(N)

(−y1)k

k

)

H(N) = πY Z⊔⊔ .

Theorem 7 ([17]). For any g ∈ C{Pw}w∈Y ∗ , there exist algorithmically com-
putable coefficients cj ∈ C, αj ∈ Z, βj ∈ N such that

g(z) ∼
+∞
∑

j=0

cj(1− z)αj logβj (1− z) for z → 1,

and the coefficients bi ∈ C, ηi ∈ Z, κi ∈ N such that

〈g(z) | zn〉 ∼
+∞
∑

i=0

bin
ηi logκi(n) for n→∞.

Theorem 7 means also that the {Pw}w∈Y ∗ admit a full singular expansion,
at z = 1, and then their ordinary Taylor coefficients, {Hw(N)}w∈Y ∗ admit a
full asymptotic expansion, for N → +∞. More precisely,

Corollary 1. For any w ∈ Y ∗ and for any k ≥ 1, we have

Hw(N) =

|w|
∑

i=1

αi log
i(N) + γw +

k
∑

j=1

|w|−1
∑

i=0

βi,j
1

N j
logi(N) + O

(

1

Nk

)

.

where the coefficients γw, αi and βi,j belong to the Q[γ]-algebra generated by
convergent polyzetas.

More generally, by Theorem 5, we get

Proposition 7. For any commutative Q-algebra A and for any Lie series C ∈
LieA〈X〉, let

L = LeC , Λ = πY L, P(z) =
Λ(z)

1− z
.

Then

1. Z⊔⊔ = Z⊔⊔ e
C is group-like, for the co-product ∆⊔⊔ ,

2. L(z)
z̃→1

exp(−x1 log(1− z)) Z⊔⊔ ,

3. P(z)
z̃→1

Mono(z)πY Z⊔⊔ ,
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4. H(N)
Ñ→∞

Const(N)πY Z⊔⊔ ,

where, for any w ∈ Y ∗ and N ≥ 0, one defines the coefficient 〈H(N) | w〉 of w
in the power series H(N) as the coefficient 〈Pw(z) | zN 〉 of zN in the ordinary
Taylor expansion of the polylogarithmic function Pw(z).

By Proposition 7, we get successively

Proposition 8 ([33]). Let ζ
⊔⊔

and ζ be the characters of respectively (A〈X〉, ⊔⊔)
and (A〈Y 〉, ) satisfying

ζ
⊔⊔
(x0) = ζ

⊔⊔
(x1) = 0 and ζ (y1) = 0.

Then

∑

w∈Y ∗

ζ
⊔⊔
(w) w = Z⊔⊔ =

ց
∏

l∈LynX−X

exp(ζ(Sl) Pl),

∑

w∈Y ∗

ζ (w) w = Z =

ց
∏

l∈LynY−{y1}

exp(ζ(Σl) Πl).

Proposition 9. Let {γw}w∈Y ∗ be the Euler–Mac Laurin constants associated
to {Hw(N)}w∈Y ∗ . Let Zγ be its noncommutative generating series. Then,

1. The following map realizes a character :

γ• : (A〈Y 〉, ) −→ (R, .),
w 7−→ 〈γ• | w〉 = γw.

2. The noncommutative power series Zγ is group-like, for ∆ .

3. There exists a group-like element Z , for the co-product ∆ , such that

Zγ =
∑

w∈Y ∗

γw w = exp(γy1)Z .

By Theorem 6, Propositions 7 and 9, we also get

Proposition 10. For any C ∈ LieA〈X〉 such that Z⊔⊔ = Z⊔⊔ e
C . Then

Zγ = B(y1)πY Z⊔⊔ , or equivalently by cancellation, Z = B′(y1)πY Z⊔⊔ ,

where B(y1) and B′(y1) are given in (79).

By Propositions 7, the noncommutative generationg series Z⊔⊔ and Z are
group-like, for the co-product ∆⊔⊔ and ∆ respectively, and we also have

Z⊔⊔ =
∑

l∈LynX−X

ζ(Sl) Pl +
∑

w/∈LynX−X

ζ
⊔⊔
(Sw) Pw, (80)

Z =
∑

l∈LynY −{y1}

ζ(Σl) Πl +
∑

w/∈LynY −{y1}

ζ (Σw) Πw. (81)
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Hence, by Proposition 10, we deduce in particular,

∑

l∈LynY −{y1}

ζ(Σl) Πl + . . . = B′(y1)
∑

l∈LynX−X

ζ(Sl) πY Pl + . . . . (82)

By Proposition 1, the elements of the family {πY Pl}l∈LynX are decomposable in
the linear basis {Πw}w∈Y ∗ of U(Prim(H )). Thus, by identification of locale
coordinates, i.e. the coefficients of {Πl}l∈LynY−{y1}, we get the homogenous
polynomial relations among convergent polyzetas [40].

3 Polysystem and differential realization

3.1 Polysystem and convergence criterion

3.1.1 Serial estimates from above

Here, generalizing a little, K is supposed a C-algebra and a complete normed
vector space equipped with a norm denoted by ‖.‖.

For any n ∈ N, X≥n denotes the set of words over X of length greater than
or equal to n. The set of formal power series (resp. polynomials) on X , is
denoted by K〈〈X〉〉 (resp. K〈X〉).

Definition 5. ([25, 39]) Let ξ, χ be real positive functions over X∗. Let S ∈
K〈〈X〉〉.

(1) S will be said ξ−exponentially bounded from above if it verifies

∃K ∈ R+, ∃n ∈ N, ∀w ∈ X≥n, ‖〈S | w〉‖ ≤ K
ξ(w)

|w |!
.

We denote by Kξ−em〈〈X〉〉 the set of formal power series in K〈〈X〉〉 which
are ξ−exponentially bounded from above.

(2) S verifies the χ−growth condition if it satisfies

∃K ∈ R+, ∃n ∈ N, ∀w ∈ X≥n, ‖〈S | w〉‖ ≤ Kχ(w) |w |!.

We denote by Kχ−gc〈〈X〉〉 the set of formal power series in K〈〈X〉〉 verifying
the χ−growth condition.

Lemma 7. We have

R =
∑

w∈X∗

|w |! w ⇒ 〈R⊔⊔2 | w〉 =
∑

u,v∈X∗

supp(u⊔⊔ v)∋w

|u |! |v |! ≤ 2|w| |w |!.
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Proof. One has

∑

u,v∈X∗

supp(u⊔⊔ v)∋w

|u |! |v |! =

|w|
∑

k=0

∑

|u|=k,|v|=|w|−k

supp(u⊔⊔ v)∋w

k!(|w | −k)!

=

|w|
∑

k=0

(

|w |

k

)

k!(|w | −k)!

=

|w|
∑

k=0

|w |! = (1+ |w |) |w |!.

By induction on |w|, one has 1 + |w| ≤ 2|w|. The expected result follows.

Proposition 11. Let S1 and S2 verify the growth condition. Then S1+S2 and
S1 ⊔⊔ S2 also verify the growth condition.

Proof. The proof for S1 + S2 is immediate.
Next, since ‖〈Si | w〉‖ ≤ Kiχi(w) |w |!, for i = 1 or 2 and for w ∈ X∗, then20

〈S1 ⊔⊔ S2 | w〉 =
∑

supp(u ⊔⊔ v)∋w

〈S1 | u〉〈S2 | v〉,

⇒ ‖〈S1 ⊔⊔ S2 | w〉‖ ≤ K1K2

∑

u,v∈X∗

supp(u ⊔⊔ v)∋w

(χ1(u) |u |!)(χ2(v) |v |!).

Let K = K1K2 and let χ be a real positive function over X∗ such that

∀w ∈ X∗, χ(w) = max{χ1(u)χ2(v) | u, v ∈ X∗ and supp(u ⊔⊔ v) ∋ w}.

With the notations in Lemma 7, we get

‖〈S1 ⊔⊔ S2 | w〉‖ ≤ Kχ(w)〈R⊔⊔2 | w〉.

Hence, S1 ⊔⊔ S2 verifies the χ′-growth condition with χ′(w) = 2|w|χ(w).

Definition 6. ([25, 39]) Let ξ be a real positive function defined over X∗, S
will be said ξ-exponentially continuous if it is continuous over Kξ−em〈〈X〉〉. The
set of formal power series which are ξ-exponentially continuous is denoted by
Kξ−ec〈〈X〉〉.

Lemma 8. [25, 39] For any real positive function ξ defined over X∗, we have
K〈X〉 ⊂ Kξ−ec〈〈X〉〉. Otherwise, for ξ = 0, we get K〈X〉 = K0−ec〈〈X〉〉. Hence,
any polynomial is 0−exponentially continuous.

Proposition 12. ([25, 39]) Let ξ, χ be real positive functions over X∗ and let
P ∈ K〈X〉.

20〈S1 ⊔⊔ S2 | w〉 is the coefficient of the word w in the power series S1 ⊔⊔ S2.
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(1) Let S ∈ Kξ−em〈〈X〉〉. The right residual of S by P belongs to Kξ−em〈〈X〉〉.

(2) Let R ∈ Kχ−gc〈〈X〉〉. The concatenation SR belongs to Kχ−gc〈〈X〉〉.

Proof. (1) Since S ∈ Kξ−em〈〈X〉〉 then

∃K ∈ R+, ∃n ∈ N, ∀w ∈ X≥n, ‖〈S | w〉‖ ≤ K
ξ(w)

|w |!
.

If u ∈ supp(P ) := {w ∈ X∗ | 〈P | w〉 6= 0} then, for any w ∈ X∗, one has
〈S ⊲ u | w〉 = 〈S | uw〉 and S ⊲ u belongs to Kξ−em〈〈X〉〉:

∃K ∈ R+, ∃n ∈ N, ∀w ∈ X≥n, ‖〈S ⊲ u | w〉‖ ≤ [Kξ(u)]
ξ(w)

|w |!
.

It follows that S ⊲ P is Kξ−em〈〈X〉〉 by taking K1 = Kmaxu∈supp(P ) ξ(u).

(2) Since R ∈ Kχ−gc〈〈X〉〉 then

∃K ∈ R+, ∃n ∈ N, ∀w ∈ X≥n, ‖〈S | w〉‖ ≤ Kχ(w) |w |!.

Let v ∈ supp(P ) such that v 6= ǫ. Since, for any w ∈ X∗, Rv belongs to
Kχ−gc〈〈X〉〉 and one has 〈Rv | w〉 = 〈R | v ⊳ w〉:

∃K ∈ R+, ∃n ∈ N, ∀w ∈ X≥n, ‖〈R | v ⊳ w〉‖ ≤ Kχ(v ⊳ w)(|w | − |v |)!

≤ K |w |
χ(w)

χ(v)
.

Note if v ⊳ w = 0 then 〈Rv | w〉 = 0 and the previous conclusion holds. It
follows that RP is Kχ−gc〈〈X〉〉 by taking K2 = Kminv∈supp(P ) χ(v)

−1.

Proposition 13. ([25, 39]) Two real positive morphisms over X∗, ξ and χ are
assumed to verify the condition

∑

x∈X

χ(x)ξ(x) < 1.

Then for any F ∈ Kχ−gc〈〈X〉〉, F is continuous over Kξ−em〈〈X〉〉.

Proof. If ξ, χ verify the upper bound condition then the following power series

∑

w∈X∗

χ(w)ξ(w) =

(

∑

x∈X

χ(x)ξ(x)

)∗

is well defined. If F ∈ Kχ−gc〈〈X〉〉 and C ∈ Kξ−em〈〈X〉〉 then there existKi ∈ R+

and ni ∈ N such that for any w ∈ X≥ni , i = 1, 2, one has

‖〈F | w〉‖ ≤ K1χ(w) |w |! and ‖〈C | w〉‖ ≤ K2
ξ(w)

|w |!
.
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Hence,

∀w ∈ X∗, |w |≥ max{n1, n2}, ‖〈F |w〉〈C|w〉‖ ≤ K1K2χ(w)ξ(w),

⇒
∑

w∈X∗

‖〈F |w〉〈C|w〉‖ ≤ K1K2

∑

w∈X∗

χ(w)ξ(w) = K1K2

(

∑

x∈X

χ(x)ξ(x)

)∗

.

3.1.2 Upper bounds à la Cauchy

Let q1, . . . , qn be commutative indeterminates over C. The algebra of formal
power series (resp. polynomials) over {q1, . . . , qn} with coefficients in C is de-
noted by C[[q1, . . . , qn]] (resp. C[q1, . . . , qn]).

Definition 7. ([25, 39]) Let

f =
∑

i1,...,in≥0

fi1,...,inq
i1
1 . . . qinn ∈ C[[q1, . . . , qn]].

We set

E(f) := {ρ ∈ Rn
+ : ∃Cf ∈ R+ s.t. ∀i1, . . . , in ≥ 0, |fi1,...,in | ρ

i1
1 . . . ρinn ≤ Cf}.

Ĕ(f) : the interior of E(f) in Rn.
CV(f) := {q ∈ Cn : (|q1 |, . . . , |qn |) ∈ Ĕ(f)} : the convergence domain of f.

The power series f is said to be convergent if CV(f) 6= ∅. Let U be an open
domain in Cn and let q ∈ Cn. The power series f is said to be convergent on q
(resp. over U) if q ∈ CV(f) (resp. U ⊂ CV(f)). We set

Ccv[[q1, . . . , qn]] = {f ∈ C[[q1, . . . , qn]] : CV(f) 6= ∅}.

Let q ∈ CV(f). There exist the constants Cf , ρ and ρ̄ such that

|q1 |< ρ̄ < ρ, . . . , |qn |< ρ̄ < ρ and |fi1,...,in | ρ
i1
1 . . . ρinn ≤ Cf ,

for i1, . . . , in ≥ 0. The convergence modulus of f at q is (Cf , ρ, ρ̄).

Suppose that CV(f) 6= ∅ and let q ∈ CV(f). If (Cf , ρ, ρ̄) is a convergence
modulus of f at q then | fi1,...,inq

i1
1 . . . qinn |≤ Cf (ρ̄1/ρ1)

i1 . . . (ρ̄1/ρ1)
in . Hence,

at q, the power series f is majored termwise by

Cf

m
∏

k=0

(

1−
ρ̄k
ρk

)−1

. (83)

Hence, f is uniformly absolutely convergent in {q ∈ Cn :|q1 |< ρ̄, . . . , |qn |< ρ̄}
which is an open domain in Cn. Thus, CV(f) is an open domain in Cn. Since
the partial derivation Dj1

1 . . . Djn
n f is estimated by

‖Dj1
1 . . .Djn

n f‖ ≤ Cf
∂j1+...+jn

∂ρ̄j1+...+jn

m
∏

k=0

(

1−
ρ̄k
ρk

)−1

. (84)
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Proposition 14. ([25]) We have CV(f) ⊂ CV(Dj1
1 . . . Djn

n f).

Let f ∈ Ccv[[q1, . . . , qn]]. Let {Ai}i=0,1 be a polysystem defined as follows

Ai(q) =

n
∑

j=1

Aj
i (q)

∂

∂qj
, (85)

where for any j = 1, . . . , n, Aj
i (q) ∈ Ccv[[q1, . . . , qn]].

Lemma 9. ([22]) For i = 0, 1 and j = 1, . . . , n, one has Ai ◦ qj = Aj
i (q). Thus,

∀i = 0, 1, Ai(q) =
n
∑

j=1

(Ai ◦ qj)
∂

∂qj
.

Let (ρ, ρ̄, Cf ), {(ρ, ρ̄, Ci)}i=0,1 be respectively the convergence modulus at

q ∈ CV(f)
⋂

i=0,1
j=1,...,n

CV(Aj
i ) (86)

of f and {Aj
i}j=1,...,n. Let us consider the following monoid morphisms

A(ǫ) = identity and C(ǫ) = 1, (87)

∀w = vxi, xi ∈ X, v ∈ X∗, A(w) = A(v)Ai and C(w) = C(v)Ci.(88)

Lemma 10. ([20]) For any word w, A(w) is continuous over Ccv[[q1, . . . , qn]]
and, for any f, g ∈ Ccv[[q1, . . . , qn]], one has

A(w) ◦ (fg) =
∑

u,v∈X∗

〈u ⊔⊔ v | w〉(A(u) ◦ f)(A(v) ◦ g).

These notations are extended, by linearity, to K〈X〉 and we will denote
A(w) ◦ f|q the evaluation of A(w) ◦ f at q.

Definition 8. ([20]) Let f ∈ Ccv[[q1, . . . , qn]]. The generating series of the
polysystem {Ai}i=0,1 and of the observation f is given by

σf :=
∑

w∈X∗

A(w) ◦ f w ∈ Ccv[[q1, . . . , qn]]〈〈X〉〉.

Then the following generating series is called Fliess generating series of the
polysystem {Ai}i=0,1 and of the observation f at q:

σf|q :=
∑

w∈X∗

A(w) ◦ f|q w ∈ C〈〈X〉〉.

Lemma 11. ([20]) Let {Ai}i=0,1 be a polysystem. Then, the map

σ : (Ccv[[q1, . . . , qn]], .) −→ (Ccv[[q1, . . . , qn]]〈〈X〉〉, ⊔⊔),

is an algebra morphism, i.e. for f, g ∈ Ccv[[q1, . . . , qn]] and µ, ν ∈ C, one has:

σ(νf + µh) = νσf + µσg and σ(fg) = σf ⊔⊔ σg.
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Lemma 12. ([22]) Let {Ai}i=0,1 be a polysystem and f ∈ Ccv[[q1, . . . , qn]]. Then

∀xi ∈ X, σ(Ai ◦ f) = xi ⊳ σf ∈ Ccv[[q1, . . . , qn]]〈〈X〉〉

∀w ∈ X∗, σ(A(w) ◦ f) = w ⊳ σf ∈ Ccv[[q1, . . . , qn]]〈〈X〉〉.

Lemma 13. ([25]) Let τ = min1≤k≤n ρk and r = max1≤k≤n ρ̄k/ρk. We have

‖A(w) ◦ f‖ ≤ Cf
(n+ 1)

(1− r)n
C(w) |w |!
(n+|w|−1

|w|

)

[

n

τ(1 − r)n+1

]|w|

≤ Cf
(n+ 1)

(1− r)n
C(w)

[

n

τ(1 − r)n+1

]|w|

|w |!.

Theorem 8. ([25]) Let K = Cf (n+ 1)(1 − r)−n and let χ be the real positive
function defined over X∗ by

∀i = 0, 1, χ(xi) =
Cin

τ(1 − r)(n+1)
.

Then the generating series σf of the polysystem {Ai}i=0,1 and of the observation
f satisfies the χ−growth condition.

It is the same for the Fliess generating series σf|q of the polysystem {Ai}i=0,1

and of the observation f at q.

3.2 Polysystem and nonlinear differential equation

3.2.1 Nonlinear differential equation (with three singularities)

Let us consider the singular inputs21 u0(z) := z−1 and u1(z) := (1 − z)−1, and
the following nonlinear dynamical system







y(z) = f(q(z)),
q̇(z) = A0(q) u0(z) + A1(q) u1(z),
q(z0) = q0,

(89)

where the state q = (q1, . . . , qn) belongs to the complex analytic manifold of
dimension n, q0 is the initial state, the observation f belongs to Ccv[[q1, . . . , qn]]
and {Ai}i=0,1 is the polysystem defined on (85).

Definition 9. ([27]) The following power series is called transport operator of
the polysystem {Ai}i=0,1 and of the observation f

T :=
∑

w∈X∗

αz
z0(w) A(w).

21These singular inputs are not included in the studies of Fliess motivated, in particular,
by the renormalization of y(z) at +∞ [20, 22].
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By the factorization of the monoid by Lyndon words, we have [27]

T = (αz
z0 ⊗A)

(

∑

w∈X∗

w ⊗ w

)

=
∏

l∈LynX

exp[αz
z0(Sl) A(Pl)]. (90)

The Chen generating series along the path z0  z, associated to ω0, ω1 is

Sz0 z :=
∑

w∈X∗

〈S | w〉 w with 〈S | w〉 = αz
z0(w) (91)

which solves the differential equation (72) with the initial condition Sz0 z0 = 1.
Thus, Sz0 z and L(z)L(z0)

−1 satisfy the same differential equation taking the
same value at z0 and Sz0 z = L(z)L(z0)

−1.
Any Chen generating series Sz0 z is group like [46] and depends only on the

homotopy class of z0  z [9]. The product of Sz1 z2 and Sz0 z1 is Sz0 z2 =
Sz1 z2Sz0 z1 . Let ε ∈]0, 1[ and zi = ε exp(iβi), for i = 0 or 1. We set β =
β1 − β0. Let Γ0(ε, β0) (resp. Γ1(ε, β1)) be the path turning around 0 (resp. 1)
in the positive direction from z0 to z1. By induction on the length of w, one has

| 〈SΓi(ε,β) | w〉 | = (2ε)|w|xi
β|w|

|w |!
, (92)

where |w | denotes the length of w and |w |xi
denotes the number of occurrences

of letter xi in w, for i = 0 or 1. For ε tends to 0+, these estimations yield
SΓi(ε,β) = eiβxi + o(ε). In particular, if Γ0(ε) (resp. Γ1(ε)) is a circular path of
radius ε turning around 0 (resp. 1) in the positive direction, starting at z = ε
(resp. 1− ε), then, by the noncommutative residue theorem [35, 32], we get

SΓ0(ε) = e2iπx0 + o(ε) and SΓ1(ε) = e−2iπx1 + o(ε). (93)

Finally, the asymptotic behaviors of L on (73) give [32, 35]

Sε 1−ε ε̃→0+
e−x1 log εZ⊔⊔ e−x0 log ε. (94)

In other terms, Z⊔⊔ is the regularized Chen generating series Sε 1−ε of diff-
ferential forms ω0 and ω1: Z⊔⊔ is the noncommutative generating series of the fi-
nite parts of the coefficients of the Chen generating series ex1 log ε Sε 1−ε e

x0 log ε,
i.e. the concatenation of ex0 log ε and then Sε 1−ε and finally, ex1 log ε.

3.2.2 Asymptotic behavior of the successive differentiation of solu-
tion via extended Fliess fundamental formula

The Fliess’ fundamental formula [20] can be then extended as follows

Theorem 9. ([39]) We have

y(z) = T ◦ f|q0 =
∑

w∈X∗

〈Sz0 z | w〉〈A(w) ◦ f|q0 | w〉 = 〈σf|q0 || Sz0 z〉.
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By the factorization of the Lie exponential series L, the expansions of the
output y of nonlinear dynamical system with singular inputs follow

Corollary 2.

y(z) =
∑

w∈X∗

gw(z) A(w) ◦ f|q0

=
∑

k≥0

∑

n1,...,nk≥0

gxn1
0 x1...x

nk
0 x1

(z) adn1

A0
A1 . . . ad

nk

A0
A1e

log zA0 ◦ f|q0

=
∏

l∈LynX

exp

(

gSl
(z) A(Pl) ◦ f|q0

)

= exp

(

∑

w∈X∗

gw(z) A(π1(w)) ◦ f|q0

)

,

where, for any word w in X∗, gw belongs to the polylogarithm algebra.

Since Sz0 z = L(z)L(z0)
−1 and since σf|q0 and L(z0)

−1 are invariant by
∂z = d/dz and by θ0 = zd/dz then we obtain the n-order differentiation of y :

∂n
z y(z) = 〈σf|q0 || ∂

nSz0 z〉 = 〈σf|q0 || ∂
n
z L(z)L(z0)

−1〉 (95)

and the n-order differentiation of y with respect to θ0 :

θn0 y(z) = 〈σf|q0 || θ
n
0Sz0 z〉 = 〈σf|q0 || θ

n
0L(z)L(z0)

−1〉. (96)

With the notations of Proposition 5, we get respectively

∂n
z y(z) = 〈σf|q0 || [Dn(z)L(z)]L(z0)

−1〉 = 〈σf|q0 ⊲ Dn(z) || L(z)L(z0)
−1〉,(97)

θn0 y(z) = 〈σf|q0 || [En(z)L(z)]L(z0)
−1〉 = 〈σf|q0 ⊲ En(z) || L(z)L(z0)−1〉.(98)

For z0 = ε→ 0+, the asymptotic behavior and the renormalization at z = 1
of ∂n

z y(z) and θn0 y(z) (or the asymptotic expansion and the renormalization of
its Taylor coefficients at +∞) are deduced from (94) and extend a little bit the
results of [39] as follows

Corollary 3. For any integer n, we have respectively22

22We overget, by Note 18, the n-order differentiation of y w.r.t. θ1 :

θn1 y(z) = 〈σf|q0
|| θn1 Sz0 z〉 = 〈σf|q0

|| θn1 L(z)L(z0)
−1〉.

Hence,

θn1 y(z) = 〈σf|q0
|| [Dn(z)−En(z)]L(z)L(z0)

−1〉 = 〈σf|q0
⊲ [Dn(z) −En(z)] || L(z)L(z0)

−1〉

and then

θn1 y(1)
ε̃→0+

∑

w∈X∗

〈A(w) ◦ f|q0
| w〉〈[Dn(1− ε)− En(1 − ε)]e−x1 log ε Z⊔⊔ e−x0 log ε | w〉.

The actions of θ0 = u0(z)−1d/dz and θ1 = u1(z)−1d/dz over y(z) are equivalent to those of
the residuals respectively by x0 and x1 over σf|q0

and correspond to functional differentiations

[21] while ∂z = d/dz is the ordinary differentiation and is equivalent to the residual by x0+x1.
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∂n
z y(1) ε̃→0+

∑

w∈X∗

〈A(w) ◦ f|q0 | w〉〈Dn(1− ε) e−x1 log ε Z⊔⊔ e−x0 log ε | w〉,

θn0 y(1) ε̃→0+

∑

w∈X∗

〈A(w) ◦ f|q0 | w〉〈En(1 − ε) e−x1 log ε Z⊔⊔ e−x0 log ε | w〉.

Corollary 4. The n-order differentiation of the output y of the system (89) is
a C-combination of the elements g belonging to the polylogarithm algebra.

Moreover, if the ordinary Taylor expansions of ∂n
z y and θn0 y exist :

∂n
z y(z) =

∑

k≥0

dkz
n and θn0 y(z) =

∑

k≥0

tkz
k

then the coefficients of these expansions belong to the algebra of harmonic sums
and there exist algorithmically computable coefficients ai, a

′
i ∈ Z, bi, b′i ∈ N and

ci, c
′
i ∈ Z[γ] such that

dk k̃→∞

∑

i≥0

cik
ai logbi k and tk k̃→∞

∑

i≥0

c′ik
a′
i logb

′
i k.

3.3 Differential realization

3.3.1 Differential realization

Definition 10. The Lie rank of a formal power series S ∈ K〈〈X〉〉 is the di-
mension of the vector space generated by

{S ⊲Π | Π ∈ LieK〈X〉}, or respectively by {Π ⊳ S | Π ∈ LieK〈X〉}.

Example 10. Let P = x1x0x1 + x0x1x0x1 be a polynomial of degree 4 over
X = {x0, x1}. A basis up to degree 4 of the Lie algebra LieK〈X〉 is following
(c.f. Example 4)

{Px0 , Px1 , Px0x1 , Px2
0x1

, Px0x2
1
, Px3

0x1
, Px0x3

1
, Px2

0x
2
1
}.

The Lie-Hankel matrix of P is following

1X∗ x1 x0x1 x1x0x1

Px0 0 0 0 1
Px1 0 0 1 0
Px0x1 0 −1 1 0
Px2

0x1
0 −2 0 0

Px0x2
1
−2 0 0 0

Px2
0x

2
1
−2 0 0 0

and its Lie-Hankel rank of P is then 4.
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Definition 11. Let S ∈ K〈〈X〉〉 and let us put

Ann(S) := {Π ∈ LieK〈X〉 | S ⊲Π = 0},

Ann⊥(S) := {Q ∈ (K〈〈X〉〉, ⊔⊔) | Q ⊲Ann(S) = 0}.

It is immediate that Ann⊥(S) ∋ S and it follows that (see [22, 48]).

Lemma 14. Let S ∈ K〈〈X〉〉. If S is of finite Lie rank, d, then the dimension
of Ann⊥(S) equals d.

By Lemma 3, the residuals are derivations for shuffle product. Then,

Lemma 15. Let S ∈ K〈〈X〉〉. Then:

(1) For any Q1 and Q2 ∈ Ann⊥(S), one has Q1 ⊔⊔ Q2 ∈ Ann⊥(S).

(2) For any P ∈ K〈X〉 and Q1 ∈ Ann⊥(S), one has P ⊳ Q1 ∈ Ann⊥(S).

Definition 12. ([22]) The formal power series S ∈ K〈〈X〉〉 is differentially
produced if there exist

• an integer d,

• a power series f ∈ K[[q̄1, . . . , q̄d]],

• a homomorphism A from X∗ maps to the algebra of differential operators
generated by

A(xi) =

d
∑

j=1

Aj
i (q̄1, . . . , q̄d)

∂

∂q̄j
,

where, for j = 1, . . . , d, Aj
i (q̄1, . . . , q̄d) belongs to K[[q̄1, . . . , q̄d]] such that

∀w ∈ X∗, 〈S | w〉 = A(w) ◦ f|0 .

The couple (A, f) is called the differential representation of S of dimension d.

Proposition 15. ([48]) Let S ∈ K〈〈X〉〉. If S is differentially produced then it
verifies the growth condition and its Lie rank is finite.

Proof. Let (A, f) be a differential representation of S of dimension d. Then, by
the notations of Definition 8, we get

σf|0 = S =
∑

w∈X∗

(A(w) ◦ f)|0 w.

For any j = 1, . . . , d, we put

Tj =
∑

w∈X∗

∂(A(w) ◦ f)

∂q̄j
w.
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Firstly, by Theorem 8, the generating series σf verifies the growth condition.
Secondly, for any Π ∈ LieK〈X〉 and for any w ∈ X∗, one has

〈σf ⊲Π | w〉 = 〈σf | Πw〉 = A(Πw) ◦ f = A(Π) ◦ (A(w) ◦ f).

Since A(Π) is a derivation over K[[q̄1, . . . , q̄d]]:

A(Π) =
d

∑

j=1

(A(Π) ◦ q̄j)
∂

∂q̄j
,

⇒ A(Π) ◦ (A(w) ◦ f) =

d
∑

j=1

(A(Π) ◦ q̄j)
∂(A(w) ◦ f)

∂q̄j

then we deduce that

∀w ∈ X∗, 〈σf ⊲Π | w〉 =

d
∑

j=1

(A(Π) ◦ q̄j)〈Tj | w〉,

⇐⇒ σf ⊲Π =

d
∑

j=1

(A(Π) ◦ q̄j) Tj.

That means σf ⊲ Π is K-linear combination of {Tj}j=1,...,d and the dimension
of the vector space span{σf ⊲Π | Π ∈ LieK〈X〉} is less than or equal to d.

3.3.2 Fliess’ local realization theorem

Proposition 16. ([48]) Let S ∈ K〈〈X〉〉 be such that its Lie rank equals d. Then
there exists a basis S1, . . . , Sd ∈ K〈〈X〉〉 of (Ann⊥(S), ⊔⊔) ∼= (K[[S1, . . . , Sd]], ⊔⊔)
such that the Si’s are proper and for any R ∈ Ann⊥(S), one has

R =
∑

i1,...,id≥0

ri1,...,in
i1! . . . id!

S⊔⊔ i1
1 ⊔⊔ . . . ⊔⊔ S⊔⊔ id

d ,

where the coefficients {ri1,...,id}i1,...,id≥0 belong to K and r0,...,0 = 〈R | 1X∗〉.

Proof. By Lemma 14, such a basis exists. More precisely, since the Lie rank
of S is d then there exist P1, . . . , Pd ∈ LieK〈X〉 such that S ⊲ P1, . . . , S ⊲ Pd ∈
(K〈〈X〉〉, ⊔⊔) are K-linearly independent. By duality, there exist S1, . . . , Sd ∈
(K〈〈X〉〉, ⊔⊔) such that

∀i, j = 1, . . . , d, 〈Si | Pj〉 = δi,j , and R =

d
∏

i=1

exp(Si Pi).

Expending this product, one obtains, via PBW theorem, the expected expression
for the coefficients {ri1,...,id = 〈R | P i1

1 . . . P id
d 〉}i1,...,id≥0. Hence, (Ann

⊥(S), ⊔⊔)
is generated by S1, . . . , Sd.
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With the notations of Proposition 16, one has respectively.

Corollary 5. If S ∈ K[S1, . . . , Sd] then, for any i = 0, 1 and for any j =
1, . . . , d, one has xi ⊳ S ∈ Ann⊥(S) = K[S1, . . . , Sd].

Corollary 6. The power series S verifies the growth condition if and only if,
for any i = 1, . . . , d, Si also verifies the growth condition.

Proof. Assume there exists j ∈ [1, . . . , d] such that Sj does not verify the growth

condition. Since S ∈ Ann⊥(S) then using the decomposition of S on S1, . . . , Sd,
one obtains a contradiction with the fact that S verifies the growth condition.

Conservely, using Proposition 11, we get the expected results.

Theorem 10. ([22]) The formal power series S ∈ K〈〈X〉〉 is differentially pro-
duced if and only if its Lie rank is finite and if it verifies the χ-growth condition.

Proof. By Proposition 15, one gets a direct proof.
Conversely, since the Lie rank of S equals d then by Proposition 16, by

putting σf|0 = S and, for any j = 1, . . . , d, σq̄i = Si,

(1) we choose the observation f as follows

f(q̄1, . . . , q̄d) =
∑

i1,...,id≥0

ri1,...,in
i1! . . . id!

q̄i11 . . . q̄idd ∈ K[[q̄1, . . . , q̄d]]

such that

σf|0(q̄1, . . . , q̄d) =
∑

i1,...,id≥0

ri1,...,in
i1! . . . id!

(σq̄1)
⊔⊔ i1

⊔⊔ . . . ⊔⊔(σq̄d)
⊔⊔ id ,

(2) it follows that, for i = 0, 1 and for j = 1, . . . , d, the residual xi⊳σq̄j belongs

to Ann⊥(σf|0) (see also Lemma 15),

(3) since σf verifies the χ-growth condition then, by Corollary 6, the gener-
ating series σq̄j and xi ⊳ σq̄j (for i = 0, 1 and for j = 1, . . . , d) verify also
the growth condition. We then take (see Lemma 12)

∀i = 0, 1, ∀j = 1, . . . , d, σAi
j(q̄1, . . . , q̄d) = xi ⊳ σq̄j ,

by expressing σAi
j on the basis {σq̄i}i=1,...,d of Ann⊥(σf|0),

(4) the homomorphism A is then determined as follows

∀i = 0, 1, A(xi) =
d

∑

j=0

Ai
j(q̄1, . . . , q̄d)

∂

∂q̄j
,

where, by Lemma 9, one has Ai
j(q̄1, . . . , q̄d) = A(xi) ◦ q̄j .

Thus, (A, f) provides a differential representation23 of dimension d of S.

23In [22, 48], the reader can find the discussion on the minimal differential representation.
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Moreover, one also has the following

Theorem 11. ([22]) Let S ∈ K〈〈X〉〉 be a differentially produced formal power
series. Let (A, f) and (A′, f ′) be two differential representations of dimension n
of S. There exist a continuous and convergent automorphism h of K such that

∀w ∈ X∗, ∀g ∈ K, h(A(w) ◦ g) = A′(w) ◦ (h(g)) and f ′ = h(f).

Since any rational power series verifies the growth condition and its Lie rank
is less than or equal to its Hankel rank which is finite [22] then

Corollary 7. Any rational power series and any polynomial over X with coef-
ficients in K are differentially produced.
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[6] Cartier, P.– Développements récents sur les groupes de tresses. Applications
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