
HAL Id: hal-00927458
https://hal.science/hal-00927458v1

Submitted on 13 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The CImg Library
David Tschumperlé

To cite this version:
David Tschumperlé. The CImg Library. IPOL 2012 Meeting on Image Processing Libraries, Jun 2012,
Cachan, France. 4 pp. �hal-00927458�

https://hal.science/hal-00927458v1
https://hal.archives-ouvertes.fr

http://cimg.sourceforge.net

David Tschumperlé

GREYC Laboratory (CNRS UMR 6072), Image Team, 6 Bd Maréchal Juin, 14050 Caen/France

ABSTRACT

The CImg Library is a minimal, easy-to-use, and capable C++ im-

age processing library aiming to help developers implementing new

image processing algorithms, from scratch. The library is versatile

enough to deal with a large number of image types (from 1D-signals

to temporal sequences of 3D-hyperspectral volumes), with any type

of pixel values. At the same time, it is extremely straightforward to

learn and to use. It proposes indeed a minimal set of four classes,

all defined in a single C++ header file CImg.h that has very few

(and adjustable) dependencies to third-party libraries. This makes

CImg a small and handy image processing library, portable every-

where (supports multiple OS, CPU-architectures and compilers) and

comfortable to maintain. Moreover, we introduce G’MIC, a simple

script-language wrapping the CImg functionalities, so that all fea-

tures of the library become available for a broader audience (non

C++-programmers) who can use it either from the shell or from an

interactive GUI.

Index Terms— Image Processing, C++ Library, Template-based

programming, Genericity, Straightforwardness, Script language.

1. CONTEXT AND MOTIVATIONS

The image processing world is full of very different people (com-

puter scientists, mathematicians, physicians, biologists, ...), with di-

verse scientific backgrounds, working on a wide range of various

image-related problems. This diversity, in terms of people, program-

ming knowledges and data types is something one must take care of,

when designing computer tools to assist those people in their goals :

They don’t all work on 2d gray-valued images only, and most of

them do not have 15 years of experience in programming languages !

As a consequence, designing something as basic and important as an

image processing library, should follow some minimal rules ensur-

ing the simplicity, the genericity, the usefulness, the extensibility, the

portability and the freedom of use of the library. This is what we have

tried to achieve with CImg, a C++ library we started implementing

in late 1999, designed primarily for researchers and students in im-

age processing and computer vision. CImg is hosted on Sourceforge

since 2003, at http://cimg.sourceforge.net and attracts

each day a lot of people around the world (about 1200 visits and 100

downloads/day). In the followings, we detail the design choices we

made to comply with the different rules mentioned above.

2. FEATURES

+

The CImg Library is a small library, distributed as a .zip package

(≈ 12Mo) containing the library code (≈ 40k loc), examples of use,

the reference documentation and resource files. The library itself

is composed of a single C++ header file CImg.h which must be

included in the user’s code to be functional. All CImg classes and

methods are encompassed in the namespace cimg library :

#include "CImg.h" // Just do that...

using namespace cimg_library; // Ready to go !

It is obvious then that the CImg library code is compiled at the same

time as the user’s code. As we will see later, this has a lot of advan-

tages in terms of flexibility.

The header file CImg.h defines only four different classes, only two

of them having one template parameter :

1. CImg<T> : Represents an image, having 4 dimensions

(width, height, depth and spectrum), each pixel value being

of type T. The pixel data are stored in a simple linear buffer

T *data; of size width*height*depth*spectrum.

2. CImgList<T> : Represents a list of images CImg<T>. It

is useful to manage a sequence or a collection of images (that

may have different sizes).

3. CImgDisplay : Represents a display window, where im-

ages or images lists can be displayed. Multiple windows can

be opened, and user interactions are managed through the

class methods.

4. CImgException : Used by the CImg library to throw ex-

ceptions, when errors are encountered in the library methods

(I/O errors, bad arguments, ...).

This minimal set of classes already covers most of the image types

we can encounter in real world application (from 1D scalar signals

to collections of 3D hyperspectral images, with any type T of pixel

values). The only template parameter T makes the understanding of

the library affordable, even for non C++ experts.

CImg is a general image processing library that contains most of

the usual image processing operators we would like to see in such

a library. It is not specialized in a particular sub-field of image pro-

cessing (e.g. mathematical morphology, variational calculus, spa-

tial/spectral transforms, ...), but contains a lot of different functions

to help writing complex algorithms with very few C++ code :

• Data inputs/outputs : CImg supports a large number of im-

age file formats (e.g. JPEG, 16bits PNG, float-valued multi-

page TIFF, 3D Object File Format, PINK files, ...).

• Usual IP operators : Classical image processing operators

are defined : filtering, mathematical morphology, histograms,

color base conversions, interpolations, geometric transforma-

tions, non-linear blur/sharpening, displacement field estima-

tion, FFT, and so on...

• Image drawing : Many methods allows to draw things in im-

ages : lines, polygons, ellipses, texts, vector fields, function

graphs, 3d objects (Fig.1a).

• 3d object viewer : CImg owns a 3d object viewer (kind of

mini-openGL), as well as many functions to generate 3d vec-

tor objects from dense image data (3d isolines, 3d isosurfaces,

3d elevations, 3d streamlines, ...). It does not rely on an ex-

ternal library for the 3d rendering. It supports light sources,

texture mapping and transparent objects (Fig.1b).

• Arithmetic operators : Most usual mathematical opera-

tions between images are defined (e.g. operator+(),

sqrt(), cos(), atan(), operator>>(),...).

• Expression evaluator : CImg owns a numerical evaluator of

mathematical expressions, allowing to quickly generate syn-

thetic images from mathematical formula (whose formula can

be chosen during the code execution) (Fig.1c shows an exam-

ple of a synthetic image, generated from the evaluation of

“X=x-w/2;Y=y-h/2;D=sqrt(Xˆ2+Yˆ2);

if(D+u*20<80,abs(255*cos(D/(5+c))),

10*(y%(20+c)))”).

Most of the image processing algorithms inside the library are de-

fined as methods of the CImg classes (mostly for CImg<T> and

CImgList<T>). In CImg, we decided not to separate the classes

from the algorithms, as it is sometimes done in other template-based

libraries (e.g. the STL). The separation between classes and al-

gorithms is a nice concept when the data structures we want to

work with are quite basic (e.g. 1-dimensional as vectors, lists,

sets,...), as it makes sense that one generic algorithm can be applied

to such many different structures (e.g. values sorting, re-ordering,

searching for a value location). In the case of image processing,

most of the algorithms we are interested in stay bounded to multi-

dimensional image structures (who really wants to compute the FFT

of a STL’s std::multimap ?). Designing these algorithms in

a too much generic way would be still possible, but would lead to

a level of complexity that becomes discouraging for most average

C++-programmers : it just means they will have to deal with a lot

of template parameters as well as lots of weird iterators ! On the

contrary, making the algorithms and the classes dependent as CImg

does, allows to :

• Write algorithms that are optimized specifically for the CImg

structures, e.g. by knowing in advance the pixel values order-

ing in the image data buffers, without needs for very specific

iterators.

• Make the library more simple to use and to learn, by limit-

ing the amount of genericity only to the classes (not to the

algorithms).

• Make the library classes depending on a minimal set of re-

quired template types (only one !).

Beside this simplicity, this approach also allows CImg algorithms

to be pipelined in a way that writing image processing algorithms

can be done usually in very few lines. This pipeline capability is

illustrated with the following (extreme) example :

#include "CImg.h"

using namespace cimg_library;

int main() {

CImg<> img("lena.bmp"); // Load color image.

// Do some weird operations.

img.RGBtoYCBCr().channel(0).quantize(10,false).

map(CImg<>(3,1,1,3).rand(0,255).

resize(10,1,1,3,3));

}

The C++ code above loads an image, computes its luminance chan-

nel, quantizes it in 10 levels, then maps a colormap on it, containing

3 random colors interpolated along 10 levels (see Fig.1d).

a) Example of drawing capabilities of CImg.

b) Example of 3d rendering with CImg.

c) Using the expression evaluator to gen-
erate a synthetic 2d color image (1 loc).

d) Result of the pipeline example.

Fig. 1. Usefulness : Illustrating some CImg functionnalities.

As the entire code of the CImg library is contained inside a single

header file, the library code is not pre-compiled but compiled on-

the-fly, i.e. when the library user compiles its own code. This has a

lot of advantages in terms of configuration flexibility :

• The user decides what should be the configuration of the li-

brary environment, e.g. the dependencies of CImg to third-

party libraries, at the compile time, independently for each of its

project. CImg defines indeed a lot of configuration macros that

tells about which third-party libraries have to be linked in the final

code : cimg use png, cimg use jpeg, cimg use tiff,

cimg use lapack, cimg use fftw3,

Depending on these configuration flags, extra functionalities are en-

abled in the library, as for instance the native support of some image

file formats (PNG, JPEG, TIFF, ...) in CImg load/save methods.

• CImg defines a plug-in mechanism allowing users to add their own

methods to the CImg classes, without having to modify the library

source file. This is how it works in practice :

#define cimg_plugin "foo.h"

#include "CImg.h"

using namespace cimg_library;

int main() {

CImg<> img("lena.bmp");

// Call to a new custom method

// of CImg<T> defined in ’foo.h’ :

img.my_method();

}

If my method is intended to compute the gradient norm of a

CImg<T>, we can write the plug-in file foo.h simply as :

CImg<T>& my_method() {

const CImgList<T> g = get_gradient("xyz");

(g[0].sqr() + g[1].sqr() + g[2].sqr()).

sqrt().move_to(*this);

return *this;

}

Several plug-ins are already available in the CImg package

(NLmeans, Skeleton, VRML reader, CImg to Matlab conversion,

...). Note that this kind of plug-in mechanism is not feasible when

using a classical library whose code is pre-compiled.

+

The CImg library code is small, does not depend on many exter-

nal libraries (can be compiled only with dependencies to libc and

libm), and is easy to maintain. As a consequence, it has been pos-

sible to make it very portable and robust to different compilers, OS,

and CPU architectures. It is known to run flawlessly on all Unix

flavors (incl. Android), Windows and Mac OS. The library package

is distributed under the permissive open-source CeCILL-C license

(LGPL-like). The structures defined in CImg are insanely simple to

manage, and the integration and communication of CImg with other

libraries is facilitated.

3. A SCRIPT LANGUAGE FOR IMAGE PROCESSING

G’MIC stands for GREYC’s Magic Image Converter.

This project is hosted on Sourceforge since 2008, at

http://gmic.sourceforge.net. It aims to :

• Define a lightweight but powerful script language (the G’MIC

language) dedicated to the design of image processing pipelines.

• Provide an interpreter of this language, distributed as a C++

library embeddable in third-party applications (libgmic).

• Propose 3 usable binary tools embedding this interpreter :

1. The command-line executable gmic to use the G’MIC

framework from a shell. In this setting, G’MIC may be seen

as a direct (and friendly) competitor of the ImageMagick or

GraphicsMagick software suites.

2. The interactive and extensible plug-in gmic gimp to bring

G’MIC capabilities to the image retouching software GIMP.

3. ZArt, a real-time Qt-based interface for webcam images ma-

nipulation with G’MIC.

Due to its openness, this project attracts a lot of people everyday (≈
450 downloads/day, more than 600.000 since Aug. 2008). The need

for G’MIC has come from several observations :

1. CImg requires (basic) C++ knowledges to be used properly.

Still, many people in the image processing field do not know

C++ enough, but could be interested by some of the CImg

functionalities anyway.

2. When we get new image data, we often want to perform the

same basic operations on them, for instance visualization,

gradient computation, noise reduction, frequency analysis, ...

Sometimes, the operations we need to apply are very specific

to the images we just got (e.g. masking the Fourier transform

to eliminate some frequency noise).

3. It is certainly not optimal to be forced to create new C++ code

specifically for these minor tasks. This requires code edition,

compilation time, and most often the code we have just wrote

will be used only once in our lifetime !

From these observations, we created G’MIC as a script language in-

terfacing all the CImg methods, to be usable from the shell. No com-

pilation steps are required anymore for manipulating generic images.

From a technical point of view, G’MIC is based on these simple

properties :

• G’MIC manages one list of images in memory (one in-

stance of a CImgList<T>). The pixel type T can be cho-

sen to be {bool|char|uchar|short|ushort|int|
uint|float|double }.

• Each G’MIC instruction runs an image processing algorithm

(calling then one CImg method) either on one or several im-

ages of the list, or control the program execution : -blur,

-mirror, -rgb2hsv, -isosurface3d, -if,

-endif, -repeat, -done, -return,

• User-defined scripts can be saved as G’MIC script files, and

be recognized by the G’MIC interpreter.

• One G’MIC script can be called from the command line, or

from any external project (through the libgmic library, em-

bedding the G’MIC interpreter).

G’MIC is a very pleasant tool to manipulate generic images from the

command line. Here, we show some examples of use.

• Add a synthetic degradation to an image (Fig.2) :

gmic lena.bmp -blur 3 -sharpen 1000 -noise 30

-+ "’cos(x/3)*30’"

Fig. 2. Create a synthetic image degradation with G’MIC.

• Extract 3d structures from a dense volumetric image (Fig.3) :

gmic reference.inr --flood 23,53,30,50,1,1000

-flood[-2] 0,0,0,30,1,1000 -blur 1

-isosurface3d 900 -opacity3d[-2] 0.2

-color3d[-1] 255,128,0 -+3d

Fig. 3. Extract 3d structures from a volumetric image with G’MIC.

• Display histograms of an image and its gamma correction

(Fig.4) :

gmic milla.bmp --f ’255*(i/255)ˆ1.7’

-histogram 128,0,255 -append c -plot

is the G’MIC equivalent code to :

#include "CImg.h"

using namespace cimg_library;

int main(int argc,char **argv) {

const CImg<>

img("milla.bmp"),

hist = img.get_histogram(128,0,255),

img2 = img.get_fill("255*((i/255)ˆ1.7)",true),

hist2 = img2.get_histogram(128,0,255);

(hist,hist2).get_append(’c’).

display_graph("Histograms");

}

• Using the G’MIC capabilities from GIMP (Fig.5).

Fig. 4. Display histogram of an image and its gamma correction.

Fig. 5. Example of G’MIC running inside the plug-in for GIMP.

4. CONCLUSION

We have defined complete and generic open-source frameworks for

image processing, covering different scales of use : A low-level li-

brary for C++ proprammers allowing to do algorithm prototyping

(CImg), a script-language for command line users allowing to easily

create image processing pipelines (gmic), and graphical interfaces

(through the plug-in gmic gimp and ZArt) to provide image pro-

cessing tools for a more general audience. This has been our way to

try to reach as many people as possible interested by image process-

ing techniques. Keep the things simple, affordable and useful !

