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EXTREME WAVE RUN-UP ON A VERTICAL CLIFF

FRANCESCO CARBONE, DENYS DUTYKH∗, JOHN M. DUDLEY, AND FRÉDÉRIC DIAS

Abstract. Wave impact and run-up onto vertical obstacles constitutes one of the main

phenomena which have to be taken into account in the design of coastal structures. From

the linear wave theory we know that the wave height on a vertical wall is twice the incident

wave amplitude. Weakly nonlinear theories bring some small corrections to this result.

However, in the present study we show that certain simple wave groups may produce much

higher run-ups ever predicted by previous theoretical investigations. Consequently, the

results presented in this study can be considered as a note of caution for practitioners, on

one side, and as a challenging novel material for theoreticians who work in the field of the

wave/structure interaction.

Key words and phrases: run-up; wave/wall interaction; Serre equations; coastal struc-
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1. Mathematical model

The notion of design wave is usually used by engineers to dimension various coastal
structures [7], even if there is a difficulty in determining the wave height to be used in
semi-empirical formulas for the pressure field. In general, by considering an idealized
simple monochromatic wave component with amplitude a0, its wave height can be trivially
computed to be H0 ∼ 2a0, and consequently the design wave. Here we show that even a
simple monochromatic sea state, subject to nonlinear dynamics on the flat bottom, can
produce much higher amplitudes on a vertical wall. This suggests that the concept of design
wave has to be revisited. Moreover, recalling that 89% of reported past freak wave events
happened in shallow waters or coastal areas [9], our work can shed some light onto the
extreme wave events in the shallow water regime.

One of the most important questions in water wave theory is the understanding of
wave interaction and reflection. We describe the wave propagation of the free surface of
an incompressible homogeneous inviscid fluid, through the fully nonlinear Serre–Green–
Naghdi (SGN) equations [8, 12]. We consider a two-dimensional wave tank with a flat
impermeable bottom of uniform depth d = const, which is filled with an incompressible,
inviscid fluid. The Cartesian coordinate system Oxy is chosen such that the axis Oy points
vertically upwards and the horizontal axis Ox coincides with the undisturbed water level
y = 0.
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The SGN system reads [4, 2]:

ht + (hu)x = 0, (1.1)

ut +
(
1
2
u2 + gh

)
x

= 1
3
h−1
[
h3
(
uxt + uuxx − u2x

)]
x
, (1.2)

where h(x, t) := d+ η(x, t) is the total water depth (η(x, t) being the free surface elevation
with respect to the water level), while u(x, t) is the depth-averaged horizontal velocity, g is
the gravity acceleration. The model has been previously validated by extensive comparisons
with experimental data for wave propagation and run-up [5].

In our numerical experiments we consider a flat channel of length `, bounded on the
right by a rigid vertical wall and by a wavemaker on the left. Hereinbelow we will use the
dimensionless variables in which all the lengths are normalized with d, speeds with

√
gd and

time with
√

d/g. This scaling is equivalent to setting g = 1 m/s2, d = 1 m in the governing
equations (1.1), (1.2).

In order to solve numerically the SGN equations we use a high-order finite-volume
scheme [5], while for time integration we use the fourth-order Runge–Kutta scheme. The
computational domain is divided into equal intervals (i.e. control volumes) such that we
have N = 1000 control volumes per wavelength. The initial conditions are the state of rest
η(x, t = 0) ≡ 0 , u(x, t = 0) ≡ 0. On the wavemaker we generate a monochromatic incident
wave η(x = 0, t) = η0(t) = a0 sin(ωt)H(T − t), where T represent the final generation
time and the amplitude is fixed to the value a0 = 0.05, ω ∈ [0.01, 0.25], and H(t) is the
Heaviside function. We generate only a finite number Nw of waves with period T0 = 2π/ω,
say T := NwT0. The length ` of the computational domain and the final simulation time
Tf are chosen adaptively in order to allow all important interactions and to prevent any
kind of reflections with the left generating boundary:

` = (Nw + 1
2
)λ0, Tf =

`√
g(d+ a0)

+ T, (1.3)

λ0 being the wavelength corresponding to the frequency ω.
We begin our experiments by considering a single sinusoidal wave interacting with the

solid wall. The maximal wave elevation Rmax ' 0.10245 on the wall reaches roughly twice
the incident wave amplitude a0 = 0.05 (at t ' 70). This result is in a good agreement
with previous numerical studies on solitary waves interactions [3, 10, 1] even if the incident
shape is not exactly the same. The maximal relative run-up Rmax/a0 ' 2.34 is achieved for
ωmax = 0.145. The value of Rmax is slowly decreasing for ω > ωmax.

The dynamics of two waves injected into the domain is similar to the single wave case,
but the nonlinear effects become even more apparent (see Figure 1). In a certain range
of wave periods (ω ∈ (0.01, 0.05)), when the second wave impinges on the first reflected
wave, a so called dispersive shock wave forms and propagates towards the wall [11, 6]. The
maximal amplification is achieved when the second wave hits the wall (cfr. last panel of
Figure 1), an effect due to nonlinear interactions between two counter-propagating waves:

Rmax/a0 ' 3.8, for ω = 0.021. (1.4)

High run-up values are possible due to the energy transfer between the first reflected wave
and the second incoming wave.
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Figure 1. Time evolution of the free surface elevation as a function of space, at
three different times, left column two-wave case, right column three-
wave case. The lower panel reports the maximal elevation at the wall
R`/a0 as a function of time.
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Figure 2. Upper row space-time evolution plots for three incident waves case
shown for three particular values of the wave frequency ω, lower row
Time evolution of the wave run-up on the vertical wall for the three in-
cident waves case recorded for several values of the incoming frequency
ω. The maximum run-up is achieved for ωmax ≈ 0.0315.

The three regimes (hyperbolic, equilibrium and dispersive) are described on Figure 2,
where we show the space-time dynamics of the three-wave system. The left panel shows the
hyperbolic regime, on the central panel strong dispersive shocks can be observed, while on
the right panel the dynamics is smooth due the dispersion. In the last case the amplification
is mainly produced by the linear superposition of the incident and reflected waves. The
reflection and interaction are clearly observed by smooth secondary peaks in the space time
plots (see Figure 2).
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Figure 3. Maximum wave run-up Rmax/a0 on the right vertical wall as a function
of incoming wave frequency for different numbers of incident pulses:
1 (squares), 2 (circles), 3 (triangles) and 4 (solid line). The dashed
line represents the linear limit where Rmax/a0 ≡ 2.

2. Discussion and perspectives

Wave interactions described above depend strongly on the frequency ω of the impinging
waves. The dependence of the maximal run-up Rmax on the incident wave frequency ω and
the number Nw of incident waves is shown on Figure 3, the optimal energy transfer due
to dispersive shocks happens for three incident waves. In this case the maximal run-up is
observed around ωmax = 0.035 and the amplification is equal to Rmax/a0 ' 5.43. However, the
energy transfer process is saturated for three waves. As the wave frequency increases, the
wavelength shortens and the dispersive effects become gradually more important. Around
ωmax the dispersive effects are balanced with nonlinearities to produce the most pronounced
dispersive shock waves. Starting from ω ' 0.11 waves become smooth due to dispersive
regularization.

More general wave groups have to be studied in future investigations to unveil their
potential for focussing on the walls. In addition, we are going to investigate the effect of
the forces exerted by incident waves on vertical obstacles, which can be different from the
purely kinematic amplitude focussing presented in this study. In other words, it is not
clear whether the highest wave will produce the highest dynamic pressure spike on the wall.
The effect of the wave amplitude is to be investigated as well since all the processes under
consideration are highly nonlinear. Some theoretical explanation of these phenomena is
also desireable. However, the difficulty is rather high because of important nonlinearities
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mentioned hereinabove. We claim that no linear theory is sufficient to provide a satisfactory
explanation of the reported phenomenon.
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