
HAL Id: hal-00927227
https://hal.science/hal-00927227v1

Submitted on 12 Jan 2014 (v1), last revised 22 Jan 2014 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enabling the UCD-SPH code on the Xeon Phi
Christian Lalanne, Ashkan Rafiee, Denys Dutykh, Michael Lysaght, Frédéric

Dias

To cite this version:
Christian Lalanne, Ashkan Rafiee, Denys Dutykh, Michael Lysaght, Frédéric Dias. Enabling the
UCD-SPH code on the Xeon Phi. 2014. �hal-00927227v1�

https://hal.science/hal-00927227v1
https://hal.archives-ouvertes.fr

Available online at www.prace-ri.eu

Partnership for Advanced Computing in Europe

Enabling the UCD-SPH code on the Xeon Phi

Christian Lalanne*, Ashkan Rafieeb,†, Denys Dutykhba, Michael Lysaght*,

Frederic Diasb

*Irish Center of High-End Computing, Dublin, Ireland
bUniversity College Dublin, Dublin, Ireland

†Now at Carnegie Wave Energy Ltd, Perth, WA, Australia
a LAMA, UMR, 5127 CNRS, Universite de Savoie, Campus Scientifique, France

Abstract

This white-paper reports on our efforts to enable an SPH-based Fortran code on the Intel Xeon Phi. As a result of
the work described here , the two most computationally intensive subroutines (rates and shepard_beta) of the
UCD-SPH code were refactored and parallelised with OpenMP for the first time, enabling the code to be
executed on multi-core and many-core shared memory systems. This parallelisation achieved speedups of up to
4.3x for the rates subroutine and 6.0x for the shepard_beta subroutine resulting in overall speedups of up to 4.2x
on a 2 processor Sandy Bridge Xeon E5 machine. The code was subsequently enabled and refactored to execute
in different modes on the Intel Xeon Phi co-processor achieving speedups of up to 2.8x for the rates subroutine
and up to 3.8x for the shepard_beta subroutine producing overall speedups of up to 2.7x compared to the
original unoptimised code. To explore the capabilities of auto-vectorisation the shepard_beta subroutine was
refactored which results in speedups of up to 6.4x for the shepard_beta subroutine relative to the original
unoptimised version of the shepard_beta subroutine. The development and testing phases of the project were
carried out on the PRACE EURORA machine.

1

Enabling UCD-SPH code on the Xeon Phi

1. Introduction

It has been known that bottom hinged Oscillating Wave Surge Converters (OWSCs) are an efficient way of extracting power
from ocean waves. OSWCs are in general large buoyant flaps, hinged at the bottom of the ocean and oscillating back and
forth under the action of incoming incident waves. The oscillating motion is converted into energy by pumping high-pressure
water to drive a hydro-electric turbine.

The UCD-SPH code utilises the Smoothed Particle Hydrodynamics (SPH) method for modelling wave interaction with an
Oscillating Wave Surge Converter (OWSC) device. The SPH scheme used in the UCD-SPH code is based on the SPH-ALE
formulation [4][5]. The standard SPH method is a purely Lagrangian technique and the "particles" are moving nodes that are
advected with the local velocity and carry field variables such as pressure and density. However, the SPH-ALE formulation is
based on the solution of a moving Riemann problem in the Arbitrary Lagrangian-Eulerian context and hence the so-called
particles are moving control volumes and not particles. As the fields are only defined at a set of discrete points, smoothing
(interpolation) kernels are used to define a continuous field and to ensure differentiability.

The purpose of this project is to first introduce OpenMP parallelisation to the UCD-SPH code, to then enable the UCD-SPH
code on the Intel MIC architecture and to then subsequently explore optimisations and modes of execution of the code on that
architecture. This project corresponded to 3PMs of effort.

All benchmarks and profiles of the baseline code and optimisations of the code were performed on EURORA, within a 2
processor, 8 core, Intel Xeon E5-2658, 2.10GHz, 16 GB RAM node with an Intel Xeon Phi 5120D, 8GB RAM co-processor
attached. The compiler used in this project was the Intel Fortran compiler (ifort) v14.0.1 20131008. All the executables
produced were compiled using the -O3 optimisation level.

The code was developed by Dr. Ashkan Rafiee and has been validated extensively in numerous applications [6][7][8][9]. The
version of the code that this project worked on is based upon the three-dimensional SPH approach and has recently been
parallelised using an MPI based domain decomposition method.

2. Analysis of the sequential version of the code

The original code at the start of the project was already parallelised using only MPI, where the problem domain is partitioned
across MPI processes along the dimension of the wave propagation (leading dimension). The entire domain is divided into
cells where these cells contain local particles. These local particles interact with particles located in the same cell and also
particles in the nearest neighbour cells. The code that was delivered as the test case for this project, was configured with a
smoothing length of h = 1.5dp where dp is the initial particle's spacing. The smoothing length (h) affects the number of
interactions that every particle participates in, thus increasing this parameter increases the number of particles that every
single particle interacts with, increasing the computation that the algorithm has to perform (size of the problem). It was found
that increasing this parameter increases the parallelism available in the algorithm and the size of the problem to solve, thus
different values of h were used during this project (1.5dp, 2.5dp and 3.5dp).

The code, is composed of a setup phase, where data is read from files and data structures are initialized, a main loop, where
every iteration of this loop represents a time step, and a deallocation phase where system resources are released.The first task
of the project was to measure the most computationally intensive functions in the code. The most computationally intensive
phase is the main loop. Figure 1 shows a profile of the most computationally intensive child subroutines in the main loop of
the original unoptimised code running with 1 MPI process.

Figure 1. Profile of the original unoptimised code running with 1 MPI process.

2

Enabling UCD-SPH code on the Xeon Phi

The most computationally intensive subroutines of the code are briefly described in Table 1:

Subroutine description

shepard_beta Calculation of the renormalisation factors for both shepard
correction of the kernel and also MLS correction of the

gradients of the kernel. In addition Turkel low mach
preconditioning factors are also calculated.

rates Calculation of forces and mass.

Table 1. Description of the most computationally intensive subroutines.

From Figure 1 we can clearly see that almost 96% of the time of the main loop is spent in the shepard_beta and rates
subroutines. For every iteration of this loop each of these subroutines is called twice as Figure 2 shows.

Figure 2. General structure of UCD-SPH program.

As a result it was decided to spend the efforts of this project analysing and optimising these 2 subroutines. The subroutines
rates and shepard_beta have a similar structure, in that they compute physical values such as forces and mass, or
renormalisation factors for every pair of interacting particles. This is done by first calculating a possible set of neighbour
particles before the update of these values is performed. Both of these subroutines traverse a three-dimensional array of cells,
and for each of these iterations, physical values and renormalisation factors of each interacting particle are updated.

Table 2 shows that the time spent searching for neighbours relative to the computation of physical values or renormalisation
factors is negligible. [1]

task shepard_beta[ms] rates[ms]

neighbour_search 2.07 3.35

particle_interaction 770.58 4674.99

total 773.18 4692.01

Table 2. Profile of particle interactions and neighbour searching in rates and shepard_beta.

3. OpenMP parallelisation.

The calculation of physical values and renormalisation factors between particles (between local particles in the current cell,
and particles of the current cell with particles in neighbour cells) is implemented as a triangular loop which computes
sequentially the contributions of particle A on particle B and particle B on particle A (particle-to-particle interaction
symmetrisation[2]). This way of computing these contributions is an important optimisation in the original code as it avoids
duplicating the computation of certain parameters (e.g. distance between particles).

There are several problems when trying to parallelise the computation of particle interactions. For example when
multithreading the algorithm the possibility of race conditions exist, which only be prevented by introducing locks with high
overhead. As well as this the triangular loop is naturally unbalanced in terms of workload. Thus careful analysis was needed
to avoid these issues.

3

Enabling UCD-SPH code on the Xeon Phi

Our solution to this was to perform a significant refactoring of the code to break the triangular loop that performs updates of
physical values in the case of rates and renormalisation parameters in the case of shepard_beta only calculating the effects of
the particles in one direction [2], whereby read/write accesses of each iteration of the loops are independent of read/write
accesses of other iterations. This method breaks the optimisation achieve by the sequential implementation of the original
code (particle-to-particle interaction symmetrisation[2]), increasing the time of the sequential version up to 52% in the case
of shepard_beta and in the case of rates up to 34%, this increment is shown in Figure 3.

Figure 3. Comparison between the sequential original unoptimised implementation and the parallel implementation with 1
thread.

Figure 4 shows the results of the parallelisation strategy implemented for rates, shepard_beta and main_loop on the 2 eight-
core Intel Xeon Sandy Bridge CPU on a single EURORA node. These figures show the behaviour of the code with dynamic
and static scheduling and with compact and scatter affinity.

4

Enabling UCD-SPH code on the Xeon Phi

 (a) (b)

 (c)

Figure 4. Speedup of the particle parallelisation approach. The figure shows the speedup relative to the original MPI only
version of the code (1 MPI process). The top panel shows results for a single time step (main loop). The middle panel shows

the results for the rates subroutine and the bottom panel shows the results for the shepard_beta subroutine. Plot (a) shows the
results for h = 1.5dp (small size problem), (b) shows the results for h = 2.5dp (medium size problem) and (c) shows the

results for h = 3.5dp (large size problem).

Table 3 summarises the optimal results of the parallel implementation of the shepard_beta and rates subroutines.

1.5*dp (small size problem) 2.5*dp (medium size
problem)

3.5*dp (large size problem)

main_loop 3.4x(ds,ca) 3.9x(ss, ca) 4.2x(ss, ca)

rates 3.8x(ds,ca) 4.0x(ss, ca) 4.3x(ss, ca)

shepard_beta 4.0x(ss, ca) 5.2x(ss, ca) 6.0x(ss, ca)

Table 3. Summary of the optimal results obtained for the parallel implementation of rates and shepard_beta (ss: static
scheduling, ds: dynamic scheduling, ca: compact affinity, sa: scatter affinity).

The results in Table 3 demonstrate that as is expected, scalability over OpenMP threads improves with larger problem sizes. It
is also worth noting that better results are achieved with compact affinity in all cases, and with static scheduling with a bigger
smoothing length (h = hfac*dp).

5

Enabling UCD-SPH code on the Xeon Phi

4. Enabling the UCD-SPH code on the Intel Xeon Phi.

In this section the two basic modes of execution on the Intel Xeon Phi are explored. Firstly we investigated the performance
of the OpenMP version of the code implemented during this project and described in the previous section in native mode. We
then subsequently, investigated the code executing in offload mode.

4.1 Native execution.

To execute the parallel version of the code in native mode it had to be recompiled with the -mmic flag. This allows the
compiler to create a binary that can be executed natively on the co-processor. The results of the parallel version of the
program executed in native mode on the co-processor can be seen in Figure 5.

 (a) (b)

 (c)
Figure 5. Speedup of the particle parallelisation approach in native mode. The figure shows the speedup relative to the

original MPI only version of the code (1 MPI process) running on the host (2 eight-core Intel Xeon Sandy Bridge CPU). The
top panel shows results for a single time step (main loop). The middle panel shows the results for rates subroutine and the

bottom panel shows the results for the shepard_beta subroutine. Plot (a) shows the results for h = 1.5dp (small size problem),
(b) shows the results for h = 2.5dp (medium size problem) and (c) shows the results for h = 3.5dp (large size problem).

Table 4 shows a summary of the results of the OpenMP parallelisation of the code executed in native mode on the Intel Xeon
Phi and, also shows as in the previous section that when increasing the smoothing length (h=hfac*dp) better scalability over
threads is achieved.

6

Enabling UCD-SPH code on the Xeon Phi

1.5*dp (small size problem) 2.5*dp (medium size
problem)

3.5*dp (large size problem)

main_loop 0.8x(ds, ca) 1.96x(ds, sa) 2.7x(ds, ca)

rates 0.97x(ds, ca) 2.19x(ds, sa) 2.8x(ds, ca)

shepard_beta 0.8x(ds, ca) 2.5x(ds, sa) 3.8x(ds, ca)

Table 4. Summary of the optimal results obtained for the parallel implementation of rates and shepard_beta executed in
native mode on the coprocessor (ss: static scheduling, ds: dynamic scheduling, ca: compact affinity, sa: scatter affinity).

4.2 Offload execution.

The other mode of execution that we investigated is the so-called offload mode. In this mode only the sections of code that
can exploit the features of the Intel Xeon Phi architecture are executed on the co-processor. For this mode it is necessary to
transfer relevant data for these kernels from the host to the co-processor. The main overhead associated with this mode of
execution is the transfer of data from the host to the co-processor [3] and vice-versa.

In order to allow for offloading of data, the code was refactored where the majority of refactoring was focused on moving
subroutines inside Fortran modules to allow the compiler to offload these subroutines. Also Intel Language Extensions for
offload (LEO) pragmas were used to inform the compiler of the variables and subroutines used on the co-processor.

Figure 6, shows the results of the offload version of the code relative to the native version of the code, for compact affinity
and static scheduling and a smoothing length of 2.5dp (medium problem size).

Figure 6. Difference between offloading execution and native execution with an h of 2.5dp.

One can clearly see from Figure 6 that performance is poorer when the code executes in offload mode compared to the code
running in native mode which can be put down to the overhead associated with data transfers over the PCIe bus. The
subroutines shepard_beta and rates are on average 21% and 5.6% slower in offload mode than in native mode. This
difference is because rates has to transfer much more data to the co-processor for every offload section, where the amount of
data transferred is shown in Table 5.

The overhead of offloading could possibly be hidden using asynchronous data transfers but in this case the current structure
of the code does not expose opportunities to transfer data and perform heavy computation on the host at the same time,
making the gains of asynchronous offloading marginal. The results with smoothing length equal to 1.5dp and 3.5dp are
similar to the ones in Figure 6.

Subroutine Direction of transfer Size of Data [MB]

shepard_beta CPU->MIC 160.67

shepard_beta MIC->CPU 15.12

rates CPU->MIC 254.23

rates MIC->CPU 39.69

Table 5. Data that is transferred for every offload section.

7

Enabling UCD-SPH code on the Xeon Phi

5. Refactoring for vectorization.

In this section we described how we have investigated the possibilities of exploiting the 512-bit SIMD VPU capabilities on
the Xeon Phi for the UCD-SPH code. The basic structure of the OpenMP code is represented by the pseudo-code shown in
Figure 7.

 Figure 7. Parallelisation, basic structure

The loop in Figure 7 is not vectorised by the compiler, thus changes were performed to simplify the loop in Figure 7 and
expose explicitly to the compiler vectorisation opportunities, where this refactoring is shown as pseudo-code in Figure 18. As
a result of these changes loop (1) and (2) in Figure 8 are automatically vectorised by the compiler.

Figure 8. Refactoring of particle_interaction and the extraction of neighbour_refinement.

One significant change to the code that allowed for the simplification and vectorisation of loop (1) and (2) in Figure 18 was
the moving of the calculation of distances between particles from particle_interaction to neighbour_refinement, creating new
vectorisation possibilities for the loops created in neighbour_refinement as shown in Figure 9.

Figure 9. Structure of the neighbour_refinement subroutine.

8

Enabling UCD-SPH code on the Xeon Phi

It is important to notice that in Figure 9, only loop (1) is vectorised by the compiler on the host and the MIC, and loop (2) is
vectorised only on the MIC, which is the main source of the performance improvements shown in Figure 20. It is also
important to mention that to perform these changes in the code, data computed inside of these loops had to be stored and
communicated to other loops that require the data, thus there is a trade off between performance and memory footprint which
is relevant due the limited memory RAM available on the Xeon Phi. No special pragmas were used to force the compiler to
vectorise the loops, in an effort to maintain code readability.

The refactoring for vectorization was implemented for the shepard_beta subroutine only. Figure 10 summarises the results of
this refactoring showing the performance of the code on the host with 8 and 16 threads and comparing with the performance
of this refactoring on the coprocessor executing natively.

Figure 10. Performance comparison of shepard_beta between basic parallelisation on the host and coprocessor (host,
native) and parallelisation that exposes vectorisation to the compiler (host_vec, native_vec) with an h=2.5dp, static

scheduling and compact affinity was used.

Auto-vectorisation of the shepard_beta subroutine after the refactoring described in this section running in native mode on
the co-processor is 1.75x faster than the fastest version running on the host (same version of the code) with 8 threads and is
1.23x faster than the fastest version of the code running with 16 threads (basic parallelisation).

6. Performance Summary

Table 6 shows a summary of the performance achieved for each mode of execution and optimisation performed in this
project.

base[ms] OpenMP
host[ms]

OpenMP MIC
native[ms]

OpenMP + vect
host[ms]

OpenMP + vect
MIC native[ms]

Offload[ms]

main_loop 41165.58 10594.67 20988.8 - - 21047.84

rates 17800.06 4377.46 8103.85 - - 9091.82

shepard_beta 2588.76 498.4 1033.31 706.9 404.58 1244.86

Table 6. Summary of optimal results obtained with an smoothing length of 2.5dp.

7. Conclusions.

To conclude, we have profiled the UCD-SPH code and identified the most computationally intensive sections of the code.
We, subsequently refactored the original version of the code to allow for OpenMP parallelisation for the first time so that the
code could exploit multi-core and many-core shared memory architectures. We have provided results for the code running on
the co-processor in two different modes of execution, namely native mode and offloading mode where no significant
overheads were found in the code running in offload mode. Our performance analysis of the code running in native mode has
demonstrated relatively poor scalability across OpenMP threads. Better performance on the MIC was achieved only after
investigations were made into refactoring computationally intensive loops in order to allow for auto-vectorisation. These
better results for the shepard_beta subroutine indicate that further investigations into the vectorisation of the code would be
worthwhile.

In summary, initial results indicate that the UCD-SPH code is currently not well suited to the Intel MIC architecture, but we
feel that further investigations of the code running in MPI symmetric mode as well as further investigations into possibilities
for vectorisation may lead to improved performance.

9

Enabling UCD-SPH code on the Xeon Phi

References

[1] Markus Ihmsen, Nadir Akinci, Markus Becker, Matthias Teschner, “A parallel SPH implementation on multi-core
CPUs”, Computer Graphics Forum, Vol. 30, pp. 99-112, 2011.

[2] G. Oger, E. Jacquin, M. Doring, P.M. Guilcher, R. Dolbeau, P.L. Cabelguen, L. Bertaux, D. Le Touze, B. Alessandrini,
“Hybrid CPU-GPU acceleration of 3-D parallel code SPH-Flow”, Proceedings of the 5th Spheric Workshop, Manchester,
U.K, 2010.

[3] Chris J. Newburn, Rajiv Deodhar, Serguei Dimitriev, Ravi Murty, Ravi Narayanaswamy, John Wiegert, Francisco
Chinchilla, Russ McGuire, “Offload Compiler Runtime for the Intel Xeon Phi Coprocessor”, Supercomputing Lectures
Notes in Computer Science, Vol. 7905, pp. 239-254, 2013.

[4] J.P. Vila, “On particle weighted methods and smooth particle hydrodynamics”, Mathematical Models and Methods in
Applied Sciences, 09(02): 161-209, Mar. 1999.

[5] J.P. Vila, “SPH Renormalized Hybrid Methods for Conservation Laws: Applications to free surface flows”, Meshfree
Methods for Partial Differential Equations II, Lecture Notes in Computational Science and Engineering, Vol. 43, 2005,
pp. 207-229.

[6] A. Rafiee, S. Cummins, M. Rudman, K. Thiagarajan, “Comparative study on the accuracy and stability of SPH schemes
in simulating energetic free-surface flows”, European Journal of Mechanics-B/Fluids, Vol.36, November-December
2012, pp. 1-16.

[7] A. Rafiee, N. Repalle, F. Dias, “Numerical Simulations of 2D Liquid Impact Benchmark Problem Using Two-Phase
Compressible and Incompressible Methods”, In Proceedings of 23rd International Offshore and Polar Engineering
Conference (ISOPE), Alaska, USA, 2013.

[8] A. Rafiee, D. Dutykh, F. Dias, “Numerical simulation of wave impact on a rigid wall using a two--phase compressible
SPH method”, In Proceedings of IUTAM symposium of Particle Methods in Fluid Mechanics, under review.

[9] A. Rafiee, B. Elsaesser, F. Dias, “Numerical simulation of wave interaction with an oscillating wave surge converter”,
In Proceedings of OMAE 2011, ASME 31th International Conference on Ocean, Offshore and Arctic Engineering
(OMAE), Nantes, France, June 2013.

Acknowledgements

This work was financially supported by the PRACE project funded in part by the EUs 7th Framework
Programme (FP7/2007-2013) under grant agreement no. RI-261557. The work was achieved using the
PRACE Research Infrastructure resources at Cineca and Ichec.

10

