N
N

N

HAL

open science

Fast American Basket Option Pricing on a multi-GPU
Cluster

Michael Benguigui, Francoise Baude

» To cite this version:

Michael Benguigui, Frangoise Baude. Fast American Basket Option Pricing on a multi-GPU Cluster.
22nd High Performance Computing Symposium, Apr 2014, Tampa, FL, United States. pp.1-8. hal-

00927482v1

HAL Id: hal-00927482
https://hal.science/hal-00927482v1
Submitted on 13 Jan 2014 (v1), last revised 11 Feb 2014 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00927482v1
https://hal.archives-ouvertes.fr

American Basket Option Pricing on a multi GPU Cluster

Michaél Benguigui, Francoise Baude
INRIA Sophia-Antipolis Méditerranée’, CNRS 13S, University of Nice Sophia-Antipolis
michael.benquigui@inria.ffrancoise.baude@unice.fr

Keywords: Distributed and parallel computing; Cluster; GPU; basket options, in the same order of time than a CPU cluster
OpenCL; Machine learning; Mathematical finance; Option implementation [3] on a 64-core cluster (quad-core AMD

pricing Opteron 2356 with Gigabit Ethernet connections), which is
around 8 hours. However a single GPU is limited for such
Abstract complex problems. Targeting cluster of GPUs is the natural

This article presents a multi GPU adaptation of a specifiéollowing step to benefit of both aggregated memory of their
Monte Carlo and classification based method for pricinghost CPUs, and high parallelism of SIMT architectures.
American basket options, due to Picazo [1]. The first parConsequently, our newest goal has been to reach the symbolic
relates how to combine fine and coarse grained parallelizatiah hour or less of computation time for solving such a cerpl
to price American basket options. A dynamic strategy oproblem, characterized by its non-embarrassingly parallel
kernel calibrationis proposed. Doing so, our implementation nature. To this aim, we have been obliged to thoroughly
on a reasonable size (18) GPU cluster achieves the pricang obptimize each step of the parallel method as will be detailed.
high dimensional (40) option in less than one hour against The paper makes the following contributions. First we
almost 8 as observed for runs we conducted in the past [4Jropose a two-level CPU/GPU parallelization of the Picazo
using ab4-core cluster (composed of quad-core AMD Opterorpricing algorithm. Then we perform a dynamic load balancing
2356) In order to benefit from different GPU device types, westrategy to exploit heterogeneous multi GPU clusters. Finally
present a dynamic strategy to load balance GPU calculuge show how to integrate Random Forests [4] in our pricing
which greatly improves the overall pricing time. An analysisengine to make it better scale: we propose a distribution of the
of possible bottleneck effects demonstrates that there is dassifier training and a GPU based implementation of the
sequential bottleneck due to the training phase that relies upctassification.
the AdaBoost classification method, which prevents the We will describe in section 2 a multi GPU
implementation to be fully scalable, argb prevents to implementation to price such financial instruments through
envision further decreasing pricing time down to handful ofPicazo method. At a coarse-grained level, we will focus on the
minutes. For this we propose to consider using Randorparallelism orchestration across the cluster nodes. Then we
Forests classification method: it is naturally dividable over avill explain our fast dynamic strategy to calibrate kernel
cluster, and available like AdaBoost as a black box from thearameters in parallel, and expose our load balancing solution
popular Weka machine learning library. However ourfor heterogeneous multi-GPU clusters. Finally at a fine-

experimental tests will show that its use is costly. grained level, we will detail the SIMT oriented
implementation. In section 3, we will expose our strategy to
1. INTRODUCTION: GPUS IN FINANCE tackle the bottleneck effect of the sequential learning phase

Many financial measures require huge resources to baipported bya boosting (AdaBoo3tor a Support Vector
computed in acceptable time. “Acceptable” is related to Machines (SVM using Sequential Minimal Optimization)
specific context: Value at Risk may be performed to forecashethod, replacing it by the naturally parallelizable Random
the maximum loss of a given portfolio at a two weeks horizorForests method. We are able to divide it over CPU nodes, each
whereas computing hedging portfolios is often dedicated toode training a small forest through the Weka libray. [5]
intraday operations. The difficulty not necessarily depends oBoing so, we obtain a fully parallel pricing algorithm. In both
computation methods but on engaged financial instrumentsections, tests will highlight advantages/disadvantages of each
For instance, a portfolio can be composed of several financialassification method.
instruments and which can vary from a simple asset to option
on several assets. In this paper, we focus on pricing o2 A GPU CLUSTER BASED OPTION PRICING
complex financial instrument: an American option, which for ENGINE
being realistic, is based upon a basket of up to 40 assets. The Here we describe a Java implementation of the selected
difficulty to price an American option is to predict an exercisepricing method due to Picazo. We use the JOCL [6] and
frontier to consider all possible exercises times until theOpenCL [7] libraries to exploit distributed GPUs. Through a
maturity date. Furthermore, model parameters such adynamic strategy we recognize GPUs over nodes and adapt
discretization, number of simulations, complicate computatiotkernel parameters before load balancing main computation
time. Our previous work [2] highlights the necessity to tasget phases. Tests reveal bottleneck effect due to building phases
GPU rather than distributed CPUs to provide the samef classifiers and necessity to paraflel them as exposed in
performance level. By this way we price complex Americarsection 3.

mailto:michael.benguigui@inria.fr

2.1. Picazo pricing algorithm MC simulations [step 1]. Consequently there @ivecont MC
High dimensional American basket call/put option is asimulations needed per training instance.

contract allowing the owner to buy/sell at a specified strike

price K, a possibly hlgh Size (E.QO, as in the CACI0 index) Algorithm Classification and Monte Carlo Algorithm

set of underlying assef®, (numbered) at any timet until a Require: S}, d, 7, &, o0, T, V.

maturity dateT. So a call option owner expects the basket o :ﬂﬂ“§mf "“m‘;” Ui :laffﬁfﬁtmfmtp“irt'? “E:d“ss- iation valie mbcont

assets price on the market to raise over strike, s in this ca peire; 7 of rore 1o e et cntimaton e i on

and according to the option contract, the owner will have t 1. phase 1 :

spend less money to buy these assets, i.e. to exercise = % form=N-1toldo S

option. There is no analytic solution to price this financial * Generate nbclass pointsof {8, :i=L.....dis=1,..., nbrlass}.

il

[step 1] : each worker iterates over a subset of nb class points

instrument but Monte Carlo (MC) methods, based on the la\ ;. [fprs=1io b 9o

of large number and central limit theorem, allow a simplified & | [Compute CB)(S, t) = E[emet=tmdV(S, | t01)]S,,,] using nb_cont trajec-

approach for high complex problems, reaching good accurac EUfi“if”d alsa S LRI eath porker stmulitey

in reasonable time. Conside8® as independent price [‘f:fgn (St) < WS) then nb_cont trajectories on its GPU

trajectories of the basket of assets following geometric o | else

Brownian motion processe¥, (f (S¥), t) as the option pay- 1= | sign=-1

off, f as the arithmetic or geometric mean functioras the 11 en‘;“;‘q;f

risk free rate. European OptiOl’l pri&eat time zero can be 1:; [step 2] & Classify {(Stm,sign)‘ Tis= L...,nb_q:{a.ss} to characterize the exercise

estimated, through a number of MC simulationsviC, as boundary at .

follows 14: end for each worker simulates a subset of nBMC trajectories on its GFU

1 nbMC 15: Ephﬂsc hz?“:?}GcaeTateﬂr:et:;hubMLC T.raf_cctorgc:h{ﬁ':i’] i; 1:.E.1_,d;ﬂ}: = 1,...._N;st_:
V , 0 ~ efrt\I](f ((S)) , t c 0’ T) PR (1]} . rfe s_mg E AracleTizallon o £ EXErClse DOUndary aboyve, We can £sll-
(5.0~ e & HIs7).teloT] e o

As opposed to European contracts, American ones offer mo égure 1. Picazo pricing method and the two parallelization

flexibility for the exercise: it can be performed at any time'€VE!S (in rectangles)

until the maturity date, and this over all discrete times. This is istributi h ion f ined
reflected in the mathematical definition below 2.2. Distribution orchestration for coarse-graine

parallelism
_ Our CPU/GPU parallel version of the Picazo pricing
V(S“T)_\P(f(sf)’-r) algorithm introduces two levels of parallelism as Figure 2

V(St ,tm)z max(‘P(f (S),tm), E[e’r(tm“"m)\/(st ,tm+1)|St]) depicts. The first level follows a coarse-grained parallel
" " " "” master-slave approach. We use the Java ProActive librhry [8
(e) which offers an abstraction of distribution management by
Here, the formulaEfe tm)\/(sm*tm)mm] defines the ihiroducing the concept of Active Object. By this way, during
continuation value at timé,, notedC in Figure 1, i.e. the the detection phase describedart | of Figure 2, whose role
forecasted option price &t.1. The option owner will keep it, is to dynamically detect what are the available computing
if its forecasted price is over the benefit of immediatelyresources, we deploy as many active objects as cluster nodes
exercising it, i.e. the payoff. and discover the number of residing CPU cores and GPUs per
Picazo method exposes an efficient way to definenode. In our pricing strategy, more than workers, we require a
continuation or exercise regions, separated by a frontier namederger to gather intermediate results. Finally during this
exercise boundary, by combining a machine learningnitialization phase illustrated impart I, we allocate the
technigue with MC methods. The algorithm is shown inmerger active object on the node with the fewer GPUs, and
Figure 1. We notel the basket sizej; andg; respectively the there will be as many workers active objects as GPUs, each
dividends and volatilities of the= 1..d underlying asset$\ responsible to handle the corresponding GPU kernel
the discrete time number. execution which the second level fine-grained SIMT
The key pricing method strategy is to call a specificparallelism is. Running multiple workers to exploit GPUs on a
classifier per discrete time during theMC simulations of the single node will not significantly impact performance because
final pricing phase [phase 2], to decide if current simulatiorworkers jobs are GPU intensive.
must be stopped or not, i.e. if simulated prices reach or not an Part lll (as summarized on the corresponding part of the
exercise region. To achieve this, we need during a previousthema on the left of Figure 2) details the orchestration of the
phase [phase 1], to train each classifier [step 2] nlweclass training instances computation for each classifier. To estimate
training instances. Each training instance is composed af continuation value per training instance, a worker launches
simulated underlying asset prices and a boolean, depending nia_cont MC simulations on its GPU. The merger recovers all
if the option payoff is over or not an estimation of thethe training instances from workers to train (sequentially) a
continuation value. Each continuation value requiiescont

host 3 quad-core quad-core
dual-core dual-core

Hgugnhgn
1 Bl BB

2 €y 0
Y’

createletectors

detectors

=
&
&
g _ l
o ["b_':FU':.E“rEE'e_"'E_GF_UE'i —wr _ _ J _ eetCPUcoresAndGPUs:) _ _ _
— T1Z.0114.2]42.21.[3.4]] ' '
E :reatEMEraerﬁ.'nd‘.‘.'::-rkers
K merget Wom or % elns
; | 11 1]
: = | T 171].
= o createTraininglnstances | @
£ o S f T e o et L TR
(] [if] =
i create training instances on GPUs E i e U
E 5 o =1 mergeTraininglnstances
= \L.. = E -.—| *
w m :.:? E‘: -—
i y -] | 3 trainClassifier
= train a new classifier e o R = 1 Ry
@ 8 3 E| M =
— +—
& T g B 3,
= = broadcastllassifier
= serialize and transfer a — —— =R = - A A =GP
- the classifier to the GPUs o new classifier
& transferred
m
2
R I L 1 an
=] 7 e :; inalMCsimulatigng 1. GPU
] S 7 AN |
nn 5] -y
=
‘G E mergefCsimulations
T a8 B o e
L [—
price with all classifiersonGPUs | = = |
2 g getPrice
& 5 e A
=
L

Figure 2. Parallelism orchestration of the Picazo pricing method

new classifier. Notice that this classifier will be used duringpossible work-group sizes: from the warp size up to the
the MC simulations of the final pricing phase, but also duringnaximal work-group size allowed, increased by warp size. As
the MC simulations of the continuation values. Therefore theequired in the spreadsheet, some device specifications are
merger broadcasts the new trained classifier to all workers, aequired: each worker detects shared memory amount per
the beginning of each discrete time loop iteration. Once alinultiprocessor, maximal work-group size, generates the
classifiers are trained (and have already been copied on eggtogram compilation log to parse used registers. Different
GPU by the loop of part Ill), each worker is distributed akernel configurations can describe same multiprocessor
subset of MC simulations to estimate the final pricpaas IV occupancies, for instance 4 work-groups of 32 threads against

depicts. 2 of 64. In such case, our program will keep the one offerin
more work-groups, to reduce waiting time between them (as

2.3. Kernel parameters calibration and load balancing each work-group would be given a smaller simulations
2.3.1. Dynamic kernel parameters calibration number to perform). As intermediate calculus to deduce the

Targeting GPU programming implies to be ready to copenultiprocessor occupancy, the theoretical active work-group
with a wide variety of GPUs. To ensure high multiprocessonumber by multiprocessor is estimated, and will be reused to
occupancies for each worker, we must calibrate kerndix the total threads number to: work-group size multiplied by
parameters, i.e. work-group size and global size. For this, weumber of active work-group per multiprocessor multiplied by
provide a Java class which imitates the CUDA occupancypumber of multiprocessors on the device. This strategy allows
spreadsheet. Before starting the first step of the pricing fast estimation of kernel parameters for each of the detected
algorithm, each worker, in charge of one GPU deviceGPUs to ensure a high multiprocessor occupancy without
computes theoretical multiprocessor occupancies for alaunching any preliminary fake pricing calculations.

2.3.2. Load balancing strategy In order to highlight the benefits of our strategy, we

We have to assign a performance indicéboeach GPU decided to compare three methods to spreadnthelass
regarding the user pricing parameters. The random length thining instances creations among GPUs. First we evenly
the trajectories, does not afford to only consider theidistribute among the GPUs. Then we distribute proportionally
durations as performance indicators. The idea is to measutethe calibrated threads number (cf. 2.3.1). Finally we use our
the execution time of a “small” kernel, and divide it by the strategy with the performance indicator. The Tesla S1070
maximal number of time steps processed by a threadlowdowns the pricing time as illustrate the dark grey bars in
Obviously the kernel is launched with the user parameters btlie two first strategies (1.5x2x slower than with the Tesla M
processes shbtrajectories starting close to the maturity date series). The last strategy tackles the bottleneck effect due to
By this way, we only need to train one classifier beforethe Tesla S1070 as depicts the decreasing solid line: using our
launching the kernel. There are as many performancead balancing methodye reduce respectively b$6% and
indicatorsperf,, estimated in parallel, as workessattached to 21% the overall pricing time with the first and the second
GPUs. Finally, the subset ofig nb_class training instances strategy.
and the subset of thioMC simulations, processed by a given
worker, are inversely proportional to the performance2.4. Fine-grained parallelism with OpenCL

indicator as follows Each worker computes a subset mf class training
}/ instances and requires for each to estimate a continuation
nb_dass, = perf,, xnb_dass value .throughnb_cont MC simulations, c.f. Figure 1 line 6.
% ¢ MC simulations are launched through an OpenCL kernel
L worers o/ PETe function. There are as many parallel simulations on the GPU

as threads iterating to provide thab cont simulations.
Figure 3 highlights the impact of our dynamic split strategyDifficulty of pricing American option is the random length of
over a heterogeneous GPU-based cluster holding threémulations: a classifier can predict the exercise region is
different GPUs. On Gri%000 [9], each cluster node can reached at any time before the maturity date. Consequently we
directly interact with other cluster nodes, i.e. without having tecannot forecast the required random variables number and we
traverse a cluster front-end node. Thus, virtually all GO0 use the GPU based Random Number Generator MWC64X
nodes form a single heterogeneous cluster. Each node of tH] to generate at runtime only required variables. At each
Grenoble Adonis cluster has 2 Intel Xe&®5520 and 2 discrete time of a single simulation, a thread generates as
NVIDIA Tesla S1070. The Lille Chirloute cluster includes 4 many uniform random variables as underlying assets,
NVIDIA Tesla M2050 and each node has 2 Intel Xeon E5620performs the Box Muller transformation to retrieve the
The Lyon Orion cluster holds a single NVIDIA Tesla M2075 Gaussian values, simulates the underlying assets prices, call
and each node has 2 Intel Xe&%-263Q These sites are the specific classifier, and finally computes the actualized
connected with 10Gbit/s optical fibers. We launch a singlgayoff, adds it to a variable allocated in a register, and start a
worker on each site to exploit 3 different Tesla cards. Th&ew simulation.
merger is executed on a single node from the Adonis cluster. ~ This random stopping time leads to some threads
finishing earlier their simulations thanhers. A “warp”, for
time in seconds NVIDIA architecture or “wavefront” for AMD, is the smallest
- quantity of threads that are issued with a SIMT instruction.
Because threads of the same warp cannot perform at the same
200 time different instructions, some of them will block at the
\ Tesla M2073 main loop condition if they perform short simulations (as
1% = Tesia M2050 dictated by the classifier call). These unwanted
B Tesla 51070 synchronizations lead to low occupancy of the multiprocessor.

| I: e total time That’s why we cannot simply iterate over the same fixed

100

50 - number of simulations for all threads when computing the
nb_cont simulations. Thus, each thread computes after
cvenly dismibuted disrbuted | distributed with anep_sBeforeReduction time steps and through inte_rmediate
proportionallyto the perfarmance reductions (parallel sums), how many MC simulations have
the calibrated indicatar been achieved (see further details in [2]). This is repeated by
_ threadspumber _ each thread, until the total number of simulations of all threads
Figure 3. Total durations of training instances creations, angeaches at leagb cont.
total pricing times, on a cluster of 3 GPUs, with different We kept in mind all recommendations of the GPU device
distrib_ution_ strgtegies A_dz_iBoost classification_, with 150 programming guide to avoid possible performance losses. In
boosting iterations/decision stumpsSeometric average parficular, (1) coalesced access allow threads to get asset
American call optionS=90, d=7, K=100,N=10, T=1,r=3%, pjces from global memory in few instructions, (2) we employ
9=5%, 0=40%, nb_class=5000, nb_cont=10"5, ;onstant cached memory to store read-only values such as
nbMC=2x10"6 volatilities or dividends, and (3) perform the intermediate

speedup speedup
200 140
180 t
120
160 - ,/:f

140 —= 100 M,—
120 e 80

100 e f

80 P &0 /,.vk'

60 a0

40 €

20 20
0 T r : ! 0 T T T]
1GPU 2 GPUs 3 GPUs 4 GPU= 14GPU 2 GPUs 3 GPUs 4 GPU=
000517 000253 00:02:05 00:01:40 total time 00:02:41 00:01:21 003:00:56 00:00:42
—f—linear speadup hh:mm:ss —+— linear speedup
== == measured with AdaBoost ==p==measured with 5K

Figure 4. (Left) Speedups of the pricing algorithm using AdaBoost ifieation, with 150 boosting iterations/decision stumps
(Right) Speedups of the pricing algorithm using SVM SMO, with a tikeanel. Other pricing parameters are the same than in
Figure 3.

parallel reductions in shared memory. Specific tests revealestalable classification method to approach a linear speedup,

that even a high number of reductions for summing do nawithout impacting price accuracy. AdaBoost and SVM are

impact global execution time. based upon iterative algorithms during the learning phase,
Classifiers used during Monte Carlo simulations areunlike Random Forests whose training pheae be entirely

previously created and trained on the CPU by the merger witsplit over the clustetOur follow-up aim is thus to experiment

the Weka library. Since OpenCL does not allow advancedsing this alternative classification method.

library call, each worker needs to work with a serialized

version of the Weka Classifier object obtained at kerneB. RANDOM FORESTS INTEGRATION FOR

launches. The two possible classifiers from Weka we PARALLEL CLASSIFIER TRAINING

experimented with, AdaBoost and SVM, were slightly We focus here on the integration of Random Forests in

modified to retrieve all the private members of the Wekeour pricing engine. Experimental tests will illustrate the

object and only cope with basic structures in OpenCL. Thencalability of our implementation, thanks to the parallelization

all of them are transferred to the global memory to imitate thef the training phase. However, this will come at the expense

Weka classify call on the GPU. At the end, we can afford t@f a high increase of the creation of training instances time as

imitate the original Weka behavior with basic structures, anégxecutecoy GPU devices.

store as many classifiers as discrete times in arrays. During a

kernel execution, threads work with position indexes to accesx1. Training Random Forests over CPU cluster

in parallel different classifiers to predict the stopping times.

2.5. Speedup experiments on a 7-asset American option l.I l.I l.I l.
1
[| L

Figure 4 depicts the speedups of a 7-asset American

. o . . . workers
option pricing, on the Chirloute cluster. Our implementation o MErger
of the non-embarrassingly algorithm achieves a speedup of \ trainSubClassifier CF‘;—'
140 using 4 GPUs, with AdaBoost classification method mergeSubClassifiers \ u
1

Scalability with more GPUs will be discussed in 3.3. Training
a linear SVM classifier takes less than 1 second and does rféigure 5. Parallelization of a random forest training. Each
slowdown the total pricing time, as our almost linear curvesubClassifier/small forest is trained over the detected CPU
illustrates (ight). The counterpart of using a linear kernel cores through the Weka library

with SMO is the underestimation of the option price (-15%)

which can becorrected by considering a polynomial kernel When distributing a random forest training, we decided to
increasing the training durationThe total time of the preserve the Weka behavior: the idea was to train in parallel
AdaBoost classifiers trainings, varies from 8% (1 GPU) tesmall random forests with the saimeildClassifier() call as it
25% (4 GPUs) of the total pricing time: this bottleneck iswas for a single larger one. The Weka library was slightly
highlighted on te left figure. We need to consider a fully modified so that the original random forest and the one

log:(timein seconds) log;(timein seconds)

R — s
4096 A —
R — 16384
104 2 —
- — - - e
256
2°8 512 & & >
64 138 G—
32 64 Ao
16 ?g ——
E M 2 I
2 2
1 T T 1 1 T T 1
& GPUs 12 GPUs 18 GPUs 5 GPUs 12 GPUs 18 GPUs
02:16:23 01:14:11 00:53:25 total time 09:18:.07 04:44:45 03:12:53
hh:mm:ss
—#—total duration of training instances creations —»—— total duration of training instances creations
—&—total duration of classifiers trainings = & = [total duration of sequential dassifiers trainings)

—+—total duration of classifiers seralizations
—#—final pricing time

—im— total duration of parallel classifiers trainings
—+— total duration of classifiers serializations

—#— final pricing time

Figure 6. (Left) Comparison of algorithm phases execution times with AdaB classifiers over workers numbe(Right)
Comparison of algorithm phases execution times with random $ooégt50 unlimited depth trees, over workers numbers. The
pricing parameters are the same than previously and total times oodetp the situation where training of classifiers is
distributed

obtained after merging all smaller forests built by workers3.2. Parallel Random Forests classifications on GPU
provide strictly identical classification measures. By this way, Units
we can train in parallel subsets of aefst over cluster nodes As for AdaBoost or SVM, a random forest per discrete
(Figure 5). As complementary optimization, we decided tdime must be serialized by the worker, and transferred to the
exploit the last Weka library version affording parallelizationGPU global memory, in order to predict the exercise boundary
over CPU cores. For this, only one active object worker peat this time, during the simulations, c.f. Figure 1 line 6 and 15.
node is in charge of a sub classifier to take advantégdl The difficulty comes from the storage of the trees that are
CPU cores for the training. indeed incomplete. Only an experimental solution is provided
We set the Weka parallelization degree of each node withy the JOCL team, to transfer tree structures to the device, so
the number of detected CPU cores. A simple load balancinge had to imagine one solution that fits our needs. To cope
mechanism affords each workéf to build a specific subset with sparse tree storage, we work with compressed arrays
nbTreesy of the total numbenbTreesc asgrier Of @ random representation. Once workers are broadcasted the merged

forest, such as global random forest, they parse all trees, retrieve and queue
node information in specific arrays for the compression.

nbCPUcores,, Indeed considering all trees, there is an array for split values,

nbTrees, = AbCPUcor x NDTT €8S psgrier another one for attribute indexes. We store indexes of tree
Z COrese roots in a dedicated array. Finally, we work with a left

ALL CPUs P
° children indexes array and a right children indexes array, to

. . S . imitate tree parsing when classifying instances in OpenCL. As
For the following tests (Figure 6), we will disable this for AdaBoost and SVM, we queue all the classifier

optimization, in order to highlight the benefit of the training . . o
. representations in the same specific arrays to be accessed for
distribution over cluster nodes. Once all workers have

finished, the merger retrieves all sub classifiers, merges the(renaCh discrete time, complicating indexes management.
and broadcasts the trained global random forest to all workers
that will use them, as explained in the following subsection.

3.3. Scalability experiments on a 40-asset American input sizes. This requires each kernel to be executed a few
option times on each GPU, with different input sizes to get the
Figure 6 depicts execution times of parts Il and IVinterpolation function. This can spend a lot of time and
(Figure 2) in case of high dimensional American option, orbecome inconvenient, in case of several types of GPUs and
the homogeneous Adonis cluster. Parts | and Il are natompute-intensive kernels. On the contrary, our parallel and
specified here due to their small execution times, andynamic load balancing strategy, with small kernels launches
possibility to reuse the resulting active objects deployment foallows a fast comparison of the performance degrees of each
multiple program runs. With the Adonis classificatideft(, GPU for a given kernel. Tse [13] proposes a dynamic
the option price is around 0.64108 + 0.0015 (95%Cl), which ischeduling strategy for Monte Carlo simulations, targeting
in line with the reference price according to [3], and samulti-accelerator heterogeneous clusters. Each accelerator
validates the correctness of the prograMe performed more requests a MC distributor, a subset of the remaining MC
tests to ensure results and execution times presented aienulations to perform; the distributor applies a distribution
representative of our pricing executions. Times of trainingstrategy through which subset size allocated to each reqgiestin
instances creations and final pricing phases include calculucelerator increases (either linearly or exponentially given the
and broadcast/merge operations from/to the merger. We fatksted distribution strategy) at each time. The faster accelerator
below 1 hour when performing tests o8 GPUs (no high- will logically process more simulations than the slower after a
end). All performed tests have ealedlinear dependence of period of time. The non-embarrassingly parallel Picazo
workers numbers with the computation part of each phase, batgorithm, involves multiple small kernel launches, for each
have also shown managing more workers complicatediscrete time sequentially processed, and is not suitable for a
broadcast/merge operations and slowdowns these operatiomstime scheduler. Thanks to our adequate initial load-
respective overall time. More annoying, because the mergdalancing strategy, the amount of work given to each
sequentially trains each classifier through the Weka libranaccelerator is precisely known at the beginning of the “for all
and does not solicit workers, the implementation is notiscrete time" loop (Part Il figure 2). Regarding the final
scalable: when increasing workers number, the trainingricing phase of an American option (Part IV figure 2) which
instances computation time decreases, and consequently temsl@mbarrassingly parallel, we also apply the method of 2.3.2
to vanish in comparison to the constant (because sequenti&b)decide the subset size of MC simulations each accelerator is
time of the classifiers trainin@-650s). allocated at once. In the experiments we run, this phase was
Using Random Forestgdght), the option price of a single quickly executed because of the chosen, still realistic, pricing
run is around 0.63651 + 0.0016 (95%CI) which is in line withparameters. Be these parameters much higher, then it could be
the expected value. Working with such random forestsvorth experimenting the dynamic load distribution of [13], the
parameters (as of 150 trees) provides the same order sdme way they apply it for pricing an Asian option.
confidence interval than AdaBoost tests. The training In [14] is presented CudaRF, a CUDA-based
instances creations (~3h10min with 18 GPUSs) require morignplementation of Random Forests. During the training phase,
time than with AdaBoos{~42min with 18 GPUs) due to the each thread constructs a tree of the forest. It could be used
cost of forests classifications. Indeed, to classify an instance vathin our ProActive-based distributed training phase so that
GPU thread will take more time to parse the 150 unlimitechuge random forests could benefit of a dual-level of
depth trees, rather than the 150 one-level decision trees of tharallelism offered at both worker and GPU sides. However,
AdaBoost classifier. Conversely, as describe the dotted arthving a GPU thread handles one single tree of the forest
solid lines with circleswe take advantage of the distributed during the classification phase, is not suited to our algorithm.
CPUs during the classifiers trainings, allowing the algorithmiWe cannot afford to exploit at a specific time the entire device

better scales. for a single instance, as our implementation exploits SIMT
architecture to call simultaneously possibly different
4. RELATED WORK classifiers, depending on the discrete time reached by each

Regarding the fine tuning for GPU configuration, Grauerthread.
and Cavazos present an auto-tuning implementation in [11] to
produce the configuration that minimizes local memory5. CONCLUSION
accesses against registers and shared memory. Since they play Our works propose a multi GPU based implementation of
with data partition sizes via changing the maximumPicazo method to price high dimensional American options,
occupancy, the strategy allows finest kernel parametetalowing pricing time to fall below 1 hown 18 GPUs, for a
calibration for bandwidth-bound applications but is lessA0-asset option (c.f. 3.3). This outperforms the CPU cluster
generic than ours. Raphael Y. de Camargo [12] describesimplementation, which spends almost 8 hours on a 64-core
load distribution algorithm for heterogeneous GPU cluster t@luster. We reach a speedup ratioldD on 4 GPUs with a
reduce the total execution time of his neuronal networtess complex American basket option (c.f. 2.5). To fully
simulator. To estimate each quantity of data input assigned txploit the dual-level of parallelism of such architecture, we
each GPU, he formalizes the problem to a linear system dfistribute the training instances computation over the cluster
equations. Some variables in the system represent tmmdes and solicit the SIMT architecture of each detected
execution time functions of each kernel on each GPU oveaidevice to parallelize all the Monte Carlo simulations of the

algorithm. Our fast parallel strategy to estimate kernel4l
parameters of devices can be adapted to a wide range of GPUs
to target any cluster. We presented a dynamic load balancir{@
strategy reducing by 36% the parallel pricing time of a 7-ass
option. The integration of Random Forests, tackles th
sequential bottleneck effect due to the classifiers trainings b[
parallelizing them, but slowdown the training instance
creations due the expensive classification.
challenging alternative would be to come up with a fast
parallel classification method with a scalable learning phasgy)
such as [15]. Also working with more GPUs (100+) than in
our experiments, would further decrease these computation
operations but increase broadcast/merge operations, impactiigl
the overall pricing time. Thus, to face this only remaining
bottleneck effect, we could implement one of the broadcasting3]
schemes detailed il §] to parallelize the propagation of data
between adjacent nodes. Furthermore, we could parallelize
merge operations along a parallel tree reduction. Next step is
to prove in a practical way that pricing a complex option carn
now be achieved within minutes; however this would require
getting access to a GPU cluster hosting several hundreds of
probably heterogeneous accelerators, a rare resource type.[15]
Consequently, our work also militates in favor of research for

much more efficient parallel classification methods.

It would be exiting to take advantage of high end CPUs
(Xeon Phi) if available on the cluster, to perform part of thgzig)
Monte Carlo simulations. By relying on OpenCL in our
pricing engine, it already abstracts the hardware architecture.
The only point to consider in order to take advantage of such
hybrid hardware environment is to extend our dynamic
calibration and load balancing strategy. A natural exploitation
of our work is to evaluate a portfolio of such complex assets,

which is an ongoing task.

Acknowledgment

This work has received the financial support of the

Conseil régional Provence-Alp€$te d’Azur. Experiments

presented in this paper were carried out using the Grid'5000
experimental testbed, being developed under the INRIA
ALADDIN development action with support from CNRS,

RENATER and several Universities as well as other funding

bodies.

References

(1

(2]

(3]

J.A. Picazo. American Option Pricing: A Classificatioroie Carlo
(CMC) Approach. Monte Carlo and QaidMonte Carlo Methods 2000:
Proceedings of a Conference Held at Hong Kong Baphsversity,
Hong Kong SAR, China, November 27-December 1, 200022

Michael Benguigui, Frangoise Baude, Towards paralfel distributed
computing on GPU for American basket option pricing,thie 2012
International Workshop on GPU Computing in Cloud onjanction
with 4th |IEEE international conference on Cloud Commuti
Technology and Science, 2012

Viet Dung Doan, Grid computing for Monte Carlo basetensive
calculations in financial derivative pricing appitions, Phd thesis,
University of Nice Sophia Antipolis, March 2010

http://www-sop.inria.fr/oasis/personnel/Viet_Dung.Dhhesis/

Obviously,

L. Breiman, Random Forests, Statistics Department of Cailfor
Berkeley, January 2001

Machine Learning Group at
www.cs.waikato.ac.nz/ml/weka
JOCL, http://www.jocl.org/

Khronos Group, http://www.khronos.org/opencl/
http://proactive.inria.fr/

https://www.grid5000.fr/

David Thomas,
http://cas.ee.ic.ac.uk/people/dt10/research/gmsmwc64x.html

Scott Grauer-Gray and John Cavazos, Optimizing and -Autiog
Belief Propagation on the GPU, In 23rd Internatioéorkshop in
Languages and Compilers for Parallel Computing (LCPC)020

Raphael Y. de Camargo, A load distribution algenttbased on
profiling for heterogeneous GPU clusters, Third Workshop
Applications for Multi-Core Architecture, 2012

Anson H.T. Tse, David B. Thomas, K.H. Tsoi, Wayne Lukp&mic
Scheduling Monte-Carlo Framework for Multi-Acceliena
Heterogeneous Clusters, in Proceedings of IEEE Symposiumetth Fi
Programmable Technology (FPT), 2010

University of Waikato,

] Hakan Grahn, Niklas Lavesson, Mikael Hellborg Lapaped Daniel

Slat, “CudaRF”: A CUDA-based Implementation of Random Forests,
Proc. Ninth ACS/IEEE International Conference on Comp&ystems
and Applications, |IEEE press

Munther Abualkibash, Ahmed ElSayed, Ausif Mahmood, High
Scalable, Parallel and Distributed AdaBoost Algarthtusing Light

Weight Threads and Web Services on a Network of Mtdiie

Machines, International Journal of Distributed & PalaBystems, Vol.
4 Issue 3, p29, May2013

John Matienzo, Natalie Enright Jerger, Performance yaiml of
Broadcasting Algorithms on the Intel Single-Chip CloGdmputer,
IEEE International Symposium on Performance Analysis of eByst
and Software (ISPASS), 2013

