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Continuum and Discrete Mechanics

Two fondamental hypotheses

Continuous Medium

Local Thermodynamic Equilibrium and EOS
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Continuum and Discrete Mechanics

Differences between these two approaches

Continuum
Local Thermodynamic Equilibrium Hypothesis

continuum : variables are defined on a point

use of scalars, vectors, tensors

the Lamé’s coefficients are linked by Stokes’s law

Discrete Medium
L.T.E. hypothesis is discarded

dicrete approach

use of scalars and velocity components

compressibility and viscosity are well defined

a decomposition of momentum equation into gradient and
rotationnal parts
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Momentum equation

Definitions related to the topology

discrete mechanics

primal (blue) and dual (yellow) topologies

velocity components and accumulation potentials (red)
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Momentum equation

Definitions of variables

pressure, density and temperature are set to the nodes,

the component of the velocity is constant over the edge Γ

vorticity is defined on the faces of the primal topology,

mean density ρ is defined as 1/L
∫ R

P
ρ dl,

the momentum ρV is constant on the edge,

the rotational viscosity (shear) µ is constant on each face.
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Momentum equation

Discrete equation of motion

by derivation along the unit vector t we find

∫

Γ

ρ
dV

dt
· t dl = −

∫

Γ

∇p · t dl −

∫

Γ

∇d × (µ∇p ×V) · t dl −

∫

Γ

µ

K
V · t dl

using the above definitions, in particular µ = Cte on each
side of the primal topology, we obtain the discrete equation
of motion :

ρ
dV

dt
= −∇p−∇d × (µ∇p ×V)−

µ

K
V + f
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Non Equilibrium Thermodynamic

Non-equilibrium flow

Non-equilibrium flow

(p, ρ, T ) are not directly linked ,

ρ is calculated by the mass conservation,

the pressure is upgraded by the equation of motion,

Properties

state law (ideal gaz, stiffened gas, ...) is not useful,

the real thermodynamic coefficients are supposed known
(β, χT , cp, cv),

the transport properties are assumed to be know (µ, λ, k),

the properties are evaluated locally by a database (NIST).
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Non Equilibrium Thermodynamic

From a mechanical equilibrium to another

V and Φ are material and heat fluxes,

p, ρ, T the pressure, density and temperature

two equilibrium states at times t and t+ dt
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Non Equilibrium Thermodynamic

Variables

Vector variables and variable accumulation

V, the velocity and Φ, the thermal flux are vectors,

p, pressure, ρ, density and T temperature are scalar
accumulators,

∇ ·V and ∇ ·Φ to assess :

– ρ, density, upgraded by mass conservation,

– p, pressure, upgraded by momentum conservation,

– T , temperature, upgraded by energy conservation.
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Non Equilibrium Thermodynamic

Scalar variables

(p, ρ, T ) are linked by the relation

dρ

dt
= −

1

ρ
∇ ·V =

(

∂ρ

∂p

)

T

dp

dt
+

(

∂ρ

∂T

)

p

dT

dt

by including the phase change effects (Clapeyron)

dp

dt
= −

1

χT

∇ ·V +

(

β

χT

+
ρg L

T

)

dT

dt

from the energy conservation we write

dT

dt
=

1

ρ cv
∇ ·Φ−

β T

ρ cv χT

∇ ·V +
q

ρ cv
+

φ

ρ cv

the material derivatives are written with ∇ ·V and ∇ ·Φ
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Non Equilibrium Thermodynamic

Conservation laws and potentials

Conservation laws for an equilibrium



















ρ
dV

dt
= −∇po −∇× (µ∇×V)−

µ

K
V + f

τ
dΦ

dt
= −∇ T o

−∇× (ν ∇×Φ)−
1

k
Φ+ s

Potentials of accumulation














































dp

dt
= −

(

1

χT

+
β2 T

ρ cv χ2

T

+
ρg L β

ρ cv χT

)

∇ ·V −

(

β

ρ cv χT

+
ρg L

T ρ cv

)

∇ ·Φ+ ...

dT

dt
= −

(

β T

ρ cv χT

)

∇ ·V −

(

1

ρ cv

)

∇ ·Φ+
q

ρ cv
+

φ

ρ cv

dρ

dt
= −ρ∇ ·V
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Results on elementary cases

Diffusion for a linear function - different codes

FIGURE : Stationnary diffusion on unstructured mesh ; isovalues and
mesh, Code A, Code B, Aquilon.
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Results on elementary cases

Diffusion for a linear function

FIGURE : linear solution for different meshes.
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Multiphase flows

Sloshing water-air

FIGURE : Sloshing at zero viscosity in small perturbations ;
conservation of vorticity, liquid : ρ = 1000, µ = 0 and gaz : ρ = 1,
µ = 0.
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Conclusions

Multiphysics approach

Continum and LTE hypotheses are discarded

introduce the only dual vector of the antisymmetric rotation
tensor Ω

formulation use the only the velocity components

only one viscosity coefficient µ ≥ 0

The Clausius-Duhem inequality is verified but
Φ = dt

χT
(∇ ·V)2 + µ (∇×V)2 6= 0 if µ = 0,

integrate only thermoelastic coefficients and transport
properties

introduce dt/χT a robust coefficient reflecting a the physics
of compressible flows
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END

Simulation of Marangoni currents on a surface buble included in a bunny by Discrete Operator Calculus

HAL : Jean-Paul Caltagirone : Mécanique des Milieux Discrets,
http ://hal.archives-ouvertes.fr/hal-00788639

J-P. Caltagirone, C. Caruyer, S. Vincent, A multiphase compressible model for
the simulation of multiphase flows, Computers & Fluids, vol. 50, no. 1, pp. 24-34,
2011.
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