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Abstract—The estimation of the permittivity distribution
within a given volume by Electrical Capacitive Tomography
relies on a relationship between the measured signal and the
permittivity distribution, known as the sensitivity matrix.
We show that relative permittivity variations must be lower
than 25% to obtain errors smaller than 10% with the model
whereas the permittivity can be scaled by up to 3.6 for the
same error range with the proposed non- model. The errors
remain below 15% over the whole range of permittivity.

I. INTRODUCTION

Electrical Capacitance Tomography (ECT) is a tool
for estimating the permittivity distribution of materials
located in an area, generally a pipe [1]. An ECT sensor
is a capacitive sensor comprising a set of electrodes sur-
rounding the sensitive volume in which the permittivity
distribution is estimated from the measurements of the
capacitance between the electrodes. It is therefore neces-
sary to accurately model the influence of the permittivity
distribution inside the ECT sensor on the measured
capacitances to reach reliable estimations. This influence
is known as the sensitivity matrix which links the signal
variation on one electrode to the permittivity variation in
a given volume element inside the ECT sensor sensitive
volume. The sensitivity matrix is however ly defined [2]
leading to large errors when the permittivity variation
exceeds few percents of its nominal value.
In this paper we propose a non- model for the sen-

sitivity matrix based on physical considerations that
approximate the limit of the capacitance variation when
the permittivity in a given volume element inside the
ECT sensor sensitive volume tends toward infinity. In
the first section of the paper the physical background
of ECT sensors is reminded and the usual linear-model
of sensitivity matrix is described. In the second section,
numerical experiments are presented showing the great
precision of the linear model for small variations of
the permittivity distribution inside the sensor sensitive
volume, and the large error made for larger variations
of the permittivity distribution. It is shown that simple
assumptions makes it possible to evaluate the maximal
signal variation and thus to estimate with a simple non-

linear model the signal variation for all permittivity
variations with limited errors over the whole range of
permittivity.

II. PHYSICAL BACKGROUND OF ECT

Electrical Capacitance Tomography is based on the
influence of the material permittivity on the capacitance
between the electrodes of the ECT sensor.

A. Generality

The charges on the electrodes of any capacitive sensor
depend on the voltage applied to each electrode by

Qi = cijVj, (1)

where Qi is the charge quantity on electrode i, cij is
the capacitive tensor and Vj is the voltage applied to
electrode j. Notice that in tensorial notation, a sum is
insinuated over all values of any subscript that appears
twice in a term. In (1), there is a sum over all values of
j, that is to say over all electrodes.
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Figure 1. Simple Electrical Capacitance Tomography sensor showing
all inter-capacities Cij between the 4 electrodes of the sensor. The
nominal permittivity is ǫ and the object permittivity is ǫ + δǫ.

It can be shown that the capacitive tensor coefficients
cij can easily be expressed form the inter-capacities Cij
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cij =















∑j C1j −C12 −C13 · · · −C1N

−C12 ∑j C2j −C23 · · · −C2N

−C13 −C23 ∑j C3j · · · −C3N

...
...

...
. . .

...
−C1N −C2N −C3N . . . ∑j CNj















(2)

Since there are at most N(N − 1)/2 different inter-
capacities for a N-electrode sensor, only N(N − 1)/2
independent data can be obtained at most, for instance
permittivity at N(N− 1)/2 positions.
A variation in the environment of a capacitive sensor

results in a signal which verifies for the electrode i

δQi = δ(cijVj) = δcijVj + cijδVj 6=i + ciiδVi. (3)

In short-circuit measurement conditions, δVi = 0 and
the signal is the variation of charges δQi on electrode
i. In open-circuit measurement conditions, δQi = 0 and
the signal is the variation of voltage δVi on electrode i.
In both measurement conditions the signal results from
the voltage variation δVj on the other electrodes (i 6= j)
and/or from a capacitive tensor variation δcij due, for
instance, to a local variation of permittivity. Therefore
both measurement conditions are not independent and
it is possible to switch from one to the other using the
Thevenin-Norton transforms:

δQi ≡ −ciiδVi. (4)

B. Capacitive tensor coefficients

Capacitive tensor coefficients can be advantageously
estimated by energy considerations. The energy W of
an electrostatic system at equilibrium is the sum of the
energy held by each electrode, that is to say half the
charge quantity on the electrode multiplied by its voltage
[3]:

W = 1
2QiVi = 1

2 cijViVj. (5)

Energy W can also be expressed as the integral over
space of the energy density 1

2ǫE2, where ǫ is the permit-

tivity and ~E the electric field. One has

W = 1
2

ˆ

ǫ E2 dv. (6)

Considering a N-electrode ECT sensor, the electric
field can be conveniently decomposed into the sum of
the contribution of each electrode by introducing ~ξi, the
electric field produced by electrode i when polarized to
1 V while all other electrodes are grounded. One obtains

~E = Vi
~ξi, (7)

thus (6) becomes

W = 1
2

ˆ

ǫ (Vi
~ξi) · (Vj

~ξ j) dv (8)

and the identification between (5) and (8) leads finally
to

cij =

ˆ

ǫ~ξi ·~ξ j dv. (9)

As far as capacitive sensor variation δcij is concerned,
it has been demonstrated [4] that the variation of charges
δQi in short-circuit conditions resulting from a small
local permittivity variation δǫ is at first order

δQi =

ˆ

δǫ ~E ·~ξi dv. (10)

Using (7) for the electric field, one easily obtains δcij
by identification:

δQi = Vj

ˆ

δǫ~ξi ·~ξ j dv = Vjδcij. (11)

Field ~ξi can be seen as the influence of electrode i
in the capacitive sensor. Therefore it can be called the
sensitivity field of electrode i and plays a similar role
than the radiation diagram of an antennae.

C. Sensitivity matrix

The reconstruction of the permittivity distribution in
the ECT sensor volume depends on measurements and
therefore relies on the influence of the permittivity in the
signal. That influence is the signal sensitivity matrix Sij
and is generally defined as

SijV =
∂mij

∂ǫ
, (12)

where mij denotes the measurement at electrode i when
electrode j is under the voltage V while other electrodes
are grounded. Since ǫ depends on position, it is con-
venient to decompose the sensor sensitive volume into
small elements δvk. The permittivity is assumed uniform
in each element k and can vary from ǫ to ǫ + δǫmax. In
that case the following linear expression is often used
[2], [5]:

Sijk =
δvmax

δvk
×

cij(ǫ + δǫmax
k )− cij(ǫ)

δǫmax
. (13)

where δvmax corresponds to the volume of the larger
element. Expression (13) corresponds to the capacitance
variation between electrodes i and j when the permit-
tivity in element k is ǫ + δǫmax while the permittivity
in others elements is ǫ, normalized by the permittivity
variation δǫmax and the volume δvk of element k. From
Equation (9) and (11), Sijk can be expressed as

Sijk =
δvmax

δvk
×

ˆ

δvk

~ξi ·~ξ j dv = δvmax× < ~ξi ·~ξ j >k, (14)

where < ~ξi ·~ξ j >k is the mean value of ~ξi ·~ξ j over element

k. The dot product ~ξi ·~ξ j is therefore the sensor sensibility
density.



D. Reconstruction algorithm

The reconstruction of the permittivity distribution in
the sensor sensitive volume can be made by various
algorithms [6], [5] which all rely on the sensitivity ma-
trix Sijk. The iterative Landweber algorithm is one of
these algorithms that gives good results despite being
relatively slow. That iterative algorithm is based on the
optimization of the criterion J defined as

J = (mij − SijkV ǫ̂k)
2, (15)

where V is the voltage applied during the measurement.
That criterion is minimized when the estimated per-
mittivity distribution ǫ̂k produces the estimated signals
SijkV ǫ̂k as close as possible to real measurements mij.
The iterative algorithm consists then in iterative mini-
mization of criterion J for instance by

ǫ̂n+1
ℓ

= ǫ̂n
ℓ
−

α

2

∂J

∂ǫ̂ℓ

= ǫ̂n
ℓ

+ α SijℓV (mij − SijkV ǫ̂nk ). (16)

Coefficient α is used to adjust speed of convergence. It is
obvious from (15) and (16) that the better the sensitivity
matrix Sijk, the better the results of the reconstruction
algorithm.

III. DISCUSSION AROUND THE SENSITIVITY MATRIX

A. Limitation of the linear model

For estimating the accuracy of the sensitivity matrix
various situations have been simulated. One of them
is presented in Figure 2. The ECT sensor is made of
8 evenly distributed electrodes around a cylinder and
a grounded electrode enclosing all measurement elec-
trodes. The measurement electrode filling factor is 50%,
that is to say that the gap between electrodes is equal to
the electrode width. The nominal permittivity is imposed
at ǫ = 10ǫ0, where ǫ0 is the vacuum permittivity, to
emphasize the influence of both much larger and much
smaller object permittivity ǫ + δǫ on measurements. It is
worth noting that taking any other value for the nominal
permittivity ǫ would lead to the same conclusions. The
object permittivity has been varied from ǫ/10 to 10ǫ in
all numerical experiments.
Figure 3 shows the variation of the first 8 measure-

ments for one of the situations along with the linear
model in dotted lines. It can be noticed that the linear
model gives a very accurate estimation of the signal
variation close to the nominal permittivity, that is to
say for δǫ/ǫ close to zero. However as the permittivity
variation δǫ increases, a discrepancy appears since the
signal variation δm rapidly reaches its maximal value
while the signal variation estimated from the linear
model continues to increase. Therefore the error is very
large when the permittivity is too different from the
nominal one. Though the errors differ from one situation
to another, the overall relative error is less than 10% for
all significant signal variations for |δǫ/ǫ| > 25%.
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Figure 2. Example of one of the simulated situations with all
electrodes grounded except V1 = 1V. The sensor radius is 10 cm and
the object permittivity is twice the nominal one.

B. Proposed non-linear model

In order to take into account the non linearity of
the measurements with permittivity, it is interesting to
estimate the maximal value mmax

ij of all measurements

mij. That maximal value is obtained when the permit-
tivity tends toward infinity so that the object can be
considered as a floating electrode. As a consequence both
the electric field inside the object and the net charge
quantity on the object surface are zero. Therefore the
electrical energy that was at the position of the object has
been redistributed between all measurement electrodes
and, because that energy is limited, signals can only vary
to a maximal value.
The redistributed energy is however not evenly shared

out between all measurement electrodes. As a hypoth-
esis it can be assumed that the redistributed energy
is shared out between the electrodes with a coefficient
corresponding to the influence of the electrodes at the
object position. Equation (1) with (9) indicate that the
fraction of charges QV

i on electrode i due to the part of
space V corresponding to the object volume is

QV
i = Vj

ˆ

V
ǫ~ξi ·~ξ j dv. (17)

Removing that fraction of charges would be similar
to a charge variation δQi = −QV

i on electrode i, and
thus to a permittivity variation δǫ = −2ǫ after (11)
since permittivity would have varied from ǫ to −ǫ.
Then assuming that the signal gain due to the energy
redistribution caused by the infinite permittivity of the
object is opposite to the signal loss when the part of
space of the object is not taken into account, one gets
the maximal variation of the signal δQmax

i on electrode
i as

δQmax
i ≈ Vj

ˆ

V
2ǫ~ξi ·~ξ j dv = 2ǫVjSij(V) (18)

where Sij(V) is the sensitivity matrix related to the object
volume. As a result the slope and the maximal value
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Figure 3. Variation of the first 8 measurements as a function of the
relative permittivity variation δǫ/ǫ (solid line) along with the linear
model (dotted line) and non-linear model (dashed line).

of δmij both directly depend on the sensitivity matrix
Sij(V).
As the variation δmij are relatively smooth, a simple

fitting low can be used to estimate the measurements,
for instance

δmij ≈
δǫ δmmax

ij

δǫ + 2ǫ
(19)

which value is δmmax
ij = 2ǫ Sij(V)V when δǫ tends to

infinity and slope is Sij(V)V at δǫ = 0.

Figure 3 shows the first 8 measurement variations
along with the non-linear model in dashed lines. It
can be noticed that the non-linear model follows the
tendency of the measurements hence reducing the error
over a large range of permittivity variation. The relative
error is less than 10% for all significant signal variations
for an object permittivity up to 3.6 times the nominal
one and remain constrained within ±15% for any per-
mittivity variations.

IV. CONCLUSION

A non-linear model for the sensitivity matrix of Elec-
trical Capacitive Tomography sensors has been proposed
in order to reduce the error of the estimated signal
in reconstruction algorithms. The non-linear model is
based on the approximation of the maximal signal the
sensor can measure if the object to detect were replaced
by a floating electrode. A simple fitting law taking
into account the slope of the measurements around the
nominal permittivity and the maximal signal variation
is then applied to express the sensitivity matrix for all
permittivity values. It is shown that the estimation errors
of the non-linear model are very small compared to the
estimation errors made by the linear model, making it
possible to improve reconstruction of the permittivity
distribution with ECT sensors.
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