Introduction	Discrete Medium	Thermodynamic	Numerical methodology	Applications o

Discrete Mechanics

Jean-Paul Caltagirone¹

¹I2M - TREFLE - Université de Bordeaux

17 october 2013

Introduction	Discrete Medium	Thermodynamic 00000	Numerical methodology oo	Applications O
Summary				

Introduction

Continuum and Discrete Mechanics

Discrete Medium

Momentum equation

3 Thermodynamic

- Local Thermodynamic Equilibrium hypothesis
- Non Equilibrium Thermodynamic

Numerical methodology

Results on elementary cases

5 Applications

Multiphase flows

Introduction ●○	Discrete Medium	Thermodynamic 00000	Numerical methodology	Applications o
Continuum and Discr	ete Mechanics			
Two fondar	mental hypoth	eses		

- Continuous Medium
- Local Thermodynamic Equilibrium and EOS

Differences between these two approaches						
Continuum and Discrete Mechanics						
Introduction ○●	Discrete Medium	Thermodynamic 00000	Numerical methodology	Applications o		

Continuum

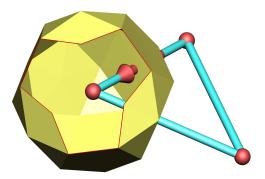
- Local Thermodynamic Equilibrium Hypothesis
- continuum : variables are defined on a point
- use of scalars, vectors, tensors
- the Lamé's coefficients are linked by Stokes's law

Discrete Medium

- L.T.E. hypothesis is discarded
- dicrete approach
- use of scalars and velocity components
- compressibility and viscosity are well defined
- a decomposition of momentum equation into gradient and rotationnal parts

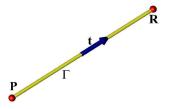
Definitions related to the topology					
Momentum equation	ו				
Introduction	Discrete Medium ●੦੦	Thermodynamic 00000	Numerical methodology	Applications o	

discrete mechanics



- primal (blue) and dual (yellow) topologies
- velocity components and accumulation potentials (red)

Introduction	Discrete Medium o●o	Thermodynamic 00000	Numerical methodology	Applications o
Momentum equation	ı			
Definitions	s of variables			



- pressure, density and temperature are set to the nodes,
- the component of the velocity is constant over the edge Γ
- vorticity is defined on the faces of the primal topology,
- mean density $\overline{\rho}$ is defined as $1/L \int_P^R \rho \, dl$,
- the momentum $\overline{\rho V}$ is constant on the edge,
- the rotational viscosity (shear) μ is constant on each face.

• by derivation along the unit vector t we find

$$\int_{\Gamma} \rho \, \frac{d\mathbf{V}}{dt} \cdot \mathbf{t} \, dl = -\int_{\Gamma} \nabla p \cdot \mathbf{t} \, dl - \int_{\Gamma} \nabla_d \times (\mu \, \nabla_p \times \mathbf{V}) \cdot \mathbf{t} \, dl - \int_{\Gamma} \frac{\mu}{K} \, \mathbf{V} \cdot \mathbf{t} \, dl$$

 using the above definitions, in particular µ = Cte on each side of the primal topology, we obtain the discrete equation of motion :

$$\rho \, \frac{d\mathbf{V}}{dt} = -\nabla p - \nabla_d \times (\mu \, \nabla_p \times \mathbf{V}) - \frac{\mu}{K} \, \mathbf{V} + \mathbf{f}$$

Introduction	Discrete Medium	Thermodynamic ●oooo	Numerical methodology	Applications o
Non Equilibrium T	hermodynamic			
Non-equi	librium flow			

Non-equilibrium flow

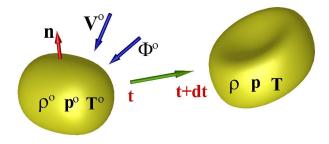
- $\bullet~(p,\rho,T)$ are not directly linked ,
- *ρ* is calculated by the mass conservation,
- the pressure is upgraded by the equation of motion,

Properties

- state law (ideal gaz, stiffened gas, ...) is not useful,
- the real thermodynamic coefficients are supposed known $(\beta, \chi_T, c_p, c_v)$,
- the transport properties are assumed to be know (μ, λ, k) ,
- the properties are evaluated locally by a database (NIST).

Introduction	Discrete Medium	Thermodynamic	Numerical methodology	Applications	
		00000			
Non Equilibrium Thermodynamic					
From a mechanical equilibrium to another					

- ${f V}$ and ${f \Phi}$ are material and heat fluxes,
- p, ρ , T the pressure, density and temperature



• two equilibrium states at times t and t + dt

Introduction	Discrete Medium	Thermodynamic oo●oo	Numerical methodology	Applications o
Non Equilibrium T	hermodynamic			
Variables				

Vector variables and variable accumulation

- V, the velocity and Φ , the thermal flux are vectors,
- *p*, pressure, *ρ*, density and *T* temperature are scalar accumulators,
- $\nabla \cdot \mathbf{V}$ and $\nabla \cdot \Phi$ to assess :
- $-\rho$, density, upgraded by mass conservation,
- − *p*, pressure, upgraded by momentum conservation,
- -T, temperature, upgraded by energy conservation.

Introduction 00	Discrete Medium	Thermodynamic ooo●o	Numerical methodology	Applications o		
Non Equilibrium T	nermodynamic					
Scalar va	Scalar variables					

 $\bullet~(p,\rho,T)$ are linked by the relation

$$\frac{d\rho}{dt} = -\frac{1}{\rho} \nabla \cdot \mathbf{V} = \left(\frac{\partial\rho}{\partial p}\right)_T \frac{dp}{dt} + \left(\frac{\partial\rho}{\partial T}\right)_p \frac{dT}{dt}$$

• by including the phase change effects (Clapeyron)

$$\frac{dp}{dt} = -\frac{1}{\chi_T} \nabla \cdot \mathbf{V} + \left(\frac{\beta}{\chi_T} + \frac{\rho_g L}{T}\right) \frac{dT}{dt}$$

• from the energy conservation we write

$$\frac{dT}{dt} = \frac{1}{\rho c_v} \nabla \cdot \mathbf{\Phi} - \frac{\beta T}{\rho c_v \chi_T} \nabla \cdot \mathbf{V} + \frac{q}{\rho c_v} + \frac{\phi}{\rho c_v}$$

• the material derivatives are written with $\nabla\cdot {\bf V}$ and $\nabla\cdot \Phi$

Introduction 00	Discrete Medium	Thermodynamic oooo●	Numerical methodology	Applications o		
Non Equilibrium Thermodynamic						
Conservation laws and potentials						

Conservation laws for an equilibrium

$$\left(\begin{array}{c}\rho \ \frac{d\mathbf{V}}{dt} = -\nabla p^o - \nabla \times (\mu \ \nabla \times \mathbf{V}) - \frac{\mu}{K} \ \mathbf{V} + \mathbf{f} \\ \tau \ \frac{d\mathbf{\Phi}}{dt} = -\nabla \ T^o - \nabla \times (\nu \ \nabla \times \mathbf{\Phi}) - \frac{1}{k} \ \mathbf{\Phi} + \mathbf{s} \end{array}\right)$$

• Potentials of accumulation

$$\frac{dp}{dt} = -\left(\frac{1}{\chi_T} + \frac{\beta^2 T}{\rho c_v \chi_T^2} + \frac{\rho_g L \beta}{\rho c_v \chi_T}\right) \nabla \cdot \mathbf{V} - \left(\frac{\beta}{\rho c_v \chi_T} + \frac{\rho_g L}{T \rho c_v}\right) \nabla \cdot \mathbf{\Phi} + \dots$$
$$\frac{dT}{dt} = -\left(\frac{\beta T}{\rho c_v \chi_T}\right) \nabla \cdot \mathbf{V} - \left(\frac{1}{\rho c_v}\right) \nabla \cdot \mathbf{\Phi} + \frac{q}{\rho c_v} + \frac{\phi}{\rho c_v}$$
$$\frac{d\rho}{dt} = -\rho \nabla \cdot \mathbf{V}$$

Introduction	Discrete Medium	Thermodynamic	Numerical methodology ●○	Applications o	
Results on elementary cases					

Diffusion for a linear function - different codes

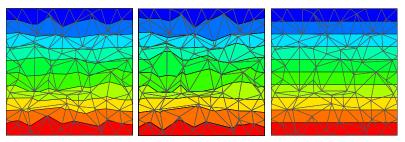


FIGURE : Stationnary diffusion on unstructured mesh; isovalues and mesh, Code A, Code B, Aquilon.

Diffusion for a linear function						
Results on elementary cases						
Introduction	Discrete Medium	Thermodynamic	Numerical methodology ○●	Applications o		

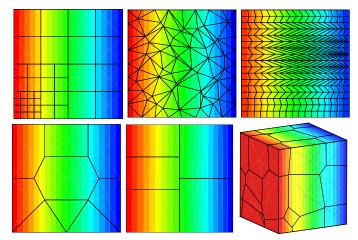


FIGURE : linear solution for different meshes.

Introduction	Discrete Medium	Thermodynamic 00000	Numerical methodology	Applications •		
Multiphase flows						
Sloshing water-air						

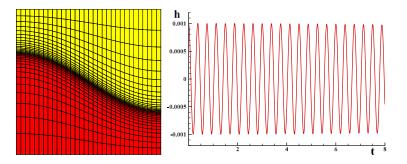


FIGURE : Sloshing at zero viscosity in small perturbations ; conservation of vorticity, liquid : $\rho = 1000$, $\mu = 0$ and gaz : $\rho = 1$, $\mu = 0$.

Introduction 00	Discrete Medium	Thermodynamic 00000	Numerical methodology	Applications O

Conclusions

Multiphysics approach

- Continum and LTE hypotheses are discarded
- introduce the only dual vector of the antisymmetric rotation tensor $\boldsymbol{\Omega}$
- formulation use the only the velocity components
- only one viscosity coefficient $\mu \ge 0$
- The Clausius-Duhem inequality is verified but $\Phi = \frac{dt}{\chi_T} (\nabla \cdot \mathbf{V})^2 + \mu (\nabla \times \mathbf{V})^2 \neq 0 \text{ if } \mu = 0,$
- integrate only thermoelastic coefficients and transport properties
- introduce dt/χ_T a robust coefficient reflecting a the physics of compressible flows

Introduction 00	Discrete Medium	Thermodynamic 00000	Numerical methodology oo	Applications o
		END		

Simulation of Marangoni currents on a surface buble included in a bunny by Discrete Operator Calculus

- HAL : Jean-Paul Caltagirone : Mécanique des Milieux Discrets, http://hal.archives-ouvertes.fr/hal-00788639
- J-P. Caltagirone, C. Caruyer, S. Vincent, A multiphase compressible model for the simulation of multiphase flows, Computers & Fluids, vol. 50, no. 1, pp. 24-34, 2011.