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Abstract

We construct new families of quasi-rational solutions of the NLS

equation of order 8 with 14 real parameters. We obtain new patterns

of different types of rogue waves. We recover the triangular configura-

tions as well as isolated rings as found for the lower orders. Moreover,

one sees appearing for certain values of the parameters, new configu-

rations of concentric rings.

1 Introduction

From the pioneer work of Zakharov and Shabat in 1972 [14], and the first
expressions of the quasi-rational solutions given by Peregrine in 1983 [13],
a considerable number of studies were carried out. Akhmediev, Eleonski
and Kulagin constructed the first higher order analogue of the Peregrine
breather[1, 2] in 1986. Akhmediev et al. [3, 4], constructed other families of
order 3 and 4, using Darboux transformations.
In 2010, rational solutions of the NLS equation have been written as a quo-
tient of two Wronskians in [6]. In 2011, an other representation of the so-
lutions of the NLS equation has been constructed in [7], also in terms of a
ratio of two Wronskians determinants of order 2N .
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In 2012, the solutions of the focusing NLS equation has been written as a
ratio of two determinants in [10] using generalized Darboux transform.
Ohta and Yang [12] have given an other representation of solutions of the
focusing NLS equation by means of determinants, obtained from Hirota bi-
linear method.
A the beginning of the year 2012, the author obtained a representation in
terms of determinants which does not involve limits [9].
These first two formulations given in [7, 9] did depend in fact only on two
parameters; this remark was first pointed out by Matveev. In 2012 Matveev
and Dubard obtained for the first time, with the approach defined in [6], the
solutions of NLS explicitly, for the order 3 depending on 4 parameters and
those for the order 4 depending on 6 parameters[5].
Then the author found for the order N (for determinants of order 2N), solu-
tions depending on 2N − 2 real parameters.
With this new method, we construct here news deformations at order 8 with
14 real parameters.

2 Determinant representation of solutions of

NLS equation

2.1 Quasi-rational limit solutions of the NLS equation

We recall the results obtained in [7]. We consider the focusing NLS equation

ivt + vxx + 2|v|2v = 0. (1)

In the following, we consider 2N parameters λν , ν = 1, . . . , 2N satisfying the
relations

0 < λj < 1, λN+j = −λj, 1 ≤ j ≤ N. (2)

We define the terms κν , δν , γν by the following equations,

κν = 2
√

1 − λ2
ν , δν = κνλν , γν =

√

1 − λν

1 + λν

, (3)

and

κN+j = κj, δN+j = −δj, γN+j = 1/γj, j = 1 . . . N. (4)

2



The terms xr,ν (r = 3, 1) are defined by

xr,ν = (r − 1) ln
γν − i

γν + i
, 1 ≤ j ≤ 2N. (5)

The parameters eν are defined by

ej = iaj − bj, eN+j = iaj + bj, 1 ≤ j ≤ N, (6)

where aj and bj, for 1 ≤ j ≤ N are arbitrary real numbers.
The terms ǫν are defined by :

ǫν = 0, 1 ≤ ν ≤ N
ǫν = 1, N + 1 ≤ ν ≤ 2N.

We use the following notations :
Θr,ν = κνx/2 + iδνt − ixr,ν/2 + γνy − ieν , 1 ≤ ν ≤ 2N .
We consider the functions

φr,ν(y) = sin Θr,ν , 1 ≤ ν ≤ N,
φr,ν(y) = cos Θr,ν , N + 1 ≤ ν ≤ 2N.

(7)

Wr(y) = W (φr,1, . . . , φr,2N) is the Wronskian

Wr(y) = det[(∂µ−1
y φr,ν)ν, µ∈[1,...,2N ]]. (8)

Then we get the following statement [8]

Theorem 2.1 The function v defined by

v(x, t) =
W3(0)

W1(0)
exp(2it − iϕ). (9)

is solution of the NLS equation (1)

ivt + vxx + 2|v|2v = 0.

To obtain quasi-rational solutions of the NLS equation, we take the limit
when the parameters λj → 1 for 1 ≤ j ≤ N and λj → −1 for N+1 ≤ j ≤ 2N .
Fot that, we consider the parameter λj written in the form

λj = 1 − 2j2ǫ2, 1 ≤ j ≤ N. (10)

When ǫ goes to 0, we obtain quasi-rational solutions of the NLS equation
given by :
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Theorem 2.2 The function v defined by

v(x, t) = exp(2it − iϕ) lim
ǫ→0

W3(0)

W1(0)
, (11)

is a quasi-rational solution of the NLS equation (1)

ivt + vxx + 2|v|2v = 0.

2.2 Expression of solutions of NLS equation in terms

of a ratio of two determinants

We construct the solutions of the NLS equation expressed as a quotient of
two determinants which does not involve a passage to the limit.
We use the following notations :

Aν = κνx/2 + iδνt − ix3,ν/2 − ieν/2,
Bν = κνx/2 + iδνt − ix1,ν/2 − ieν/2,

(12)

for 1 ≤ ν ≤ 2N , with κν , δν , xr,ν defined in (3), (4) and (5).
The parameters eν are defined by (6).
Here, the parameters aj and bj, for 1 ≤ N are chosen in the form

aj =
N−1
∑

k=1

ãkǫ
2k+1j2k+1, bj =

N−1
∑

k=1

b̃kǫ
2k+1j2k+1, 1 ≤ j ≤ N. (13)

We consider the following functions :

f4j+1,k = γ4j−1
k sin Ak, f4j+2,k = γ4j

k cos Ak,

f4j+3,k = −γ4j+1
k sin Ak, f4j+4,k = −γ4j+2

k cos Ak,
(14)

for 1 ≤ k ≤ N , and

f4j+1,N+k = γ2N−4j−2
k cos AN+k, f4j+2,N+k = −γ2N−4j−3

k sin AN+k,

f4j+3,N+k = −γ2N−4j−4
k cos AN+k, f4j+4,N+k = γ2N−4j−5

k sin AN+k,
(15)

for 1 ≤ k ≤ N .
We define the functions gj,k for 1 ≤ j ≤ 2N , 1 ≤ k ≤ 2N in the same way,
we replace only the term Ak by Bk.

g4j+1,k = γ4j−1
k sin Bk, g4j+2,k = γ4j

k cos Bk,

g4j+3,k = −γ4j+1
k sin Bk, g4j+4,k = −γ4j+2

k cos Bk,
(16)
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for 1 ≤ k ≤ N , and

g4j+1,N+k = γ2N−4j−2
k cos BN+k, g4j+2,N+k = −γ2N−4j−3

k sin BN+k,

g4j+3,N+k = −γ2N−4j−4
k cos BN+k, g4j+4,N+k = γ2N−4j−5

k sin BN+k,
(17)

for 1 ≤ k ≤ N .
Then we get the following result :

Theorem 2.3 The function v defined by

v(x, t) =
det((njk)j,k∈[1,2N ]

)

det((djk)j,k∈[1,2N ]
)
e2it−iϕ (18)

is a quasi-rational solution of the NLS equation (1)

ivt + vxx + 2|v|2v = 0,

depending on 2N − 2 parameters ãj, b̃j, 1 ≤ j ≤ N − 1, where

nj1 = fj,1(x, t, 0), njk =
∂2k−2fj,1

∂ǫ2k−2 (x, t, 0),

njN+1 = fj,N+1(x, t, 0), njN+k =
∂2k−2fj,N+1

∂ǫ2k−2 (x, t, 0),

dj1 = gj,1(x, t, 0), djk =
∂2k−2gj,1

∂ǫ2k−2 (x, t, 0),

djN+1 = gj,N+1(x, t, 0), djN+k =
∂2k−2gj,N+1

∂ǫ2k−2 (x, t, 0),
2 ≤ k ≤ N, 1 ≤ j ≤ 2N

(19)

The functions f and g are defined in (14),(15), (16), (17).

We don’t have the space to give the proof in this publication. We will give
it in an other forthcoming paper.
The solutions of the NLS equation can also be written in the form :

v(x, t) = exp(2it − iϕ) × Q(x, t)

where Q(x, t) is defined by :

Q(x, t) :=

∣

∣

∣

∣

∣

∣

∣

∣

∣

f1,1[0] . . . f1,1[N − 1] f1,N+1[0] . . . f1,N+1[N − 1]
f2,1[0] . . . f2,1[N − 1] f2,N+1[0] . . . f2,N+1[N − 1]

...
...

...
...

...
...

f2N,1[0] . . . f2N,1[N − 1] f2N,N+1[0] . . . f2N,N+1[N − 1]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

g1,1[0] . . . g1,1[N − 1] g1,N+1[0] . . . g1,N+1[N − 1]
g2,1[0] . . . g2,1[N − 1] g2,N+1[0] . . . g2,N+1[N − 1]

...
...

...
...

...
...

g2N,1[0] . . . g2N,1[N − 1] g2N,N+1[0] . . . g2N,N+1[N − 1]

∣

∣

∣

∣

∣

∣

∣

∣

∣

(20)
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3 Quasi-rational solutions of order 8 with twelve

parameters

Wa have constructed in [7] solutions for the cases from N = 1 until N = 7,
and in [9] with two parameters.
We don’t give the analytic expression of the solution of NLS equation with
fourteen parameters because of the length of the expression. When all the
parameters aj and bj, 1 ≤ j ≤ 7 are equal to 0, we get the analogue of the
Peregrine breather of order 8. For parameters non equal to 0, we construct
figures to show deformations of the eighth Peregrine breather.
We get different types of symmetries in the plots in the (x, t) plane. We give
some examples of this fact in the following.
If we choose ãi = b̃i = 0 for 1 ≤ i ≤ , we obtain the classical Peregrine
breather :
With other choices of parameters, we obtain all types of configurations :
triangles and multiple concentric rings configurations with a maximum of 36
peaks.
In the case of the variation of one parameter, we obtain different types of
configurations with a maximum of 36 peaks.
In the cases a1 6= 0 or b1 6= 0 we obtain triangles with a maximum of 36
peaks; for a2 6= 0 or b2 6= 0, we have 5 rings with respectively 7, 7, 8, 8, 5
peaks with in the center one peak. For a3 6= 0 or b3 6= 0, we obtain 5 rings
with 7 peaks on each of them with a central peak. For a4 6= 0 or b4 6= 0, we
have 4 rings with 9 peaks on each of them without central peak. For a5 6= 0
or b5 6= 0, we have 3 rings of 11 peaks with in the center the Peregrine of
order 2. For a6 6= 0 or b6 6= 0, we have 2 rings with 13 peaks and in the
center the Peregrine breather of order 4. For a7 6= 0 or b7 6= 0, we have one
ring with 15 peaks and in the center the Peregrine breather of order 6.
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Figure 1: Solution of NLS, N=8; left : all parameters equal to 0, the Peregrine
P8; right : a regular triangle with 36 peaks.

Figure 2: Solution of NLS, N=8, ã2 = 106 : 5 rings with respectively 7, 7, 8,
8, 5 peaks with in the center one peak; on the right, sight of top.

Figure 3: Solution of NLS, N=8, b̃2 = 106 : 5 rings with respectively 7, 7, 8,
8, 5 peaks with in the center one peak; on the right, sight of top.

4 Conclusion

In the present paper we have constructed solutions of the NLS equation of
order N = 8 with 2N − 2 = 14 real parameters. The explicit representation
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Figure 4: Solution of NLS, N=8, ã3 = 105 : 5 rings with 7 peaks on each of
them with a central peak; on the right, sight of top.

Figure 5: Solution of NLS, N=8, b̃3 = 105 : 5 rings with 7 peaks on each of
them with a central peak; on the right, sight of top.

Figure 6: Solution of NLS, N=8, ã4 = 1010 : 4 rings with 9 peaks on each of
them without central peak; on the right, sight of top.

in terms of polynomials in x and t are too monstrous to be published. We
can’t give in this text.
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Figure 7: Solution of NLS, N=8, b̃4 = 1010 : 4 rings with 9 peaks on each of
them without central peak; on the right, sight of top.

Figure 8: Solution of NLS, N=8, ã5 = 1015 : 3 rings of 11 peaks with in the
center the Peregrine of order 2; on the right, sight of top.

Figure 9: Solution of NLS, N=8, b̃5 = 1015 : 3 rings of 11 peaks with in the
center the Peregrine of order 2; on the right, sight of top.

By different choices of these parameters, we obtained new patterns in the
(x; t) plane; we recognized ring shape as already observed in the case of
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Figure 10: Solution of NLS, N=8, ã6 = 1020 : 2 rings with 13 peaks and in
the center the Peregrine breather of order 4; on the right, sight of top.

Figure 11: Solution of NLS, N=8, b̃6 = 1020 : 2 rings with 13 peaks and in
the center the Peregrine breather of order 4; on the right, sight of top.

Figure 12: Solution of NLS, N=8, ã7 = 1020 : one ring with 15 peaks and in
the center the Peregrine breather of order 6; on the right, sight of top.

deformations depending on two parameters [7, 9]. We get news triangular
shapes and multiple concentric rings.
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Figure 13: Solution of NLS, N=8, b̃7 = 1020 : one ring with 15 peaks and in
the center the Peregrine breather of order 6; on the right, sight of top.

From the studies already carried out for the order 1 until the order 8, it
would be important to obtain a classification for the order N in general as
already done for orders 1 − 6 by Akhmediev et al. in [11]. Research on this
subject should be done in the next years.
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