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Propagation de fronts généralisée sur graphes pondérés

Dans cet article, nous considérons la méthode des ensembles de niveaux pour la propagation de fronts telle qu'elle a été introduite par les travaux d'Osher-Sethian et proposons de l'étendre au domaine des graphes. L'adaptation que nous proposons repose sur le formalisme des Équations aux différences Partielles (EdPs) via une famille d'opérateurs gradients pondérés sur graphes. Puis, en profitant des avantages liés à la nature discrète des graphes, nous proposons d'étendre la formulation initiale (qui ne considère qu'un unique front évoluant selon une vitesse positive) pour obtenir une formulation très générale et qui permet de considérer la propagation simultanée de plusieurs fronts évoluant sans restrictions sur le signe de leurs vitesses. Le potentiel de notre approche pour le traitement d'images et de données est également présenté.

Introduction

De nombreuses applications impliquent des données définies sur des domaines de topologie complexe. Ces données peuvent être définies sur des variétés ou des domaines de forme irrégulière, définies sur des structures de réseaux, ou encore définies comme des nuages de points de grandes dimensions par une collection de vecteurs caractéristiques. Ces données, qu'elles soient organisées ou non, peuvent être représentées sous la forme de graphes dont les sommets représentent les données et dont les arêtes représentent les interactions entre ces données. Par conséquent, il est très important d'adapter des outils initialement développés pour traiter des données définies sur des espaces euclidiens et dont l'efficacité a été prouvée, aux graphes (voir la récente revue parue dans [START_REF] Shuman | The Emerging Field of Signal Processing on Graphs : Extending High-Dimensional Data Analysis to Networks and Other Irregular Domains[END_REF]).

Dans cet article, nous considérons la méthode des ensembles de niveaux pour la propagation de fronts telle qu'elle a été introduite par les travaux d'Osher-Sethian [START_REF] Sethian | Level Set Methods and Fast Marching Methods : Evolving Interfaces in Computational Geometry[END_REF] et proposons de l'étendre au domaine des graphes. L'adaptation que nous proposons repose sur le formalisme des Équations aux différences Partielles (EdPs) via une famille d'opérateurs gradients pondérés sur graphe. Puis, en profitant des avantages liés à la nature discrète des graphes, nous proposons d'étendre la formulation initiale (qui ne considère qu'un unique front évoluant selon une vitesse positive) pour obtenir une formulation très générale et qui permet de considérer la propagation simultanée de plusieurs fronts évoluant sans restrictions sur le signe de leurs vitesses.

Au delà de l'intérêt théorique d'une formulation discrète de l'équation du mouvement de fronts, cette adaptation permet d'étendre significativement le domaine d'application de cette approche. Notamment, nous présentons dans cet article un certain nombre d'applications pour le calcul de géodésiques sur maillages, la segmentation d'images naturelles (combinant graphes non-locaux et patchs), mais également la classification semi-supervisée de données via une implémentation simple des contours actifs sur graphes.

Graphes et opérateurs pondérés

Nous considérons que tout ensemble discret peut-être représenté par un graphe pondéré G = (V, E, w), composé de deux ensembles finis : V = {u 1 , ..., u n } un ensemble de n sommets et E ⊂ V × V un ensemble d'arêtes pondérées. Une arête (u, v) ∈ E connecte deux sommets adjacents u et v. Le poids w uv d'une arête est défini par une fonction w : V × V → IR + si (u, v) ∈ E, et w uv = 0 sinon. On note N (u), l'ensemble des noeuds adjacents à u. Dans cet article, les graphes sont supposés simples, complets et non-orientés.

Gradients morphologiques sur graphes Dans ce paragraphe, nous rappelons quelques opérateurs sur les graphes précédemment définis dans [START_REF] Ta | Nonlocal pdes-based morphology on weighted graphs for image and data processing[END_REF] et références connexes. Soient G = (V, E, w) un graphe et f : V → IR une fonction définie sur ses sommets. Les gradients morphologiques externes et internes sur graphe sont définis par :

(∇ ± w f )(u) = ( √ w uv |(Df (u)) ± | p ) v∈V , où Df (u) = f (v) -f (u) , (x) + = max(x, 0) et (x) -=
min(x, 0). Les normes associées à ces gradients sont alors données pour les normes L p , p ∈ {1, 2}, respectivement L ∞ , par

(∇ ± w f )(u) p = v∼u w p/2 uv |(Df (u)) ± | p 1/p (∇ ± w f )(u) ∞ = max v∼u ( √ w uv |(Df (u)) ± |), (1) 
avec l'égalité suivante :

(∇ w f )(u) p p = (∇ + w f )(u) p p + (∇ - w f )(u) p p . ( 2 
)
Construction des graphes Il existe de nombreuses méthodes pour transformer un ensemble discret de données en un graphe pondéré, où le voisinage reflète les interactions entre les différents éléments par le biais d'une mesure de distance µ : V × V → IR + . Dans le cas général, on peut citer : -Les ε-graphes où deux éléments u et v sont connectés si µ(u, v) ε, avec ε > 0. -Les graphes des k plus proches voisins (k-ppv) où chaque noeud u est connecté à ses k plus proches voisins. Dans le cas de données structurées, on peut citer les graphes de régions adjacentes (RAG). Un RAG peut être construit à partir de n'importe quelle structure de données représentée par un graphe, où une région R i est définie comme un ensemble connexe de noeuds avec

R i = V et R i = ∅. Deux ré- gions R i et R j sont connectées si ∃v i ∈ R i et v j ∈ R j |v i ∼ v j .
Un RAG peut facilement être augmenté d'un kppv afin de permettre l'ajout d'arêtes supplémentaires entre des régions non-adjacentes. Finalement, quelle que soit la construction du graphe, la pondération des arêtes est effectuée à partir d'une fonction de similarité telle que

g 0 (u, v) = 1, ou g 1 (u, v) = (µ(F u , F v ) + ε) -1 avec ε > 0, ε → 0, ou g 2 (u, v) = exp(-µ(F u , F v )/σ 2 ) avec σ > 0, où F u , u ∈ V est un vecteur caractéristique associé au noeud u.

Adaptation de l'approche par ensembles de niveaux

Soit Γ un front évoluant sur un domaine euclidien Ω ⊂ IR n sous l'influence d'une fonction vitesse F : Ω × IR → IR et représenté à tout instant t ∈ [0, ∞[ par une courbe paramétrique γ(t). L'idée de l'approche par ensembles de niveaux consiste à représenter le front comme le niveau zéro d'une fonction d'ensembles de niveaux φ(x, t) tel qu'à chaque instant t la position du front soit donnée par l'ensemble des points x ∈ IR n vérifiant φ(x, t) = 0.

Suivant cette approche, l'équation du mouvement de Γ s'exprime sous la forme du Hamiltonien suivant

H(x, ∇φ) = ∂φ(x, t) ∂t -F(x, t) ∇φ(x, t) = 0, (3) 
et recouvre également, dans le cas où la vitesse F : Ω → IR est toujours positive, la célèbre équation eikonale

F(x) ∇T (x) -1 = 0, x) ∈ Ω\S T (x) = ψ(x), x ∈ S, (4) 
où T : Ω → IR + est la fonction d'instant d'arrivée du front Γ en chaque point d' Ω.

Notre adaptation discrète de cette équation au domaine des graphes pondérés repose sur l'interprétation de l'équation continue non-stationnaire (3) comme un processus morphologique d'érosion (vitesse négative) ou de dilatation (vitesse positive). À partir de cette interprétation, et en reprenant les travaux de Ta [START_REF] Ta | Nonlocal pdes-based morphology on weighted graphs for image and data processing[END_REF] sur l'adaptation de la morphologie mathématique sur graphe, nous obtenons l'équation suivante

∂φ ∂t (u, t) = F(u) (∇ + w φ)(u, t) p si F(u) > 0 F(u) (∇ - w φ)(u, t) p si F(u) < 0, (5) 
qui correspond à un processus morphologique d'érosion ou de dilatation discrète sur graphe en fonction du signe de la vitesse. Dans ce cas, la fonction d'ensembles de niveaux discrète φ : V × t → IR est définie par analogie avec son pendant continu, telle que

φ(u, t) > 0 si u ∈ Ω t < 0 si u ∈ Ω c t , (6) 
où Ω t désigne l'ensemble des sommets situés à l'intérieur du front à l'instant t et Ω c t l'ensemble des sommets situés à l'extérieur du front à l'instant t. La position du front étant donnée à tout instant t comme l'interface entre ces deux sous ensembles.

Nous avons montré [START_REF] Desquesnes | Eikonal equation adaptation on weighted graphs : fast geometric diffusion process for local and non-local image and data processing in[END_REF] que pour un graphe particulier représentant une grille régulière, cette équation coïncide exactement avec le schéma de discrétisation d'Osher de l'équation du mouvement continue [START_REF] Ta | Nonlocal pdes-based morphology on weighted graphs for image and data processing[END_REF].

Lien avec l'équation eikonale et l'algorithme du Fast Marching. Si nous nous restreignons maintenant au cas où le signe de la vitesse F est toujours positif, notre équation (5) devient

∂φ(u, t) ∂t = F(u) ∇ + w φ (u, t) p . (7) 
Soit T : V → IR la fonction qui associe à chaque sommet du graphe l'instant d'arrivée du front Γ en ce sommet. Par analogie avec la formulation continue, où la relation entre la fonction d'ensembles de niveaux φ et la fonction d'instant d'arrivée tient au changement de variable φ(x, t) = t -T (x), nous proposons une version stationnaire de l'équation (7) telle que

∂φ(u, t) ∂t = F(u) ∇ + w (t -T ) (u) p = F(u) ∇ - w T (u) p , (8) 
qui correspond à une adaptation discrète de l'équation eikonale sur graphe.

Finalement, l'équation du mouvement d'un front évoluant toujours dans la direction de sa normale positive est donnée par le schéma numérique suivant

S u (T , V, F) = 0 ∀u ∈ Ω 0 T (u) = 0 ∀u ∈ Ω 0 , (9) 
où S u (T , V, F) = ∇ - w T (u) p -P(u) et P = 1/F est une fonction de potentiel.

Nous avons apporté une preuve de l'existence et de l'unicité de la solution à cette équation, et également proposé un algorithme rapide de résolution de cette équation et qui recouvre en le généralisant aux graphes l'algorithme du Fast Marching [START_REF] Desquesnes | Eikonal equation adaptation on weighted graphs : fast geometric diffusion process for local and non-local image and data processing in[END_REF].

Généralisation de l'approche

Forts de cette adaptation, nous en proposons ensuite une généralisation pour considérer maintenant l'évolution simultanée de plusieurs fronts concurrents évoluant sur un même graphe, puis le cas où ces fronts sont soumis à des vitesses qui peuvent être à la fois positives et négatives [START_REF] Desquesnes | Generalized fronts propagation on weighted graphs in proceedings of Algoritmy[END_REF].

Généralisation à la propagation simultanée de plusieurs fronts. Pour cette première généralisation, nous considérons des fronts évoluant simultanément sur un même graphe qui ne peuvent se chevaucher et qui n'ont aucune influence mutuelle excepté qu'ils sont mutuellement bloquants.

Soient Γ 1 , ..., Γ N , N fronts évoluant sur un graphe G. Ces fronts sont respectivement définis à l'instant initial par les sous ensembles Ω 1 0 , ..., Ω N 0 . Nous proposons de représenter ces fronts, comme un front unique (ou global) Γ, représenté par l'ensemble Ω 0 = Ω i 0 , dont l'évolution est réalisée par une version modifiée de l'équation du mouvement d'un front sur graphe (9). Dans ce cas, le schéma de résolution en un sommet u est modifié pour ne plus tenir compte de l'ensemble des sommets du graphe, mais uniquement des sommets atteints par le même front que u, que nous notons V u . Ainsi, l'équation du mouvement du front global devient

S u (T , V u , F u ) = 0 ∀u ∈ Ω 0 T (u) = 0 ∀u ∈ Ω 0 , ( 10 
)
où F u désigne la vitesse associée au front atteignant u. Cette équation peut être résolue par le même algorithme que dans le cas d'un front unique.

Généralisation sans restrictions sur le signe de la vitesse des fronts. Dans un second temps, et en nous basant sur la généralisation précédente, nous étendons une nouvelle fois notre approche pour considérer le cas où les fronts sous soumis à des vitesses positives et négatives. Dans ce cas, nous proposons de découper chaque front en deux : D'un côté la partie du front soumise à une vitesse positive, et de l'autre la partie du front soumise à une vitesse négative. Nous montrons que l'évolution de cette dernière partie de front selon une vitesse négative F coïncide avec l'évolution de son complémentaire (au sens des ensembles de sommets) selon une vitesse positive -F. Ainsi, nous proposons de réaliser l'évolution de nos N fronts, comme l'évolution simultanée et selon des vitesses positives de 2 × N fronts, composés des parties positives des fronts originaux et des complémentaires des parties négatives des fronts originaux.

L'évolution de ces fronts peut donc être simplement réalisée grâce à l'algorithme précédent pour la propagation simultanée de plusieurs fronts sur un même graphe.

Résultats

Dans cette section, nous présentons quelques résultats de notre approche, ceci afin d'illustrer son potentiel et surtout son adaptabilité à une large gamme de données d'origines et de topologies variées.

Calcul de géodésiques La fonction d'instant d'arrivée T se comportant comme une fonction de distance aux labels initiaux, notre formulation permet tout naturellement le calcul de géodésiques sur graphes. La Figure 1 illustre cette application sur le graphe d'un maillage 3D (représentant une amphore). Dans le cas d'une fonction de poids constante (au milieu), le front se propage de manière homogène et la carte de distance ne dépend que de la topologie du graphe. Dans le cas où la fonction de poids dépend de la texture de l'amphore (à droite), la propagation est perturbée voire presque stoppée au niveau des discontinuités de cette texture. On remarquera dans ce dernier cas qu'un simple seuillage permet d'extraire l'objet d'intérêt de la texture. Classification non-supervisée de données Enfin, la Figure 3 illustre une dernière application de notre approche pour la classification non-supervisée. Cette application repose avant tout sur la dernière extension de notre approche qui permet de considérer l'évolution simultanée de plusieurs fronts soumis à des vitesses signées et évoluant au cours du temps. Ceci permettant aux fronts de se dilater ou de se rétracter sur le graphe, en fonction du signe de leur vitesse à chaque instant t. Dans cet exemple, l'ensemble des données est étiqueté de manière aléatoire selon deux classes. Afin de corriger cette répartition aléatoire, un front est associé à chaque classe et propagé sur le graphe sous l'influence d'une vitesse dépendant en chaque sommet de sa similarité à la moyenne des sommets du front, tel que : Si un sommet est plus similaire à la moyenne d'un front que du reste du graphe, alors la vitesse de ce front en ce sommet est positive, sinon négative. Ainsi, la vitesse F i d'un front Γ i est exprimée par

F i (u, t) = D µ(f, v ∈ Ω i ), f (u) -D µ(f, v ∈ Ω i ), f (u)
(11) où µ désigne la moyenne et D la distance euclidienne et f : V → IR n associe à chaque sommet un vecteur caractéristique. Ce schéma correspond en fait à une généralisation du modèle de Chan et Vese pour les contours actifs [START_REF]Active Contours without Edges in[END_REF].

FIGURE 1 -

 1 FIGURE 1 -Calcul de géodésique sur un maillage 3D texturé. De gauche à droite : le maillage original avec l'origine de la géodésique, la géodésique avec une fonction de poids constante et enfin la géodésique avec une fonction de poids dépendant de la texture.

FIGURE 2 -

 2 FIGURE 2 -Segmentation d'images. La segmentation est réalisée par la propagation simultanée de plusieurs fronts(à partir de germes) sur deux graphes construits à partir de l'image. Le premier graphe au centre est un classique graphe de 4-connexité, et le second à droite est un graphe non-local ou chaque pixel est connecté grâce à un voisinage étendu et pondéré avec des patchs, ce qui permet de mieux caractériser la texture.

FIGURE 3 -

 3 FIGURE 3 -Contours actifs sur graphe pour la classification de données (des imagettes de 0 et de 1). La classification est réalisée grâce à la propagation simultanée de deux fronts initialisés aléatoirement (un par classe) sur le graphe construit à partir des données (une base d'imagettes). Le graphe est un graphe des 7 plus proches voisins et la fonction de poids dépend de la similarité entre les pixels des imagettes. Segmentation d'image naturelle Lorsque l'on traite des images, un des premiers avantages de l'utilisation de graphes pondérés est qu'ils permettent de faire abstraction de leur représentation naturelle (une grille de pixels en 4 ou 8 adjacence). Il est possible par exemple d'utiliser un graphe non local où chaque pixel bénéficie du voisinage étendu des pixels appartenant à une fenêtre centrée sur lui même et est représenté par un patch également centré sur lui même. Combinée à notre adaptation du Fast Marching sur graphe, cette approche permet de tirer avantage de la représentation non locale (qui caractérise bien mieux la texture), tout en bénéficiant de l'efficacité reconnue du Fast Marching. La Figure 2 illustre l'intérêt de l'utilisation d'un graphe non local comparée à l'utilisation d'un graphe local pour la segmentation d'une image naturelle. Enfin, grâce à la propagation simultanée de plusieurs fronts, les différentes zones d'intérêt de l'images sont extraites en une seule passe.

Dans cette section, nous présentons notre adaptation des équations de l'approche par ensembles de niveaux pour la propagation d'un front se propageant dans la direction de sa normale positive. Cette approche, introduite par Osher-Sethian, peut aisément être liée avec l'équation eikonale bien connue et largement utilisée dans le domaine du traitement d'image.Adaptation de l'approche par ensembles de niveaux. Nous rappelons l'approche par ensembles de niveaux telle qu'elle a été introduite par Sethian[START_REF] Sethian | Level Set Methods and Fast Marching Methods : Evolving Interfaces in Computational Geometry[END_REF] pour décrire le déplacement d'un front et son implémentation par l'algorithme du Fast Marching.