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Abstract

In this work, we focus on on the approach by noncommutative formal
power series to study the combinatorial aspects of the renormalization
at the singularities in {0, 1, +o0} of the solutions of nonlinear differential
equations involved in quantum electrodynamics.
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1 Introduction

During the last century, the functional expansions were common in physics as
well as in engineering and have been developped, by Tomonaga, Schwinger and
Feynman [16], to represent the nonlinear dynamical systems in quantum elec-
trodynanics. The main difficulty of this approach is the divergence of these
expansions at the singularity 0 or at +o00 (see [2]) and leads to the problems of
regularization and renormalization which can be solved by combinatorial tech-
nics : Feynman diagrams [18] and their derivatives [14, 23], noncommutative
formal power series [19, 20], trees [10], ....
Recently, following the previous vein, and basing on

e the shuffle and quasi-shuffle Hopf algebras [5], the combinatorics on non-
commutative formal power series were intensively amplified for the asymp-
totic analysis of nonlinear dynamical systems with three regular singular-
ities in? {0, 1, +o00} [39, 40],

e the monodromy and the Galois differential groups of the Knizhnik-Zamo-
lodchikov differential equation K Z5 [38, 40], i.e. the following noncom-
mutative evolution equation®

dG(z) _ (fC_ZOJF 21 )G(z), (1)

dz

the Schiitzenberger’s monoidal factorization facilitates mainly the renor-
malization and the computation of the associators* via the universal one,
i.e. the associator ® iz of Drinfel’d.

2 Any differential equation with three singularities in {a, b, ¢}, via homographic transforma-
tion (z —a)(c — b)(z —b)~"(c — a)~! can be changed into a differential equation with three
singularities in {0, 1, 4-oc0}.

3Here, zg and z1 are noncommuative variables. More precisely (with i2 = -1),
t1.2 ta,3
ro:= —= and x;:=-——,
2im 2im

where ¢1,2 and t2 3 bebong to T3 = {t1,2, 1,3, t2,3} satisfying the infinitesimal 3-braid relations

[t1,3,t1,2 + t2,3] = [t2,3,t1,2 + ¢1,3] = 0.

4They were introduced in quantum field theory by Drinfel’d and it plays an important
role for the still open problem of the effective determination of the polynomial invariants of
knots and links via Kontsevich’s integral (see [6, 23]) and ® 7z, was obtained firstly, in [23],
with explicit coefficients which are polyzetas and regularized polyzetas (see [40, 41] for the
computation of the other associators involving only convergent polyzetas as local coordinates,
and for three algorithmical process to regularize the divergent polyzetas).



In fact, these associators are noncommutative formal power series on two
variables and regularize the Chen generating series of the differential forms
admitting singularities at 0 or at 1 along the integration paths on the universal

covering C — {0,1} of C without points 0 and 1. Their coefficients which are,
up to multiple of power of 2im, polynomial on polyzetas, i.e. the following real
numbers® (for r > 1,s; > 2 and so,...,s, > 1) [42, 23, 51]
1
S1y...,8p) = — s~ 2
C( ) n1>.§nr>0 nl e T ( )

and it is reasonable to think that these numbers admit a structure of N-graded,
by weight, algebra over the rational numbers deduced from the combinatorial
aspects of the shuffle and quasi-shuffle Hopf algebras [40, 41].

More precisely, for s; > 2,s9,...,s, > 1, the polyzeta ((s1,...,s,) can be
obtained as the limit of

e the polylogarithm Lis, .. s.(2), for z — 1 (recalled in Section 2.3.1)

.....

ni

. z
LlSl ----- Sr (Z) = E nsl 7’LST (3)
1 ..My

niy>...>n>0

e the harmonic sum Hy, ., (N), for N — +oo (recalled in Section 2.3.1)

N

1
Hy, s, (N) = Z T (4)
ni>..>n.>0 1 "7
Then, by a theorem of Abel, one has
= lim Lig = lim H (V).
C(Sla 787“) zl_% 151,---75r(z) N—1>I—I|-1<>o 517"'1‘57‘( ) (5)

Since the algebras of polylogarithms and of harmonic sums are isomor-
phic respectively to the shuffle algebra (Q(X), ) and the quasi-shuffle algebra
(Q(Y), w ) both admitting the Lyndon words LynX over X = {xo,z1} and
LynY over Y = {y;}i>1, as transcendence bases (recalled in Section 2.1) then,
by using

e the correspondence between the composition in N with the words in Y*

and in X*xq, i.e.

s1—1 Sr—1

(S15evs8p) > Ysy -+ - Ys, > T X1... 25 X1, (6)

e the non commutative generating series in the factorized forms, i.e.

L= H exp(Lig, ;) and H= H exp(Hy, IT;), (7)
leLynX leLynY
Zo =[] ew¢S)P) and Zuw = [[ exp(C(S)Mm), ()
leLynX leLynyY
l#zq,z1 1#yy
5The sum s; + ... + s is the weight of ((s1,...,sr) which equals to the weight of the
composition (si, ..., sr).



where {S;}iccynx and {X;}iccyny are transcendence bases of (Q(X),w)

and (Q(Y), w), {P hiecynx and {II;};ecyny are bases of the Lie algebras

of the primitive elements of the bi-algebras H,,, = (Q(X), conc, A,,,,1x+)

and H i = (Q(Y), conc, A wi, 1y+) in duality respectively with {S; }iecynx
and {¥;}iccyny,

we obtain the Abel like theorem [39, 40, 41], i.e. there exist two noncommutative
formal series over Y, Z; and Z5 with constant terms, such that :

ign%exp<y110g1_z>wYL(z) = 7y, (9)
R
Nhinmexp(ZHyk(N)(%l))H(N) — 7. (10)
k>1

Moreover, Z1, Z5 are equal and stand for the noncommutative generating series
of the convergent polyzetas {¢(w) }wey+—y, v+, Or equivalently {¢(w)}wewox e

Zl :ZQ :WyZuJ, (11)

where 7y denotes the projection over Y*.
This Abel theorem allows to explicit the counter-terms eliminating the di-
vergence of

e the polylogarithms {Liy(2)}wer, x+ for z — 1,
e the harmonic sums {H,,(N)}yey, v+ for N — 0o

and leads naturally to an equation connecting these two algebraic structures

- (=y1)* 5
[T exo(cem) =en( S c0 S oy TT ewicson. (2

leLynY k>9 leLynX
l#yy - l#wg,@q

This identity (12) enables, in particular,

e to calculate the Euler-Mac Laurin constants and the Hadamard finite par-
ties associated to the divergent polyzetas {¢(w)}wey, v+,

e to describe completely, via identification of local coordinates in infinite
dimension, the kernel of ¢ by its algebraic generators, and thus this kernel
is generated by homogenous polynomials.

In this paper, we will focus on the approach by noncommutative formal
power series, adapted from [19, 20], and explaining the results of [39, 40, 41]
allowing to study the combinatorial aspects of the renormalization at the sin-
gularities in {0, 1, +oo} of the solutions of linear differential equations (see Ex-
ample 1 bellows) as well as the solutions of nonlinear differential equations (see
Examples 2 and 3 bellow) described in Section 3.2 and involved in quantum
electrodynamics.



Example 1 (Hypergeometric equation). Let tg,t1,t2 be parameters and
2(1 — 2)ij(2) + [t2 — (to + t1 + 1)2]y(z) — tot1y(z) = 0.

Let ¢1(2) = y(z) and g2(2) = 2(1 — 2)y(z). One has

(1)) ()

where My and My are the following matrices

0 0 0 1
M0<t0t1 t2> and Ml(o tg—to—t1>'

Or equivalently,

i) = Aofa)s + g
s = a2),

where Ay and Ay are the following pamaetrized linear vectors fields

0 0 0
Ao(g) = —(tot1q1 + t2fZ2)a—q2 and  Ai(q) = —Cha—ql — (t2 —to — tl)fJ2a—q2-

Example 2 (Harmonic oscillator). Let ki, ko be parameters and
§(2) + kry(2) + k2y?(2) = ua (2).
which can be represented by the following state equations
4(2) = Ao(g) + Ar(q)ua(2),
y(z) = q(2),
where Ay and Ay are the following vectors fields

0 0
Ao(q) = —(k1g+ k2¢®) = and Ai(q) = —.
o(q) (k1q + kaq )8q an 1(9) 9
Example 3 (Duffing’s equation). Let a,b,c be parameters and
§(2) + ay(z) + by(2) + ey’ (2) = wa (2).

which can be represented by the following state equations

q(2) Ao(q) + Ar(q)ua(2),
y(z) = q(2),

where Ay and Ay are the following vectors fields

0 0 0
A =— + 021 + e¢d)=— + gz — d A = .
O(Q) (aih q1 Cih)aq2 q2 dan an 1(11) 9o



This approach by noncommutative formal power series is adequate for study-
ing the algebraic combinatorial aspects of the asymptotic analysis, at the singu-
larities in {0, 1,400}, of the nonlinear dynamical systems described in Section
3.2 because

e the polylogarithms form the universal Picard-Vessiot of these nonlinear
differential equations [38] and their algebra is isomorphic to the shuffle
algebra admitting {Li; };ecynx as transcendence basis,

e the harmonic sums generate the coefficients of the ordinary Taylor expan-
sion of their solutions (when these expansion exist) [39] and their algebra is
isomorphic to the shuffle algebra admitting {H; }iecyny as transcendence
basis,

e the polyzetas do appear as the fondamental arithmetical constants in-
volved in the computations of the monomdomies [35, 32], the Kummer
type functional equations [36, 32], the asymptotic expansions of the solu-
tions of these equations [39, 40] and their algebra is freely generated by
the polyzetas encoded by irreducible Lyndon words [40].

Hence, a lot of algorithms can be deduced from these facts and the more
general studies will be proceed (see [5, 11] for example).
The organisation of this paper is following

e In Section 2, we will give algbraic and analytic foundations, i.e. the com-
binatorial Hopf algebra of shuffles and the indiscernability respectively, for
polylogarithms and harmonic sums.

e These will be exploited systematically, in Section 3, to expand the solu-
tions of nonlinear dynamical systems with singular inputs.

2 Background

2.1 Combinatorics on shuffle and stufle Hopf algebras
2.1.1 Schiitzenberger’s monoidal factorization

Let X be a finite totally ordered alphabet. The free monoid and the set of

Lyndon words, over X, are denoted respectively by X* and LynX. The neutral

element of X* is denoted by 1x-. Let Q(X) be equipped by the concatenation
and the shuffle defined by

Yw e X*, ww lys =1x«ww=mw, (13)

Va,y € X,Vu,v € X*, zuw yv = z(uw yv) + y(zu w v), (14)

or by their dual co-products, Aconc, A, , defined by

Vw € X*, Aconc(w) = Z U, (15)
u,veEX* uv=w

Vee X, A, (x) r@1+1®«, (16)



satisfying, for any u,v,w € X*,

(Aconc(w) [u®@v) = (w]|uv), (17)
(Do) [u@0) = (] uww). (1)

With the co-unit and the antipode defined by

VP e Q(X), e(P)=(P|1x-), (19)
Yw = x4, ...z, € X, a,, (w) = (1) "Mz, Lz, (20)

one gets two mutually dual Hopf algebras

H\_l_l = (Q(X),COIIC,lX*,ALu,G,G/Lu), (21)
HL = (Q<X>;L‘J;1X*;Aconc;€aa\_u)- (22)

By the Cartier-Quillen-Milnor-Moore theorem, the connected graded posi-
tively, co-commutative Hopf algebra H is isomorphic to the envelopping algebra
of the Lie algebra of its primitive elements which is equal to Lieg(X). Hence,
any graded® suited” basis of Lieg(X), can be completed, by the Poincaré-
Birkhoff-Witt theorem, as a linear (graded) basis {by }wex~ for U(Lieg(X)).
One can then® construct, by duality, a basis {b, }wex+ of H,,, such that :

Vu, v e X*, <Bu | b'u> = 5u,v7 (23)

and, for any z € X, b, = z and for any w = lil...l,i’“ with I1,...,lx € LynX
and [; > ... > [, one has
. Efix...xlv)f’;

by = (24)

11! i)
For that, one can use a theorem of Viennot [50] to construct, by bijection with
LynX, a basis for Lieg(X) and, by the PBW theorem, one completes then to
a linear basis for U(Lieg(X)).

On an other way, by a Radford’s theorem [45], the elements of LynX con-
stitute also a transcendence basis for (Q(X),w) and it can be completed then
to the linear basis {w},ex+ which is auto-dual :

Yo, € X*, (u|v) = Oy (25)

)

But the elements | € LynX — X are not primitive, for A , and then LynX
does not constitute a basis for Lieg(X). Denoting Dx the diagonal series over
X, one has

Dx = Zw@w: Z I®l+ Z w R w (26)

weX* leLynX w¢LynX

Sfor the multidegree.
7i.e. a basis of polynomials indexed by their initial words which is a Lyndon word.
8because H is graded in finite dimensions by the multidegree.



and Dx can be also factorized as follows

¢

Dx = [ expt®). (27)
leLynX

Using the transcendence basis {l}1ezynx, Mélangon and Reutenauer give an
other completion by putting [47]

S = l, for I € LynX, (28)
FRTTIPTY re L
S= —r — forw =10k > > (29)
11! !
= w+ chv. (30)
v<w, =

The linear basis {S),}wex~ admits the dual basis {P/ },ex= but it is not of
PBW type although the elements of { P/ }iesynx are primitive, for A, [12].

Chen, Fox and Lyndon [8] constructed { P, } e x, so-called the PBW-Lyndon
basis, for U(Lieg(X)) as follows

P, = x for z € X, (31)
P = [P,P] forle LynX, standard factorization of [ = (s,r), (32)
Py= Pl P* forw=I{. Ll > >l L € LynX. (33)

Schiitzenberger constructed bases for (Q(X), ) defined by duality as follows :
Vu,v € X*, (Sy | Py) = duw, (34)

and obtained the transcendence basis {S; }icecynx and the linear basis { Sy, }we x
as follows

S

xSy, for | = zu € LynX, (35)
SpE L S o
Sp= A forqp =10 0l > >, (36)
i, dg!

After that, Mélangon and Reutenauer [47] proved that?, for any w € X*,

P,=w+ Z cv and S, =w+ Z Cy. (37)
v>w, = v<w,pf=ful

9 Recall that the duality preserves the (multi)-homogeneous degree and interchanges the
triangularity of polynomials [47]. For that, one can construct the triangular matrices M and N
admitting coeffients as the coefficients of the homogeneous of degree k triangular polynomials,
{Pw}wex+ and {Sw}wex* in the basis {w},ex* respectively :

My, = (Pu|v) and Nyu = (Su]|v).

The triangular matrices M and N are unipotent and satisfy the identity N = (!*M)~!.



In other words, the elements of the bases {Sy }wex» and {P, }wex+ are lower
and upper triangular respectively and they are of homogeneous by degree.

Thanks to the duality of the bases { Py }wex+ and {Sy twex+ and the basis
{Py}wex~ is of PBW type, one also has [47]

Dx =
weX*

leLynX
Y

> 8w @ Py

Y SeP+ > Su®P

w¢LynX

~ T ewsion.

leLynX

Example 4 ([27]). Let X = {xo,z1} with zo < z1.

(38)

(39)

(40)

! B Sy
Zo Zo To
T T T
ToT1 [0, 1] ToT1
T3z [0, [To, z1]] 31y
Tox? ([0, z1], 21] xo1?
T371 [0, [zo, [z0, 21]]] 3T
xj} [0, [0, 1], 21]] wjw]
ToT} [[[zo, 1], 1], x1] 20T}
zé»’h [zo, [0, [®0, [T0, 21]]]] 5035”1
zgﬁ [0, [0, [[z0, 1], 21]]] zpay
r3T17071 [[xo, [zo, z1]], [T0, z1]] 2232% + xdr170021
xj? [0, [[[z0, 21], 1], 21]] wjwi
ToT1ToT3 [[zo, 21], [0, 1], 21]] 3x¢x3 + wowq 2023
w0 [[[[xo, @1], 1], 21], 1] zort
x| [z, [zo, [0, [%o, [z0, 21]]]]] 01
252t | [@o, [0, [%0, [[z0, 21], 21]]]] zpa
r3z1m071 | [20, [0, [0, 71]], [T0, 21]]] 2x3x3 + xiT1T0T1
wgﬂﬁ? [0, [0, [[[z0, 1], 1], 21]]] zpay
v3r17022 | [20, [[T0, 21], [[T0, 21], 71]]] 3xdxd + xdx o}
w3xizory | [[wo, [[x0, x1], 21]], [T0, 21]] | 62323 + 3zdx1m023 + 2R3 T071
zgat | [zo, [[[vo, z1], 21], 21], 21]] afat
ror1z02} | ([0, 1], [[[T0, 21], 21], 1]] 43z} + zor1 1073
zox? | [[[[[xo, 1], 21], 1], 2], 24] 202}

2.1.2 Extended Schiitzenberger’s monoidal factorization

Now, let Y = {y;};>1 be an infinite totally ordered alphabet'?. The free monoid
and the set of Lyndon words, over Y, are denoted respectively by Y* and LynY .
The neutral element of Y* is denoted by 1y=.

Ohy y1 >y2 >y > ...



Let v =y, ...y;, € Y™, the length and the weight of u are defined respec-
tively as the numbers |u|=k and (u) =41 + ... + i.
Let us define the commutative product over Q(Y'), denoted by pu, as follows

YYn, Ym €Y, W(Yns Ym) = Yntm, (41)
or by its associated coproduct, Ay, defined by

n—1

Yy €Y, Ajyn=> yi®yn (42)

i=1
satisfying,
Vo,y,z €Y, (Ayzly®z) = (z]uy,2)). (43)
Let Q(Y) be equipped by
1. The concatenation (or by its associated coproduct, Aconc)-
2. The shuffle product, i.e. the commutative product defined by [47]

Yw e Y™, ww ly« = ly« ww = w,

Vr,y € Y,Vu,v € Y™, zuw yv = z(uw yv) + y(zu w v)
or by its associated coproduct, A, ,,, defined, on the letters, by
VureY, ALy = n®@1+10u
and extended by morphism. It satisfies

Vu,v,w e Y, (Apw|u®v) = (w]uwwv).

3. The quasi-shuffle product, i.e. the commutative product defined by [43],
for any w € Y*,

wie lys = 1y« wmw = w,
and, for any y;,y; € Y,Vu,v € Y,
yiuwyw = yi(yiuw o) +yi(uwy) + u(yi,y;) (uwv),
= yi(yuwv) + yi(uw y;v) + yips(uw o)
or by its associated coproduct, A 4, defined, on the letters, by
Vyr €Y, Awyr = ALk + Ak

and extended by morphism. It satisfies

Yu,v,w €Y, (Awmw|u®v) = (w|uwov).

Note that A and A, are morphisms for the concatenation (by defini-
tion) whereas Ay is not a morphism for the product of kY (for example
Ay (53) = 11 ® 1, whereas A (y1)? = 0).

10



Hence, with the counit e defined by
VP eQ(Y), e(P)=(P|[ly-), (44)
one gets two pairs of mutually dual bialgebras

Ho, = (Q(Y),conc,1y«, A, ,e) and HY = (Q(Y), s, ly«, Aconc,e)(45)
H'—"’—' = (Q<Y>a conc, 1Y* ’ A L+l e) and Hv = (@<Y>; =, 1Y* ) A<:on<:a 9046)

As in (26-27), one has

Dy

dooiel+ > wew (48)

leLynY wgLynY
¢

[ ewt®i). (49)

leLynY

By the CQMM theorem (see [5]), the connected N-graded, co-commutative
Hopf algebra H,,, is isomorphic to the enveloping algebra of the Lie algebra of
its primitive elements which is equal to Lieg(Y) :

M., 2 U(Lieg(Y)) and HY, 2 U(Lieg(Y))". (50)
Hence, let us consider [8]

1. the PBW-Lyndon basis {py }wey~ for U(Lieg(Y)) constructed recursively

Dy = Y for y €Y,
p = [p_s,pT] ~ for I € LynY, standard factorization of | = (s,7),
pw = pp.epr forw=I L LE L > > gl € LynY,

2. and, by duality!!, the linear basis {sy fwey= for (Q(Y), w, 1y+), i.e.
Yu,v € Y, (Pu | Sv) = Oy -

This basis can be computed recursively as follows [47)

sy = ¥, fory €Y,
S| = YSu, for | = yu € LynY,
(NN il (NN ik
Sp, e S
1 k

Sw

— ' for w=1{" ...} Iy > ... > .
210 .. -

1 The dual family (i.e. the set of coordinate forms) of a basis lies in the algebraic dual
which is here the space of noncommutative series, but as the enveloping algebra under con-
sideration is graded in finite dimensions (here by the multidegree), these series are in fact
(multihomogeneous) polynomials.

11



Hence, since {py }wey~ is of PBW type then, as in (38)-(40), we get also

Dy = Z Sw & Pw (51)
weyY*

= Z S1@pr+ Z Sw @ Pw (52)

leLynY w¢LynY
N

= H exp(s; @ pr). (53)

leLynY

Similarly, by the CQMM theorem, the connected N-graded, co-commutative
Hopf algebra H 4+, is isomorphic to the enveloping algebra of

Prim(H ) = Im(m;) = spang{m (w)|lw € Y™}, (54)
where, for any w € Y*, w1 (w) is obtained as follows [40]
m(w) = w—i—zw Z (wlugw ... wug) ug ... ug. (55)
A 1 o k) Ul ... Uk-
k>2 Up,y.e U €Y T
Note that Equation (55) is equivalent to the following identity [40, 41]
1
w = ZE Z (w | uy . owug) m(ug) .. .omr (uk). (56)
k>0 Up,..., U €EY*
In particular, for any yx € Y, we have successively [40, 41]

=1
m(yr) = yk+z( 11) > Y (57)

1>2 J1esdy 21
J1te i =k

S5 X mbgom) 6

k>1 5’1+---+s;€:n

Yn

Hence, by introducing the new alphabet Y = {§},ey = {m1(y)}yey, one has

(QY),conc, 1y, A,,) = (Q(Y),conc,ly«,Awy) (59)

and
Huw = U(Lieg(Y)) =UPrim(Hw)), (60)
HYy = U(Lieg(Y))Y =UPrim(Hw)). (61)

By considering

1. the PBW-Lyndon basis {II,, },ey+ for U(Prim(#H 1)) constructed recur-
sively as follows [40]

I, = m(y) for y €Y,
I, = [l 1,]  forl € LynY, standard factorization of [ = (s,7),
I, = Hﬁl’[;’; forw=13"...0F L1 >...>l,li....ly € LynY,

12



2. and, by duality, the linear basis {X,, }wey~ for (Q(Y), w, 1y+), i.e.
Yu,v € Y, (I, | ) = Ou0-

This basis can be computed recursively as follows [4, 40]

v =¥ for y €Y,
X = Z %ys’lerJrs;Ell...ln Egl;fﬁz:z:
{s],si 3oty s b1 > 2l €LYnY
(ysq »-.ysk)f:(ys,l S A1 n)
Bu = mrEte e for >,
1:c- k- i i,

Hence, we get the following extended Schiitzenberger’s factorization of Dy [40,
41]

¢
Dy = [[ exp(Zi@n). (62)
leLynY

Proposition 1 ([40]). Let my : (Q® Q(X)x1,.) — (Q(Y),.) be the morphism
mapping Tyt T ...y X1 t0 Ys, ... Ys, and wx be its inverse. Its extension
over Q(X) verifying wy (p) = 0, for p € Q(X)xo, is still denoted by wy. Then

1. The polynomials {my Pry1}1ccyny are homogeneous in weight, linearly in-
dependent and upper triangular :

myPro = I+ Z Py V.
v>1,(v)=(1)

2. For any w € Y*, the following polynomial, homogeneous in weight,

7TYP7er = Hw + Z CyU
v>w,(v)=(w)

is of multi-degree (w) and {my Py yw}wey+ forms a basis for Q(Y').

3. Let {Oy}wey~ be the family of polynomials, homogeneous in weight, in
duality with the family {7y Pryw wey* :

Vu,v €Y™, (myPryu|Ou) = Ouno-

)

Then, the family {©y twey+ generates freely (Q(Y), w1 ) and

VweY*,  O,=X,+ Z dyv.

v<w,(v)=(w)

Remark 1. The family {©;}iccyny is not a transcendence basis of (Q(Y), 1)
because if {O;}iccyny constitutes a transcendence basis of (Q(Y'), w1) then, for
any l € LynY, my Py is primitive but it is false in general.
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Example 5 ([41]).

I

Ya

I

Y3y1

I

Y2Y2

I

Y2y3
11

Y1Y3

II

Y1Y2Y1

22

%
X

y2y3
Y1Ys3

by

Y1Y291

1 1 Loy Lo 1 1
Ya 2y1y3 2y2y2 2y3y1 3y1y2 3y1y2y1 3
Ly 1,
= Y3y1— §y2y1 —Yy1ys + §y1y2,
1 1 1
= Y2Y2 — §y2yf - 5?/%92 + Zyil,
= Yoyl — 2y1ye + Y3y,
1, 1 1,
= Nnys — §y1y2 - §y1y2y1 + gyp
= Y1y2y1 — yfyz,
1
= Y-S,
= i
= Y4,
= 23/4 Y3Yi,
1 2
= 594 + Y3,
= Iyt sysyn + 2y + ey
= 694 2y3y1 29292 Y297,
= Ya+Y3y1+ Y13,
1 1 ) , 1
= §y4 + §y3y1 + Y5 + +Yoy1 + §y1y3 + Y1Y2y1,

2
1

24 6 4

2

1
—ys +Ysy1 + Y5 + Y2ui + Y1Ys + y1veu1 + yive,

Yy2u;

Ly

1 1, 1 , 1 1 1, A
Y4+ ZYsy1 + Y3 + Y297 + gylys + S Y1241 + S Yiv2 + Y5

Example 6 ([41]). Let us express {my Pi}iccyn_,y in the basis {11y} wey~ -

l Ty P
To 0
X1 Hyl
H2
o1 Hy2 + Y1
- 2
3
x%xl Hy, + % + 1y, + gl
2 y3
Loy Hyoy, — 2y, — —+
1L, 11,2 11,2, +1I I, + 11,11, 2 4
wfey | My, + =58 41,y + Yz _Wi¥2 W i; A L T 22
I, 1L T1I. IL.1I 4
wgat Iy, Iy, — y22 - = 2@;2 - I,z 1Ty, — 2102 — %
4
.1101}? HyQHy% - 3Hy1Hy2Hy1 + SHnyyz + le
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2.2 Indiscernability over a class of formal power series
2.2.1 Residual calculus and representative series

Definition 1. Let S € QX)) and let P € Q(X). The left (resp. right) residual
of S by P is the formal power series P<S (resp. S P) in QX)) defined by:

(P<S|w)=(S|wP) (resp. (S>P|w)=1(S|Puw)).
We straightforwardly get, for any P,Q € Q(X):
Pa(QaS)=PQ<«S, (S-P)rQ=S>PQ, (P1S)pQ=Pa(S>Q). (63)
In case z,y € X and w € X*, we get'?:
z < (wy) = 0z yw and TWD>Y = O yW. (64)

Lemma 1. (Reconstruction lemma) Let S € Q(X)). Then

S=(S|1x:)+ > a(Svx)=(S|1lx-)+ Y (za8).

zeX rzeX

Lemma 2. The residuals by a letter x is a derivation of (Q{X)),w):

x<d(uwv) = (z<du)w v+ uw(xz<dwv), (uwv)pzr=(urz)wv+uw(vez).
Proof. Use the recursive definitions of the shuffle product. O
Consequently,

Lemma 3. For any Lie polynomial Q € Lieg(X), the linear maps “Q<” and
‘©Q7 are deriations on (Q[LynX],w).

Proof. For any [,11,ly € LynX, we have
[a(lywly) =l w(laly) + ([ <al)wly =15, ;+ 6, la,
(hwly)pl=lw(le>l)+ ({ivl)wly =06, ;+6, .
o
Lemma 4. For any Lyndon word | € LynX and S; defined as in (7?), one has
r1Al=1>xyg=0 and 2148, =8> 20 =0.

Proof. Since z1< and bz are derivations and for any [ € LynX — X, the poly-
nomial S; belongs to xoQ(X )z, then the expected results follow. O

Theorem 1. (On representative series) The following properties are equivalent
for any series S € Q((X)):

12For any words u and v € X*, if u = v then Ou,o = 1 else 0.
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(1) The left C-module Resg(S) = span{w < S | w € X*} is finite dimensional.
(2) The right C-module Resq(S) = span{S>w | w € X*} is finite dimensional.

(3) There are matrices A € M1 ,(Q), n € My, 1(Q) and a representation of X*
in My n, such that

S = Y Duw)n] w,

weX*

¢
_ A( 11 eu(SnPL)n_

leLynX

A series that satisfies the items of this theorem will be called representative
series. This concept can be found in [1, 44, 15]. The two first items are in
[19, 24]. The third item can be deduced from [7, 13] for example and it was
used to factorize first time, by Lyndon words, the output of bilinear and ana-
lytical dynamical systems respectively in [26, 27] and to study polylogarithms,
hypergeometric functions and associated functions in [29, 31, 38]. The dimen-
sion of Resgy(S) is equal to that of Resq(S), and to the minimal dimension of a
representation satisfying the third point of Theorem 1. This rank is then equal
to the rank of the Hankel matrix of .S, that is the infinite matrix ((S | uv))yvex
indexed by X* x X* and is also called Hankel rank of S [19, 24]:

Definition 2. ([19, 24]) The Hankel rank of a formal power series S € C{X))
is the dimension of the vector space

{S>II| 1T € C(X)}, (resp. {IT<«S | e C(X)}.

The triplet (A, u,n) is called a linear representation of S. We define the min-
imal representation'® of S as being a representation of S of minimal dimension.
For any proper series S, the following power series is called “star of S”

S* = 1+8+8%+--+8"+.... (65)

Definition 3. ([3, 49]) A series S is called rational if it belongs to the closure
in Q((X)) of the noncommutative polynomial algebra by sum, product, and star
operation of proper'? elements. The set of rational power series will be denoted

by Q™{(X)).

Lemma 5. For any noncommautative rational series (resp. polynomial) R and
for any polynomial P, the left and right residuals of R by P are rational (resp.
polynomial).

Theorem 2. (Schiitzenberger, [3, 49]) Any noncommutative power series is
representative if and only if it is rational.

131t can be shown that all minimal representations are isomorphic (see [3]).
14 A series S is said to be proper if (S | €) = 0.
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Example 7. Let S = (zox1)* be the rational power sries over X = {xg,x1}.
Since
S = (.Towl)* =1x« + 2001 + ($0$1)2 + ...

then
Svxg = x1+Tx0T1+ ...,
Svxy = 0,
Svag = 0,
SI>SCO£L'1 = S

The Hankel rank of S is then 3.

2.2.2 Continuity and indiscernability

Definition 4. (25, 39]) Let H be a class of formal power series over X and let
S e C{X).

(1) S is said to be continuous'® over H if for any ® € H, the following sum,
denoted by (S | @), is convergent in norm

> (STw)@]w).

The set of continuous power series over H will be denoted by C™ (X)).

(2) S is said to be indiscernable!® over H if and only if

VO eH, (S| =0.

Lemma 6. Let H be a monoid containing {e** ’;Ee(%( Let S € Ceo™(X)) be
indiscernable over H. Then for any x € X, x<1S and S>x belong to CO™ (X))

and they are indiscernable over H.

Proof. Let us calculate (z<S | @) = (S | ®z) and (S>x | @) = (S | P). Since

tx tx
e —1 e —
lim ==z and lim =x
t—0 t t—0 t
then, for any ® € H, by uniform convergence, one has
et — 1 et — 1

)

).

(5 | Bx) = (S | lim @

etxil etzil

@) = lim(s |

) =lm(s| @

(S ] z®) = (S lim
t—0

15See [25, 39] for a convergence criterion and an example of continuous generating series.
16Here, we adapt this notion developped in [25] via the residual calculus.
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Since S is indiscernable over H then

. 1 tx 1 _
(S| @) = lim —(S | @) — lim —(S | @) =0,

i
P
(5] 2®) = lim 2(S | €0) — lim (5 | ) =0

TR =0T € 50 1 o

O

Proposition 2. Let H be a monoid containing {e'® ;Ge(%( The formal power

series S € COM (X)) is indiscernable over H if and only if S = 0.

Proof. If S = 0 then it is immediate that S is indiscernable over H. Conversely,
if S is indiscernable over H then by Lemma 6, for any word w € X* and, by
induction on the length of w, w < S is indiscernable over H. In particular,

(waS | Idy) = (S | w) = 0.

In other words, S = 0. O

2.3 Polylogarithms and harmonic sums
2.3.1 Structures of polylogarithms and harmonic sums

Let Y be the infinite alphabet {y;};>1 equipped with the order y; > y» >
ys > ... and let LynY be the set of Lyndon words over Y. The length of
W=Ys -..Ys, € Y™ is denoted by | w | and its degree equals s1 + - - + 5.

Let X be the finite alphabet {z¢, 1} equipped with the order zy < x; and

C:=C[z,3#} and g:z{z,l,z‘l : 1 1—2}(66)
z z

2z’ 1— z Tz—1"1-2

This ring C is invariant under differentiation and under the homographic trans-
formations belonging to the group G whose elements commute the singulari-
ties {0,1,400}. The iterated integral over wp,w; associated to the word w =
Xy - -+ @i, over X* (the monoid generated by X') and along the integration path
zp ~ z is the following multiple integral defined by

z ty tr—1
/ Wiy = Wy, = / Wiy (tl)/ Wiy (tg) .. / wir(tr), (67)

20~ 2

where t1 ---t,._1 is a subdivision of the path zg ~» z. In a shortened notation,
we denote this integral by o (w) and'” oZ (1x+) = 1. One can check that the
polylogarithm Lis, . s, is also the value of the iterated integral over wp,w; and
along the integration path 0 ~ z [29, 31]:

Liy(z) = oz .. ai o). (68)

1"Here, 1x+ stands for the empty word over X.
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Example 8.

ds [° dt
ag(rory) = /

= /ds/ dtZtk

:2/ .

k>1

:Zﬁ

k>1

The definition of polylogarithms is extended over the words w € X* by
putting Li, (2) := log(z). Thus, {Liy }wex+, and then {P,(z) := (1—2) ! Liy(2) }wey=,
are C-linearly independent [35, 32]. Since, for any v = y,, ...ys, € Y*, P, is the
ordinary generating function of the sequence {H,(N)}n>0 [37]:

. 1
2)= Y Hy(N) 2", with H,(N)= > —— (69)
N>0 N>ny>..>n.>0 1~ 07

then, as a consequence of the classical isomorphism between convergent Taylor
series and their associated sums, the harmonic sums {H, },ecy+ are also C-
linearly independent. Firstly, ker P = {0} and ker H = {0}, and secondly, P is
a morphism for the Hadamard product:

Pu(2) ©Py(z) = Y Hy(N)H,(N)zV = > Hywo(N)2V = Puwy(2). (70)

N0 N>0
Proposition 3. ([37]) Exztended by linearity, the map

P:(CY),w) — (C{Pu}uwey~ ®),
u — P,

is an isomorphism of algebras. Moreover, the map
H: ((C<Y>’ = ) — (C{Hw}weY*a ) )
s an isomorphism of algebras.

Studying the equivalence between action of {(1 — 2)'},ez over {Py(2)}wey+
and that of {N*}cz over {Hy,(N)}wey~ (see [17]), we have

Theorem 3. ([39]) The Hadamard C-algebra of {P .y fwey+ can be identified with
that of {Pi}iccyny . In the same way, the algebra of harmonic sums {Hy, ey~
with polynomial coefficients can be identified with that of {H;}iecyny -
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2.3.2 Results a la Abel for noncommutative generating and global
regularizations

Let L and H be the noncommutative generating series of respectively {Liy }wex~
and {Hy, (N)}wey~ [35, 37]:

L:ZLiww and H:Zwa. (71)
weX* weY*

Hence, L and H are image, by the tensor products Li®Id and H ® Id, of the
diagonal series Dx and Dy respectively. We get

Theorem 4 (Factorization of L and of H, [35, 32, 40]). Let

. .
Lyeg = H eVsi Pt and  Hyeg(N) = H oHey (V) =0
leLynX —X leLynY —{y1}

Then L(z) = e~®1108(1=2)[,  (2)e™0 182 qnd H(N) = eflv (V) w1, (N).

For any [ € LynX — X (resp. LynY — {y1}), the polynomial S; (resp. %) is
a finite combination of words in xgX*x1 (resp. Y* —y1Y™*). Then we can state
the following

Proposition 4 ([40]). Let Z,,, := Lyeg(1) and Z\xs := Hyeg(00).
Then Z,,, and Z . are group-like, for A, and A respectively.

Proposition 5 (Successive differentiations of L, [38]). Let 0, = d/dz and let
0o = zd/dz. For any n € N, we have

07L(z) = Dy (2)L(2) and 6jL(z) = E,(2)L(2),
where'®

e the polynomials D, (z) and E,(z) in C(X) are defined as follows

-y deﬁr)< nﬂ 1)7r(w),

wgt(r)=n weXdes(r) i=1

Be) = Y Y deﬁr)< ST l)pr(w»

wgt(r)=n weXdes(r) i=1

S
3
—~

I\
~—

o for any w = x;, x5, and v = (r1,...,r;) of degree deg(r) = k and of
weight wgt(r) = k+ri+- - +ry, the polynomials T (w) = 7oy (T4, ) -+ Ty, (X4,)
and pe(w) = pry (xiy) - - pr,, (x4,) are defined respectively by, for anyr € N,

—rlxg rlxy

’I"r0 T
Tr(zO):az;:W and  T(x1) = 3z172 1— 2+

X T .
pr(z0) = 9670 =0 and pr(r1)= 901 L — Li_.(2)z.

18Consider also 1 = (1—z)d/dz. But 6p+61 = 9, and then 07'L(z) = [Dn(z) — En(2)]L(z2).
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Example 9 (Coefficients of O3L). Since, for any w € X+, one has

. Llu Zf w = ToU,
0o Liw = { Lig Li, if w= xyu.

then one obtains, for example

e For anyn > 1 and for any w € X*, one has
0p Liznw(2) = Liy(2).
In particular,

03 Lz (2) = 1.

e Letting E(n,m) denote the Eulerian numbers :

m =3 (1) (”fl)(mﬂ—j)",

7=0
one has, for any n >0,
n+1r7:
0" Liy, (2) = WZOETL ,m)z™ =: Li_,(2).
In particular,
. z .
6o Li,, (2) = ) = Lig(2).

e For any k € N*, one has

0f Li,a ( < )Ll §(2) Lizg ik (2).
§=0
For example
foLi2(2) = Lig(2)Lix(2),
03Li,s(z) = Li_i(z)Lix(2) + Lig(2),
03 Liz2(2) = Li_o(z)Lir(2) +3Li_1(z) Lio(2),
B¢ Li,2(2) = Li_s(z)Lis(2) +4Li_s(2) Lig(z) + 3Li2 (),
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The noncommutative generating series of polylogarithms [35, 32] satisfies
the differential equation

dL = (ZL'Owo + zlwl)L (72)

with boundary condition

L(z) 5 exp(zologz) and L(z) 1 exp(—z1log(l—2)) Z.,. (73)
This implies L is the exponential of a Lie series [35, 32]. Hence [38],

_ 1\k—1
logL(z) = Z(% > Liwwoww(uue (74)

I
g
o

g
O
2
E

(75)

Proposition 6 ([38]). Let G(z), H(z) be exponential solutions of (72). Then
there exists a constant Lie series C such that G(z) = H(z)e®.

Theorem 5 ([38]). Let Galc(DE) be the differential Galois group associated
to the Drinfel’d equation. Then Galc(DE) = {e€ | C € Liec{(X)} and it
constains the monodromy group defined as follows

MoL =Le*™  and ML =LZ]'e ™7, = L™,
Y
where my =xzy and m; = H e~ adr (g,
leLynX —X
Let us call LIz the smallest algebra containing C, closed under derivation
and under integration with respect to wg and wy. It is the C-module generated
by the polylogarithms {Liy }uyex--
Let A(z) := myL(z). Then [39]

A(z) 7 exp <y1 log >7ryZuJ. (76)

1—=2

Since the coefficient of 2z in the ordinary Taylor expansion of P (2) is
H,:(N) then let us put [39]

Mono(z) i= e~ (P10 812 = §7 P (2) g (77)
k>0
Const := ZH r y¥ = exp( — ZH ﬂ . (78)
yr J1 LI
k>0 k>1

We put also'® [39)

Bn) = exp(( o) L) and B = e B (79

k>1

19Here, the coefficient (B(y1) | yF) corresponds to the Euler—Mac Laurin constant associated
to (Const(N) | y¥), i.e. the finite party of its asymptotic expansion in the scale of comparison

{n® 10gb(n)}an,beN-
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As a consequence of (76)-(78), one gets
Theorem 6 ([39]).

7y P(2) ~7 Mono(z)my Z,,, and  H(N) g~ Const(N)my Z,,.

Or equivalently,

. 1 o (—y1)* _
ilﬁml exp <y1 log T Z>A(z) = ngnoo exp (,; H,, (N)T H(N)=nyZ,,.

Theorem 7 ([17]). For any g € C{Py }wey~, there exist algorithmically com-
putable coefficients c; € C,a; € Z,3; € N such that

—+o0

g(z) ~ Z ci(1—2) log'ﬁj(l —z) forz—1,
§=0

and the coefficients b, € C,n; € Z,k; € N such that
—+oo
(9(2) ] z") ~ Z bin" log™ (n) for n — oo.
i=0

Theorem 7 means also that the {P, }wey+ admit a full singular expansion,
at z = 1, and then their ordinary Taylor coefficients, {H,, (N)}yey+ admit a
full asymptotic expansion, for N — +o00. More precisely,

Corollary 1. For any w € Y* and for any k > 1, we have

fuf k hf—1
1 1 7 1
Hy(N) = > ailog'(N)+yw+ > > B log' (V) +O<W>'
i=1 j=1 i=0

where the coefficients v, o; and B;; belong to the Q[y]-algebra generated by
convergent polyzetas.

More generally, by Theorem 5, we get

Proposition 7. For any commutative Q-algebra A and for any Lie series C €
Liea(X), let

[0, T=mT, Bl)= &
1-=2
Then
1. Z.,, =7, €% is group-like, for the co-product A, ,
2. f(z) 1 exp(—z1 log(1l — 2)) Z.,.,
3. P(z) -~ Mono(2)ry Z,,,,
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4. E(N) f v COHSt(N)ﬁyEuJ s

where, for any w € Y* and N > 0, one defines the coefficient (H(N) | w) of w
in the power series H(N) as the coefficient (P, (2) | 2V) of 2V in the ordinary

Taylor expansion of the polylogarithmic function P, (z).
By Proposition 7, we get successively

Proposition 8 ([33]). Let(,,, and (., be the characters of respectively (A(X), 1)
and (A(Y'), w) satisfying

Cy(20) =€y (1) =0 and Cu(y1) =0.

Then
— —_ \r‘ —
ol ww= Z, = [ enl(S)R),
wey* leLynX —X
J— —_ \ —
Y lwww= Zuw = II  ewCE)m).
wEeY * leLynY —{y1}

Proposition 9. Let {7, Juwey+ be the Euler-Mac Laurin constants associated
to {Hy(N)}wey+. Let Z., be its noncommutative generating series. Then,

1. The following map realizes a character :
70 : (A<Y>7 . ) — (Ra ')a
w — (Fe | w) =7,
2. The noncommutative power series 77 is group-like, for A .

3. There exists a group-like element Z v, for the co-product A v, such that

Zy= Y A w=exp(yy1)Z .
weyY*

By Theorem 6, Propositions 7 and 9, we also get
Proposition 10. For any C € Liea(X) such that Z,,, = Z,,,e€. Then

Z, = B(y1)TyZ.,,, or equivalently by cancellation, Z . = B'(y1)nyZ.,,,
where B(y1) and B'(y1) are given in (79).

By Propositions 7, the noncommutative generationg series Z,,, and Z ., are
group-like, for the co-product A, and A, respectively, and we also have

Zo, o= Y, US)P+ > C,(Sw) P, (80)

leLynX —X welLynX —X
Zw = Y W+ Y (w(Ee) M. (81)
leLynY —{y1} wgLynY —{y1}
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Hence, by Proposition 10, we deduce in particular,

Yoo @M+, = B >, {S)avPit.... (82)

leLynY —{y1} leLynX —X

By Proposition 1, the elements of the family {7y P, }ie£ynx are decomposable in
the linear basis {II, }wey= of U(Prim(#H v1)). Thus, by identification of locale
coordinates, i.e. the coefficients of {Hl}lel:anf{yl}a we get the homogenous
polynomial relations among convergent polyzetas [40].

3 Polysystem and differential realization

3.1 Polysystem and convergence criterion
3.1.1 Serial estimates from above

Here, generalizing a little, K is supposed a C-algebra and a complete normed
vector space equipped with a norm denoted by ||.||.

For any n € N, X=2" denotes the set of words over X of length greater than
or equal to n. The set of formal power series (resp. polynomials) on X, is
denoted by K{(X)) (resp. K(X)).

Definition 5. ([25, 39]) Let &, x be real positive functions over X*. Let S €
K{X)).

(1) S will be said E—exponentially bounded from above if it verifies

JK €Ry,In € N,Vw € X=",  |(S | w)| < K%.
w|.:

We denote by KE=*™(( X)) the set of formal power series in K{(X)) which
are £—exponentially bounded from above.

(2) S wverifies the x—growth condition if it satisfies
JK € Ry,3n € N,Vw € X=", [[(S | w)|| < Kx(w) |w]|!.

We denote by KX~8 (X)) the set of formal power series in K{(X)) verifying
the x—growth condition.

Lemma 7. We have

R= > Jwllw = R?[wy= > |ul|v] <2"|w|.

weX* u,veEX*
supp(u Ly v)Sw
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Proof. One has

ju
S qultell = > El(|w| —k)!

u,vEX* k=0 MWl=Ek,pl=|—k
supp(u L v)dw supp(u L v)dw
> (it -ay
= (Jw| —k)!
k
k=0
hud
= jwll = (1+ w]) [w]!.
k=0
By induction on |w], one has 1 + |w| < 2/*!. The expected result follows. O

Proposition 11. Let Sy and S verify the growth condition. Then Sy + S and
S1w So also verify the growth condition.

Proof. The proof for S7 + S5 is immediate.
Next, since |[(S; | w)|| < K;x:(w) |w]!, for i = 1 or 2 and for w € X*, then?®

Yo (Silusa]v),

supp(u L v)dw

= (SiwSlw)l < KK Y (a) ul)(xe() [o]).
u,vEX*
supp(u L v)dw

(S1w Sy | w)

Let K = K1 K5 and let x be a real positive function over X™* such that
Yw e X™, x(w) = max{x1(u)x2(v) | u,v € X* and supp(uw v) > w}.
With the notations in Lemma 7, we get
[(S1w Sz [w)]| < Kx(w)(R? | w).
Hence, S; w Sy verifies the y/-growth condition with y/(w) = 2My (w). O

Definition 6. ([25, 39]) Let & be a real positive function defined over X*, S
will be said &-exponentially continuous if it is continuous over KE~°™(X)). The
set of formal power series which are &-exponentially continuous is denoted by

Ke™ee(X).

Lemma 8. [25, 39] For any real positive function & defined over X*, we have
K(X) C KE~e¢(X)). Otherwise, for ¢ =0, we get K(X) = K°~*¢(X)). Hence,
any polynomial s 0—exponentially continuous.

Proposition 12. ([25, 39]) Let &, x be real positive functions over X* and let
P e K(X).

20(Sy 1y S2 | w) is the coefficient of the word w in the power series S1 1 Sa.
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(1) Let S € KS=*m({(X)). The right residual of S by P belongs to KEé~*m{(X).
(2) Let R € KX~8°(X)). The concatenation SR belongs to KX~& (X)),
Proof. (1) Since S € KS~*m({( X)) then

JK €R,,In € N,Vw € X=",  |(S | w)| < KM.

If u € supp(P) := {w € X* | (P | w) # 0} then, for any w € X*, one has
(Stu|w)= (S |uw) and S>u belongs to KE~™((X)):

3K R 3ne NV e X2 [(Sbulu)l < Kl

It follows that S P is KS~*™((X)) by taking K1 = K max,ecsupp(p) &(1).
(2) Since R € KX~8°(( X)) then
JK € Ry,3n € N,Vw € X=", (S | w)|| < Kx(w) |w]|!.

Let v € supp(P) such that v # e. Since, for any w € X*, Rv belongs to
Kx~8¢( X)) and one has (Rv | w) = (R | v<aw):

JK €eRy,Im e N,Vw e X", |(R|vaw)|

IN

Kx(vaw)(w| = [v)!

x(v)

Note if v <w = 0 then (Rv | w) = 0 and the previous conclusion holds. It
follows that RP is KX~8¢((X)) by taking Ko = K min,cqupp(p) X(v) '

IN

Proposition 13. ([25, 39]) Two real positive morphisms over X*, & and x are
assumed to verify the condition

Y x@i(@) < 1L
reX
Then for any F € KX~8¢( X)), F is continuous over KE~em({(X)).
Proof. 1If £, x verify the upper bound condition then the following power series
> xwew) = (X v
wex* ceX

is well defined. If F € KX78¢((X)) and C' € K¢~*™((X)) then there exist K; € R
and n; € N such that for any w € X2",i = 1,2, one has

(F | w)] < Kix(w) |w]! and {C | w)| < KQM

lwl!”
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Hence,

Vw e X7, |w[> max{ni, na},  [[(Flw){Clw)|| < KiKax(w)§(w),

= ) F)(Clw)l| < Kiks ) x(w)é(w) = KJQ(Z x(w)ﬁ(x)) :

weX* weX* reX
O
3.1.2 Upper bounds a la Cauchy
Let ¢1,...,q, be commutative indeterminates over C. The algebra of formal
power series (resp. polynomials) over {q,...,q,} with coefficients in C is de-
noted by Clqi,...,qn] (vesp. Clg, ..., qn]).
Definition 7. ([25, 39]) Let
F=Y farind--d €Cla,- a0l
11,580 20

We set

E(f) = {peRi HCf ER+ s.t. Vil,...,in Z0,|fi1,...,in|p§1---Pfl"' SCf}

Ef) :  the interior of E(f) in R". y
CV(f) = {qeC":(larl,---,lagn|) € E(f)}: the convergence domain of f.

The power series f is said to be convergent if CV(f) # 0. Let U be an open
domain in C™ and let ¢ € C™. The power series f is said to be convergent on g

(resp. over U) if ¢ € CV(f) (resp. U C CV(f)). We set
C¥lgq1,--- ] = {f€Clar,...,qa]: CV(f) #0}.
Let g € CV(f). There exist the constants Cy,p and p such that
lal<p<p,.lanl<p<p and | fiy i P00l <Cy,
forii,...,in > 0. The convergence modulus of f at q is (Cy, p, p).

Suppose that CV(f) # 0 and let ¢ € CV(f). If (Cy,p, p) is a convergence
modulus of f at g then | fi,, .q¢i" ... ¢ |< Cr(pr/p1)™ ... (p1/p1)"". Hence,
at ¢, the power series f is majored termwise by

m _ —1
Pk
cr [ (1 — —) . (83)
k=0 Pk
Hence, f is uniformly absolutely convergent in {q € C" :|g1|< p,...,|qn|< p}

which is an open domain in C". Thus, CV(f) is an open domain in C". Since
the partial derivation DJ' ... D f is estimated by

i . girt-tin T D -1

E—0 Pk
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Proposition 14. ([25]) We have CV(f) C CV(DI* ... D~ f).
Let f € C%]g1,...,qn]. Let {A4;}i=0.1 be a polysystem defined as follows

Al = YAl )

where for any j =1,...,n, Ag(q) €CV[aqy.--,qn]-
Lemma 9. ([22]) Fori=0,1andj=1,...,n, one has A;joq; = Ai(q) Thus,

9

Vi=01, ) = ) (Aiog)g -
J

j=1
Let (p, p,Cy),{(p, 5, C;) }i=0,1 be respectively the convergence modulus at
¢ € CV(H) [ cv4) (86)

i=0,1
j=1,...,n

of f and {A?};—1 . Let us consider the following monoid morphisms

A(e) = identity and C(e) =1, (87)
Vw =vx;,z; € X,v € X*,  A(w) = A(v)A; and C(w) = C(v)C;.(88)

Lemma 10. ([20]) For any word w, A(w) is continuous over C™V[q, ..., q]
and, for any f,g € CV][q1,...,qs], one has

Aw)o(fg) = Y (uwv]w)(A(u)o f)(A(v) o g).

These notations are extended, by linearity, to K(X) and we will denote
A(w) o f|q the evaluation of A(w) o f at g.

Definition 8. ([20]) Let f € C%[q1,...,qn]. The generating series of the
polysystem {A; }i—=o,1 and of the observation f is given by
of = Y Aw)ofw € Caq,...,q]{X).
weX*

Then the following generating series is called Fliess generating series of the
polysystem {A; }i=o,1 and of the observation f at q:

of, = 3 Awefyw € C(X).

weX*

Lemma 11. ([20]) Let {A;}i=0,1 be a polysystem. Then, the map
o (Car,- - qnl, ) — (CV[ar, - gn] (X)), ),

is an algebra morphism, i.e. for f,g € CV[q,...,qs] and u,v € C, one has:

o(vf 4 ph) =vof + uog and o(fg)=ocf w og.

29



Lemma 12. ([22]) Let {A;}i—o.1 be a polysystem and f € CV[q1,...,qn]. Then

Ve, € X, o(Aiof)=z;<0f € CV[q,...,q]{(X)
Vwe X*, o(Aw)o f)=wacf € CYV[aq,...,¢]J{X).

Lemma 13. ([25]) Let 7 = minj<g<n pr and r = maxi<k<n pr/px. We have

[ A(w) o f]|

IN

(n+1) C(w)|w|![ n ]M
f (1 _ T.)n (n+m\71) 7—(1 _ T)n-i—l
(n+1) n

er et o] ot

Theorem 8. ([25]) Let K = C¢(n+1)(1 —r)™" and let x be the real positive
function defined over X* by

Cm

Vi=01 @) = e

Then the generating series o f of the polysystem {A;}i=0,1 and of the observation
f satisfies the x—growth condition.

It is the same for the Fliess generating series o f, of the polysystem {4;};=0,1
and of the observation f at q.

3.2 Polysystem and nonlinear differential equation
3.2.1 Nonlinear differential equation (with three singularities)

Let us consider the singular inputs?! ug(z) := 27! and u1(2) := (1 — 2)~!, and
the following nonlinear dynamical system

vz = fla=),

i(z) = Ao(q) uo(2) + Ai(q) wa(2), (89)
q(z0) = qo,
where the state ¢ = (q1,...,qn) belongs to the complex analytic manifold of
dimension n, g is the initial state, the observation f belongs to C*V[qi, ..., ¢s]

and {A;}i=o,1 is the polysystem defined on (85).

Definition 9. ([27]) The following power series is called transport operator of
the polysystem {A;}i=0,1 and of the observation f

T = Z aZ (w) A(w).

weX*

21These singular inputs are not included in the studies of Fliess motivated, in particular,
by the renormalization of y(z) at +oo [20, 22].
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By the factorization of the monoid by Lyndon words, we have [27]

T, 04 (X wou)= [T eolisoArl o0

weX* leLynX

The Chen generating series along the path zg ~ z, associated to wp,w; is

Sigmmz 1= Z (S| w) w with (S| w) = aZ (w) (91)

weX*

which solves the differential equation (72) with the initial condition S,yaz, = 1.
Thus, Sy~ and L(z)L(z0) ! satisfy the same differential equation taking the
same value at zg and S, = L(2)L(20) L.

Any Chen generating series S, is group like [46] and depends only on the
homotopy class of zg ~» z [9]. The product of S,z and Syjszy 1S Sppaszy =
SiimzeSzgzy - Let € €]0,1] and z; = eexp(if;), for i = 0 or 1. We set 5 =
B1 — Bo. Let T'y(e, Bo) (resp. T'1(g, B1)) be the path turning around 0 (resp. 1)
in the positive direction from zg to z;. By induction on the length of w, one has

ufe, B
Jwl!”

where |w| denotes the length of w and |w|,, denotes the number of occurrences
of letter x; in w, for i = 0 or 1. For ¢ tends to 07, these estimations yield
Sri(e.5) = €97 + o(¢). In particular, if Ig(e) (resp. I'1(€)) is a circular path of
radius ¢ turning around 0 (resp. 1) in the positive direction, starting at z = &
(resp. 1 — ¢), then, by the noncommutative residue theorem [35, 32], we get

[{Srsep) W) = (2€) (92)

Sroe) = €™ +o0(e)  and  Sp, ) = e F +o(e). (93)
Finally, the asymptotic behaviors of L on (73) give [32, 35]

67I1 logsZLU 6710 logs. (94)

Se1_
ewl—e T+

In other terms, Z,,, is the regularized Chen generating series Sc..1_. of diff-
ferential forms wy and wy: Z,,, is the noncommutative generating series of the fi-
nite parts of the coefficients of the Chen generating series e*1198¢ §__,__ e%ologe,
i.e. the concatenation of e*01°2¢ and then S...1_. and finally, e®t1°8<,

3.2.2 Asymptotic behavior of the successive differentiation of solu-
tion via extended Fliess fundamental formula
The Fliess’ fundamental formula [20] can be then extended as follows
Theorem 9. ([39]) We have
y(z) =To flq0 = Z (S22 | w)(-A(w) © f\qo | w> = <0'f\q0 ” SZO“"’Z>'

weX*
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By the factorization of the Lie exponential series L, the expansions of the
output y of nonlinear dynamical system with singular inputs follow

Corollary 2.

y(2) = > gu(z) Aw) o fig,

weX*

_ ni Nk log zAo
= E E gmglzl___xgkzl(z) adt Ay ... ad)® Aje ° figo

E>0ny,...,ng 20

- II e <gsl (2) A(B) o f|qo>

leLynX
= exp( Z guw(z) A(m(w)) of%),
weX*
where, for any word w in X*, g, belongs to the polylogarithm algebra.

Since S,y. = L(2)L(20)~! and since of, and L(z)~! are invariant by
0, = d/dz and by 6y = zd/dz then we obtain the n-order differentiation of y :

02y(2) = (0 fi,, 10" 820z} = (0 fj,, | O2L(2)L(20) ") (95)
and the n-order differentiation of y with respect to 6 :
0y (2) = (0 1,y |05 Sz0mz) = (0}, | 05L(2)L(20) "), (96)

With the notations of Proposition 5, we get respectively

0y(2) = (0 ),y | [Dn(2)L(2)]L(20) ") = (0}, > Dn(2) | L(2)L(20)~"),(97)
05y(2) = (0fi,, | [En(2)L(2)]L(20)~") = (0.fi,, > En(2) | L(2)L(20)7").(98)
For zg = € — 07, the asymptotic behavior and the renormalization at z = 1
of 07y(z) and 6} y(z) (or the asymptotic expansion and the renormalization of

its Taylor coefficients at +00) are deduced from (94) and extend a little bit the
results of [39] as follows

Corollary 3. For any integer n, we have respectively??

22We overget, by Note 18, the n-order differentiation of y w.r.t. 6; :
07y(2) = (0 f1, |67 Sz202) = (0 fj, | 07L(z)L(z0) ).
Hence,
07y(2) = (0fi,y | [Dn(2) = En(2)]L(2)L(20) ") = (0}, > [Dn(2) = En(2)] | L(z)L(20) ")
and then

01y(1) == D (Aw)ofi, | w)([Dn(l —e) = En(l—e)le "1198° Z,,, 770 108% | w).
weX*

The actions of 8y = ug(z)~'d/dz and 61 = ui(z)~1d/dz over y(z) are equivalent to those of
the residuals respectively by xo and z1 over o f‘qo and correspond to functional differentiations

[21] while 8. = d/dz is the ordinary differentiation and is equivalent to the residual by zo+z1.
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Oy(1) 5 Y (Aw) o fi, [w)(Da(l—g) e ™ 18% Z,, e 1¢% ),
weX*

Ogy(1) sz Y (Aw)o fi, | w)(Ea(l—g) e ™98 Z,, e7 7018 | w).
weX*

Corollary 4. The n-order differentiation of the output y of the system (89) is
a C-combination of the elements g belonging to the polylogarithm algebra.
Moreover, if the ordinary Taylor expansions of 07y and 03y exist :

Ny(z) = dez" and O0y(z) = Ztkzk

k>0 k>0

then the coefficients of these expansions belong to the algebra of harmonic sums
and there exist algorithmically computable coefficients a;,al; € Z,b;,b; € N and
¢i, ¢, € Z[y] such that

de e D cik®log" kb and t —— > ik log" k.

i>0 i>0
3.3 Differential realization
3.3.1 Differential realization
Definition 10. The Lie rank of a formal power series S € K{X)) is the di-
mension of the vector space generated by

{S>TI|1I € Liex(X)}, or respectively by {I1<S |1 € Liex(X)}.

Example 10. Let P = x1x0x1 + xox1T0%1 be a polynomial of degree 4 over
X = {xo,21}. A basis up to degree 4 of the Lie algebra Liex(X) is following
(c.f. Example 4)

{}?ro’}?rl’}?rﬂxl’}) 2 fﬂ

TiT1)

ozfvfz%xlafzgxfafzgx%}'

The Lie-Hankel matriz of P is following

Ix- o1 xox1 T17071

P, 0 0 0 1

P, 0 0 1 0
Ppw, 0 -1 1 0
Pz, 0 -2 0 0
Py —2 0 0 0
Paz —2 0 0 0

and its Lie-Hankel rank of P is then 4.
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Definition 11. Let S € K(X)) and let us put
Ann(S) = {I € Lieg(X) | S>1I =0},
At (S) = {Q € (K(X)),w) | Q> Ann(S) =0},
It is immediate that Ann®(S) > S and it follows that (see [22, 48]).

Lemma 14. Let S € K{X)). If S is of finite Lie rank, d, then the dimension
of Ann'(S) equals d.

By Lemma 3, the residuals are derivations for shuffle product. Then,
Lemma 15. Let S € K{(X)). Then:
(1) For any Q1 and Qs € Ann™(S), one has Q1w Qs € Ann'(S).
(2) For any P € K(X) and Q; € Ann"(S), one has P<Q; € Ann™(S).

Definition 12. ([22]) The formal power series S € K{(X)) is differentially
produced if there exist

e an integer d,
e a power series f € K[qi, - .., q4],

e a homomorphism A from X* maps to the algebra of differential operators
generated by

d
o _. 0
A(zz) = ZAg(qla"'qu>a_,7
~ aj
where, for j=1,...,d, Ag (G1,-..,qa) belongs to K[q,...,q4] such that

Vwe X*, (S|w) = Aw)o f,.

The couple (A, f) is called the differential representation of S of dimension d.

Proposition 15. ([48]) Let S € K{(X). If S is differentially produced then it
verifies the growth condition and its Lie rank is finite.

Proof. Let (A, f) be a differential representation of S of dimension d. Then, by
the notations of Definition 8, we get

afiy=5=Y_ (Aw)o f), w.

weX*

For any j =1,...,d, we put



Firstly, by Theorem 8, the generating series o f verifies the growth condition.
Secondly, for any IT € Lieg(X) and for any w € X*, one has

(of ol [ w) = {of [Tw) = A(Tlw) o f = A(II) o (A(w) o f).

Since A(II) is a derivation over K[qi, ..., dq]:
< 9
A = A(II) o Gj) —,
m = ey
d
0 o
Ao Ao f) = 3 (A) og) B
j=1
then we deduce that
d
Vwe X', (ofeIlw) = Y (AdD)og)(T; | w),
j=1

d
= ofell = Y (AM)og)T;

That means o f > II is K-linear combination of {T}},;=1, . ¢ and the dimension
of the vector space span{cf>1II | II € Liex(X)} is less than or equal to d. O

3.3.2 Fliess’ local realization theorem

Proposition 16. ([48]) Let S € K{X)) be such that its Lie rank equals d. Then
there exists a basis Si,...,Sq € K(X) of (Ann™(S),w) = (K[Sy,...,Sq],w)
such that the S;’s are proper and for any R € AnnL(S), one has

R = Z -7“7;1,...,1'-71, SlLuil W S;ui,i,
’Ll!. !

Lo
i1y0rig >0 d

where the coefficients {riy .. iy tix....ig>0 belong to K and ro,. o = (R | 1x+).

.....

Proof. By Lemma 14, such a basis exists. More precisely, since the Lie rank
of S is d then there exist Pi,..., Py € Liex(X) such that S Py,...,S> Py €
(K{X),w) are K-linearly independent. By duality, there exist Si,...,Sq €
(K{X),w) such that

d
Vi,j = 1,...,d, <Sl | Pj) :(Si,j, and R:HeXp(Si Pl)
i=1
Expending this product, one obtains, via PBW theorem, the expected expression
for the coefficients {r;, i, = (R| P{* ... Pi)}i, ... is>0. Hence, (Ann™(S), w)
is generated by Si, ..., Sq. O
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With the notations of Proposition 16, one has respectively.

Corollary 5. If S € K[Sy,...,S4] then, for any i = 0,1 and for any j =
1,....d, one has z;< S € Ann*(S) = K[S1, ..., Sql.

Corollary 6. The power series S verifies the growth condition if and only if,
foranyi=1,...,d, S; also verifies the growth condition.

Proof. Assume there exists j € [1,...,d] such that S; does not verify the growth

condition. Since S € Ann™(S) then using the decomposition of S on S1, ..., Sy,
one obtains a contradiction with the fact that S verifies the growth condition.
Conservely, using Proposition 11, we get the expected results. o

Theorem 10. ([22]) The formal power series S € K{(X)) is differentially pro-
duced if and only if its Lie rank is finite and if it verifies the x-growth condition.

Proof. By Proposition 15, one gets a direct proof.
Conversely, since the Lie rank of S equals d then by Proposition 16, by
putting o f|, = S and, for any j =1,...,d, 0g; = S,

(1) we choose the observation f as follows

= = K yoenin 4 i ~ =

f@,. a0 = Y, —=Emgtqy € Klgs..,
- 11+...124-
D1 yenes 1q>0
such that

= = Tir,os in = \Ld =\t

ofiy(@,-da) = Y T em) e (0ga)
it yig>0 L

(2) it follows that, for i = 0,1 and for j = 1, ...,d, the residual z;<0; belongs
to Ann* (0 f},) (see also Lemma 15),

(3) since of verifies the y-growth condition then, by Corollary 6, the gener-
ating series 0@; and z; <o@; (for i = 0,1 and for j = 1,...,d) verify also
the growth condition. We then take (see Lemma 12)

Vi=0,1, Vi=1,....d, cAi(q,...,q) =z <07,
by expressing A’ on the basis {0§; }i=1, .4 of AnnL(afh),
(4) the homomorphism A is then determined as follows

0

d
Vi:O,l, A(.’L'l) = ZA;(Ql,,Qd)a—_,
=0 4

where, by Lemma 9, one has A%(q1, ..., q4) = A(x;) o g;.

Thus, (A, f) provides a differential representation®® of dimension d of S. O

231n [22, 48], the reader can find the discussion on the minimal differential representation.
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Moreover, one also has the following

Theorem 11. ([22]) Let S € K{X)) be a differentially produced formal power
series. Let (A, f) and (A', ') be two differential representations of dimension n
of S. There exist a continuous and convergent automorphism h of K such that

Vw e X*,Vg €K, h(A(w)og)=A(w)o(h(g)) and [ =h(f).

Since any rational power series verifies the growth condition and its Lie rank
is less than or equal to its Hankel rank which is finite [22] then

Corollary 7. Any rational power series and any polynomial over X with coef-
ficients in K are differentially produced.
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